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Abstract

Quantitative biomechanical models can identify control parameters used during movements, and 

movement parameters encoded by premotor neurons. We fit a mathematical dynamical systems 

model including subsyringeal pressure, syringeal biomechanics, and upper vocal tract filtering to 

the songs of zebra finches. This reduced the dimensionality of singing dynamics, described as 

trajectories in pressure-tension space (motor “gestures”). We assessed model performance by 

characterizing the auditory response "replay" of song premotor HVC neurons to presentation of 

song variants in sleeping birds, and by examining HVC activity in singing birds. HVC projection 

neurons were excited and interneurons were suppressed with near-zero time lag, at times of 

gesture trajectory extrema. Thus, HVC precisely encodes vocal motor output via the timing of 

extreme points of movement trajectories. We propose that the sequential activity of HVC neurons 

represents the sequence of gestures in song as a “forward” model making predictions on expected 

behavior to evaluate feedback.

For a given set of movements, sets of movement parameters tend to be correlated with each 

other, so that it is difficult to resolve if motor cortical neurons encode different sets of static 

parameters (e.g. position, velocity, direction) or even to distinguish between static and time-

dependent parameters (e.g. path trajectory)1. In principle, the motor coding problem can be 

addressed by developing quantitative models that describe the biomechanics of the 

movements2. To the extent that such models capture the actual control elements used to 

produce a movement, this permits motor neuron activity to be evaluated in a natural 

framework. We examined motor control in the bird song system from this perspective, 

creating a dynamical systems model of the avian vocal organ (syrinx) that captures many of 

the rich set of vocal behaviors that characterize bird songs3.
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We assessed predictions of the biomechanical model by taking advantage of a neuronal 

replay phenomenon4–6. Neurons in the nucleus HVC, a secondary motor/association cortical 

structure which is the most central structure known to be essential for singing, emit precise 

premotor activity when a bird sings5–7, and have responses that are very similar in timing 

and structure6 that are highly selective for the bird’s own song (BOS) when a bird listens to 

playback of song8,9. In zebra finches, there is a striking state-dependent neuronal replay 

phenomenon4 associated with song learning10, so that the strongest and most selective 

auditory responses are recorded in sleeping birds. We used responses to song in sleeping 

adult zebra finches as a proxy for evaluating the structure of singing, and then tested 

emerging hypotheses in singing birds.

Validating a song model: static parameters

The avian vocal organ is a nonlinear device11–13 capable of generating complex sounds even 

when driven by simple instructions14,15. We extended a low dimensional model of the avian 

syrinx and vocal tract that can capture a variety of acoustic features like the precise 

relationship between fundamental frequency and spectral content of zebra finch song16,17. 

The model used here is summarized in Fig. 1. A two dimensional set of equations describes 

the labial dynamics (see Methods) (Fig.1, x(t), red trace). Flow fluctuations are fed into a 

vocal tract, generating an input sound Pi(t) (green trace). The tract filters the sound and is 

characterized as a trachea, modeled by a tube, which connects to the oro-esophageal cavity 

(OEC), here modeled as a Helmholtz resonator18 (see Methods) . The output of the model is 

a time trace representing the uttered sound (Pout(t)) (blue trace).

Using this model, we created synthetic versions of the songs our test birds sang. Time 

dependent parameters of the model describing the labial dynamics were reconstructed to 

account for the time dependent acoustic properties of the sound (see Methods). 

Following3,16,17, for each bird's song we used an algorithmic procedure to reconstruct 

unique functions for the air sac pressure (α(t)) and the tension of syringeal labia (β(t)). The 

result of the procedure for one song is illustrated in Fig. 2, showing that many features 

observed in the spectrograph of the recorded song (Fig. 2a) were also apparent in the 

synthesized song (Fig. 2b). Relatively simple time traces of reconstructed pressure and 

tension arose from fitting the bird’s song (Fig. 2c). These two functions drove the nonlinear 

equations for the labia to produce a wide range of diverse acoustic features. The parameter 

space of pressure vs. tension was organized by bifurcation curves (Fig. 2d, black lines), i.e. 

curves in the parameter space that separated regions where the model presented qualitatively 

different dynamics (sound patterns). Only one region (Fig. 2d, gray region) corresponded to 

oscillatory behavior, i.e. labial oscillations resulting in sound pressure fluctuations. Two 

features of the pressure-tension trajectories resulting in sound output were apparent (Fig. 

