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Abstract

Parallelizing dense matrix computations to distributed memory architectures is a well-studied subject
and generally considered to be among the best understood domains of parallel computing. Two packages,
developed in the mid 1990s, still enjoy regular use: ScaLAPACK and PLAPACK. With the advent of
many-core architectures, which may very well take the shape of distributed memory architectures within
a single processor, these packages must be revisited since it will likely not be practical to use MPI-based
implementations. Thus, this is a good time to review what lessons we have learned since the introduction
of these two packages and to propose a simple yet effective alternative. Preliminary performance results
show the new solution achieves considerably better performance than the previously developed libraries.

1 Introduction

With the advent of widely used commercial distributed memory architectures in the late 1980s and early
1990s came the need to provide libraries for commonly encountered computations. In response two packages,
ScaLAPACK [8, 5, 14, 31] and PLAPACK [32], were created in the mid-1990s, both of which provide a
substantial part of the functionality offered by the widely used LAPACK library [3]. Both of these packages
still each enjoy a loyal following.

One of the authors of the present paper contributed to the early design of ScaLAPACK [5, 15, 13, 12, 5, 14]
and was the primarily architect of PLAPACK [33, 2, 27, 32, 6]. This second package resulted from a desire
to solve the programmability crisis that faced computational scientists in the early days of massively parallel
computing much like the programmability that now faces us as multicore architectures evolve into many-core
architectures. After major development on the PLAPACK project ceased around 2000, many of the insights
were brought back into the world of sequential processors and multi-threaded architectures (including SMP
and multicore), yielding the FLAME project [21, 20], libflame library [34], and SuperMatrix runtime system
for scheduling dense linear algebra algorithms to multicore architectures [10, 28]. With the advent of many-
core architectures that may soon resemble “distributed memory clusters on a chip”, like the Intel 80-core
network-on-a-chip terascale research processor [26] and the recently announced Intel SCC research processor
with 48 cores in one processor [24], the research comes full circle: distributed memory libraries will need to
be mapped to single-chip environments.

This seems an appropriate time to ask what we would do differently if we had to start all over again
building a distributed memory dense linear algebra library. In this paper we attempt to answer this question

1



Algorithm: A := Chol blk(A)

Partition A→
„

ATL ATR

? ABR

«
where ATL is 0× 0

while m(ATL) < m(A) do
b = min(m(ABR), balg)
Repartition„

ATL ATR

? ABR

«
→

0@ A00 A01 A02

? A11 A12

? ? A22

1Awhere A11 is b× b

Variant 1:
(not discussed)

Variant 2: (left-looking)

A11 := A11 −A01AH
01 (Herk)

A11 := Chol(A11)

A12 := A12 −AH
01A02 (Gemm)

A12 := A−H
11 A12 (Trsm)

Variant 3: (right-looking)

A11 := Chol(A11)

A12 := A−H
11 A12 (Trsm)

A22 := A22 −AH
12A12 (Herk)

Continue with

„
ATL ATR

? ABR

«
←

0@ A00 A01 A02

? A11 A12

? ? A22

1A
endwhile

Figure 1: Blocked algorithms for computing the Cholesky factorization. (Note that the algorithm is for both
real and complex valued matrices.)

based on more than 20 years of experience by one of the authors and a fresh look provided by the other
authors, who more recently entered the field. This time the solution must truly solve the programmability
problem for this domain. It cannot compromise (much) on performance. It must be easy to retarget from a
conventional cluster to a cluster with hardware accelerators to a distributed memory cluster on a chip.

Both the ScaLAPACK and PLAPACK projects generated dozens of papers. Thus, this paper is merely
the first in what we expect to be a series of papers that together provide the new design. As such it is
heavy on vision and potential, and light on details. It is structured as follows: In Section 2 we review how
matrices are distributed to the memories of a distributed memory architecture using two-dimensional cyclic
data distribution as well as the communications that are inherently encountered in parallel dense matrix
computations. In Section 3 we discuss how distributed memory code can be written so as to hide many of the
indexing details that traditionally make libraries for distributed memory difficult to develop and maintain.
In Section 4 we show that elegance does not mean that performance must be sacrificed. Concluding remarks
follow in the final section.

