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1. Introduction

Geometry of interaction (Gor) was introduced by Girard ([6, 8]) as a semantics of compmratihich:

¢ on the one hand, in contrast to denotational semanticnetesr explicitly the dynamics of com-
putation and handles finite objects,

¢ on the other hand, expresses this dynamics by mathematicaimeans than syntactical rewriting.

Various frameworks have been used to desc@bemodels, including bounded operators on Hilbert
spaces ([6, 4]), partial applications ([2, 16]) and algstofclauses ([10]). This latter point of view is
the one we will adopt here. In these models, the operatiaegponding to the normalization process is
calledeEXECUTION. Itis not defined on all operators and sufficient conditioagehbeen given which en-
sure convergence of its computation: it has been shown icabe of second-order Linear Logic ([6, 12])
and of untyped lambda-calculus [14]) that operators corfrioign the syntax satisfy such conditions (a
nilpotency condition, for instance, in the case of Lineagicd. Let us recall that the result axecu-
TION on operators interpreting proofs is not in general an iavdrof cut-elimination, though this holds
provided certain conditions on the conclusions of the pevefsatisfied (it is the case for instance with
the type of booleans; see [6]).

Elementary Linear Logic (ELL) , as Light Linear Logic (LLL), is a variant of Linear Logic inhich
the rules introducing exponentials have been modified {&])[in order to control the size explosion
of proofs during normalization. It is obtained by removitg ttwo principles:!A + A (dereliction
and!A + !'A (digging); contraction and weakening are kept unchanged. We cank&te a version
of ELL without additive connectives and where introductiohthe modality! is handled through a
(multi)functorial promotion rule (called-promotion, see [15]).

An ELL proof-net has two main parameters:stge(say the number of edges) anddepth(maximal
nesting of the boxes it contains). The number of steps ofdtalization is bounded by a function of
the size which is elementary recursive: the expressionisfftimction is a repeated exponential whose
height only depends on the depth (see [15]). This propemycisnsequence of the preservation of depth
by normalization steps: the depth of an edge is unchangedghrany normalization step (but of course
the edge might be duplicated or erased).

Note that it is not known whether all elementary functions ba represented within this version of
ELL. An alternative approach has been carried on by Danoslaimet (in [3]) who described ELL as
a subsystem of full linear logic defined through a syntat@omstraint on (LL) proof-nets (thstrati-
fication condition: this way they incorporate suitably the additives (kegpime isomorphism between
(A& B) and!A®!B) and establish a representation theorem for elementawysige functions. How-
ever, as the treatment of additives in geometry of intevadt delicate we choose to content ourselves
here with the multiplicative exponential (second ordeagfnent: for this fragment our presentation is
equivalent to that of Danos and Joinet.

Finally, recall that the main drawback of ELL (as well as ofll)Lstressed by Girard in [12] was
the lack of a specific semantics of proofs (though a phasergaradas been given by Kanovitet al,,
see [13]). We address the problem with the helgofi , considering the semantics of reduction as an
intermediary step between syntax and denotational secsaiie are looking for @01 model such that
all its elements can be considered as interpretations ofitighs terminating within elementary time,
even if they are not realized by any proof (think of incorngiof-structures or of programs using fixed
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points). Recently, an other approach based on coherergspas been proposed by the first author ([1]).

Achievements and limits of the present work: we present here an algebra of clauses along the
lines of [10] with a kind of depth-preservation property lgaus to that of ELL. Execution is defined
through resolution and the operators are certain sets ofeta a comparison of these operators with
Prolog programs can be found in [10], section 2.3. In additipusualEXECUTION we define avEAK
EXECUTION which amounts to giving up the computation of certain prasia€ theEXECUTION. WEAK
EXECUTION coincides with usuakxecUTION for operators coming from proof-nets.

A size and a depth are defined for general operators resplgcis the number of clauses and the
maximal arity of the predicates of the terms (actually a#tdicates have the same arity). Our main
result is then thatvEAK EXECUTION always terminates (there is no need for a nilpotency candifior
instance) and that the depth being fixed, the number of stedhe computation is bounded by a function
of the size of the program which is elementary. In other woird¢his setting we can bound in advance
the run-time of a program provided we know its size and deptierefore the intrinsic elementary bound
obtained in ELL by logical means has been extended to a sensatting.

Yet thisWEAK EXECUTION presents a serious drawback as it is not in general an asgeapaera-
tion... However at least one inclusion is obtained instdati@mexpected equality (we call this property
sub-associativity): the result gfobal EXECUTION is included in the result of anpodularEXECUTION
(see section 6 for a precise statement).

Organisation of the paper: in the next section we introduao! through an example. Sections 3 and
4 are devoted to a presentation of the algebra, to the definifiEXECUTION andWEAK EXECUTION
and to the statement of the main theorem. This result is thevefd in section 5 and we examine in
section 6 the sub-associativity property. The rest of tigep#s devoted to the interpretation of proof-
structures in the model and to the proof thetAK EXECUTION Yields the same result as usual execution
when applied to operators coming from proof-nets.

Acknowledgements:the authors wish to thank Jean-Yves Girard for importangestions and for
pointing out the crucial lemma 5.3. They are also gratefuhtoanonymous referees for their detailed
corrections and comments.

2. Geometry of interaction: a toy-example

Before getting into the technicalities of tlea1 model we introduce for ELL, let us try to illustrate the
general ideas at work iao1 on a toy-example. Consider the linear lambda-teémnm (Az\y(z)y)Azz; it
can be translated into multiplicative linear logic, yieldithe proof-neR of figure 1. The purpose @ol
is to provide an algebraic setting to describe the comprtatiithin a syntactical system (beta-reduction
or cut-elimination). Here, the termbeta-reduces té = Ay y, the proof-netR normalizes toR'. The
model should be equipped with an operation enabling toesatrinese results: we want a map from the
set of proof-nets to the model and an operatiaf.) in the model, such that i is mapped tak° then
Ex(R°) andR'° are equal (or at least computationally equivalent).

Concretely, we associate weights valued in the model taicepaths of the proof-net and compute
all the products of these weights yielding non-zero redilie mentioned paths are paths linking external
links (those premises of a cut or conclusions) and crossiegagiom.
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Figure 1. Example

For this system (linear lambda-calculus or multiplicativeear logic) we can use a very basiol
model, operations on a stack built over an alphabet of siZ@.2;}. More precisely, its elements are
tuples defined by

e asource and a target among the previous external links nuenéered 1 to 3,
e an operation on stacks of the kindsdp s, thenpush¢”,

written as(source, pop s, pusht, target). To this we add one extra element with no specified source and
target, denoted b, meant to correspond to the operation with empty domain. iAvalid composition
of operations (non matching consecutive target and soarcesulting operation defined nowhere) yields
0.

In our example the proof-n&t is interpreted by the following set of weights:

¢1 = (1,popg,pushq,2) ¢4 = (3,popg,pushg,1)
¢2 = (3,popp,pushp,1) 5 = (1,popp, pushp,?2)
¢3 = (2,popp,pushq,3) ¢ = (2,popq,pushp,3).
For instance); and¢g are the weights associated respectively to the patlasd~yg of the figure. Here
are two examples of compositiong; - ¢s = (1, pop ¢, pushp, 3), ¢1 - ¢4 = 0.
The execution resulbf such a system of weights is the set of hon-zero products satirce and

target corresponding to conclusions (so in the presenttbayeshould be equal to 1). In this example
we obtain two weights:

(LPOPpaPUShQa 1) = ¢5 ' ¢3 . ¢4a
(1,popg,pushp,1) = ¢1 ¢g- ¢o.

This is the interpretation of the resul (or the lambda-ternd).

3. Resolution Algebra

In this section we define aol model more elaborate than the one of the previous sectionvilllt
be expressive enough to interpret proofs of ELL and at theestimme simple enough to enable us to
establish an internal complexity bound. It is based on thelah of clauses introduced in [10]: elements
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are clauses and they are composed by resolution. We reealefimitions of this general setting before
describing the particular case we consider in the preserit: e layered algebra of clauses

A term languageT is built over variables and a set of symbols of functions;eltsments will be
denoted:, u. Let{P;};c; be a set of predicate symbols given together with their atfity language of
atoms. built overT and this set of predicates is the setf®fty. . .., t,), wheren is the arity of P, and
thet;’s belong toT".