2d). One, most of the control parameters were maintained close to bifurcation curves, 

facilitating rapid changes in the quality of sound output with small changes in parameter 

values. Two, there were many sounds that were characterized principally by movements in 

pressure or tension but not both.

Song was described by the sequence of these pressure-tension trajectories, which we call 

gestures, with gesture onsets and offsets defined as discontinuities in either the pressure or 
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tension functions (Fig. 2c). Gestures include movements that do not result in phonation, 

such as pressure patterns associated with mini-breaths between syllables19 but our 

recordings here were limited to airborne sounds. In a sample of 8 modeled songs, there were 

13±4 gestures per motif (largest basic unit of song, a repeated sequence of syllables). The 

distribution of gesture durations (mode = 22.5±2.5 ms, range 4–142 ms) was non-Gaussian, 

with 33% of the gestures ≤ 30 ms, and a long tail corresponding to slowly varying sounds 

such as constant frequency harmonic stacks (Fig. 2e).

This simple model captured essential features of sound production in a framework of labial 

tension and subsyringeal pressure over which birds have direct motor control 20–22. Whereas 

the actual syrinx has considerable additional complexity, the model provided for substantial 

dimensionality reduction. This allowed us to capture a wide range of acoustic features in a 

small set of time dependent parameters.

We tested the model by comparing responses of HVC neurons to the broadcast of the 

modeled song (mBOS) and BOS in sleeping birds (Fig. 3). Responses to a grid of mBOS 

stimuli with identical timing but different spectra from BOS identified optimal estimates for 

two remaining free static parameters (Supplementary Fig. 1). In sleeping birds, song system 

neurons are exceptionally selective and it was far from trivial to induce a response: for 

example mBOS generated without the OEC component failed to elicit response. In a case 

where we mis-estimated the duration of a component of BOS by 5 ms, a neuron responded 

strongly to BOS but not at all to the synthetic song (Supplementary Fig. 2b). Over a 

population of 30 neurons, the best mBOS elicited 58%±8% of the response to BOS 

(Supplementary Note 1). Both phasic projection neurons (HVC(p)) (N=15) and tonic 

interneurons (HVC(i)) (N=15) responded selectively to mBOS over non-BOS stimuli 

(Supplementary Note 1). These results show that a low dimensional model representing an 

approximation of peripheral mechanics is sufficient to capture behaviourally relevant 

features of song.

Projection neurons burst at gesture extrema

We then evaluated the activity of HVC neurons relative to model dynamics, analyzing the 

timing of spike bursting relative to the pressure-tension trajectories used to synthesize 

mBOS. This identified a compelling relation between the timing of HVC(p) spikes and the 

pressure-tension trajectories. For example, in Fig. 4a the spiking of two neurons (coded with 

different colors) is shown relative to the BOS spectrograph, oscillograph and reconstructed 

pressure and tension time series. One neuron bursts once, at the transition between 

descending frequency modulations and a constant frequency “high note”. The other neuron 

bursts twice, once when the pressure during a high note reached a maximum, the other time 

at the transition between a high frequency chevron and a broadband frequency modulated 

sound. Similar relations between spike burst timing and gestures were observed for 14 of the 

15 HVC(p) (Supplementary Figs 2 and 3). In one case, a neuron emitted bursts in the interval 

between syllables. We hypothesize this pattern might arise if the bursts are associated with 

mini-breaths during singing19. Only the 17 bursts occurring during phonation were 

considered for further analysis.
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Examining the responses of the HVC(p) on pressure vs. tension plots demonstrated that 

neurons burst preferentially at gesture trajectory extrema (GTE) associated with gestures 

(Fig. 4b). A gesture has at least two GTE, at its beginning and end, and up to two additional 

GTE, if the absolute maxima of pressure and/or tension represent unique and distinct time 

points. No additional GTE result in cases where the absolute maximum is not distinct in 

time, e.g., multiple local maxima with same magnitude. Of the 17 bursts (14 HVC(p)), 11 

