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Abstract

We present an analog and machine-independent algebraic characterization of
elementarily computable functions over the real numbers in the sense of recursive
analysis: we prove that they correspond to the smallest class of functions that
contains some basic functions, and closed by composition, linear integration, and
a simple limit schema.

We generalize this result to all higher levels of the Grzegorczyk Hierarchy.

This paper improves several previous partial characterizations and has a dual
interest:

e Concerning recursive analysis, our results provide machine-independent char-
acterizations of natural classes of computable functions over the real numbers,
allowing to define these classes without usual considerations on higher-order
(type 2) Turing machines.

e Concerning analog models, our results provide a characterization of the power
of a natural class of analog models over the real numbers and provide new
insights for understanding the relations between several analog computational
models.

1 Introduction

Several approaches have been proposed to model computations over real numbers. Re-
cursive analysis or computable analysis, was introduced by Turing [38], Grzegorczyk
[17], Lacombe [21]. Many works have been devoted to giving computable foundations
to most of the concepts of mathematical analysis in this framework : see e.g. monograph
[39].

Alternative views exist. Among them, we can mention the model proposed by
Blum et al., sometimes called real Turing machine, measuring the algebraic complexity
of problems independently of real number representation considerations defined in [5]
and extended to arbitrary structures in [33]. Several papers have been devoted to un-
derstanding complexity classes and their relations in this framework: see monographs
[4, 33].

These models concern discrete time computability. Models of machines where the
time is continuous can also be considered. The first ever built computers were continu-
ous time machines: e.g. Blaise Pascal’s pascaline or Lord Kelvin’s model of Differential
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Analyzer [20], that gave birth to a real machine, built in 1931 at the MIT to solve dif-
ferential equations [9], and which motivated Shannon’s General Purpose Analog Com-
puter (GPAC) model [36], whose computational power was characterized algebraically
in terms of solutions of polynomial differential equations [36, 34, 22, 16]. Continuous
time machines also include analog neural networks [32, 37], hybrid systems [3, 6], or
theoretical physical models [31, 19, 15]: see also survey [32].

The relations between all the models are not fully understood. One can say, that
the theory of analog computations has not yet experienced the unification that digital
discrete time computations have experienced through Turing work and the so-called
Church thesis [13, 32].

This however becomes a crucial matter since the progress of electronics makes the
construction of some of the machines realistic, whereas some models were recently proved
very (far too?) powerful: using the so-called Zeno’s paradox, some models make it
possible to compute non-Turing computable functions in a constant time: see e.g. [23,
7, 3, 19, 15].

Notice that understanding whether there exist analog continuous time models that
do not suffer from Zeno’s paradox problems is also closely related to the important
problems of finding criteria for so-called robustness for continuous (hybrid) time models:
see e.g. [18, 2].

In [23], Moore introduced a class of functions over the reals inspired from the classical
characterization of computable functions over integers: observing that the continuous
analog of a primitive recursion is a differential equation, Moore proposes to consider the
class of R-recursive functions, defined as the the smallest class of functions containing
some basic functions, and closed by composition, differential equation solving (called
integration), and minimization.

This class of functions, also investigated in [24, 25, 26, 27, 28, 29], can be related to
GPAC computable functions: see [23], corrected by [16].

Putting aside possible objections about the physical feasibility of the p-operator
considered in paper [23], the original definitions of this class in [23] suffer from several
technical problems'. At least some of them make it possible to use a “compression trick”
(another incarnation of Zeno’s paradox) to simulate in a bounded time an unbounded
number of discrete transitions in order to recognize arithmetical reals [23].

In [11, 12, 13], Campagnolo, Costa and Moore propose to consider the (better-
defined) subclass £ of R-recursive functions corresponding to the smallest class of func-
tions containing some basic functions and closed by composition and linear integration.
Class L is related to functions elementarily computable over integers in classical recur-
sion theory and functions elementarily computable over the real numbers in recursive
analysis (discussed in [40]): any function of class £ is elementarily computable in the
sense of recursive analysis, and conversely, any function over the integers computable
in the sense of classical recursion theory is the restriction to integers of a function that
belongs to £ [12, 13].

However, the previous results do not provide a characterization of all functions over
the reals that are computable in the sense of recursive analysis.

This paper provides one:

Theorem 1 For functions over the reals of class C2 defined on a product of compact
intervals with rational endpoints, f is elementarily computable in the sense of recursive
analysis iff it belongs to the smallest class of functions containing some basic functions
and closed by composition, linear integration and a simple limit schema.

IFor example not well defined functions are considered, co x 0 is always considered as 0, etc....
Some of them are discussed in [11, 12, 13] and even in the original paper [23].



We extend this theorem to a characterization of all higher levels of the Grzegorczyk
hierarchy (observe that previous theorem is a consequence of this theorem).

Theorem 2 For functions over the reals of class C* defined on a product of compact
intervals with rational endpoints, f is computable in the sense of recursive analysis in
level n > 3 of the Grzegorczyk hierarchy iff f belongs to the smallest class of functions
containing some (other) basic functions and closed by composition, linear integration
and a simple limit schema.

Concerning analog models, these results have several impacts: first, they contribute
to understand analog models, in particular the relations between GPAC computable
functions, R-recursive functions, and computable functions in the sense of recursive
analysis. Furthermore, they prove that no Super-Turing phenomenon can occur for
these classes of functions. In particular we have a “robust” class of functions in the
sense of [18, 2].

Concerning recursive analysis, our theorems provide a purely algebraic and ma-
chine independent characterization of elementarily computable functions over the reals.
Observe the potential benefits offered by these characterizations compared to classical
definitions of these classes in recursive analysis, involving discussions about higher-order
(type 2) Turing machines (see e.g. [39]), or compared to characterizations in the spirit
of [10].

In Section 2, we start by some mathematical preliminaries. In Section 3, we recall
some notions from classical recursion theory. We present basic definitions of recursive
analysis in Section 4. Previous known results are recalled in Section 5. Our character-
izations are presented in Section 6. The proofs are given in Sections 7 and 8. Some
extensions are presented in Section 9 and 10.

