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1. Introduction

Geometry of interaction (GOI) was introduced by Girard ([6, 8]) as a semantics of computation which:� on the one hand, in contrast to denotational semantics interprets explicitly the dynamics of com-
putation and handles finite objects,� on the other hand, expresses this dynamics by moremathematicalmeans than syntactical rewriting.

Various frameworks have been used to describeGOI models, including bounded operators on Hilbert
spaces ([6, 4]), partial applications ([2, 16]) and algebras of clauses ([10]). This latter point of view is
the one we will adopt here. In these models, the operation corresponding to the normalization process is
calledEXECUTION. It is not defined on all operators and sufficient conditions have been given which en-
sure convergence of its computation: it has been shown in thecase of second-order Linear Logic ([6, 12])
and of untyped lambda-calculus [14]) that operators comingfrom the syntax satisfy such conditions (a
nilpotency condition, for instance, in the case of Linear Logic). Let us recall that the result ofEXECU-
TION on operators interpreting proofs is not in general an invariant of cut-elimination, though this holds
provided certain conditions on the conclusions of the proofare satisfied (it is the case for instance with
the type of booleans; see [6]).

Elementary Linear Logic (ELL) , as Light Linear Logic (LLL), is a variant of Linear Logic in which
the rules introducing exponentials have been modified (cf. [12]) in order to control the size explosion
of proofs during normalization. It is obtained by removing the two principles:!A ` A (dereliction)
and !A ` !!A (digging); contraction and weakening are kept unchanged. We consider here a version
of ELL without additive connectives and where introductionof the modality ! is handled through a
(multi)functorial promotion rule (calledt-promotion, see [15]).

An ELL proof-net has two main parameters: itssize(say the number of edges) and itsdepth(maximal
nesting of the boxes it contains). The number of steps of its normalization is bounded by a function of
the size which is elementary recursive: the expression of this function is a repeated exponential whose
height only depends on the depth (see [15]). This property isa consequence of the preservation of depth
by normalization steps: the depth of an edge is unchanged through any normalization step (but of course
the edge might be duplicated or erased).

Note that it is not known whether all elementary functions can be represented within this version of
ELL. An alternative approach has been carried on by Danos andJoinet (in [3]) who described ELL as
a subsystem of full linear logic defined through a syntactical constraint on (LL) proof-nets (thestrati-
fication condition): this way they incorporate suitably the additives (keeping the isomorphism between!(A&B) and !A
!B) and establish a representation theorem for elementary recursive functions. How-
ever, as the treatment of additives in geometry of interaction is delicate we choose to content ourselves
here with the multiplicative exponential (second order) fragment: for this fragment our presentation is
equivalent to that of Danos and Joinet.

Finally, recall that the main drawback of ELL (as well as of LLL) stressed by Girard in [12] was
the lack of a specific semantics of proofs (though a phase semantics has been given by Kanovitchet al.,
see [13]). We address the problem with the help ofGOI , considering the semantics of reduction as an
intermediary step between syntax and denotational semantics. We are looking for aGOI model such that
all its elements can be considered as interpretations of algorithms terminating within elementary time,
even if they are not realized by any proof (think of incorrectproof-structures or of programs using fixed
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points). Recently, an other approach based on coherent spaces has been proposed by the first author ([1]).

Achievements and limits of the present work: we present here an algebra of clauses along the
lines of [10] with a kind of depth-preservation property analogous to that of ELL. Execution is defined
through resolution and the operators are certain sets of clauses; a comparison of these operators with
Prolog programs can be found in [10], section 2.3. In addition to usualEXECUTION we define aWEAK

EXECUTION which amounts to giving up the computation of certain products of theEXECUTION. WEAK

EXECUTION coincides with usualEXECUTION for operators coming from proof-nets.
A size and a depth are defined for general operators respectively as the number of clauses and the

maximal arity of the predicates of the terms (actually all predicates have the same arity). Our main
result is then thatWEAK EXECUTION always terminates (there is no need for a nilpotency condition, for
instance) and that the depth being fixed, the number of steps of the computation is bounded by a function
of the size of the program which is elementary. In other words, in this setting we can bound in advance
the run-time of a program provided we know its size and depth.Therefore the intrinsic elementary bound
obtained in ELL by logical means has been extended to a semantic setting.

Yet this WEAK EXECUTION presents a serious drawback as it is not in general an associative opera-
tion... However at least one inclusion is obtained instead of the expected equality (we call this property
sub-associativity): the result ofglobal EXECUTION is included in the result of anymodularEXECUTION

(see section 6 for a precise statement).

Organisation of the paper: in the next section we introduceGOI through an example. Sections 3 and
4 are devoted to a presentation of the algebra, to the definition of EXECUTION andWEAK EXECUTION

and to the statement of the main theorem. This result is then proved in section 5 and we examine in
section 6 the sub-associativity property. The rest of the paper is devoted to the interpretation of proof-
structures in the model and to the proof thatWEAK EXECUTION yields the same result as usual execution
when applied to operators coming from proof-nets.