(65%) were aligned with onsets/offsets, and 6 (35%) were aligned with pressure or tension 

maxima. In a sample of 5 songs, there were 28±4 GTE per song (165 total GTE). From a 

total of 60 gestures, 20 (33.4%) had only onset and offset GTEs; 30 (50%) had in addition a 

unique peak in pressure (3 GTEs per gesture); 5 (8.3%) had in addition a unique peak in 

tension (3 GTEs per gesture); and 5 (8.3%) had in addition unique peaks in both pressure 

and tension. The distribution of time intervals between successive GTE (mode = 9±1ms, 

range 4 – 116 ms) was non-Gaussian, with 66% of the intervals ≤ 30 ms (Fig. 4c). This is 

graphically emphasized with tick marks showing all GTEs in Fig. 4a and Supplementary 

Figs 2,3. Most gestures corresponded to notes (the smallest unit of song organization 

recognized by ornithologists), yet motor activity at GTE maxima could subdivide notes, for 

example where a neuron burst and the pressure reached a maximum in the middle of a 

constant frequency harmonic stack (Supplementary Fig. 2). These examples highlight that 

for some HVC(p) the patterns of activity would not be interpretable with a purely 

spectrographic analysis of song5. We also observed cases where HVC(p) burst at the onset of 

relatively pure pressure-only or tension-only trajectories, with a preponderance for pressure-

only trajectories (Fig. 2d). If such neurons project to distinct regions of HVC’s afferent 

targets, which are organized based on the syringeal muscles and interactions with respiratory 

system, such observation could help resolve the long-standing riddle of HVC’s topographic 

organization.

To quantify these observations, we calculated the time between each spike in each burst to 

the closest GTE for all 17 bursts. The resulting distribution was approximately Gaussian, 

with bursts on average preceding the closest GTE (mean = –5.6 ± 0.3 ms, σ = 6.7 ± 0.3 ms; 

Fig. 4d). A bootstrap procedure (Supplementary Note 2) confirmed that the correspondence 

to the closest GTE was statistically significant (F test, P<0.045). This indicates that the 

timing of HVC(p) bursts is associated with the timing of GTE. Given a minimal delay 

between activity of HVC(p) and sound production estimated between 25–50 ms23, the 

minimal 15 ms delay for auditory feedback to HVC8, and that the duration of intervals 

between GTE varied greatly (Fig. 4c), it is remarkable that the timing of HVC(p) bursting 

was synchronized with near–zero time lag to a model of actual behavioral output.

Interneurons are suppressed at GTE

We also noted a relation between the minima in the activity of HVC(i) and the timing of 

GTE. To characterize this, for each interneuron, we bined the spikes in 10 ms windows for 

each acoustic presentation. The resultant average response traces were smoothed and the 

minima in the smoothed traces were identified (see Methods). For an example neuron, the 

average response is shown in green, the superimposed smoothed curve in black, and the 

minima in red dots (Fig. 5a, bottom panel). Each HVC(i) did not have minima at all GTE, 

but across all neurons, we observed a close alignment between the times of the minima and 
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the times of GTE. (A non-significant relation was observed for maxima of HVC(i) activity; 

Supplementary Fig. 4.) Computing the differences between the time of each minimum that 

occurred during phonation and the closest GTE resulted in a distribution that was 

approximately Gaussian (mean = –0.82 ms ± 0.60 ms, σ = 7.3 ± 1.4 ms; Fig. 5b). We 

compare this distribution to the distribution of randomly positioned minima within each 

motif using the bootstrap procedure and found them to be significantly different (F test, 

P<0.016, Supplementary Note 2). Additional tests identified marginally significant locking 

to GTE for one of four birds (Supplementary Note 3). Thus, the precise activity of HVC(i)
7 

can help shape the timing of HVC(p). This suggests a simple model where bursts of activity 

of HVC(p) suppress activity in HVC(i), whose ongoing activity helps shape the next HVC(p) 

burst.

A representation of gestures during singing

Given that our results were obtained by broadcasting songs to sleeping birds, it is natural to 

inquire if during singing the activity of HVC neurons are also locked to gesture transitions. 