2 Mathematical preliminaries

Let N, @, R, R>? denote the set of natural integers, the set of rational numbers, the set
of real numbers, and the set of positive real numbers respectively. Given x € R™, we
write T to emphasize that z is a vector.

We will use the following simple mathematical result

Lemma 1 Let F: R x V C RF! — R! be a function of class®* C*, and B(x) : V — R,
K(x):V — R be some continuous functions.
o Assume that for all t and T = (z1,...,2x), | % (t, T)|| < K(T)exp(—tB(T)).
Let D be the subset of the T € V with 3(T) > 0.
Then,

— forall @ € D, F(t,T) has a limit L(T) in t = +o0.
— Function L(T) is a continuous function.

— Furthermore

1E(t ) = L(7)]| < 3(T)

2Recall that function f : D C RF — R!, k,1 € N, is said to be of class C" if it is 7-times continuously
differentiable on D. It is said to be of class C* if it is of class C" for all r.



o Assume that, in addition, for allt and T = (x1,...,2k), %(t, T) exists and
gm0, )| < K(T) exp(—t6(T)).
Then:
— Function L(7T) is of class C'.
— Its partial derivative g—i are the limit of g%(t, T) in t = 4o0.
— Furthermore

OF OL i < K@) esp(-t5(7))

156 7) = 52(7) e

Proof By mean value theorem,

< [} Kexp(—tB(T))dt
< K[ exp(—t5(7))dt = KRS
This implies that F(t, T) satisfies Cauchy criterion, and hence converges in t = +oo0.
This implies the existence of function L. The first inequality of the lemma is obtained by
letting ¢’ go to 4+oco in previous inequality. Observe that it implies that the convergence
is uniform in T in every compact domain.

L is continuous since the limit of a uniformly convergent sequence of continuous
function is continuous.

Replacing F(t, T) by %(t, ) in previous arguments proves the uniform conver-

[2(, @) = F(, )|

gence of g—i (t, ) in t = 400 on every compact domain under the additional hypothesis.
Observing that the derivative of a converging sequence of functions, whose sequence
of derivatives converges uniformly, exists and is the limit of the derivatives, and that
the limit of a uniformly converging sequence of continuous functions is continuous, the
other assertions follow. ]
The following result®, with previous lemma, is a key to provide upper bounds on the
growth of functions of our classes (c.f. Lemma 7).

Lemma 2 (Bounding Lemma for Linear Differential Equations [1]) For linear
differential equation @' = A(t)@, if A is defined and continuous on interval I = [a,b],
where a < 0 < b, then, for all T, the solution of @' = A(t)@ with initial condition

T (0) = T is defined and unique on I. Furthermore, the solution satisfies

IZ @O < [Tollexp( sup [[A(T)][2).

T€[0,t

Remark 1 Recall that the solution of any differential equation of type ®' = A(t) @ +
B(t), T(0) = T, where A(t) is a n x n matriz and B(t) is a n dimension vector can
be obtained by the solution of linear differential equation §' = C(#)Y, 7 (0) = T4 by
working in dimension n + 1 and considering

y(t):<$(1t)>, y0:<$10>, andcz<’§ ?)

3As it was already the case in [11, 12, 13].




3 Classical Recursion Theory

Classical recursion theory deals with functions over integers. Most classes of classical
recursion theory can be characterized as closures of a set of basic functions by a finite
number of basic rules to build new functions [35, 30]: given a set F of functions and
a set O of operators on functions (an operator is an operation that maps one or more
functions to a new function), [F; O] will denote the closure of F by O.

Proposition 1 (Classical settings: see e.g. [35, 30]) Let f be a function from NF
to N for k € N. Function f is

e clementary iff it belongs to € = [0,5,U, +,5; COMP, BSUM, BPROD];
e in class &, of the Grzegorczyk Hierarchy (n > 3) iff it belongs to
&, =10,5,U,+,6, E,_1; COMP,BSUM, BPROD|;
e primitive recursive iff it belongs to PR = [0,U, S; COMP, REC];
e recursive iff it belongs to Rec = [0,U, S; COMP, REC, MU].

A function f : N¥ — N is elementary (resp: primitive recursive, recursive) iff its
projections are elementary (resp: primitive recursive, recursive).

The base functions 0, (U™); men, S, +, © and the operators COMP, BSUM, BPROD,
REC, MU are given by

1.0O:N=>N,0:n—0; U™ :N*" =N, U": (ny,...,nm)—n;; S:N—-NS:
n—n+1; +: N2 >N, +:(n;,n) —n;+ny; ©: N2 =N, ©: (ng,ng) —
max(0,n1 — n2);

2. BSUM : bounded sum. Given f, h = BSUM(f) is defined by h : (T,y) —
>y (T, 2); BPROD : bounded product. Given f, h = BPROD(f) is defined

by h: (T, y) = [« (T, 2);

3. COMP : composition. Given f and g, h = COMP(f,g) is defined as the function
verifying h(T) = g(f(T));

4. REC : primitive recursion . Given f and g, h = REC(f,g) is defined as the
function verifying h(Z,0) = f(T) and h(T,n+ 1) = g(T,n, h(T,n)).

5. MU : minimization. The minimization of f is h: @ — inf{y : f(T,y) = 0}.

Functions E,, involved in the definition of the classes &, of the Grzegorczyk Hier-
archy, are defined by induction as follows (when f is a function, fld denotes its d-th
iterate: fO1(T) =z, fH(T) = f(£1()):

1. E0($7y) =T+ Y,

2. By(z,y) = (z+1) x (y+1),

3. Es(x) = 2%,

4. Epyi(z) = ELI](l) forn > 2.

PR corresponds to functions computable using loop programs. & corresponds to

computable functions bounded by some iterate of the exponential function [35, 30].
The following facts are known:



Proposition 2 ([35, 30]) o & =EC PR C Rec
e & C&uy1 forn > 3.