Acknowledgements:the authors wish to thank Jean-Yves Girard for important suggestions and for
pointing out the crucial lemma 5.3. They are also grateful tothe anonymous referees for their detailed
corrections and comments.

2. Geometry of interaction: a toy-example

Before getting into the technicalities of theGOI model we introduce for ELL, let us try to illustrate the
general ideas at work inGOI on a toy-example. Consider the linear lambda-termt = (�x�y(x)y)�zz; it
can be translated into multiplicative linear logic, yielding the proof-netR of figure 1. The purpose ofGOI

is to provide an algebraic setting to describe the computation within a syntactical system (beta-reduction
or cut-elimination). Here, the termt beta-reduces toI = �y y, the proof-netR normalizes toR0. The
model should be equipped with an operation enabling to retrieve these results: we want a map from the
set of proof-nets to the model and an operationEx(:) in the model, such that ifR is mapped toRo thenEx(Ro) andR0o are equal (or at least computationally equivalent).

Concretely, we associate weights valued in the model to certain paths of the proof-net and compute
all the products of these weights yielding non-zero result.The mentioned paths are paths linking external
links (those premises of a cut or conclusions) and crossing one axiom.
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Figure 1. Example

For this system (linear lambda-calculus or multiplicativelinear logic) we can use a very basicGOI

model, operations on a stack built over an alphabet of size 2,fp; qg. More precisely, its elements are
tuples defined by� a source and a target among the previous external links, herenumbered 1 to 3,� an operation on stacks of the kind: “pop s, thenpush t”,
written as(source; pop s; push t; target). To this we add one extra element with no specified source and
target, denoted by0, meant to correspond to the operation with empty domain. Anyinvalid composition
of operations (non matching consecutive target and source,or resulting operation defined nowhere) yields0.

In our example the proof-netR is interpreted by the following set of weights:�1 = (1; pop q; push q; 2) �4 = (3; pop q; push q; 1)�2 = (3; pop p; push p; 1) �5 = (1; pop p; push p; 2)�3 = (2; pop p; push q; 3) �6 = (2; pop q; push p; 3):
For instance�1 and�6 are the weights associated respectively to the paths
1 and
6 of the figure. Here
are two examples of compositions:�1 � �6 = (1; pop q; push p; 3), �1 � �4 = 0.

The execution resultof such a system of weights is the set of non-zero products with source and
target corresponding to conclusions (so in the present casethey should be equal to 1). In this example
we obtain two weights: (1; pop p; push q; 1) = �5 � �3 � �4;(1; pop q; push p; 1) = �1 � �6 � �2:
This is the interpretation of the resultR0 (or the lambda-termI).

3. Resolution Algebra

In this section we define aGOI model more elaborate than the one of the previous section. Itwill
be expressive enough to interpret proofs of ELL and at the same time simple enough to enable us to
establish an internal complexity bound. It is based on the algebra of clauses introduced in [10]: elements
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are clauses and they are composed by resolution. We recall the definitions of this general setting before
describing the particular case we consider in the present work: the layered algebra of clauses.

A term languageT is built over variables and a set of symbols of functions; itselements will be
denotedt, u. Let fPigi2I be a set of predicate symbols given together with their arity; the language of
atomsL built overT and this set of predicates is the set ofPi(t1; : : : ; tn), wheren is the arity ofPi and
thetj ’s belong toT .

A substitution� is a partial application from the set of variables toT with finite domain. Ifdom(�) =fx1; : : : ; xng and if ti = �(xi) for 1 � i � n we will denote� by ht1=x1; : : : ; tn=xni. The application�
is extended into two applicationsT ! T andL ! L (also denoted by�) in the following way: the image
of anexpression(term or atom)e by the substitution� is obtained by replacing ine each occurrence of a
variablex in dom(�) by �(x); this image will be denoted bye�. The composition of two such applications�1, �2 will be denoted by�1�2: e(�1�2) = (e�1)�2. A renamingof the variables of an expressione is an
injection� from the set of variables ofe to the set of variables; therenamed expressionis e�.

We say that two terms (or atoms)e ande0 arecomparablewhen there is a substitution� defined over
the variables ine ande0 such thate� = e0�. In such a case� is called aunifier of e ande0.

If e; e0 are comparable then there exists amost general unifier(m.g.u.) i.e. a substitution�0 such that
for every unifier� there is a�0 such that� = �0�0. If e ande0 are not comparable, we say that they are
orthogonal: e ? e0.

A clause� of the languageL is a sequentPi(t0; : : : ; tm) ` Pj(u0; : : : ; un);
wherePi(t0; : : : ; tm) andPj(u0; : : : ; un) are atoms ofL with the same variablesx0; : : : ; xd.

Theheadof the clause� is the atomhead(�) := Pi(t0; : : : ; tm);
its tail is the atom tail(�) := Pj(u0; : : : ; un):

We then consider the set of clauses up to the following equivalence relation:� � �0 if there exists a renaming� of the variables of� such thathead(�)� = head(�0) andtail(�)� = tail(�0):
From now we will mean by “clause” an equivalence class w.r.t the equivalence relation� (this way

clauses are implicitly universally quantified). To this setof classes we add a formal clause0 and we
denote the resulting set byC.