Previous results have demonstrated tight temporal locking comparing daytime singing 

activity and auditory-driven responses during sleep of single RA neurons in zebra finches4, 

and HVC neurons in awake swamp sparrows and Bengalese finches that respond to auditory 

stimulation6, but similar observations have yet to be reported for zebra finch HVC neurons. 

We made recordings from HVC in singing birds (N = 3 birds), including 5 phasic neurons 

bursting during phonation (recorded in two of the three birds, Fig. 6, Supplementary Fig. 5); 

one neuron had two bursts per motif, and 10 tonic neurons. We confirmed that during 

singing, all sparse bursts of HVC(p) occurred at gesture transitions (Fig 4e). Following the 

same analysis as in sleeping birds (but here, since each motif of song could vary, it was 

independently modeled), we observed for singing birds even more precise timing of HVC(p) 

than was observed during sleeping (cf. Fig. 4d, e). The Gaussian fit for the population of 

phasic neurons recorded during singing (mean = –1.35 ms ± 0.10 ms, σ = 4.0 ± 0.1 ms; Fig. 

4e) was significantly different from the bootstrapped random distribution (F test, P<0.025, 

see Supplementary Note 2 and Supplementary Fig. 6). The minima activity of tonic neurons 

recorded during singing also showed precise timing relative to GTEs (Gaussian fit for the 

minima: mean = –0.12 ms ± 0.4 ms, σ = 4.0 ± 0.4 ms; Fig. 5c), and this was significantly 

different than the bootstrapped random distribution (F test, P<0.002). Additional analyses 

demonstrated significant locking of minima to GTE in two of three singing birds 

(Supplementary Note 3). As for sleeping birds, the maxima of tonic neural activity showed 

no evidence of a significant locking to the GTEs (Supplementary Fig. 4c). Finally, 

examining the data from a prior study of zebra finches24 we observed that during singing the 

timing of HVC(RA) bursts were closely associated with the timing of HVC(X) bursts 

(Supplementary Fig. 7. In light of our results, this supports the hypothesis that all classes of 

HVC neurons are active in relation to the timing of gestures, although the multiple subtypes 

of HVC(RA), HVC(X), and HVC(i) have yet to be evaluated.

Previously it was concluded that the timing of song syllables was unrelated to the timing of 

HVC(p) discharge5,24 in singing birds. Given the sparse bursting of these cells this led to the 

idea that the output of HVC had a time clock-like function with a nearly uniform “tick” size 

of approximately 10 ms23 supported by a “syn-fire” chain of synaptic activity across 
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HVC(p)
5. Instead we find that the bursting of HVC(p) and modulation of HVC(i) activity is 

timed to significant instances of motor gestures. The sequential firing across the population 

of HVC(p) unfolds in an ordered fashion5 but time is not explicitly represented in HVC. 

Instead, the statistics of HVC activity are closely tied to syringeal/vocal tract mechanics. 

Given the broad distribution of times between GTE, if HVC activity is synchronized with 

GTEs this is inconsistent with a syn-fire network that is active at every moment. The 

distinction between these two models of HVC has additional broad implications for the 

functional organization of the song system, for song learning, and for motor coding.

Since gestures vary greatly in duration, and RA only has access to the times of GTE, then 

downstream components of the motor pathway (RA and presumably brainstem) should 

generate independent dynamical information to sustain the detailed structure within each 

gesture (cf.23,25). Previous experimental results, including the effects of electrical 

stimulation of HVC or RA during singing26 and lesions of nuclei afferent to HVC27 

implicate information in HVC encoding larger units of song. This might arise if some 

gestures or transitions are over-emphasized in HVC relative to others. Finally, gestures are 

learned, which is consistent with the physiological properties of HVC neurons: integration 

over hundreds of milliseconds and multiple syllables, non-linear summation over syllables 

in a sequence preceding the excitatory response, and selective response to BOS4,8,9,28,29,30. 

The information about groupings of gestures such as syllables can be carried in these 

integrated signals. This also re-emphasizes synaptic modification in HVC, not just changes 

at HVC-RA synapses, are associated with feedback mediated sensorimotor learning (cf. 23). 