Previous classes can also be related to complexity classes. If TIME(t) and SPACE(t)
denote the classes of functions that are computable with time and space ¢, then:

Proposition 3 ([35, 30]) For alln > 3,
o &, = TIME(E,) = SPACE(E,),
e PR = TIME(PR) = SPACE(PR).

In classical computability, more general objects than functions over the integers
can be considered, in particular functionals, i.e. functions ® : (NV)™ x Nk — N/, A
functional will be said to be elementary (respectively. &, , primitive recursive, recursive)
when it belongs to the corresponding? class.

4 Computable Analysis

The idea sustaining Computable analysis, also called recursive analysis, is to define
computable functions over real numbers by considering functionals over fast-converging
sequences of rationals [38, 21, 17, 39].

Let vg : N — Q be the following representation® of rational numbers by integers:

vo({p,,q)) — Z;’{, where (.,.,.) : N> — N is an elementarily computable bijection.

A sequence of integers (x;) € NN represents a real number z if it converges quickly
toward z (denoted by (z;) ~ z) in the following sense:

Vi, vy () — | < exp(—i).

For X = ((w1),...,(xr)) € (N @ = (2q1,...,21) € R, we write X ~ 7T for
(zi) » z; fori=1,... k.

Definition 1 (Recursive analysis) A function f: D — R, where D is a closed subset
of R¥ for some integer k, is said to be computable (in the sense of recursive analysis)

if there exists a recursive functional ¢ : (Nk)N x N — N such that for all T € D, for all
X € (NM)N we have (¢(X,))j ~ f(T) whenever X ~ 7.
A function f : D — R, with | > 1, is said to be computable if all its projections are.

A function f will be said to be elementarily (respectively &,,) computable whenever
the corresponding functional ¢ is. The class of elementarily (respectively £,) computable
functions over the reals will be denoted by £(R) (resp. &,(R)).

Elementarily computable functions have been discussed in [40]. Observing that
classical proofs for computable functions (see e.g. [39]) use only elementary functionals
one can state:

4Formally, a function f over the integers can be considered as functional f : (Vi,...,Vin, @) —
f(m). Similarly, an operator Op on functions fi,...,fm over the integers can be extended to
Op(F1,....,Fmn) : Viyeo s Vi, @) = Op(F1(Viy - s Vin, s o, F(Viy ooy Vi, ))(). We will still
(abusively) denote by [f1,..., fp;O1,...,04] for the smallest class of functionals that contains basic
functions fi, ..., fp, plus the functionals Map; : (Vi, ..., Vin,n) — (Vi)n, the nth element of sequence
Vi, and which is closed by the operators Oj,...,0O4. For example, a functional will be said to be
elementary iff it belongs to & = [Map,0, S,U, +, 5; COMP, BSUM, BPROD].

5Many other natural representations of rational numbers can be chosen and provide the same class
of computable functions: see [39].




Proposition 4 Functions +, —, X, €*, sin(z), cos(z), 1/x are elementarily com-
putable® in the sense of recursive analysis.

The following result is also well-known:

Proposition 5 (see e.g. [39]) All (elementarily) computable functions in the sense
of recursive analysis are continuous.

Actually, one can go further: adapting to the elementary case the classical state-
ments and proofs of recursive analysis (see e.g. [39]), one can state that elementarily
computable functions are uniformly continuous on all compact subsets of their domains
with an elementarily computable modulus of continuity.

Definition 2 A modulus of continuity of a function f : D — R! defined over a closed
domain is a function M : N — N such that for oll i € N, for all z,y,

[ —yll < exp(=M(i)) = [[f(z) = f(y)l| < exp(—i).

Proposition 6 If f € E(R) is defined over a product of closed intervals, then f has a
modulus of continuity in €.

Proof We sketch the proof for f : D C R — R. The general case is easy to
obtain. Function f is computed by elementary functional ¢ : N¥ x N — N. ¢ can be
understood as being a sequence of elementary functions ¢; such that, Vz, VX ~» z,Vi €
N, jvg(pi(X)) — f(z)| < exp(—i). Each of these ¢; is an elementary function that
returns a result in finite time. Hence, it must return a result in a time bounded by an
elementary function t; (an iterate of the exponential function). That implies that o;(X)
only depends on the v; first terms of X. If ||[x—y|| < exp(—1;), since we can find X ~ z,
and Y ~ y that coincide on the v; first terms, we must have || f(x) — f(y)|| < 2 exp(—i).
That means that (i) = 1,41 + 1 is an elementarily computable modulus of continuity
for f. [

When f is (elementarily) computable, then its derivative f’ is not necessarily com-
putable. However, this holds for functions of class C? over a compact domain (we are
still adapting to the elementary case the classical proofs of recursive analysis: see e.g.
39]):

Lemma 3 Let f : D C R¥ — R! be a function of class C* defined over compact domain
D.
If f is elementarily computable, then its partial derivatives are.

Proof We give the proof for a function f defined on interval [0, 1] to R. The general
case is easy to obtain.

Since f” is continuous on a compact set, f” is bounded by some constant M. By
mean value theorem, we have |f'(z) — f'(y)| < M|z — y| for all z,y.

Given z € [0,1], and ¢ € N, an approximation z of f/(z) at precision exp(—i) can be
computed as follows: compute n with M exp(—n) < exp(—i)/2. Compute y; a rational
at most exp(—i — n — 2) far from f(z), and y2 a rational at most exp(—i — n — 2) far
from f(x + exp(—n)). Take z = (y1 — y2)/ exp(—n).

6More precisely, with our definition, 1/ restricted to any closed domain, is elementarily computable
in the sense of recursive analysis.