2 Of Distribution and Collective Communication

A key insight that underlies scalable dense linear algebra libraries for distributed memory architectures is
that the matrix must be distributed to processing nodes (nodes hereafter) using a two-dimensional data dis-
tribution [30, 22]. The p nodes in a distributed memory architecture are logically viewed as a two-dimensional
r × c mesh with p = rc. Subsequently, communication when implementing dense matrix computations can
be cast (almost) entirely in terms of collective communication within rows and columns of nodes, with an
occasional collective communication that involves all nodes.

2.1 Motivating Example

In much of this paper, we will use the Cholesky factorization as our motivating example. Algorithms for this
operation that lend themselves to parallelization are given in Figure 1.
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2.2 Two-dimensional (block) cyclic distribution

Matrix A ∈ Rm×n is partitioned into blocks,

A =

 A0,0 · · · A0,N−1

...
...

AM−1,0 · · · AM−1,N−1

 ,

where Ai,j is of a chosen (uniform) block size. A two-dimensional (Cartesian) block-cyclic matrix distribution
assigns

A =

 As,t As,t+c · · ·
As+r,t As+r,t+c · · ·

...
...


to node (s, t).

2.3 ScaLAPACK

In theory ScaLAPACK allows the distribution block size to be any choice of row and column dimension
(including rectangular). In practice, the block size is chosen to be square. What is important is that design
decisions that underly ScaLAPACK link the distribution block size, bdistr, to the algorithmic block size, balg

(e.g., the size of block A11 in Figure 1). This is a problem since the algorithmic block size is currently
often in the 128 − 256 range, and the larger the distribution block size, the worse the load balance. If the
algorithmic block size is decreased, then the local computation performs worse. In other words, there is a
tension between wanting the distribution block size to be small versus wanting the algorithmic block size to
be larger.

The benefit of linking the two is that, for example, the A11 block in the right-looking Cholesky factor-
ization is owned by a single node, thus requiring only local computation on that node. After this A11 needs
only be broadcast within the row of nodes that owns A12, and the nodes in that row of nodes can then
independently update A12. Finally, A12 can be duplicated within rows and columns of nodes after which
A22 can be updated independently on each node.

2.4 PLAPACK

In PLAPACK there is a notion of a vector distribution that induces the matrix distribution. Vectors are
subdivided into subvectors of length bdistr which are wrapped in a cyclic fashion to all nodes. This vector
distribution then induces the distribution of columns and rows of a matrix to the mesh. The net effect is
that the submatrices Ai,j are of size bdistr by r · bdistr. This in turn means that algorithms that operate with
the matrix are mildly nonscalable in the sense that if the number of nodes p gets large enough, efficiency
will start to suffer even in the matrix is chosen to fill all of available memory. In PLAPACK the distribution
and algorithmic block sizes are not linked so the distribution block size can be chosen to be small while the
algorithmic blocksize can equal the block size that makes local computation efficient.

The mild nonscalability of PLAPACK was the result of a conscious choice made to simplify the imple-
mentation at a time when the number of nodes was relatively small. There was always the intention to fix
this eventually. The new package described in this paper is that fix, but also incorporates other insights
made in the last decade.

2.5 Elemental

In principle Elemental, like ScaLAPACK, can accomodate any distribution block size. However, unlike
ScaLAPACK and like PLAPACK, the distribution block size is not linked to the algorithmic block size.
Now, load balance is optimal when the distribution block size is as small as possible, leading to the choice to
initially only support bdistr = 1, unlike PLAPACK which is not implemented to be efficient when bdistr = 1.
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The insight to use bdistr = 1 is not new. On early distributed memory architectures such “elemental”
distribution was the norm [22, 25]. But that was before the advent of cache based processors that favored
blocked algorithms. In [23] it is noted that

Block storage is not necessary for block algorithms and level 3 performance. Indeed, the use
of block storage leads to a significant load imbalance when the blocksize is large. This is not
a concern on the Paragon, but may be problematic for machines requiring larger blocksizes for
optimal BLAS performance.