HVC also projects to the cortico-basal ganglia pathway which contributes to learning–

mediated synaptic modification in RA by introducing variance into song output31,32. This 

suggests the hypothesis that the variance is structured not in an auditory framework but 

around specific features of song motor gestures.

A forward model for vocomotor control

If activity in HVC is in synchrony with little time lag with motor gestures occurring at the 

periphery this would tend to bring it into temporal register with fixed (circa 15 ms) delayed 

auditory33, proprioreceptive20, or brainstem34 feedback. This allows movements to be 

represented in HVC by gestures of greatly varying duration (with dynanics principally 

generated through internal HVC interactions) while each gesture is referenced to a common 

time framework for evaluating feedback (with feedback arriving through distinct, extrinsic 

inputs). This suggests that projection neurons represent a prediction about the actual 

behavioral output at that moment in time, constituting an unexpected form of a “forward” or 

predictive model to resolve the problem of the delay in sensorimotor control35. Assuming 

that behavior is subdivided into gestures, and only the transitions (GTE) are represented by 

HVC output (HVC(p)), then the intervals between the transitions could accumulate feedback 

information by modifying the tonic activity of HVC(i) and subsequently the spike bursting of 

HVC(p). Indeed, HVC receives multiple sources of feedback including input form the 

primary motor cortex RA36, thalamic input carrying brainstem respiratory, auditory, and 

proprioreceptive information21,34,37, and forebrain auditory input 38.
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We have described song organization based on gestures, by taking advantage of the 

dynamical systems modeling framework to go beyond spectrographs. These features of 

motor systems organization could obtain generally39. Our data support Sherrington’s long-

standing hypothesis that the motor cortex is a synthetic organ, representing segments of 

whole movements1,40. In humans the production of speech and the performance of athletes 

and musicians are an exceptional example of highly precise learned skilled behavior that 

could share mechanisms to those described here. Developing corresponding models for 

human speech production should help inform speech and language pathologies where 

sequential behavior is disrupted.

Methods

Subjects, songs, and surgeries

All procedures were in accordance with a protocol approved by the University of Chicago 

Institutional Animal Care and Use Committee. Songs were recorded from 12 birds and 

electrophysiology was conducted on 9 adult male zebra finches (Taeniopygia guttata) bred 

in our colony. Birds were prepared for recordings with surgeries using standard techniques 

to implant a head pin (for auditory experiments)10 or motorized microdrive (for singing 

experiments)5. For auditory experiments, adults were maintained on a 16/8 reversed light 

cycle in sound isolation boxes. Songs were recorded and filtered using custom software 

(SABER, A.S. Dave) then edited (Praat, P. Boersma and D. Weenink, www.praat.org). 

Edited songs included two or three repetitions of one motif, and were typically 2 – 4 s in 

duration. Birds were prepared for recordings with surgeries using standard techniques to 

implant a head pin (for auditory experiments)10 or motorized microdrive (for singing 

experiments)5. Birds were allowed to recover for 2 or 3 days before the first of the days of 

recordings, and rest for at least 2 days between recording sessions.

Electrophysiology, stimulus presentation, and spike analysis

HVC extracellular recordings were performed in head-fixed sleeping or singing tethered 

birds. Recordings were post-processed with a spike-sorting algorithm (Klusters, L. Hazan, 

klusters.sourceforge.net and custom software written by C.D. Meliza) to separate the times 

of spike events for each unit. For experiments in singing birds, all well-isolated neurons are 

reported. For auditory experiments, only BOS responsive neurons were recorded. The 

auditory stimuli were presented randomly with an interstimulus interval of 7±1 s. The neural 

response to each song is quantified in terms of the Z score25 :

where μS is the mean response during the auditory stimulus (S) and μBG is the mean response 

during background activity (BG). The denominator of the equation is the standard deviation 

of (S – BG). The background was estimated by averaging the firing rate during a 2 sec 

period. The Z score of the mBOS, CON, and REV were normalized to the BOS Z score, and 

averages across neurons were reported as mean of normalized responses±s.e.m. For 

interneurons, the strength of the response varied across the motifs42. We picked the last 
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(second or third) motif, which gave the strongest response, to analyze the timing of spikes 

relative to GTE. This minimized false peaks and troughs in the response profiles. In singing 

birds, interneurons fired reliably for each motif and all motifs were incorporated into the 

analysis. The average response of each interneuron (1 ms resolution) was smoothed using a 

Savitsky Golay filter (polynomial local regression41) and the minima were identified using a 

21-point sliding window.