This is indeed a value at most exp(—i) far from f’(z) since by mean value theorem
f(z+exp(=n))—f(z)

op(—n) . Now

there exists x € [z, z + exp(—n)] such that f'(x;) =

|Z . f/(l‘)| < |g}1{;(sz§| + |y2—fé:;-(ejcs)(—n))| + |f(x+e;c)}(3I()(—jLT)Lg—f(z) _ f’(l‘)|
< exp(—i —n —2)exp(n) + exp(—i — n — 2) exp(n)
+1/ () = f/(2)]
< 2exp(—i—2) + Mexp(—n)
< exp(—i)/2 + exp(—i)/2
< exp(—i).

5 Real-recursive and recursive functions

Following the original ideas from [23], but observing that the minimization schema
considered in [23] is the source of many technical problems, Campagnolo, Costa and
Moore proposed in [11, 12, 13] not to consider classes of functions over the reals defined
in analogy with the full class of recursive functions, but with subclasses. Indeed, the
considered classes are built in analogy with class of elementary functions and the classes
of the Grzegorczyk hierarchy . Furthermore, they proposed to restrict the integration
schema to a simpler (and better defined) linear integration schemata LI [13, 12].

We call real extension of a function f : N¥ — N! a function f from R* to R’ whose
restriction to N¥ is f.

Definition 3 ([13, 12]) Let £ and L,, be the classes of functions f : R¥ — Rl for
some k,l € N, defined by

£=1[0,1,—1,7,U,05 COMP, LI

and

L, =1[0,1,-1,7,U, 03 E,_1; COMP, LI]

where the base functions 0, 1, —1, w, (U™); men, 03, En and the schemata COMP and
LI are defined as follows:

1. 0,1, -1, 7 are the corresponding constant functions; U™ : R™ — R are, as in the
classical settings, projections: U™ : (x1,...,Zm) — T;i;

2. 05 : R — R is defined as 03 : x +— x> if x > 0,0 otherwise.
3. En: forn >3, let E,, denote a monotone real extension of the function exp,, over
the integers defined inductively by expy(x) = 2%, exp,; 1 (z) = expgw](l).

4. COMP: composition is defined as in the classical settings: Given f and g, h =
COMP(f, g) is the function verifying h(T) = g(f(T));

5. LI: linear integration. From g and h, LI(g, h) is the mazimal solution of the linear
differential equation %(T’,y) =h(T,y)f(T,y) with f(T,0) =g(T).

In this schema, if g goes to R™, f = LI(g,h) also goes to R™ and h(T,y) is a
n X n matriz with elements in L.

Lemma 4 These classes contain functions id : x +— x, sin, cos, exp, +,X, T — 1 for
—
all rational r, as well as for oll f € L, or f € L*, its primitive function F equal to 0
—
at 0, denoted by [(f).



Proof Indeed, [(f) can be defined by < }; > :LI({ (1) } , [ 8 (]; ])

Function id is given by [(1).

Function © : t — (sin(t), cos(t)) can be defined by LI <[ (1) ] , [ _01 (1) ]) Project
this function on each of its two variables to get sinus and cosinus function.

Function exp is given by LI(0,1).

Addition is given by =z + 0 = z, &gzy = 1. Multiplication is given by = x 0 = 0,

dy =T
Given p,q € N with ¢ > 0, Function = + p,is 1+ 1+ ... + 1, function z — 297! is
zX...xz, and px [(x— 2971 is  — pad/q whose value in 1 is p/q. ]

However, non total functions like z +— 1/z can not belong to the class since all
functions from L are total:

Proposition 7 ([12, 13]) All functions from L and L,, are continuous, defined every-
where, and of class C2.

The previous classes can be partially related to classes &£, &, over integers and to
classes £(R) and &,(R) over real numbers. Indeed, in order to compare functions over
the reals with functions over the integers, we introduce the following notation: given
some class C of functions from R* to R!, we write DP(C) (DP stands for discrete part)
for the class of functions from N* to N! which have a real extension in C.

One main contribution of [12, 13] is:

Proposition 8 ([12, 13]) e DP(L) =¢;

e DP(L,) =¢&,.

Actually, stronger inclusions were proved in [12, 13]:
Proposition 9 ([12, 13]) o L CE(R).

o L, C&(R).

However there is no hope to get the other inclusion: these inclusions are strict.
Indeed, x +— 1/z is elementarily computable while Proposition 7 says that all functions
from L are defined everywhere. A similar argument works for &,(R). We conjecture
the inclusions to be strict even when restricting to total functions.

P
Remark 2 Let 0y be the function defined by 0 (z) = az) Zfifeiw?se .
If one replace 035 by Oy for a k > 3 in the definitions of L and L,,, the classes L and

L, may differ from previous ones.
However:

e Propositions 8 and 9 still hold for the obtained classes

e Proposition 7 is changed into “All functions from L and L, are continuous, de-
fined everywhere, and of class C*=1”

Remark 3 Note that all base functions except 03 (and the 6y) are analytic, and that
all previous schemes preserve analyticity: in other words, the use of such a function 0y,
is mecessary in order to be able not to consider only analytic functions.



6 Real-recursive and recursive functions revisited

We now propose to consider new classes of functions that we will prove to correspond
precisely to £(R) and &, (R).

First, we restrict to functions defined over closed domains. These functions include
in particular functions defined over RF for some k, that is total functions, but also
functions defined on closed subsets of R¥.

The motivation is the following (observe that in this paper we defined computability
in the sense of recursive analysis only for our class of functions, but computability over
more general domains can also be defined: see e.g. [39]).

Lemma 5 General elementarily computable functions are not stable by composition’.

To do so, we slightly modify LI schema, by allowing not-necessarily maximal solu-
tions of linear differential equations to be considered. By abuse of notation, LI will
denote this schema in what follows.

Definition 4 (LI schema) From g and h, L1(g, h) is any solution defined on a product
of closed intervals of the linear differential equation g—i(?,y) = hT,y)f(T,y) with
f(@,0) =g(2).

In this schema, if g goes to R™, f = LI(g,h) also goes to R™ and h(T,y) is an xn
matriz with elements in L.

Now, we suggest to add a limit operator.