This may have been prophetic but has not become relevant until recently. The reason is that the algorithmic
block size used for blocked algorithms used to be related to the (square root of the) size of the L1 cache,
which was relatively small. Kazushige Goto [18] showed that alternative higher performing implementations
should use the L2 cache for blocking, which means that the algorithmic block size is now typically related to
the (square root of the) size of the L2 cache. However, by the time this was discovered distributed memory
architectures had so much local memory that load balance could still be achieved for the very large problem
sizes that could be stored. More recently, the advent of GPU accelerators push the block size higher yet,
into the balg = 1000 range, so that bdistr = balg will likely become problematic. Moreover, one path towards
many-core (hundreds or even thousands of cores on one chip) is to create distributed memory architectures
on a chip [24]. In that scenario, the problem size will likely not be huge due to an inability to have very large
memories close to the chip and/or because the problems that will be targeted to those kinds of processors
will be relatively small.

To some the choice of bdistr = 1 may seem to be in contradition to conventional wisdom that says that
the more processor boundaries are encountered in the data partitioning for distribution, the more often
communication must occur. To explain why this is not true for dense matrix computations, consider the
following observations regarding parallelization of blocked Cholesky factorization Variant 3:

• In the ScaLAPACK implementation A11 is factored by a single node after which it must be broadcast
within the column of nodes that owns it after its factorization.

• If the matrix is distributed using bdistr = 1, then A11 must be gathered to at least one node if it is to
be factored by only one node (which is beneficial since otherwise a lot of communication is necessary
during that smaller computation).

• If done correctly, an allgather to all nodes is comparable in cost to the broadcast of A11 performed by
ScaLAPACK.

• Thus, if bdistr = 1, A11 can be first gathered to all nodes and then redundantly factored (after which
locally the updated values can be placed back in the original matrix since all nodes have a copy).

The point is that for the suboperation that factors A11 there is little or no price to be paid, in term of
communication cost and computation in the critical path, if bdistr = 1.

Next, consider the update of A12:

• In the ScaLAPACK implementation, A12 is updated by the row of nodes that owns it, requiring the
broadcast of A11 within that row of nodes. Upon completion, the updated A12 is then broadcast within
rows and columns of nodes.

• If the matrix is distributed using bdistr = 1, then rows of A12 must be brought together so that
they can be updated as part of A12 := A−H

11 A12. This can be implemented as an all-to-all collective
communication within columns (details go beyond the scope of this paper). After this, if A11 is already
redundantly factored by each node, that update of A12 can happen completely in parallel (with all
nodes participating).

• An allgather within rows and columns then duplicates the elements of A12 so that A22 can be updated
in parallel, much like it is by ScaLAPACK except that ScaLAPACK would use, again, a broadcast.
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It is important to realize that for large amounts of data an allgather is cheaper than a broadcast [9].
The point is that for little or no extra cost the update of A12 and subsequent communication of the result

can be accomodated if bdistr = 1, after which the load balance during the update of A22 is much better,
which can then yield higher performance.

2.6 Recap

If one understands that (virtually) all communications in dense matrix computations are collective in nature,
then one realizes that partitioning and distributing using a small block size is not a problem because gathering
data from many nodes incurs a communication cost that is comparable to the collective communications
that are executed anyway by algorithms that assume a coarser partitioning.

3 Programmability

A major concern when designing Elemental was that the same code should support distributed memory
parallelism at both the “exascale” (clusters with hundreds of thousands or even millions of cores) and
distributed memory clusters on a single chip. Thus, the software must be flexibly retargetable to both of
these extremes.