Reconstruction of motor gestures

We assumed flow induced oscillations of opposing labia as a sound source model for 

birdsong production14. This model assumes that for high enough airflow values, the labia 

start to oscillate with a wavelike motion. Assuming two basic modes active (a flapping like 

motion and a lateral displacement of the tissues, appropriately out of phase), a system of 

equations describe the dynamics of the medial position x(t) of one of the opposing labia, at 

one of the sound sources. These read

where the first term in the second equation is the restitution in the labium, the second term 

accounts for the dissipation, and the last term for the force due to the interlabial pressure. 

The average pressure pav can be written in terms of the displacement and its velocity3. These 

equations describe a set of qualitatively different dynamical regimes. To gain independence 

from the details of any particular model presenting these regimes, we worked with a normal 

form that unfolds into a Saddle node in limit cycle bifurcation and a Hopf bifurcation. The 

normal form, which is analytically derived43, constitutes the simplest set of equations for 

any model in which oscillations arise in either of these two bifurcations. Once this reduction 

is performed, the selection of parameters that allow obtaining a sound with specific acoustic 

features gives rise to unique values. The normal form equations are shown in Fig. 1, and 

display the same set of dynamical regimes3 as the physical model, with scaling through a 

time constant γ. Once x(t) is computed, the pressure at the input of the tract is computed as 

Pi(t)=α(t)x(t)-rPi(t-T) where T is the time for a sound wave to reach the end of the tube and 

return, and α(t) is proportional to the average mean velocity of the flow. The transmitted 

pressure fluctuation Pi(t)=(1-r) Pi(t-0.5T) forces the air in the glottis, which is approximated 

by the neck of a Helmholtz resonator (used to model the OEC3,44), i.e., a large container 

with a hole, such that the air in its vicinity oscillates due to the springiness of the air in the 

cavity. A linear set of three ordinary differential equations accounts for the dynamics of the 

air flow and pressure in this linear acoustic device3, resulting in the final output pressure 

Pout(t) (Fig. 1).

We reconstructed the parameters driving the equations of the normal form (α(t) and β(t)), as 

well as the parameters describing the tracheal length and the OEC cavity in such a way that 

the synthesized sounds presented the same fundamental frequencies and spectral content as 

natural song. Reconstructions over sequential sound segments gave estimates of the time 

dependence of physiological parameters used during song production. A linear integrator (𝝉 

= 2.5 ms) was used to compute the envelope of the sound signal. A threshold was used to 
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identify phonating segments. For those longer than 20 ms, we decomposed the recorded 

songs into successive 20 ms segments (time between consecutive segments ∆t = 1/20000 s). 

These were short enough to avoid large variation of the physiological gestures, and long 

enough to compute spectral content. For each segment, we computed the spectral content 

index (SCI)16 and the fundamental frequency. A search in the parameter space (α(t), β(t)) 

was performed over a grid so that the synthetic sounds produced would match the 

fundamental frequencies of the song segment being fitted. Over the set of (α(t), β(t)) values 

selected, a search was performed so that SCI of the synthetic sounds matched the value of 

the song segment3. For sound segments shorter than 20 ms, the fundamental frequency was 

computed as follows. First, we selected the relative maxima of the sound signal that reached 

the sound envelope. Then, the fundamental frequency was computed as the inverse of the 

time difference between the next two consecutive selected maxima. The SCI at that time was 

estimated as the average value among all the possible SCI values, corresponding to that 

frequency in the framework of the model16. With those estimations of fundamental 

frequency and SCI, (α(t), β(t)) were computed. Brief segments were typically fast trills. We 

modeled those as rapid oscillations of pressure and tension, with the amplitude of the 

pressure oscillations such that the maxima fall in the phonating region, and amplitude of the 

tension oscillations such that the frequency range of the vocalization was reproduced. We 

found that most of the parameters could be well approximated by either fractions of sine 

functions, exponential decays, constants, or combinations of those.