Remark 4 The idea of adding a limit operator has already been investigated in papers
like [28, 24]. However, since we are interested in R-sub-recursive functions, and not to
build a whole hierarchy above recursive functions as in [28, 24], our limit schema will
not be as general: as the LI schema of [11, 12, 13] is a restrained version of Moore’s
integration operator, our LIM may be seen as a restrained version of the operators of

[28, 24].

The conditions we impose on LIM are inspired from Lemma 1: a polynomial 3 over

z € R is a function of the form 8 : R - R, :z+— > . a;x’ for some ag,...,a, € R.
A polynomial 3 over @ = (z1,...,7541) € RF1is a function of the form 3 : RE*1 — R,
BT — Y aix),, for some ag,...,a, polynomial over (z1,...,z) € RE.

Definition 5 (LIM schema) Let f : Rx D Cc RFtl - R K : D — R and 8 :
D — R a polynomial with the following hypothesis: such that for allt, @ = (x1,...,2k),

. 2 ¢ . . ?
||%_()t,?’)\| < K(7)exp(—tB(7T)), a?T’;i(t,xi) exists for all1 < ¢ <k, and ||£8’;i t, )|
K(7) exp(—tB(7)).

Then, on every product of closed intervals I C R¥ on which 3(T) > 0, F(T) =
limy o f(t, @) emists by Lemma 1. If F is of class® C2, then we define LIM(f, K, 3)
as this function F : I — R.

We are ready to define our classes:

Definition 6 (Classes L£*, L* ) The class L*, and L, for n > 3, of functions from
R* to R!, for k,1 € N, are the following classes:

"The proof uses non-total functions, defined on open domains. Computable functions defined over
closed domains can be shown stable by composition.
8By Lemma 1, if f is of class C!, function F is at least of class C!.
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o L7 = [07 1,-1,U, QS,COMP,LL LIM]
e £, =[0,1,-1,U,63, E,,_1; COMP, LI, LIM].

Remark 5 Previous classes can easily be shown stable by the primitive operator that
sends a function f to its primitive [(f) equal to 0" at 0.

Indeed, [(f) can still be defined by ( }; ) :LI([ (1)]’[8 g})

Remark 6 Unlike classes from previous sections, class L* also includes some non-total
functions.

>0
In particular any restriction to a closed domain of function % : Rx : Ii&
x
(I—exp(=tz))
Indeed, E(t,z) = [(exp(—tz)) is such that E(t,z) = { : ig; zfo

(of class C¥ for all k). Now L = LIM(E, K, id) for some suitably chosen constant K
(depending on the domain).
Our classes are supersets of previous classes:

Proposition 10 £ C L*, £,, C L}, for alln > 3.

Proof The function x — 7 is actually in £*. Indeed, from x — H% in the class,

we have arctanx = f(ﬁ), and m = 4arctan(1). |
The main results of this paper are the following (proved in following two sections):

Theorem 1 (Characterization of £(R)) Let f : D C R¥ — R! be some function
over the reals of class C?, with D product of compact intervals.

fis in E(R) iff it belongs to L*.

Theorem 2 (Characterization of £,(R)) Let f : D C RF — R! be some function
over the reals of class C?, with D product of compact intervals. Let n > 3.

f s in E,(R) iff it belongs to L.

Observe that Theorem 1 is clearly the particular case n = 3 of Theorem 2.

Remark 7 If we replace 03 by O for a k > 3 in the definitions of L* and L, and
impose the result of a LIM operation to be of class C*~! in Definition 8 (instead of C?),
the classes L* and L} may differ. However, we have almost the same theorems for the
corresponding classes: replace C* by CF=1 in the statements of the theorems.
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7 Upper bounds

We now prove the upper bound £* C £(R). As one may expect, this direction of the
proof has many similarities with the proof £ C £ in [12, 13]: main differences lie in the
presence of non-total functions and of schema LIM.

We first discuss the domain of the considered functions.

Lemma 6 All functions from L* are of class C? and defined on a domain of the form
11 x I ... x I, where each I; is a closed interval.

Proof By structural induction
e This is clear for basic functions (1, 0, —1, U, and 03).
e Composition preserves this property.

e Linear differential equations preserve class C? [1, 14]. They also preserve the
domain property by definition.

o If g = LIM(f, K, 3), from definition of LIM schema, this is clear.

]

We propose to introduce the following notation: given a € R, let p, be the function
x = ﬁ Let pyo and p_ be the function identity x — z.

Given I real interval with bounds a,b € R U {—00, +0}, pr(z) = |po(z)| + |ob(z)].
For D=1 X Is...x Iy, let pp(z) = pr, (UF(x)) + ...+ pr, (UF(z)). In any case, pp(z)
is elementarily computable and grows to +0o when z gets close to a bound of domain
D.

The following Lemma is an extension of a Lemma of [11, 12, 13].

Lemma 7 Let f: D C R¥ — R be a function of L*. There exist some integer d, and
some constants A and B such that for all T € D, || f(7)| < Aexpld(Bpp(7)). Call
the smallest such integer d the degree of f (denoted by deg f). All partial derivatives of
f also have a finite degree.

Proof
By some elementary algebra and elementary properties of the exponential function,
observe that by adjusting constants A, B, it is always possible to assume for all functions

fand g, deg fg < max(deg f,degg), and deg(f + g) < maxz(deg f,deg g).
Now, by structural induction:

e 0,1, —1, U and all their derivatives have degree at most 1.
e O5(x) and its derivative have degree 1.

e The degree of COMP(f, g) is less than deg(f)+deg(g), since deg(fog) < deg(f)+
deg(g) can easily be established using basic properties of exponential function.
By the chain rule, the degree of any of the derivative of the composition f(g) is
bounded by max;(deg %, deg % +degyg).

e For f =LI(g,h) as in Definition 3, Lemma 2 allows us to write

[ f(z, 9l <llg(x)l|exp( sup [|h(z,T)[ly).
T€(0,y]

It follows that the degree of f is less than max(degg,degh + 1).