3.1 ScaLAPACK

The fundamental design decision behind ScaLAPACK can be found on the ScaLAPACK webpage [1]:

Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order to
minimize the frequency of data movement between different levels of the memory hierarchy. (For
such machines, the memory hierarchy includes the off-processor memory of other processors, in
addition to the hierarchy of registers, cache, and local memory on each processor.) The funda-
mental building blocks of the ScaLAPACK library are distributed memory versions (PBLAS) of
the Level 1, 2 and 3 Basic Linear Algebra Subprograms (BLAS) [8], and a set of Basic Linear
Algebra Communication Subprograms (BLACS) [4, 17] for communication tasks that arise fre-
quently in parallel linear algebra computations. In the ScaLAPACK routines, all interprocessor
communication occurs within the PBLAS and the BLACS. One of the design goals of ScaLA-
PACK was to have the ScaLAPACK routines resemble their LAPACK equivalents
as much as possible.

In Figure 2 we show the ScaLAPACK Cholesky factorization routine. A reader who is familiar with the
LAPACK Cholesky factorization will notice the similarity of coding style.

The question could be asked whether the code in Figure 2 could simply be modified to accomodate a
block size of bdistr = 1 while allowing a large algorithmic block size balg. The answer is that it cannot:

• Major modifications would be needed that would violate the prime directive that the code must closely
resemble the LAPACK equivalent routine.

Consider what would need to be added to the code to perform the communication necessary to duplicate
A11 to all nodes and to redistribute A12.

• The communication layer of ScaLAPACK, the BLACS, inherently does not support the all-to-all and
allgather communications that underly the described Cholesky factorization for a matrix that is dis-
tributed with bdistr = 1.

There is a reason for this. The BLACS interface for communicating matrices was meant to closely
resemble the BLAS that perform computation in LAPACK. Consider a representative call to the
BLACS broadcast routine:

CALL DGEBS2D( ICONTXT, SCOPE, TOP, M, N, A, LDA )
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SUBROUTINE PDPOTRF( UPLO, N, A, IA, JA, DESCA, INFO )

*

* -- ScaLAPACK routine (version 1.7) --

* University of Tennessee, Knoxville, Oak Ridge National Laboratory,

* and University of California, Berkeley.

* May 25, 2001

*

< deleted code >

*

DO 20 J = JN+1, JA+N-1, DESCA( NB_ )

JB = MIN( N-J+JA, DESCA( NB_ ) )

I = IA + J - JA

*

* Perform unblocked Cholesky factorization on JB block

*

CALL PDPOTF2( UPLO, JB, A, I, J, DESCA, INFO )

IF( INFO.NE.0 ) THEN

INFO = INFO + J - JA

GO TO 30

END IF

*

IF( J-JA+JB+1.LE.N ) THEN

*

* Form the column panel of L using the triangular solver

*

CALL PDTRSM( ’Right’, UPLO, ’Transpose’, ’Non-Unit’,

$ N-J-JB+JA, JB, ONE, A, I, J, DESCA, A, I+JB,

$ J, DESCA )

*

* Update the trailing matrix, A = A - L*L’

*

CALL PDSYRK( UPLO, ’No Transpose’, N-J-JB+JA, JB, -ONE,

$ A, I+JB, J, DESCA, ONE, A, I+JB, J+JB,

$ DESCA )

*

END IF

20 CONTINUE

Figure 2: Excerpt from ScaLAPACK Cholesky factorization.

Here ICONTXT describes the two-dimensional mesh of nodes, SCOPE indicates whether the broadcast
involves rows, columns, or all nodes, TOP indicates the topology (algorithm) to be used for the broadcast,
M and N indicate the local row and column dimensions of the matrix, which is stored locally at this
node at address A with leading dimension lda. Now, consider what a call to allgather might look like.
The indexing required how data being collected from all nodes is stored before and after the allgather
operation is extremely difficult to specify. Most communications that inherently are encountered when
accomodating a distribution with bdistr = 1 (or any distribution that divorces the algorithmic block
size for the distribution block size) would be equally difficult to specify: gather, scatter, allgather,
reduce-scatter, and all-to-all. It is for this reason1 that the BLACS only included broadcast ( xxBS2D
and xxBR2D), global combine ( xSUM2D, xAMX2D, and xAMN2D), and point-to-point communication
( xxSD2D, xxRV2D).