A substitutiord is a partial application from the set of variablesTtevith finite domain. Ifdom(6) =
{z1,...,z,} and ift; = 0(z;) for 1 < i < n we will denotef) by (t1/x1,...,t,/z,). The applicatiord
is extended into two applicatior® — T and£ — L (also denoted by) in the following way: the image
of anexpressior{term or atom) by the substitutio is obtained by replacing iaeach occurrence of a
variablez in dom(6) by 0(z); this image will be denoted yf. The composition of two such applications
61, 02 will be denoted by, 65: e(0160,) = (ef1)62. A renamingof the variables of an expressieris an
injectiond from the set of variables efto the set of variables; thenamed expressias ef.

We say that two terms (or atomspnde’ arecomparablewhen there is a substitutighdefined over
the variables ire ande’ such thatf = €'6. In such a cas@ is called aunifier of e ande’.

If e, ¢’ are comparable then there existmast general unifiefm.g.u) i.e. a substitutio, such that
for every unifierd there is &' such that) = 6,0'. If e ande’ are not comparable, we say that they are
orthogonal e L ¢'.

A clauseg of the languag€ is a sequent

Pi(to,... ,tm) F Pj(uo,...,un),

whereP;(to, ..., tm) andPj(uo, ..., u,) are atoms oL with the same variablesy, . .., zq.
Theheadof the clausep is the atom

head(¢) := Pi(to,...,tm),

its tail is the atom
tail(¢) := Pj(ug, ..., up).

We then consider the set of clauses up to the following etgrica relation:

¢ = ¢ if there exists a renaming of the variables of) such thathead($)# = head(¢') and
tail(¢)f = tail(¢').

From now we will mean by “clause” an equivalence class vhetequivalence relatios (this way
clauses are implicitly universally quantified). To this sétclasses we add a formal claudeand we
denote the resulting set lgy

Definition 3.1. (Resolution)

Given two clauseg and¢’ we can assume they have disjoint variables (by choosingppppte repre-
sentatives). ltail(¢) is comparable withhead(¢') and® is their m.g.u. we define thesolutionof the
two clauses as the equivalence class of the clause

¢-¢' = head(¢)0 F tail(¢')0

this class doesn’t depend on the previous choice of theseptatives.
Otherwise, iftail(¢) andhead(¢’) are not comparablep - ¢' = 0.
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We fix by convention that the resolution of the clause zerd aity other clause is zero; this implies
that resolution is associative.

More generally, as unification is used here to perform rdégmlubetween equivalence classes of
clauses we will from now on consider that the expressions evepare (terms, atoms) have disjoint
variables; when it is not the case we rename suitably theialbies and unify the two new expressions.
For instance, ifp is a unary symbol of function the two termpg andz are said to be unifiable as the
renamed termgz andy admit a unifier:d = (pz/y).

A clause¢ is said to be grojection (resp. anull-squarg if ¢> = ¢ (resp. ¢ = 0), which is
equivalent tchead(¢) = tail(¢) (resp.head(¢) L tail(¢)). Notice that this holds only because we
consider clauses where head and tail share the same variable

Definition 3.2. (Resolution Algebra)
Let A*(L£) be the set of all finite formal linear combinatiods «;¢; where the scalara; belong toC,
the set of complex numbers, and the clause® C. The set\*(L) is equipped with

e a structure of complex vector space,

e a structure of complex algebra, the multiplication beingeeged by bilinearity from resolution:

> aigi Y Bidh =Y iB;(¢i-d}),
e a unit w.r.t. multiplication, denoted by 1:

1= ZPi(asg,...,asn) F Pi(zo,...,Tn),
i€l

e an anti-involution defined by
O g = widi*
whereg* := tail(¢) + head(¢).
A norm can be introduced in order to ge€a-algebra, see [10].

Another way to write a combination of clauses isyasx(¢)¢, where the sum is taken ovéranda
is an application from the set of claugés$o C such thatr—!(C\{0}) is finite. We will use this notation
when it is more convenient.

If U => a;p; andV =3 f;¢; are two elements with coefficients ¥y then the combinations can
be considered as multisets and we wiiteC V if for all 7, o; < 5;. We write¢; € U if its coefficient
«; is nonzero. Aprojectionof the algebra is a combinatidiA such thal/7* = U andU? = U.

Definition 3.3. (Execution Formula)
A wiring is a finite sum of clause} ¢; such that fori # j : head(¢;) L head(¢;) andtail(¢;) L
tail(qﬁj).

A loopis a pair of wirings(U, o) such thab is hermitian (i.eco* = o),

A loop convergesvhenoU is nilpotent, i.e. whericU)™ = 0 for somen. Then theexecutiorof the
loop (U, o) is the element

Ex,(U):=U(1 LoU)™' = Ui(aU)k
k=0
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and theresult of the execution is given by
Result, (U) := (1 L 0?)Ex, (U)(1 L o?).
Remark 3.4. Another way to write the execution is directly as a sum of st

Ex,(U) = Z bo-dpr- .- P
Ppo€eU
¢i €U, 1<i<k

k<n
To understand the meaning of execution w.r.t. normalimatibproof-nets, recall the example of sec-
tion 2. The wiringU corresponds to the paths linking external links of the pioetf and the wiringr
corresponds to the connections given by the cuts: this gpaldl be made precise in section 7 where
we give the interpretation of proof-structures in this alge Computing the execution then amounts to
determining the paths of the proof-structure with non-zgeight. In the result of the execution we only
keep the weights of those paths which are maximal and stdréad in conclusions (not cut premises),
that is to say that we restrict to the visible part of the cotappon and forget about the intermediary
steps...

Now we specify the particular language we are going to ceamsid

Definition 3.5. Let thelanguage of unary term®& be the language built over a set of unary symbols of
function {p, ¢,r, s}, hence such terms have exactly one free variable,tarfjdvill denote a term with
free variabler. Thelength|t| of ¢ is the number of symbols of function appearing in it.

Remark 3.6. Notice that due to the particular form of terms, Ads defined over unary symbols of
function, if two termst and« are unifiable then their m.g.uf leaves at least one of the two terms
unchanged (up to renaming of its variable). For any pair oh$gt, »), only the following cases can

occur:t L uwort <wuort > u, wheret < u means that: is the unchanged term.

We will consider a family of symbols of predicate’; }ic¢1.....,n} of same arity (d + 1). LetT?¢.m
denote the set of atoms defined this way andfebe the set of clauses:

Pi(to[zo], - - . s talza]) & Pj(uolwo], . .., ualza)),

wherehead(¢) andtail(¢) belong toT“ - m. Notice thatt, anduy, (k € {0,...,d}) are required to
have the same free variable.

We calllayered algebrahe algebra of clauses defined o¢érand we denote it by* (7°¢ - m). From
now on it is the algebra we consider.

4. \Weak Execution

In order to express a bound on the lengths of computation, eee first to define some measures on
clauses and combinations of clauses.

1The choice ofl + 1 is done to keep the same notations when we interpret proaftstes, see section 7.
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A word of clausesw is a finite sequence of clauses= (¢1, ..., ¢,) with ¢; € C%, and theproduct
clauseis ¢;-¢2- ... ¢,. A sub-productof the wordw is the product clause of a wol@;, . .., ¢;) for
somei < j < n.

Given a clause = P(tg,...,tq) F P'(ug,...,uyq) its widthis defined as

||l] = sup{[tx/, lug| /0 < k < d}.

The width of a wordw is simply given by
|lwl| := sup (|¢il])-
1<i<n
We also define theardinality of w: N(w) := #{¢; | 1 <i < n}.

Example: consider irC® the clause) = P(z) - P(rz) and letw,, be the word ¢, ..., ¢) of lengthn.
In that case we haviéw, || = ||¢|| = 1, N(w,) = 1 and the product o, is the clause’(z) - P(r™z).

Definition 4.1. (Acyclicity)
An acyclic clausds a clause
¢:P(t07"'atd) "PI(Uo,...,ud)

such thatP # P’, or (P = P' and there existé < d such that for every < k we haveu; = t; and
ug L ).

An acyclic wordis a word(¢1, . .., ¢,) such that every sub-produgtis either an acyclic clause or
a projection.

A word is strictly acyclicif and only if all its sub-products are acyclic clauses.