12



The derivative of f relative to y is h(@,y)f(T,y). Hence its degree is also
bounded by max(degg,degh + 1). By [1, 14], we know that the other deriva-

tive relative to variable x is solution of linear differential equation d’ = hd + %

with initial condition d(x,0) = %. The bound given by Lemma 2 for this linear
differential equation allows us to state that the degree of this derivative is less

than max(deg %,degh +1,deg % +1,deg f +1).
e Let g = LIM(f, K, 3) as in Definition 8. By Lemma 1, we know that ¢g(7@) =
lim; —.co f(i, @), g is of class C', [|g(®)|| < [ £(0, )|+ K(T)/B(T) and || 32| <

I gﬂi (0, 7)||+ K(&)/B(T). Now, the degree of ﬁ for any polynomial 3 can

easily be shown to be less than 1. Hence, the degree of g and of g—g is smaller than
maz(deg f, deg K).

We are ready to prove the upper bound.
Proposition 11 £* C £(R).
Proof By structural induction:
e The basic functions 0,1, —1, U, A3 are easily shown elementarily computable.

e When h = COMP(f,g), f and g elementarily computable, then h is also elemen-
tarily computable: the constructions in [39] preserve elementarily computability.

e Let g = LIM(f, K, 3), with f computed by elementary functional ¢. We give the
proof for f defined on R x C to R where C is a compact interval of R. The general
case is easy to obtain.

Let z € R, with S(z) > 0. Since §(x) is a polynomial, 1/3(x) can be bounded
elementarily by some computable integer N in some computable neighborhood of
T.

K(x) can be bounded elementarily by some computable integer K in some com-
putable neighborhood of .

Let (z,) ~ x. For all i,j € N, if we write abusively ¢ for the constant sequence
k i, we have |vg(o(((i,24,),7)) — f(i,2)| < exp(—j).
By Lemma 1, we have

B(x)

1f(i,2) — g(z)] < HKeeO@i
< KN exp(—p0(x)i).

Hence,
o (o((i,20), 7)) — 9(z)| < exp(—j) + KN exp(—S(z)i).

If we take j' = j+ 1,4 = N(j + 1+ [In(KN)]), we have exp(—j’) < % exp(—j),
and KN exp(—f((z)i’) < }exp(—j). Hence g is computed by the functional t :
((n), ) — &((N(G + 14 [In(KN)]),z,),j + 1). since for all j,

Iva((an),3)) — o)l < T4 VD < o)

13



o Let f = LI(g,h). We give the proof for ¢ : [0,1] — R and h : [0,1] X [¢,d] — R.
The general case is easy to obtain.

This proof is copied from [12, 13]. The idea is that, to find ¢ elementary computing
f, one uses a numeric integration algorithm (Euler’s Method).

First, let us note that f is twice differentiable with respect to its second variable
since its derivative is the product of f and h that are differentiable. To compute
f(z,y), we will slice [0, y] into segments of length A and compute approximations
of f(z,7;) for 7; multiple of .

h € E(R). Let ¢, computing h. Let (¢) ~ (x,7;). Let us define w; = % for
n to be chosen.

f € ER). Let ¢4 computing g. Let (¢,) ~» x. We will approach f(z, ;) by ¢;
defined by
(¢g(¢2))

i

Yit1 = Vi + Mpiw;
Let us now compute the error induced by our approximation. Let ¢; = f(x, ;) —1;.

Vi, X € [1i, Tiva]; (2, Tig1) = f(@, i) + Af (@, 7i)h(z, 73) + %2%(%)()-

civ1 = flz,m) =i+ Az, 7)h(z, ) — Mpw; + %%(% X)
el < lesl + M@, ) (f @) — i)l + i (wi — b, )] + 13 SE (2, X))
< el X 14 Ab(e, 7)| + Mslws — bz, )| + 28
< el x 1+ Ab(@, )| + ML + 208

With g = maxxe[o,y](%(xa X))

2
Eir1 < |EZ‘ X |1+)@|+%+1@+ %ﬁ
With 7 set as a bound for h that can be elementarily computed as shown by the
preceding lemma.

Some little algebra shows then

i _ 2 A7) —
leil < leol 1+ X7 + (Apy + 4 8) BT
< ﬁ“ + 75 + @(:fiﬂ)} exp(\ig)

1 1 A -
< ey + el + 275} exp()\zy)
So, if we choose m, n, and i adequately (this choice can be made elementarily),
we can make the error as little as wanted. This proves that f is elementarily
computable and terminates our proof.

This ends the proof. ]
Replacing in previous proofs the bounds of Lemma 7 by bounds of type ||f(Z)| <
AEE?]_l(BpD(T’)), one can also obtain:

Proposition 12 Vn > 3, £ C &,(R).
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Figure 1: Graphical representations of w and int.

8 Lower bounds

We will now consider the opposite inclusion: E(R) C L*, proved for functions of class
C? on compact domains with rational endpoints.

Let € > 0 be some real. We write Ne for the set of reals of the form ie for some
integer i. Given y € R, write |y|. for the unique je with j integer and y € [je, je + €).

Lemma 8 Let € : R — R be some decreasing function of L*, with e(x) > 0 for all x
and going to 0 when x goes to +00, and 1/e(x) € L*. Write ¢; for e(|i]).

Given f : R2 — Rl in L*, there exists F' : R? — R! in L* with the following
properties:

e Foralli e N, x € Ne;, F(i,z) = f(i,x)

e Forallie N, S R’ ||F(Z,I) _f(iv LxJeL) < Hf(l’ I_xjﬁ +€i) _f(iv LxJQ)

o Foralli € R,z € R, |57 (i, 2)|| < 5| f(li+1]. lx)e,)=f(La), le]e) 1425 f([i], [2]e,+
61') - f(LZJ’ I_xJQ)H + 25”f(|_Z + 1J7 I_xJ€i+1 + €i+1) - f(I_’L + 1Ja \_J"JEH»])”'

Proof Let ( = 2F. Let w : z + (05(sin(27z)). Vi,f;Hw =1 and w is equal to 0
on[i+ 3,i+1] for i € N. Let Q = [(w) its primitive, and int : 2 — Q(z — 1). int is a
function similar to the integer part: Vi, Va € [i,i+ 3], int(z) =i = [z]. Figure 1 shows
graphical representations of w and int respectively.