The point is that without a major redesign of ScaLAPACK, balg 6= bdistr = 1 cannot be accomodated by that
package given the design contraints that were put in place early in the development of that package.

3.2 PLAPACK

As mentioned, PLAPACK already supports balg 6= bdistr. While bdistr = 1 is supported, the communication
layer of PLAPACK would need to be rewritten and the nonscalability of the underlying distribution would

1We can say this with confidence since one of the authors of the current paper was the original designer of the BLACS [4,
11, 4, 17].
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need to be fixed.
Since the inception of PLAPACK, additional insights into solutions to the programmability problem for

dense matrix computations were exposed as part of the FLAME project and incorporated into the libflame
library. To also incorporate all those insights, a complete rewrite of PLAPACK made more sense, yielding
Elemental.

3.3 Elemental

Elemental goes one step beyond libflame in that it is coded in C++2. Other than that, the coding style
resembles that used by libflame. Like its predecessors PLAPACK and libflame, it hides details regarding
a matrix or vector in an object. As a result, much of the indexing clutter that exists in LAPACK and
ScaLAPACK code disappears, leading to much easier to develop and maintain code. Imagine for a moment
that there one of the occurances of N-J-JB+JA in Figure 2 was changed to N-J-JB. This would be a very
hard error to track down.

Now, let us examine how the code in Figure 3 implements the algorithm described in Section 2.5.

• The tracking of submatrices in Figure 1 translates to

PartitionDownDiagonal

( A, ATL, ATR,

ABL, ABR, 0 );

while( ABR.Height() > 0 )

{

RepartitionDownDiagonal

( ATL, /**/ ATR, A00, /**/ A01, A02,

/*************/ /******************/

/**/ A10, /**/ A11, A12,

ABL, /**/ ABR, A20, /**/ A21, A22 );

...

SlidePartitionDownDiagonal

( ATL, /**/ ATR, A00, A01, /**/ A02,

/**/ A10, A11, /**/ A12,

/*************/ /******************/

ABL, /**/ ABR, A20, A21, /**/ A22 );

}

• Redistributing A11 so that all nodes own a copy is achieved by

DistMatrix<T,Star,Star> A11_Star_Star(g);

which indicates that A11 Star Star describes a matrix duplicated on all nodes, and

A11_Star_Star = A11;

lapack::internal::LocalChol( Upper, A11_Star_Star );

A11 = A11_Star_Star;

which performs an allgather of the data, factors the matrix redundantly on all nodes, and then local
substitutes the new values into the original (distributed) matrix.

• The parallel solve of A12 against the conjugate-transpose of the upper triangle of A11 is accomplished
by first constructing an object for holding a temporary distribution of A12,

DistMatrix<T,Star,VR> A12_Star_VR(g);

which describes what in PLAPACK would have been called a multivector distribution, followed by

A12_Star_VR = A12;

blas::internal::LocalTrsm

( Left, Upper, ConjugateTranspose, NonUnit,

(T)1, A11_Star_Star, A12_Star_VR );

2In the future, the library will be accessible from Fortran or C via wrappers.
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template<typename T>

void

elemental::lapack::internal::CholUVar3

( DistMatrix<T,MC,MR>& A )

{

const Grid& g = A.GetGrid();

DistMatrix<T,MC,MR>

ATL(g), ATR(g), A00(g), A01(g), A02(g),

ABL(g), ABR(g), A10(g), A11(g), A12(g),

A20(g), A21(g), A22(g);

DistMatrix<T,Star,Star> A11_Star_Star(g);

DistMatrix<T,Star,VR > A12_Star_VR(g);

DistMatrix<T,Star,MC > A12_Star_MC(g);

DistMatrix<T,Star,MR > A12_Star_MR(g);

PartitionDownDiagonal

( A, ATL, ATR,

ABL, ABR, 0 );

while( ABR.Height() > 0 )

{

RepartitionDownDiagonal

( ATL, /**/ ATR, A00, /**/ A01, A02,

/*************/ /******************/

/**/ A10, /**/ A11, A12,

ABL, /**/ ABR, A20, /**/ A21, A22 );