Example: consider the clauseg, = P(sxo,z1) b P(rzg,z1), ¢p2 = P(rrzg,rrxy) F P(szg,rz1)
and ¢3 = P(szg,rz1) F P(rzo,sz1) in C'. Each of them is an acyclic clause. The ward=
(¢1, P2, ¢3) has a non-null product but is not acyclic since its sub-pev@y-¢o = P(srzg,rrzi) F
P(szg,rz1) IS not an acyclic clause. Note also that an acyclic clausenigllassquare but that a null-
square isn’'t necessarily acyclie.§. P(xg, rx1) - P(rzg, sx1)).

We now introduce a restricted form of execution over syiettyclic words of clauses. Contrarily
to usual execution, we define it not only for converging lobpsfor any pair of combinationgl, o);
theorem 4.6 will establish the fact that this definition afwanakes sense (i.e. the sum is finite).

Definition 4.2. (Weak Execution)
Given a pair of combinationd/, o) denotelU = " a(¢)¢p andoU = > v(¢)¢. Its weak executiots
defined as:

n

B (0) = > algo)([[1(60) do-di- b
(G0, 1. pn) €A i=1

a(pn) # 0,7(i) # 0 wheni # 0, and } |

the word(¢y, . .., ¢y, ) is strictly acyclic

whereA := {(¢o,¢1 ey Pn)
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As a particular case, given a logp, o) its weak executiois

Exl(U) = Y. dodi...bn
(¢07¢1---9¢n) € Al

whered’ := {(¢0,¢1---a¢n)

¢o € U, ¢; € cU wheni # 0, and
the word(¢o, . . . , ¢p) is strictly acyclic |

The result of thewvEAK EXECUTION is in that case defined as
Result] (U) := (1 L o?)Ex] (U)(1 L ¢?).

Remark 4.3. Note that in cases wheBx, (U) makes sensgU, o) is a convergent loop), we have that
Ex}h(U) C Ex,(U).

Our first goal is to show that we can bound the width of the dam®duct of an acyclic word
(Proposition 4.4). In the case of a strictly acyclic wordsthinplies that the length of the word cannot
exceed a certain bound (depending on its cardinality andhyviglithout yielding zero as result. This
bound will be expressed as an exponential tower of heidRtroposition 4.5).

Proposition 4.4. Given an acyclic wordy = (¢4, . . ., ¢5,) with non-null product, we have the following
inequality: ||¢1- . .. -dn|| < L(||w||N(w), d), whereL is defined by

2jjtz(d—l—l)2 d>1

L(a,d) :=
8a d=0

and the repeated exponential is definediy:= m and27, , = 22¥

Note that||¢;- .. . -¢,|| should not be confused with(¢1, . .., ¢,)||, the former being the width of a
clause and the latter the width of the word.

This proposition will be proved in section 5. The resulteslof course on the fact thatis acyclic.
Otherwise given a fixed width (of word) and cardinality, on&nt exhibit non acyclic words whose
products are of arbitrary large width: see for instance tte ixample given above, where for any
||wy|| =1, N(wy,) = 1 and the product ofv,, is P(z) = P(r"z) whose width isn.

Proposition 4.5. Given two integers > 1 ands we define

B(a,s) = 2000

Let w be a strictly acyclic word with non-null product and suchttha|| > 1, its length is bounded
by B(||w||N (w), d).

This result is a consequence of the proposition 4.4 and d@sfwill be given in section 5.1. We
now give the main resultwvEAK EXECUTION always terminates and can be computed irl@mentary
number of resolution steps. We state it first for a loop and tige the result for an arbitrary pair of
combinations:
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Theorem 4.6. Given a loop(U, o), let N = #cU andk = 1 4+ max{||¢|| / ¢ € cU}. We have

Exi(U)= ) ¢odi-...dn
(d)oa"':d)n) € AI
n < B(kN,d)
whereA' is the set given in definition 4.2.
More generally,(U, o) being simply a pair of combinations let us dendte= " a(¢)¢, cU =

227(d)¢. PUtN = #{¢,~(¢) # 0} andk = 1 + max{|[4]| / v(¢) # 0}. We have:

n

Ex,(U) = > aldo)(J[7(#:) do-di- ..
(¢0,...,n) €A i=1
n < B(kN, d)

whereA is the set given in definition 4.2.

Proof: [Proof of theorem 4.6] Letv = (¢o, ..., ¢,) be a word in the sel with n > 1. Let us denote

by w' the word(¢1, ..., ¢,) onocU. We haveN (v') < N and||w'|| < k. Now, if n > B(kN,d) then

n > B(||w'||N(w"), d) and we know by proposition 4.5 that (and consequenthy) has a null product.
Therefore the sum iBx} (/) can be restricted to the words dfsuch thats < B(kN, d). O

5. Proof of Proposition 4.4

Let us introduce a few more notations on clauses and wordswa$es. To each predicate symlglof
our set we associatenew predicate symbols, one for each afity 1 in {1, ..., d}; we will denote them
all by P; as anyway in atoms the arity of the predicate will be madeieixjply the number of terms. For
kin {0,...,d L 1}, we denote byT"™* - m the language built frorfi” and the family of predicates of arity
k + 1 andC* is defined as before frofi* - m.

Given a clause) = P(tg,...,tq) - P'(uq,...,uq) of C¢and0 < k < d L 1, its k-th layer is the
clause ofC?:

[plk := P(tx) = P'(us)
and itsk-th truncationis the clause of*:
[Plok) = Plto,... tx) b P'(ug,... up).

Thek-th layer of awordw = (¢1,...,¢n) iS[wlk = ([P1lk, - - -, [Pn]k); Similarly its k-th truncation

is [w]io,ey = ([P1]0,k)s - - - » [Pl 0,k))-
We define the width of an atom byP (%o, ..., t;)| = sup {|t;|/0 < i < k}.

Proof: [Proof of proposition 4.4] We prove the proposition by meafisan intermediate inequality,
namely we will prove by induction od the following one:

|1+ nll < L'(|w||N(w),d) (5.1)
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whereL'(a, s) is defined inductively by:

{ L'(a,0) = 2a

L'(a,s + 1) = 2a24(+1)L (a:5) (5.2)

then the announced result will be obtained as a consequence.

Next lemmas give the result fak = 0. Until it is differently specified we consider clausesCih If
P(t) andQ(u) are atoms ifl"? - m then we sayP(t) < Q(u) if P = Q andt < u.

Notice that if¢ - ¢ # 0 then

tail(y) < tail(¢wy) andhead(¢) < head(¢p1).
Lemma 5.1. Given two clause® andz,
1. if tail(¢) > head(v) then|head(¢y))| = |head(o)],
2. if tail(¢) < head(v)) then|head(¢r))| < |head(s))| + |head()|.
Proof: In the first caséead(¢vy) = head(¢), in the second onkead(¢$1)) = head(¢)d where
6 :=m.g.u.(tail(¢), head(v))) = (ulz]/zy, z/zy),
and sgu[z]| < |head(1))]. 0
Remark 5.2. Given a wordw = (¢4, ..., ¢,) with non-null product, let us denote
{j1:--im} ={7 2 2| tail(¢s-...-¢j-1) < head(¢;)}.
By induction over the integet we deduce from the previous lemma the following inequality:
head(¢1- ... ¢,)| < |head(d1)| + Y [head(g;,);
i=1
analogously fotail(¢y- ... ¢p).
Lemma 5.3. An acyclic wordw = (¢1, . .., ¢,) With non-null product) = ¢;- ... -¢,, satisfies
]| < [Jw]|(N(w) +1).

Proof: In order to get contradiction assurfjg|| > ||w||(N(w) + 1). In that case eithehead(¢)| >
[|w||(N(w) + 1) or[tail(¢y)| > ||w||(N(w) 4+ 1). Suppose for instance that we are in the first situation
(the second case is handled in a completely symmetric wayyeBark 5.2, using the same notations
we have thathead(¢; ... ¢n)| < (m + 1)||w||; then we haven > N(w) + 1, so there exist; < io
such thatp := ¢;, = ¢j;, .

We claim that the sub-produgt;, -...-¢;, i gives a cyclic clause, hence the contradiction with the
acyclicity of w. Indeed: let us denofd’ = ¢;-...-¢;, —1 andll” = ¢;, +1-...-¢;, —1; then we have

tail(Il'-¢-11") < head(¢).
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So astail(¢-I1") < tail(Il'-¢-11"), we get
tail(¢-11") < head(q).
Moreover, fromhead(¢) < head(¢-11") we deduce
tail(¢-I1") < head(¢-11")
and we are done. 0
This lemma ends the base case of inductibe=(0) since
[[w]|(N(w) + 1) < 2{|w||[N(w) = L'(|Jw||N (w),0),

asN(w) > 1.
In order to get the induction step we need a few intermediesylts about products of clauses.