Let A(i,x) = f(i,2 + €(i)) — f(4,2). For all 4,2, we have

L DA (i, e(i) int(x/e(i)) = O whenever z — |2 > €(i)/2
— WA(L |2]ei)) otherwise.

Let G be the solution of the linear differential equation

{G(w) = f(0)

(i) = “LUIING, e(i)int(z/e(i)))

An easy induction on j then shows that G (i, je(i)) = f(i, je(¢)) for all j € N.
On [je(i), (7 + De(@)),

e3¢ y(t/e(i
G(va) - f(Za LxJe(z)) = / MA(% LtJ e(i))dta

je(i) €(d)
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hence, for all i € N,

GG, x) = f(@, [x]e ) S NAG, [=]e)ll = 1F (G [2]e, +€) = fG [x]e)]-
Now, let A’(i,z) = G(i + 1,2) — G(4,z). For all i,x we have
w(@)A'(int(i),z) = 0 wheneveri— |i] >1/2
= w(@)A'(|i],z) otherwise
Let F be the solution of linear differential equation
{ F0,z) = G(0,2)
G = w@A(n(i),2)

An easy induction on 4 shows that F(¢,2) = G(i,z) for all integer ¢, and all z € R.
Hence F(i,x) = f(i,z) for all i € N, x € Ne¢; and

1FGx) = [0 (] )l < (10 (2] +€) = £ [2]e)]
foralli e N, z € R.
Now, 2 is either 0 or w(i)A'(|i],z) = w(i)(G(|i + 1],z) — G(|i],z)).
it is derivable in z, and hence % is either 0 or w(i)(2Z (i + 1], z) — 25 (|i), 2)).
When 2 € Ne;, bounding w by 5 (¢ < 5),

In any case,

OF _ .
=57 I < 5l f(Le + 1], 2) = f(La], @)l
When z € R,
0*F oG,
12 <052 (i 1), + 152 (L) )1
The term H%(M ,x)|| can be either 0 or

25HA(H [z]e:)
B £(Li), [2)e, + ) = F(Li), Le)e )]

A similar bound holds for the other term, replacing i by ¢ + 1.
Using mean value theorem,

BI|2ELDN( i), |]e,)

IAINA

15 @)l < 115G

L]l + IIMZ(Z z)||(z = [z]e)
< 155G, L))l + €| 855Gy ) ’

which yields the expected bound. ]

Lemma 9 If f : C C R — R is defined over a closed interval containing ﬁ, with
bounds either rational or infinite, , of class C', with a modulus of continuity in £, then
the primitive [(f) is in L*.

Proof Let M denote the elementarily computable modulus of continuity of function
f. Foralli € Nand j € N, consider z; = jexp(—M(i)), so that for all z,y € [z;,xj41],
we have

[f (@) = f(y)| < exp(—i).

For all j, let p; and ¢; two integers such that p; x exp(—g;) is at most exp(—i
far from f(z;). The functions py : N> — N, and gy : N> — N that map (i,j) to
corresponding p; and ¢; are elementary.
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By Proposition 8, these functions as well as function M can be extended to function
p:R2 =R, ¢:R2 =R, M:R — R € L. Consider function g : R x C — R defined on
all (i,2) € R x C by g(i,z) = p(i,exp(M(i))x)e9exp(M@)z) - By construction, for i, j
integer, we have

9(i,z;) = pj exp(—gq;).

Consider the function F' given by Lemma 8 for function g and € : n +— exp(—n). We
have

F(i,x5) = g(i, ;)
and
lg(é,x5) = f(2;)]| < exp(—1)
for all 4, 5.
For all integer 4, and all x € C, we have

[F@i,z) = f(@)| < [[F(@,z) - ( [zl + 1F(, [z ]e) — g(@, [z]e)]|
+lg(, [z]e) — f(Lz] )| + 1 f([z]e) — f()]l
F(i, ]| + 0+ exp(—i) + exp(—1)

< ||F@, [x]e + ) :

< lg(i,zj41) — g(i, z;)|| + 2 exp(—i)

< g, zj41) — flzjr0)ll + lg(i, z5) — fz)ll
I f(zj+1) — f(z)]] + 2exp(—i)

< 5 xexp(—i).

Consider the function G : R2 — R defined for all 4,2 € R by the linear differential
equation

{G(z’,p) =0

Hence

For all integer ¢, we have

192 6,2) — F@) = 1FG.2) — F(@)] <5 x exp(~).

By mean value theorem on function G(i,x) — f(z), we get

1G i) / (N@)]| < (5 x exp(—))|z]-

Hence, [(f)(z) is the limit of G(i,z) when i goes to 400 with integer values. We
just need to check that schema LIM can be applied to function G of £* to conclude:
indeed, the limit of G(i,z) when i goes to +oo will exist and coincide with this value,

Le. [(f)

Since %G F, we have H 94 || = ||2F]|. Since %< = N 92 (i, u)du implies
oF
151 < [ 15 < el x 150 < @+ 0 x 1501

we only need to prove that we can bound ||%—f|| by K(z) x exp(—1i) for some function
Kecl
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But from Lemma 8, we know that for all i, z,

155 @)l < Sllg(li+ 1), lz)e,) — g(li], =],
+25lg(li], [=]e; +€) — g(li], [z ]e,)
+25||g(|_l + 1J’ I.xJGH»l + 6i+1) - g(l_l + 1J7 I.xJGH»l)”

First term can be bounded by 5 x exp(—i) + 5 x exp(—i) = 10 X exp(—1i).