A12_Star_MC.AlignWith( A22 );

A12_Star_MR.AlignWith( A22 );

A12_Star_VR.AlignWith( A22 );

//--------------------------------------------------------------------//

A11_Star_Star = A11;

lapack::internal::LocalChol( Upper, A11_Star_Star );

A11 = A11_Star_Star;

A12_Star_VR = A12;

blas::internal::LocalTrsm

( Left, Upper, ConjugateTranspose, NonUnit,

(T)1, A11_Star_Star, A12_Star_VR );

A12_Star_MC = A12_Star_VR;

A12_Star_MR = A12_Star_VR;

blas::internal::LocalTriangularRankK

( Upper, ConjugateTranspose,

(T)-1, A12_Star_MC, A12_Star_MR, (T)1, A22 );

A12 = A12_Star_MR;

//--------------------------------------------------------------------//

A12_Star_MC.FreeAlignments();

A12_Star_MR.FreeAlignments();

A12_Star_VR.FreeAlignments();

SlidePartitionDownDiagonal

( ATL, /**/ ATR, A00, A01, /**/ A02,

/**/ A10, A11, /**/ A12,

/*************/ /******************/

ABL, /**/ ABR, A20, A21, /**/ A22 );

}

}

Figure 3: Excerpt from Elemental Cholesky factorization.
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which redistributes the data via an all-to-all communication within columns and performs the local
portion of the update A12 := A−H

11 A12 (Trsm).

• The subsequent redistribution of A12 so that A22 := A22−AH
12A12 is accomplished by first constructing

three temporary distributions,

DistMatrix<T,Star,MC> A12_Star_MC(g);

DistMatrix<T,Star,MR> A12_Star_MR(g);

which respectively describe an intermediate vector distribution and the two distributions needed to
make the update of A22 local. The redistributions themselves are accomplished by the commands

A12_Star_MC = A12_Star_VR;

A12_Star_MR = A12_Star_VR;

which perform a permutation of data among all nodes, an allgather of data within rows, and an
allgather of data within columns, respectively. (Details of why and how these communications will be
given in a future, more comprehensive, paper.) The local update of A22 is accomplished by

blas::internal::LocalTriangularRankK

( Upper, ConjugateTranspose,

(T)-1, A12_Star_MC, A12_Star_MR,(T)1, A22 );

• Finally, the updated A12 is placed back into the distributed matrix (without requiring any communi-
cation) by the command

A12 = A12_Star_MR;

The point is that the Elemental framework allows the (re)partitioning (indexing), distributions, communi-
cations, and local computations to be elegantly captured in code.

3.4 Recap

Regardless of whether someone prefers the code in Figure 2 over that in Figure 3, high-level decisions made
during the early design stage of ScaLAPACK inherently prevent the kinds of communications that support
an elemental distribution (bdistr = 1). The abstractions that are part of the Elemental framework do.
Equally importantly: these abstractions hide details of how the underlying collective communications are
implemented, allowing the code to be easily ported from a conventional cluster where MPI [29] is used to
environments with other support for communicating between nodes.

4 Performance Experiments

The scientific computing community has always been willing to give up programmability if it meant attaining
better performance. In this section we give preliminary performance numbers that suggest that one can have
one’s cake and eat it too.

4.1 Platform details

The performance experiments were carried out on The University of Texas at Austin Texas Advanced Com-
puting Center’s Ranger Supercomputer. At the time of this paper Ranger consisted of 3,936 nodes. Each
node is a SunBlade x6420 blode running a 2.6.16 Linux kernel, with four AMD Opteron Quad-Core (2.3
GHz) 64-bit processors. Each core can perform four floating-point operations per clock cycle for a peak
performance of 9.2 GLFOPS/core. The nodes are connected via a fill-CLOS InfiniBand interconnect pro-
viding a 1 GB/sec point-to-point bandwidth. Since this is a substantial resource we chose to only perform
experiments with 15 nodes, for a total of 240 cores.