Lemma 5.4. Let us consider a word = (¢4, . .., ¢,) with non-null product; the product af induces
a unique substitution familye?, . .., o2) such that? is defined on the variable gf; only and

$1-...-¢p = head(p1)o) F tail(¢py,)ol, and

tail(¢;)o) = head(¢ir1)ory whenl <i<mn L 1.

Moreover, every substitution familis, . .., o,,) such that; is defined on the variable @f; only and
satisfying:

tail(gbi)oi = head(¢i+1)oz~+1 whenl <i<nl1 (5.3)
can be obtained frortw?, ..., #%) by means of a substitutiohsuch that

(01,....0n) = (090,...,000).

Proof: We start by proving the existential part of the first claim Inguction overn. If n = 1,
o1 = (z/x) satisfies the property.

Now assume the property is satisfied for> 1 and let us prove it fon + 1:
there exists a familyo?, ..., %) such that

$1- ... ¢n = head(¢)o? F tail(ey,)ol,

o first casetail(¢,)ol > head(pni1).
There existg? , ; such thatail(¢,)ol = head(¢n41)0l,; and we have:

$1- ... i1 = head(¢1)o) F tail(ppi1)o0, .

Moreover the second condition (5.3) is satisfied Y, . ... o0 ;) with respect tap, ..., dn1.
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e second casetail(¢p,)o) < head(¢p,i1).

There exists such thatail(e¢,)olr = head(¢, 1) and we have:

¢1'---'¢n+1 = (¢1¢n)¢n+1
= (head(qbl)cr(f - tail(qﬁn)ag)-qan
= head(¢;)o)T F tail(ppir).

and the second condition (5.3) is satisfied(byr, ..., o0, (z/z)).

Now we check the uniqueness part of the first claim: assifie .., 00) and(7?,. .., 70) both satisfy
condition (5.3) and

$1-...-¢p = head(p1)o? - tail(gpy)od
= head(¢1)7 F tail(gy,)T..

Thenhead(¢1)o? = head(¢ )7 implieso? = 79 and consequentlyail(¢;)o? = tail(¢g;)r). Using
(5.3) fora? andr! (i = 1) we gethead(pz)oy = head(¢2)7 and again§ = 7. Applying this method
inductively we eventually conclude witfs?, ..., 0%) = (70,...,79).

As to the second statement, we prove it again by induction ov&he base case is trivial. Assume
givenn > 1 the result is true for any¢s,...,¢,) and (o1, ...,0,) satisfying the hypothesis, and
consider the case ¢, ..., ¢,+1) and of a family(o4, ..., 0,41) satisfying (5.3).

Let (o,...,09) be the family of substitutions induced by the product of th&dy(¢, ... ,¢n)
according to the first statement. As (5.3)€ ¢ < n) is satisfied by(¢1, ..., ¢,) and(oy,...,0,), by
induction hypothesis there exigtsuch that forl < i < n: o; = 099.

Now we consider the two cases we distinguished previously:

o first casetail(¢y,)ol > head(dny1)

There existss) | such thattail(¢n)o) = head(dni1)oh,; and the family induced by the

product of(¢1, ..., ¢pi1) is (0,....00, ).
Now,
head(¢pi1)ont1 = tail(edp)o,
= tail(¢,)o0
= head(fni1)op10
and sooy, 41 = 05,46, (01,...,0n41) = (096, ...,00,,6).

e second casetail(¢y,)od < head(¢ni1)

There exists such thattail($,)o)7 = head(¢,+1), and the family induced by the product of
(¢1a s ¢n+1) is

0 0
(o7,...,007, (x/z)) = ("7, ... 0 i)
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We have:

head(¢ni1)ont1 = tail(eop)o

and
head(¢pi1)ont1 = (tail(qbn)agT)crnH,

therefore = 70,11 and

(01, ., 0n,0nt1) (0?9, . 009,an+1)
= (O'?’TO'“+1, e agTanH, On+t1)
( UlT)Un—I—la ooy (OnT)Ont1s (2 /T) 0 11)
- ( n—|—19’)
wheret’ = op,11.
Soin both cases the result is true f@x, . . ., ¢, 1) and(oy, ..., 0,41), the induction step is proved
and we can conclude by induction. 0

Remark 5.5. Note that for2 < i < n L 1 we havetail(¢;)o) = head(¢;+1)oy,, and that this
term is equal tecail(¢y- ... ¢;) if tail(¢y-... ¢;) > head(piti-... ¢y), OF tohead(diti: ... Pn)
otherwise.

Lemma 5.6. Let us consider aword = (¢4, .. ., ¢, ) with non-null product; the product af induces a
wordw' = (¢}, .., ¢,) such thags, = ¢;0? (1 < i < n)with o) as in lemma 5.4. Then for eveiyand

h, we have that the sub-produgt: . . . -¢;14 is a projection if and only if the corresponding sub-product
of w', #;- ... ¢}, is a projection.

If ;- ... ¢iyn is anull-square theg;- . .. -¢;, , is a null-square.

Proof: Easily checked using lemma 5.4. The family of substitutiorfs . . . ,o—?+h) satisfies condition

(5.3) with respect to the worgl;, . . . , ;1) So by lemma 5.4 there exists a family/, ..., 7, ;) such
that productp;- ... -¢;4p = head(¢i)7'l-0 - tail(din)7y, @nd a substitutiod such thatr? = 776 for
j=i,...,i+h. Thenwe havey-...-¢, , = head(¢;)7,0 - tai1(¢i+h)n°+h9, andhead(¢;)70 =

ta11(¢z+h) 77, ,0 holds if and only |fhead(¢l)7' = ta11(¢z+h) Tk b
The second part of the proposition is obtained by the fadt tha

head(¢;)7) L tail(g;in)7 s implies head(¢;) 700 L tail(giin)Tinb-
O

We establish now the induction step of inequality (5.1).ukse the inequality is true for any acyclic
word in C* with £ < d, and take a wordy = (¢1,...,¢n) over C(4t1) | Consider for every layer
[w];, the induced family of substitutiongo?, ..., o). Letw’ be the word obtained by applying in
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the substitution family to every layér < d and by freezing variables by means of newly introduced
symbols of constants:

{[qﬁﬂk = [pileo (ar/zi) 0<k<d,
[#ilar1 = [bilatr.

Notice that inw’, variables remain only in the last layér+ 1, so we can considew’ built over
clauses ot (?) with the firstd layers constituting the predicate (We enlarge our set afipates).

Let us show thats' is an acyclic word: we take a sub-wofd;, ..., ¢; ;) and its product)’ :=
¢y - - ¢y p: We denote the corresponding sub-productvioy ¢ := ¢;-...-$i . By lemma 5.6, if
the Iayer[gb],C is a projection theri¢']; is a projection too and if¢] is a nuII-square thef'];, is a
null-square. Combined with the fact thais an acyclic clause (definition 4.1), this implies titais an
acyclic clause.

Sow' is an acyclic word inC® and by establishing th&/(w') and ||w'|| we obtain the following
inequality:

(5.4)

11+ +¢nll < L' (Jlw'[|N (), 0). (5.5)

As the width of a word doesn’t depend upon predicates appgariits clauses and termsisi are equal
to terms in the last layer ab, we have||w'|| < ||w||. By definition N(w') is the number of distinct
clauses inv'; in order to bound it we can calculate the number of all pdesitstances of terms im’. Re-
mark 5.5 tells us thatail([¢}]x) is equal totail([¢i- . .. -¢i]k(ar/zk) Orhead([pit1- ... -dnl(ak/zk)
(similarly for head([¢}];)). Moreover we have

g1 dilkll < |l[p1- .. bil(o.m -

Since by induction hypothesigi[¢1- ... @l < L'(|[[w]ox !N ([w]ok)), k), we can apply the
inequalitiesN ([w] (g %)) < N(w) and||[w]( o)l < [|w|[, and we get

g1 -dilowll < L'(JwlN(w),k),
|H¢i+1'---¢n] omll < L'([w]|N(w), k).
Finally, we obtain
@ikl < L'(|Jw]|N (w), k).

Besides as the number of symbols of function in our languagk the number of terms of lengkhis
!