Second term can be bounded by 25(||g([¢], [z]e; + €) — f(lz]e, + )| + | f(|z]e, +
)= F(L2)e) 1+ 19(15), [)e))— F(L2]er) ) < 25X exD(—3)+25 % exp(—i)+25 x exp(—i) =
75 x exp(—1).

Similarly for third term, replacing i by i + 1.

Hence

OF . '
1557 (0 2) | < 160 x exp(—i),

and 8
HE“"””' <160 x (22 4+ 1) x exp(—i),

and so schema LIM can be applied on function G of £* to get function [(f). This ends
the proof.

]

Actually, the previous lemma can easily be extended a little bit to get any primitive:

Lemma 10 Let h be elementarily computable and defined on 0.

If f :C CR — R is defined over a closed interval containing ﬁ, with bounds either
rational or infinite, of class C, with a modulus of continuity in &, then the primitive of
f equal to h(0) in 0 is in L*.

Proof Replace in previous proof the initial condition G(i,0) = 0 of the differential
equation defining function G, by G(4,0) = ¢g(i) where g : R — R is a function converging
to h(0), obtained by extending a suitably chosen function g : N — N. ]

We are now ready to prove the missing inclusion of Theorem 1.

Proposition 13 Let f : D C R*¥ — R! be some function over the reals of class C?, with

D product of compact intervals with rational endpoints. If f is in E(R), then it belongs
to L*.

Proof Putting together Lemma 3, Proposition 6 and Lemma 10 applied on f’, we
obtain this proposition when k¥ =1 = 1. The case k > 1, [ = 1 can be obtained by
adapting the previous arguments to functions of several variables. The case [ > 1 is
immediate since a function is in £* if its projections are. ]

The missing inclusion of Theorem 2 can be proved similarly for all levels n > 3 of
the Grzegorczyk hierarchy.

Proposition 14 Let f : D C R* — R! be some function over the reals of class C2, with
D product of compact intervals with rational endpoints. If f is in E,(R), for n > 3,
then it belongs to L.

18



9 Extensions
Observe now that, for non-compact domains we have:

Proposition 15 Let f : D € RF — R! be some function over the reals of class C?, with
D product of closed intervals with rational or infinite endpoints.

If
o fe&(R)
e the derivatives of f have modulus of continuity in £
then f € L*.
Proof This follows from Lemma 10 applied on one of its derivative. [

Remark 8 If one suppresses the condition, in LIM schema, that the limit must be of
class C?, then one does not need to assume in Lemma 10 that the function is of class C'.
In that case, any function f € E(R), differentiable, whose derivatives have a modulus of
continuity in &€, can be obtained as in Lemma 10, that is as a limit schema of functions

of L*.

Proposition 16 Let f : D C R* — R! be some function over the reals of class C?, with

D product of closed intervals with rational or infinite endpoints.
If f and the derivatives of f are in E(R) then f € L*.

Proof This follows from Proposition 6. ]
Recall that we have, conversely £* C £(R) by Proposition 11.
We have also the following corollary:

Corollary 1 Let f: D C R* — R! be some function over the reals of class C®, with D
product of compact intervals with rational endpoints. If f is E(R), then all its derivatives
™ n >0, belong to L*.

Proof From Lemma 3, for all n, f("*1) is elementarily computable since it is of
class C2 over a compact domain. Now, for all n, f(")(2) € £* from Lemma 10 applied
on f(nt+1), n

We also have a kind of normal form theorem:

Proposition 17 If constant function 7 is added to the base functions of L*, then every
function of L* can be defined using only 1 schema LIM.

Proof The previous proof shows that to represent a C? function that belongs to £(R),
using one LIM is sufficient, if 7 is considered as base function (in order to have the
inclusion £ C £*. That means that all functions from £* can be written with at most
one LIM in that case. L]

A corollary of this proposition is that composing several LIM schemata is always
equivalent to at most one for functions of our classes, if constant function 7 is considered
as a base function. Otherwise, two limits are sufficient.

All previous results generalize to Grzegorczyk’s hierarchy.
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10 Variations on schemas

First, we can note that it is possible to change a bit our schemata in order to have a
more natural LIM schema. The price to pay is a less natural LI schema, that we called
CLI in [8].

Formally, we define CLI as follows:

Definition 7 (CLI schema) From g,h and c, with h differentiable and first derivatives
of h bounded by c,

CLI(g, h,c) is any solution defined on a product of closed intervals of the linear
differential equation g—i(?,y) =h(T,y)f(T,y) with f(T,0) =g(T).

In this schema, if g goes to R™, f = CLI(g, h,c) also goes to R™ and h(T,y) is a
n X n matriz with elements in L.

One first useful remark is to understand that replacing LI schema by CLI schema in
the definition of class £, does not change the statements of Propositions 7, 8 and 9.

Now, using this controlled linear integration schema, we do not need to impose a
bound on the second derivatives in LIM schema, since the reason for this bound was to
be able to state in Lemma 7 that partial derivatives of a function of the class have finite
degree, and hence to be able to apply Euler’s method in Proposition 11. Using CLI,
we know that the first derivatives of the functions are bounded elementarily and hence
that the second derivatives of the constructed function are also bounded elementarily.
Observing the proof, this is sufficient.

So if we denote LIM,, the schema:

Definition 8 (LIM,, schema) Let f : RxD C R¥! - R K : D — R and 8 :
D — R a polynomial with the following hypothesis: such that for allt, @ = (x1,...,Tk),
1%, 7)| < K(7) exp(—t8(T)),

Then, on every product of closed intervals I C R* on which 3(T) > 0, F(T) =
limy_ 4o f(t, @) exists by Lemma 1. If F is of class C?, then we define LIM,,(f, K, 3)
as this function F : I — R.

We can then claim that if, in the definition of class £* and £}, LIM,, schema is
substituted to LIM schema, and CLI schema is substituted to LI schema, then we still
have Theorem 1 and Theorem 2, as well as all following lemmas and propositions (except
last assertion of Lemma 7 as discussed above).
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