We compare the performance of a preliminary version of Elemental to ScaLAPACK Release 1.8 and
PLAPACK Release R3.22. For our experiments we used MVAPICH2 Release 1.2 for MPI and for the BLAS
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GotoBLAS Version 1.30. Each core hosted one MPI process, meaning that the machine was viewed as a 240
processor distributed memory architecture. For all tested implementationsntal the cores were viewed as a
16× 15 mesh of MPI processes. Elemental uses the described elemental cyclic two-dimensional distribution
of the matrices while for ScaLAPACK the distribution block size was always chosen to equal the algorithmic
block size. For PLAPACK the distribution block size was chosen to equal 32. A simple experiment on a
single core yielded an optimal block size of 224, which is the block size for which the rank-k that is at the
core of many high-performance dense matrix computations achieves near-peak performance.

All computations were performed in double precision (64-bit) arithmetic.

4.2 Results

In Figures 4–7 we compare the performance attained by Elemental and ScaLAPACK implementations of
various frequently encountered matrix computations. We limited the size of the problems we tests so as
not to unnecessarily tie up the valuable resource that Ranger represents. We believe the presented data
establishes the trend that can be expected had larger problems been used.

Level-3 BLAS ScaLAPACK, PLAPACK, and Elemental support a full implementation of the level-3
BLAS [16] operations. Here we discuss representative performance for these implementations. In Figure 4
we show performance attained when computing C := AB, the “no transpose-no transpose” case of the BLAS
general matrix-matrix multiplication (gemm) operation. We believe that the reason that the ScaLAPACK
performance is inferior is that that there are three main algorithmic variants for parallel matrix-matrix multi-
plication [19] and ScaLAPACK chooses the wrong algorithmic variant (although all three are implemented).
In Figure 5 we show performance for solving LX = B where L is a lower triangular matrix and X overwrites
B. This operations is called the triangular solve with multiple right-hand sides (trsm). The large difference
in performance is caused by the excessive communication required for their broadcast-based implementation.

Matrix factorization ScaLAPACK and PLAPACK include implementations of all three (one-sided) ma-
trix factorizations: LU with partial pivoting, Cholesky, and QR factorization. Elemental as of this writing
includes the first two, although implementation of QR factorization is a relatively straight-forward exercise,
especially given that we have an implementation of reduction to tridiagonal form (discussed later).

In Figure 6 we report the performance for the Cholesky factorization. The “jagged” performance of
the ScaLAPACK Cholesky factorization can be contributed to load-imbalance because of the relatively
large distribution block size (which, recall, equals the algorithmic block size). It is interesting to note that
performance is notably better near m = 15 × 16 × 224 = 53760. For Elemental we show performance for
both the left-looking (var2) and right-looking (var3) variants. Overall the performance for this operation
ramps up considerably slower because the ratio between communication and computation is less favorable.

In Figure 7 we report the performance for the LU factorization with partial pivoting. There are a number
of reasons why the Elemental implementation outperforms the ScaLAPACK implementation: Better load
balance because of the elemental distribution, the ability of Elemental to use all MPI processes to collaborate
in the factorization of the “current panel” in contrast to the one column of processes used by the ScaLAPACK
implementation, and a more efficient approach to pivoting rows outside the current panel. Details of how
these different issues contribute to the better performance will be investigated in a future paper.

Two-sided factorization ScaLAPACK and PLAPACK include implementations of all three reductions
to condensed form (two-sided factorization) operations: Reduction to tridiagonal, upperHessenberg, and
bidiagonal form. Elemental as of this writing includes only the first, although implementation the other two
is a relatively straight-forward exercise given the implementation of reduction to tridiagonal form.

In Figure 8 we report the performance for the reduction to tridiagonal form. Notice that neither package
attains the same level of performance as do the other operations. The reason for this is that a substantial
part of the computation is in a (local) matrix-vector multiplication which is inherently memory intensive.
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Figure 4: Performance of the gemm operation (C = AB) with square matrices on 240 cores.
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Figure 5: Performance of the trsm operation (B = L−1B) with square matrices on 240 cores.
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Figure 6: Performance of Cholesky factorization on 240 cores.
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Figure 7: Performance of LU factorization with partial pivoting on 240 cores.