4k and the number of terms of length at mbs Z 4k < 41 Therefore the number of terms in our

k=
language of length at mo&t (||w||N (w), k) is bounded by ([[wl[N(w)k)+1,

We are now able to bound the number of claudgs') in w': the number of possibilities for the
choice of the head and tail predicates is boundedVify); at levelk the number of possibilities for the
head and tail terms is bounded %' (|@[I[N(w)k)+1)  Therefore we have:

H42 (]| N aw H24 (Il N (w) k) +1)
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By substitution of quantitie®v (w') and||w'|| in (5.5) we have

gy dnll < L(JJw'||N(w ) )—2Hw|\N( )
< 2fjw||N(w H24 (Il [N () ) +1)
< 2w||N(w )24(‘1“)”(”””“ ) = L (||w||N(w),d +1) (5.6)

We used the following inequalit}’ (a, k) + 2 < L'(a,d) for k < d L 1. We therefore get
b1+ bnlatill < L'([|w|[N(w),d + 1),
and by induction hypothesis we have:
1+ dnl0.al < L'([w]|[N(w), d).
sinceL (||w||N(w),d) < L'(jw||N(w),d + 1), we get
1. nll < L'(|[w]|N (w),d +1).
This ends our proof for the induction step and inequalitiL & established. 0

Let us conclude this section with the bound of the quanfityj|w||N(w),d) to a more readable
expression, so that it will explicitly appear as an expoia¢tower of heightd:

28(1

(d11)(8a) 2
L'(a,d) = 2q -2 4(8a) -2

using inequalitiesx < 2% andz + y < zy wheneverr > 2 andy > 2, we have

2a+8a Z;lzl j

2a(1+2d(d+1))
d

3a(d+1)2 (5.7)

L'(a,d)

ININ A
O NN
U

5.1. Consequence of Proposition 4.4

Proof: [Proof of Proposition 4.5] Let us take = (¢1, . .., ¢,,) a strictly acyclic word. Leto¥, ..., oF)

be the family of substitutions induced by the prodje};, for anyk = 0,...,d. We consider the word
= (11, - - .,%n) such thafe;]y, := [¢i]kol fork =0,...,dandi = 1,...,n. By the same argument
we already used in the proof of proposition 4.4, from lemntavie get that aw is strictly acyclic the
word w' is also strictly acyclic.
By proposition 4.4 we havg[w']x|| < L(||w||N(w), k). We proceed as before:

d
N(w') < N(w) H24(L(HwHN(w),k)+1)
k=0
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N ()24 Zi=o(L([w] | N(w),k)+1)
N (w) 24D LAl [N (w),d)

(we appliedL(a, k) + 2 < L(a,d) whenk < d L 1),
N(U))24(d+1>.23"wHN(w)(d+1)2
N(w)24\\wHN(w)(d+1)2+4(d+1)

d+1
24\\w\\N(w)(d+1)2+4(d+1)+N(w)
d+1

ININA

IA AN IA A

23&\:1{\\N(w)(dJrl)2 (5.8)
the three last inequalities being obtained by using the daasix inequalities as in the computation in
the proof of proposition 4.4.

Assume now the length of w is such thain > B(||w||N(w), d). As the length ofu’ is the same as
the length ofw, there existl < i < j < n such that); = +);. Let us now consider the sub-product=
i+ ...pj_1, thenhead(n) = head(¢;) andtail(nr) = tail(e;—1). Buttail(e;_;) = head();) =
head(v;) thereforehead(mw) = tail(nw). This means that for every layér [r]; is a projection, which
contradicts the strict acyclicity af’. So finally the length ofv is bounded byB (||w|| N (w), d). O

6. Sub-associativity of weak Execution

Let A, A/, T be a partition of a set of indexes U A’ U T2 such that indexes il can be assembled in
pairs, noted dually a&B, B~), and the ones il\’ as well.

We consider the algebra (A, A’, T') built, as in section 3, using the language of teffhdefined
over the set of unary symbols of functidm, ¢,r, s} and the family of predicates of arityel + 1):
{Pa}acavarr.

Let

onanr = Y Py(mo,....74) F Pgi(o, ... 24).
BeA

We denotera. a1 by o andoarar by 7, so thato + 7 = oa ar7.
Proposition 6.1. (Sub-associativity of weak execution)
LetU be a wiring ofA*(A, A’,T') ando andr defined as above, we have:

ResultLJrT(U) C Result/ (Result! (7).

Remark 6.2. The equality is false in general, which contrasts with usacution and the expected

modularity of a valuable computation process. Still, asafamwe are dealing with loops coming from

proofs, associativity is valid since we will prove in the setithat weak execution and ordinary execution
coincide on such loops.

2in the sequel these indexes will vary over formulas of a sequel’, A, A’ of ELL, where formulas inA and A’ are cut-
formulas.
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We give an example of a paiU, o) whose weak execution lacks compositional modularity; we
consider two combinations of clauses:

1 = Pa(szo) F Pp(rzo)
o = Ppi(rzo) F Po(szo)
3 = Poi(ssxo) b Pp(rzg)
Yy = Ppi(rzo) - Pa(rzg)

U= where

and

01 = OAN A

o = o1+ 09, Where o th A — ~andA/ — B
2= OAAA wit = B,B™ an =C,C™.

Then we have that in the computation of the weak executi@wibrd

(b1, P2, B3, P4)
whereg, = 11, ¢ = o1 - P9, p3 = 09 - 3, P4 = 071 - 4 iS NOt included. Indeed, though its product
}1 - P2 - P3 - s = Pa(sszg) b Pa(rzo)
is non-null and acyclic, there is a cyclic sub-product:
¢9 - 3 = Pg(rszg) F Pp(rzy).
So we haveResult)(U) = 0, butResult), (Resultl, (U)) = {Pa(sszq) b Palrzo)}.

Proof: Let us first describe the result of the execution with thidipalar choice of hermitian wiring
OAAD-

ReSURLA,A,;F(U) = (11 UQA,A’;F)EX];A,A/;F(U)O LoAarr)
IT is of the form

= TI EEX];A,A/;F(U) PA(tO,...,td) I—PB(UU,...,ud)
whereA,B €T

LetII be an element df{esultj,JrT, then it can be written as a produgg-v; - . . . -4, where the word
(10,11, ..., 1) is a strictly acyclic word with:

e 1)y belongs ta,
e ; belongs tao + 7)U for 1 < i < n, which means thap; belongs either teU or torU.

e the termhead(t) starts with a predicat®, whereA € T'; the termtail(t),) with a predicate
Pp whereB €T
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Letiq, ..., denote the indexes of the clausgssuch thatyp; belongs torU (or equivalently: the
termhead(1);) starts with a predicat®, whereA € A’). Forj belonging tof1,...,m} we introduce
T; andng the respective elements ofandU such that);, = Tj-ng.

Now, considerl < j < (m L 1): by the fact tha(4)g, ¥1, . .., 1,) is strictly acyclic, we know that
the word(zj;;j,@/;ijﬂ, . %i;,, 1) is strictly acyclic too and it has a non-null product, so thedoict
q/);j i 41+ - 2hi; ., 1 belongs tcEx) (U).

Moreovera,b;j-zj;ijﬂ- ..thi.,, 1 is of the shapePs (.) - Pp(.) whereA, B € A', which insures by
what precedes that it beIongsResult,T,(U).

Similarly:

e the productyy- ... -1h;,_1 belongs tcEx; (U) and is of the shap@,(.) - Pg(.) whereA € T and
B € A, so it belongs tResult) (U);

e the product); -...-1, belongs tcEx)(U) and is of the shap@,(.) - Pg(.) whereA € A’ and
B €T, so it belongs tmesultL(U).

To simplify the notations we sét = 0 andi,, 1 = n + 1. Let us then denote bl ; the product
i iy, -1 for0 < g <m.

We have shown thdil, belongs t(BesultI,(U) andII; belongs tOrResultL(U) forl1 <j <m.
By associativity of resolution we have:

II = othr-... 2y
= (Yo - iy 1) (i ooy 1) (i b))
= IlgIL-... 10,
In fact, (ITy, I14, . . ., IT,;,) has a non-null product and since the wérd, . . . , ¢,,) is strictly acyclic,

we get tha(ITp, Ty, . . . , I,,,) is also strictly acyclic. So its produgt belongs tEx! (Result) (U)).
Moreover we know thall is of the shapeP4(.) + Pg(.) where A, B € T', soIl belongs to
Result! (Result (D). 0

7. Interpretation of ELL Proof-Structures

We consider second order elementary linear logic wApmomotion and without additives. Let us recall
briefly the sequent calculus; the rules are given as in nligitive exponential linear logic except for:

- dereliction which is not included in the system,

- the introduction of the I-modality (promotion): the neweat-promotion) acts as derelictions on
the context formulas followed by the usual promotion.