Using these analytic functions as parameters of the model to generate a synthetic copy of the 

recorded song resulted in a noiseless surrogate song (e.g., Supplementary Fig. 1, Noise=0). 

The addition of noise allowed the gradual recovery of realistic timbric features. In the text, 

the dimensionless variable Noise varied between 0 and 40, with Noise=5 corresponding to a 

fluctuation size equal to 2.5 percent of the maximum range of the β(t) parameter. Notice that 

the timbric effect will be more important for low frequency sounds, which explore a small 

range of β(t).

For each bird, the length of the trachea was chosen so that the frequencies close to 2.5 kHz 

and 7 kHz in the bird’s song were the first and second resonances of a tube closed at one 

end. This corresponds to a length of 3.5 cm45. Typically, zebra finch songs present a third 

important resonance around 4 kHz. The parameters of the Helmholtz resonator were 

adjusted so that its resonant frequency would account for this resonance3. The synthetic 

songs for sleeping birds were generated before doing the electrophysiological experiments. 

For singing birds all song reconstructions were also performed blind to the spike data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematized view of a dynamical systems model describing labial dynamics and vocal 
tract filtering (trachea and oro-esophageal cavity, OEC)
The syringeal membrane was modeled as a mass (m) with damping (b) and a restitution 

(spring) force (K). Normal form equations for labial position (x(t), red line) were integrated, 

computing the input pressure at the vocal tract (Pi(t), green line) and ultimately the total 

output pressure (Pout(t), blue line). v, sound velocity; T, propagation time along trachea; γ, 

time constant (see Methods).
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Figure 2. A low dimensional model: reconstructing gestures
Spectrographs of a bird's song (a) and model synthetic song (b). Song is described by fitted 

parameters α(t) and β(t), proportional to air sac pressure and labial tension, respectively (c). 

Each sound is generated by a continuous curve in the parameter space of the model, a 

"gesture" (d). Oscillations in the vicinity of a SN bifurcation present rich spectra, typical of 

zebra finch song. Note that the spectrally poor "high note" (green) is distant from the SN 

bifurcation. The gray area indicates the region of phonation. The distribution of gesture 

durations for five birds is displayed in (e).
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Figure 3. Testing the low dimensional model
The activity of HVC selective neurons of sleeping birds in response to the presentation of 

BOS and modeled BOS (mBOS) was similar. The timing of the three repeated motifs that 

were presented is indicated by the bold horizontal lines.
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Figure 4. Timing of gestures relative to bursting of projection neurons
a, song spectrograph and oscillograph (top panels); reconstructed parameters pressure and 

tension (middle panels), with tick marks indicating the times of all GTEs. Bottom panel, 

raster plots of the responses of two neurons (color coded green and orange), together with 

their closest GTE, indicated with lines of the same colors. The trajectories (same color 

coding) in parameter space are displayed in (b), with a point indicating the mean position of 

a burst, and arrows indicating the trajectory direction. c, distribution of time differences 

between consecutive GTE occurrences (N = 5 birds). d, distribution of time differences 

between the time of each spike (Ts) and the time of the closest GTE in sleeping birds (N = 

14 HVC(p), 5 birds). e, The same analysis of d on singing birds (N = 5 HVC(p), 2 birds).
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Figure 5. Suppressed interneuron activity is associated with GTEs
a, Organized as in Fig. 4a, but with spike count response to the song (10 ms bin, 20 

repetitions; green line) for one HVC(i), and a smoothed measure of the response (black line; 

see Methods). Red squares indicate the time of the minima in the smoothed measure, and the 

vertical lines indicated the position of the closest GTE to each minima. b, distribution of 

time differences between spike response minima and their closest GTE in sleeping birds (15 

HVC(i), 5 birds). c, Same analysis in singing birds (10 HVC(i), 3 birds).
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Figure 6. During singing, HVC(p) fired in the vicinity of GTE
a, A HVC(p) neuron bursts locked to the vicinity of a GTE even as the syllable sequence and 

time interval varies. b, For another bird, the burst of a HVC(p) neuron is locked to a GTE in 

the vicinity of a subtle acoustic transition.
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