12



0 1 2 3 4 5 6

·104

0

20

40

60

80

100

5% of peak

1/12 of RAM (1/6 GB/core)

Dimension

G
F

lo
ps

(m
,t

)
=

4 3
m

3

1
0
9
t

Elemental
ScaLAPACK

Figure 8: Performance of reduction to tridiagonal form on 240 cores.
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Figure 9: Performance of inversion of a triangular matrix 240 cores.
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Inversion of a triangular matrix Inversion of a triangular matrix is an operation encountered when
inverting a symmetric positive definite matrix. A thorough discussion of that operation and its parallelization
can be found in [7]. The poor performance of the ScaLAPACK implementation is due to a call to a parallel
triangular matrix-multiplication with nb right-hand sides. While this operation is embarrassingly parallel
with many right-hand sides, it is inherently unscalable if there are not a sufficient number of right-hand sides
to distribute to each node.

4.3 Tuning

A somewhat legitimate criticism of the performance experiments reported in this section is that we did not
extensively tune ScaLAPACK. The ONLY tuning we did for either package was to check if viewing the
processes as a 15 × 16 mesh versus a 16 × 15 mesh was better. One would expect that there would be a
considerable discrepency in performance since the target machine has 16 cores on a single node.

We believe that Elemental inherently requires little tuning: the elemental partitioning does a good
job of balancing the matrices among processes for load balance and the collective communications that
are inherently encountered in the implementations do not tend to favor row vs. column communications,
meaning that an approximately square mesh of processes should perform well. Thus, we tend not to tune
other than a very simple test to determine a good algorithmic block size.

ScaLAPACK on the other hand has many tunable parameters. The choice of distribution block size
(which, recall, is tied to the algorithmic block size) is very much a function of the problem (matrix) size.
If the matrix is small, a smaller block size should be chosen for better load balance, but a small block size
impedes the performance of the local computations. Moreover, there tends to be an imbalance in the cost
of communication within rows and columns. For example, Cholesky and LU factorizations in ScaLAPACK
pipeline communication within rows while communication with columns is more synchronous in nature.
(These choices of how to communicate themselves are parameters that can be tuned in ScaLAPACK.)
Nonetheless, one would have expected that if the block size were chosen to be equal the best algorithmic
block size, as the matrix size increases in the graphs, the plotted curves should have started to converge.
One could argue that perhaps we did not examine large enough problem sizes, but it is undeniable that
something good is happening with the performance of the Elemental implementations.

5 Conclusion

The point of this paper is to demonstrate once again that, for the domain of dense linear algebra libraries,
neither abstraction nor elegance needs to stand in the way of performance, even on distributed memory
architectures. Therefore, it is time for the community to embrace notations, techniques, algorithms, abstrac-
tions, and APIs that help solve the programmability problem in preparation for exascale computing, rather
than remaining fixated on performance at the expense of sanity.

One major impetus behind the creation of Elemental was the prospect of chips with many cores on a
single chip where communication between the cores will be achieved through message-passing. Our project is
funded in part by Intel to develop techniques for porting dense linear algebra libraries to Intel’s experimental
SCC processor [24], which consists of 48 (Pentium P54C) cores on a single chip that can communicate on-
chip via communication buffers. While one approach to programming this chip is to treat it as a distributed
memory architecture, for many reasons it is impractical to use MPI as the communication layer. As a result,
Intel Labs created the experimental light-weight communication layer RCCE, which at the moment only sup-
ports synchronous communication between nodes, including a few collective communications. Fortunately,
Elemental performs all communication via collective communication. Thus it turned out to be a relatively
easy task (a matter of a few weeks of time for one of the authors of this paper) to port Elemental to RCCE.
The purpose of the experimental processor is to examine programmability rather than raw performance and
the successful port of Elemental to this unusual architecture demonstrates how well it addresses that issue.
A future paper will report performance attained on that novel architecture.
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Availability

The Elemental package is available under the New BSD License from http://code.google.com/p/elemental.
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