¢ Identity Group

ax FAA F AN

Axiom FA A cut NN cut
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e Logical Rules (multiplicatives and second-order quantifiers)

A B, A A A l—B,A’@
—_—
Par FApB, A Times FA® B,A,A
FAA - A[C/al, A
Universal FVaA, A Existential FJad, A

providede is not free inA

e Structural Rules

FA e FTA,TA, A o
Weakening FTA, A Contraction FTA, A
raa
t-Promotion HA,TA

We now give the corresponding definition BEL proof-structures As usual there is a translation of
proofs into proof-structures, yieldirgLL proof-nets

7.1. ELL Proof-Structures

They can be defined in the same way as ordinary (LL) prootsiras (introduced in [5, 9, 11]); the
only difference is in the typing constraints of the exporarioxes (reflecting the multi-functoriality of
t-promotion). We recall briefly this definition.

We consider labelled graphs (with pending edges, calbedtiusion} built over the nodes and typing
constraints of Figure 2. We assume that edatode binds a distinct propositional variable, éigen-
variable and that eigenvariables are not free in conclusions.

AAJ_ A At A B A @ B
ApB

A® B

A A{C
A A A A {C/a}
?A ?A 1A TA YaA Ja A

Figure 2. links in proof structures
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To eachl'w-node we associate another node (distinct from a cut) of thehg(ajump).

A boxof such a graph is a subgraph such that exactly one pendirgigggemise of &node and
the others (possibly none) are premise$-obdes (see Figure 3). Thd (resp.I'B;) edge is called the
principal port (resp. auxiliary port) of the box. Such a graph is an (ELL) proof-structure if dror
I*node pox nodg is associated to a box and if given two distinct boxes, eithey are disjoint or one is
included in the other.

A nodedepends on an eigenvariabteif « is free in its conclusion, or if it is &-node andx is free
in the instantiating formuld&’ of its premise.

Thedepthof a node (resp. an edge, a box) is the number of boxes it isic@ut in. The depth of the
proof-structure is the maximal depth of its nodes.

O O 0

Figure 3. aboxin a proof structure

Definition 7.1. A switching graphof a proof-structureR is defined in the following way:
¢ for eachp- andTc-node we choose one premise and erase the other one;
¢ for eachl'w-node we add an edge between the node and its jump;

¢ for eachV-node we either keep its premise or erase it and add an edgecieadepending on its
eigenvariable;

¢ each box of depth 0 is erased and its conclusions are connaitbgether.

A proof-structure is called proof-netif all its switching graphs are connected and acyclic anddfrg
proof-structure in a box at depth 0 is a proof-n&drfectness criterion).

The following result is the statement of the sequentialiwatheorem ([9, 11]) in the case of ELL
proof-structures (the proof is unchanged):

Theorem 7.2. (J.Y. Girard)
A proof-structure issequentializabléi.e. comes from an ELL proof) iff it is a proof-net.

We consider in proof-structuresraight pathgterminology of [4]) that is to say oriented paths cross-
ing multiplicative, exponential and quantifier nodes aitliem a premise to the conclusion or from the
conclusion to a premise, crossing axiom nodes (resp. cud)ddom a conclusion (resp. premise) to
the other conclusion (resp. premise) and not changingtéirem the conclusions of the proof-structure.
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By pathwe will now meanstraight path A path isascendingresp.descendinpif it only crosses nodes
from conclusion to premise (resp. premise to conclusion).

Thelengthof a path is the number of edges it goes throughy, Ifs a path ending upwards (resp.
downwards) with an edge conclusion (resp. premise) of a Aod@dmd~y, starts upwards (resp. down-
wards) with an edge premise (resp. conclusionNofwve denote byy; ; y» their concatenation.

An elementary patlof R is a path going upwards from a conclusion or a cut node to amazind
then downwards to a conclusion or a cut node; we denote tbebysP,. (R). A constant-depth patbf
R is a path ofR which doesn’t cross any box node, axiom node or cut node amtingt upwards with
a premise of box node or downwards with a conclusion of boxencdthe depth of such a path is the
number of boxes oR it is contained in.

A proof-structureR gives a multisef” of conclusion formulas and a multisét of cut formulas
(associated dually in paifs3, B~) by cut nodes). The language we consideffs: m whered is the
depth of the proof-structur®& andm is the cardinality of’, A. Predicates are indexed by formulas in
', A. The wiring partUr of the loop interpretingR will be obtained by interpreting each elementary
path of R by a clause.

7.2. Interpretation of a proof-structure

For the sake of simplicity we will consider proof-structsingith axioms labelled by atomic formulas.

Representation of a constant-depth path by a term:as they don't cross axiom or cut nodes,
constant-depth paths are ascending or descending. We améjder constant-depth paths which don't
visit any weakening node; this is enough to give the integpien of proof-structures.

We associate to such a pathof depth: a termt, [z;]; we define this interpretation below in the
case of an ascending path by induction on the length of the patthe case of a descending path the
interpretationt,, is that of the reverted ascending path (orientation willdeeh into account when we
introduce the clauses...).

e if v is reduced to an edge premise of a box node or conclusion gftiod-structure, theh, = z;,

e otherwise we can writee = ;2 where~, is reduced to an edge premise of a multiplicative,
contraction or quantifier node:

— if 79 is the left (resp. right) premise of a multiplicative noderth
ty = ty, (pzi/7;) (r€sp.ty = t,, (qwi/;)),
— if 7o is the left (resp. right) premise of a contraction node then
ty =ty (ra;/z;) (resp.t, =ty (szi/xi)),
— if v is the premise of a quantifier node then

ty =ty
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Representation of an elementary path by a clause: if -y is an elementary path of the proof-structure
R of depthd, it can be decomposed as:

V= Vi3 Vit 15 ViV Vi1d e Ve

where0 < i,j < d and the pathy, (resp.,) fori <1 < j (resp.k < I < j) is an ascending (resp.
descending) constant-depth path of ddpth

Let A (resp.A’) be the beginning (resp. ending) conclusion or cut formulkeeir respective depths
(i.e. the depths of their edges) d@randk. Theweightof « is the clauséV () given by:

PA($0a cs i1, t’yp o0y t7j7$j+1a o0y $d) + PA’(a:Oa vy Th—1, t’y,’ca o0y t7§7$j+1a o0y :Ed)

(with the natural adjustment in the cases whete 0,5 = d or k = 0. For instance if = 0andj = d
the head of the clause becoméi (¢, ... ,ty,)).

See figure 4 for an example: we give the intermediary stepsrapatation of the weight of the path
v, for which we obtairlV (y) = Pa(przo, pz1) b Pa(qzo, px1).

lyy =pa1
t | = P71

T1

1

tyy = PTIQ
t /=470

pZo

o Zo

Figure 4. Computation of the weight of the path

Remark 7.3. Notice that ify and+’ are two elementary paths starting in the same terminal farmu
and forking in a node at depth we have: ifhead(W(vy)) = Pa(to,...,ts) andhead(W (")) =
Pa(ty, ..., t)) thenfori <k L 1 we havet; = t; andt;, L t).

The ELL proof-structurer is interpreted by the loofUr, o) with:

Ur = Y, Wy
’YEPe(R)
OoR = ZPB(ZE(),...,:Ed)FPBL(ZE(),...,md).

BeA
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8. Weak execution of proof-nets

In this section we prove that for every proof fethe associated loofi/, o) satisfies:
Result,(U) C Result! (U).

The equalityResult, (U) = Result;(U) follows then by remark 4.3.

First we will prove a proposition (8.5) and then we will derithis result as a corollary (8.7). Let us
give before a few definitions.

A balanced pathof R is a path starting upwards in a conclusion or downwards intgp@mise,
and ending downwards in a conclusion or in a cut premise.elémentary balanced pathof R is a
balanced path crossing at most one cut node, so that:

e if /y crosses no cut node it is an elementary path and its weightes ¢n the previous section;

e ifit crosses a cut node from the premiBdo the premise3~ then it can be decomposed in the path
just crossing the cut with weighty = Pg(xq,...,z4) - Pgi(zo,-..,z4) and in an elementary
path-y, with weight W (v,), so its weight iV () = o¢-W (7).

Any balanced patl can be written as a concatenation of elementary balanced:pat vo; . . . ; v
and itsweightis given by the product

W(y) =W(y)...-W(yn).
Definition 8.1. We say a claus¢ = P(tg,...,tq) F P'(uq,...,uy) is cyclic at depthk < d if:
1) P="r,
(2) forallz < k, t; = u;,
(3) . # ug andty, andu, are comparable.
We say the clause is cyclic at deptlx if it is a projection.

We need three intermediary lemmas.

Lemma 8.2. Let R be a proof-net ang be a balanced path @ such thai?’ () is non-null and cyclic
at depthk. Then~ crosses at least one cutihat depth lower that (i.e. at depth < k).

Proof: First, the fact that¥ (vy) is cyclic implies thathead(W (vy)) andtail(W(v)) have the same
predicate symbol and therefore thedtarts and ends in the same terminal formdii@ither a cut formula
or a conclusion). In order to get a contradiction assynuwesn't cross any cut at depth lower thian
Let us write the decomposition efinto elementary balanced paths= v1;vs;. .. ;v,. We denote the
weights byg; = W (y;) andg = W ().

e first case:A is a conclusion. We know that eaghwith 2 < 4 < n starts in a cut formula at depth
strictly greater thart and that each; with 1 < i < (n L 1) ends in a cut formula at depth strictly
greater thark. Consequently fo2 < i < (n L 1), the weightg; is of the shape:

i :PBil(xo,...,xk,thH,...,til) F Poy (20, -y Ty Uy - -+ Uyg)
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Therefore we get:

head((¢lo) = head([i].):
tail([glo) = taillldalon).

But as4 is a conclusion we know by remark 7.3 (appliedytoand the reverted paty, ') that if
head([gbl}(gyk)) = Pa(to,-.-,tk) andtail([gbn}(oyk)) = Pa(ug,...,u;) then:

— eitherforall0 < i <&k, t; = u;,
— or there existg < & such that fol0 < < (j L 1), t; = u; andt; L u;.

Both cases contradict the fact tH&t(~y) is cyclic at deptht, so that we are done.

e second caseA is a cut formula. Let us calr the corresponding cut node. By assumption we
know thato is at depth strictly greater tharn so in the same way as before we geflo ) =
Ps(zo,...,2x) F Pa(zo, ..., x%). This contradicts the hypothesis.

This last case ends the proof. 0

We will need in the sequel the notion gjfecial cut A special cut w.r.t. a patl is an exponential cut
o such thaty crossesr but doesn'’t cross any cut below the auxiliary ports of the associated to the
I-premise ofo (special cuts have been introduced by Regnier and Dano$Jn[pl). We use a variant
of the “special cut lemma” stated in [16] whose proof folloilie same line.

Lemma 8.3. Let~y be a path of a proof-ngk that crosses at least one cut at depth lower thdhall the
cuts crossed by at depth lower that are exponential, theR has a special cut w.r.ty at depth lower
thank.

Proof: We proceed by induction over the number of nodes of the pnetf-We use the sequentializ-
ability property of proof-nets : if? is a proof-net it can be obtained by a last rule (of coursesth@ght
be several possible last rules).

e If R can be obtained by @-rule on a proof-nef?’ then~ gives a path of?’ satisfying the hypoth-
esis. By induction hypothesis d& we know thatR’ has a special cut w.r.t at depth lower than
k, which yields inR a special cut w.r.ty.

e If R can be obtained by a contraction, weakening or quantifierfram a certain?’ then the same
argument applies.

e If Ris obtained fromR; and R, by a®-rule thenyy is contained in one of th&;'s and we can use
the i.h. onR;.

¢ If Ris obtained fromR; and Ry by an axiom or multiplicative cut, theno is at depth 0 inkR and
by assumption ory we know that the path is contained in one of fRgs.

e If Ris obtained fromR’ by at-promotion, theny gives a pathy’ in R’ andk > 1. By assumption
on~ we know thaty’ crosses inkR’ only exponential cuts at depth lower thanl 1 (and at least
one) and by i.h. we conclude th&t has a special exponential cuiw.r.t. ' at depth lower than
k 1 1. Theno is a special cut o2 w.r.t. v and is at depth lower thatin R.
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¢ If none of the previous cases applies, then all conclusiér® are conclusions of boxes at depth
0. Letus callB,, ..., B, the boxes ofR at depth 0. Consider the relatidt between theB;’s
defined by :(B; RB;) if there exists a cut between the principal poriBgfand an edge hereditary
conclusion of an auxiliary port dg;. The correctness ak implies that the transitive closuf@*
of R is antisymmetric; therefore there is a By such that there exists no cut below the auxiliary
ports ofB;,. Let us denote by the cut on the principal port d&;,. The proof-netR is obtained
by the cuts between a proof-ne®’ andB;, . Now, if v doesn’t crose then it is contained ik’ or
B;, and as usual we can conclude by induction hypothesis. Oibeiifvy crossess, then by the

property ofB;, the cuto is special w.r.tzy and we are done.
0

Lemma 8.4. Let R be a proof-net andg be a balanced path @t such thatiW () is cyclic at depthk.
Assumer is a cut of R at depth lower thak and crossed by which is either a multiplicative, axiom or
quantifier cut or a special cut w.r4. Let R’ be the proof-net obtained frof by reducinge. ThenR'
has a balanced path such thaf¥ (') is non-null and cyclic at depth.

Proof: Let d(o) denote the depth aof, thend(o) < k by hypothesis. A3V (v) is cyclic the pathy
starts and ends in the same terminal formkilawWe consider each case of eut

e o is an axiom cut, then let’ be the path obtained by removing fropthe edges conclusions of
the erased axiom; hence, we ha¥d~y') = W () andW (v') is cyclic at depthk;

e o is a quantifier cut ther’ is obtained by removing frony all the edges premises of the cut
ThenW (v') is equal toW () up to a possible change of the predicate, so that the régu(y)
cyclic impliesW (v') cyclic) follows immediately.

e o0 is a multiplicative cut, letB; ® By and By pB; be its premises. Let us decompogénto
maximal balanced subpaths
Y=Y157250 0 i

such that:
— ~ starts inX (upwards if it is a conclusion, downwards if it is a cut pre@)jsends in a
premise ofr downwards and crossesat most once in the beginning ¥ is premise ob,
— whenl < i < n, ~y; starts and ends in a premisecflownwards, and crossesonce,
— -y, Starts inc downwards and ends iH crossings once.

We denote byp; the clauséV (v;). Now, let! (1 < i < n) be the path ofR' defined in the
following way (we call itresidual pathof +; in R'):

— for2 < i <mn,~ = d;;v wherey! is obtained fromy; by removing the edges labelled by
B ® By or By pBy andd; is the path of length 2 crossing the ¢i;, ;") of R' (from B;
to By if v/ starts inBj—, from By to B, if v;' starts inB;);

— if 4, starts in a premise of (i.e. X is premise ofo) then~] is obtained fromyy,; in the
same way; otherwisg, is simply obtained by removing the edges labelledyy® B, or
By pB, .
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We examine the composition of and~y;; for 1 < i < (n L 1). AsW(vy) # 0, we know that
tail(¢;) unifies withhead(#;4+1); this implies in particular that they share the same preeica
Pp B, OF Ppipi, let us assume for instance it#%, 3 5,. We have:

tail([dilae) = PpioBb,(cuge))

head([¢it1]dae) = PBioB.(Ctiw)),
wherec = p (resp.c = q) if ; passes through; (resp. B;) before ending ilB; ® By; ¢ = p
(resp. ¢ = q) if v;41 passes througtB; (resp. B, ) after B pB, . Now, astail(¢;) and

head(¢;+1) are unifiable we get = ¢ and one can check that;~4; .../, is indeed a path in
R’ which we denote by/'.

Let us denote by the clausé¥ (v}), then we have :

tail([¢ila)) = PB;(ud(0))
head([¢;1la@w)) = PB;(ti(0))

wherej = 1if c = ¢ =p,j =2if ¢ = ¢ = ¢q. The term oftail([¢]];) (resp.head([¢; ]x))
whereh # d(o) is equal to that otail([¢;],) (resp.head([¢i+1]x)). As aresult we have :

— if X isnotB; ® By or By pB; then

head(¢)) = head(¢)
tail(¢),) = tail(ey);

we get :
DLy b = P12 fn,
soW (v') = W(y) and thusy’ has a weight non-null and cyclic at degth

— if X is one of the premises of, sayX = B; ® B, for instance : as$V (v) is cyclic at depth
k we know thattail([¢n]o,k)) is unifiable withhead([#1]( 1)), SO if :

tail([¢nla@w)) = Ppios,(cuq))
head([p1]i0) = Prios,(Ctaq));

by the same argument as before weget ¢’ and :

tail([fplioy) = Pg;(ua@))
head([¢1]i0)) = PB;(tao));

wherej = 1 or j = 2. Thus[W (v)]4(,) is of the shape’p, B, (cva(s)) = PB B, (CWy(s))
and[W (v)]ao) = PB; (vae)) = P; (wq(s)). FOrk < d(o), the atomsail([W(y')]x) and
tail([W(y)]x) (resp.head([W(v')]x) andhead([W (v)]x)) have the same term. Therefore
W (+') is non-null and cyclic at same depthasW ().
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e o is a special (exponential) cut w.r4, let"”A~ and! A be its premises. Notice thatcannot be a
weakening cut since crosses and no balanced path crosses any edge conclusion of a wegkeni
node. Soo is either a contraction cut or a commutative cut. As beforedeeomposey into
maximal balanced subpaths

Y=Y57200 i

such that:

— = starts inX, ends in a premise of and crosses at most once in the beginning K is
premise ofo,

— whenl < i < n,~; starts and ends in a premisecotlownwards, and crossesonce,

— -y, Starts inc downwards and ends if crossings once.

We have two cases: the case of an exponential cut of comtnattpe and the case of one of
commutative type.

— we consider the case of a special eubf contraction type. Aw is a special cut w.r.tzy,
if ~; starts inTA™ then-y; ends in!A and is contained in the box of principal pdd but
for its initial crossing ofo (see figure 5). Therefore 4f; starts in[A~ we have:[¢;]4,) =
Pryi(zq(0)) B Pia(7q)). Now if v, starts in!A then+; ends in[A~. This case can be
handled as the multiplicative cut case:

x if X is not a premise of thenv has a residual patif in R’ of same weight;

« if X is a premise ob, say for instanceX =!A. Then forh < d(o), [W(y)], and
[W(¥")]n have the same terms and the layéf ()], is of the shape’ 4 (cvq())
Pa(c'wg(y)) with ¢, ¢’ belonging tofr, s}. AsW (v) is cyclic at depttk we havec = ¢'.
We get[W (v)]4s) = Pia(vye)) F Pia(war)) and so finallyi (v') is cyclic at depth

k.
?Aﬂ /A R
‘\. U /' ‘ \‘
\'v\?A_ , ------ ; 'A ?B_
P = cu) == /

Figure 5. case of a contraction cut
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— The last case is the exponential cut between an auxiliarygrat a principal port: in this
case the cut node is replaced inR’ by a cut nodes’ at depthd(o) + 1, therefore weights
are modified by reduction exclusively in the predicate psotthat the resultif’ () cyclic
impliesW (v') cyclic) follows immediately.

0

Proposition 8.5. Given a proof netk and~ a balanced path of non-null weight, the clal®¢y) asso-
ciated toy is acyclic.

Remark 8.6. In [16], Regnier shows that in @ol model for pure nets the weight () of a path~y
satisfies: W (y)? = 0 (it follows from his theorems 3.3.1, part 3 and 2.2.1, partidfan be easily
extended to MELL proof-nets. The property we give here (foL Bproof-nets) is stronger since all
acyclic clauses are null-square but the converse is no($aethe example following definition 4.1).

Proof: In order to get contradiction we assume the prooffdéias a balanced pathof non-null weight
cyclic at depthk. By lemma 8.2 this implies that crosses at least one cut i at depth lower thatk.
The idea is then to reduce progressively all the cuts at depttr thank crossed byp in such a way that
at each step we keep in the corresponding proof-net a pasfysa the hypothesis. Now in order to do
so we need to consider a particular strategy of reduction:

e if there is a multiplicative, axiom or quantifier cut at dejdver thank crossed by the path, then
we reduce it,

e otherwise, if all cuts crossed by the path at depth lower thare exponential then we choose a
special cut w.r.t. the path and reduce it.

We build a sequenceR;, ;) of pairs of a proof-net and a path in it satisfying the prope#V’ (¢;) is
non-null and cyclic at deptk. PutRy = R anddy, = . Now assume the sequence has been defined
up to ranki > 0. By lemma 8.2; crosses at least one cut Ry at depth lower thatk. If it crosses a
multiplicative, axiom or quantifier cut at depth lower that take forR; 1 the proof-net obtained from
R by reducingo; then by lemma 8.4 we know thd; ,; has a path satisfying the hypothesis which we
take asd; 1. Otherwise lemma 8.3 ensures tliahas a special cut at depth lower thai: and this is
the cut we choose.

This way we build an infinite sequeng&;, ;) of pairs of a proof-net and a path in it with these
properties. This sequence contradicts the strong noratializ property of ELL. 0

From this proposition, we derive the two following corolés:

Corollary 8.7. Let (U, o) be the loop associated to a proof-igtwe have:
Result! (U) = Result,(U).

Proof: As we know thaResult) (U/) C Result,(U) we only need to prove that the reverse inclusion
holds. Let us recall (see [4]) that the result of the executiba loop coming from a proof net is given
by

Result,(U) = Z W (),
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whereP.(R) is the set of balanced paths from conclusion to conclusioons@er a pathy € P.(R)
such thaf¥ () # 0 and its decomposition into elementary balanced pathsyo;y1; - - ; vn. We show
that the associated wotdV (o), W (v1),--- , W(7yn)) is strictly acyclic: for any sub-product we have

W(yi) oo W(¥ign) = W(vis- - 5vign) #0

and~;; - -+ ;vi+n IS @ balanced path. By proposition 8.5 the clabiégy;; - - - ;v;+n) IS acyclic. Thus the
clauseW (y) = W (o)W (71)- . . . -W (v») belongs tdResult} (U7). 0

Corollary 8.8. Let (U, o + 1) be the loop associated to a proof-igtthen:
Result! (Result!(U)) = ResultL_T(U) = Result,,,(U).
Proof: As by sub-associativity we know that
ResultL+T(U) C Result] (Result!(U)),

we only need to prove the reverse inclusion.
Lety = g ---- 1, be an element oResultL(Resulti(U)) with forall 1 < i < m, ¢; €
oResult! (U) andiy € Result!(U). So there exispy € U and¢;’s in 7U or in oU such that

Yor - hm = o+ .. Pn.

Now the productpy- . .. -¢,, belongs tResult, . (U) since:¢y € U, the¢;’s belong to(c + 7)U,
andhead(¢y) andtail(¢,) are of the formP,(.) and Pp(.) with A and B conclusions ofR. By
corollary 8.7, we conclude that belongs td%esultj,JrT(U). 0

Conclusion and perspectives

Broadly speaking our aim is to define a setting as large — arginggle — as possible for elementar-
ily bounded computations. The operation we introducgdAK EXECUTION, does indeed satisfy the
complexity requirement for pairs of combinatiofi$, o) of our algebra; furthermore the establishing of
this elementary bound doesn’t need any assumptiofUon) (typically U ando are not required to be
wirings). This yields a large possibility as to the choicdh#f pairs we wish to consider as proper “pro-
grams” of our model. HowevewEAK EXECUTION (partially) fails to fulfil the modularity requirement:
this is the point which should guide us in the search for dimh on pairs to require to ensure good
properties of the computation. Hence the work can be pursugdo directions: the first possibility is
to search for a sufficient condition on pairs which guaramtbes modularity/associativity property for a
larger class of operators than those coming from proof-r@t& could then look for an untyped calculus
whose computations could be performed in this algebra. Arsgoption would be to come back to usual
EXECUTION and use the techniques developed in this work to try to a@stahlresult of the following
kind: there exists a functioB (N, d) expressed as an exponential tower of height (dependind sugh
that for any pai(U, o) (satisfying certain conditions . ) if oU is nilpotent then its degree of nilpotency
is bounded byB(N, d) (whered is the depth obU andN is given by its size).

Finally let us stress the fact that one goal of this work isrtuvjale a basis for the study of the system
LLL (Light Linear Logic) which, at the price of a more delieasyntax, offers a polynomial complexity
bound. We believe that the study of ELL and of Elementary! is a worthwhile step in this more
practically interesting direction.
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