Definition 3.1. (Resolution)
Given two clauses� and�0 we can assume they have disjoint variables (by choosing appropriate repre-
sentatives). Iftail(�) is comparable withhead(�0) and� is their m.g.u. we define theresolutionof the
two clauses as the equivalence class of the clause���0 = head(�)� ` tail(�0)�
this class doesn’t depend on the previous choice of the representatives.

Otherwise, iftail(�) andhead(�0) are not comparable:� � �0 = 0 .
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We fix by convention that the resolution of the clause zero with any other clause is zero; this implies
that resolution is associative.

More generally, as unification is used here to perform resolution between equivalence classes of
clauses we will from now on consider that the expressions we compare (terms, atoms) have disjoint
variables; when it is not the case we rename suitably their variables and unify the two new expressions.
For instance, ifp is a unary symbol of function the two termspx andx are said to be unifiable as the
renamed termspx andy admit a unifier:� = hpx=yi.

A clause� is said to be aprojection (resp. anull-square) if �2 = � (resp. �2 = 0), which is
equivalent tohead(�) = tail(�) (resp.head(�) ? tail(�)). Notice that this holds only because we
consider clauses where head and tail share the same variables.

Definition 3.2. (Resolution Algebra)
Let �?(L) be the set of all finite formal linear combinations

P�i�i where the scalars�i belong toC ,
the set of complex numbers, and the clauses�i to C. The set�?(L) is equipped with� a structure of complex vector space,� a structure of complex algebra, the multiplication being extended by bilinearity from resolution:X�i�iX�j�0j =X�i�j(�i��0j);� a unit w.r.t. multiplication, denoted by 1:1 =Xi2I Pi(x0; : : : ; xn) ` Pi(x0; : : : ; xn);� an anti-involution defined by (X�i�i)? =X�i�i?

where�? := tail(�) ` head(�).
A norm can be introduced in order to get aC ? -algebra, see [10].

Another way to write a combination of clauses is as
P�(�)�, where the sum is taken overC and�

is an application from the set of clausesC to C such that��1(C nf0g) is finite. We will use this notation
when it is more convenient.

If U =P�i�i andV =P�i�i are two elements with coefficients inN, then the combinations can
be considered as multisets and we writeU � V if for all i, �i � �i. We write�i 2 U if its coefficient�i is nonzero. Aprojectionof the algebra is a combinationU such thatU? = U andU2 = U .

Definition 3.3. (Execution Formula)
A wiring is a finite sum of clauses

P�i such that fori 6= j : head(�i) ? head(�j) andtail(�i) ?tail(�j).
A loop is a pair of wirings(U; �) such that� is hermitian (i.e.�? = �),
A loop convergeswhen�U is nilpotent, i.e. when(�U)n = 0 for somen. Then theexecutionof the

loop (U; �) is the element Ex�(U) := U(1� �U)�1 = U nXk=0(�U)k
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and theresultof the execution is given byResult�(U) := (1� �2)Ex�(U)(1� �2):
Remark 3.4. Another way to write the execution is directly as a sum of clauses:Ex�(U) = X�02U�i 2 �U; 1 � i � kk�n �0��1� : : : ��k
To understand the meaning of execution w.r.t. normalization of proof-nets, recall the example of sec-
tion 2. The wiringU corresponds to the paths linking external links of the proof-net and the wiring�
corresponds to the connections given by the cuts: this analogy will be made precise in section 7 where
we give the interpretation of proof-structures in this algebra. Computing the execution then amounts to
determining the paths of the proof-structure with non-zeroweight. In the result of the execution we only
keep the weights of those paths which are maximal and start and end in conclusions (not cut premises),
that is to say that we restrict to the visible part of the computation and forget about the intermediary
steps...

Now we specify the particular language we are going to consider.

Definition 3.5. Let thelanguage of unary termsT be the language built over a set of unary symbols of
function fp; q; r; sg; hence such terms have exactly one free variable, andt[x] will denote a term with
free variablex. Thelengthjtj of t is the number of symbols of function appearing in it.

Remark 3.6. Notice that due to the particular form of terms, asT is defined over unary symbols of
function, if two termst andu are unifiable then their m.g.u.� leaves at least one of the two terms
unchanged (up to renaming of its variable). For any pair of terms (t; u), only the following cases can
occur:t ? u or t � u or t � u, wheret � u means thatu is the unchanged term.

We will consider a family of symbols of predicatefPigi2f1;:::;mg of same arity1 (d + 1). Let T d � m
denote the set of atoms defined this way and letCd be the set of clauses:Pi(t0[x0]; : : : ; td[xd]) ` Pj(u0[x0]; : : : ; ud[xd]);
wherehead(�) andtail(�) belong toT d �m. Notice thattk anduk (k 2 f0; : : : ; dg) are required to
have the same free variable.

We call layered algebrathe algebra of clauses defined overCd and we denote it by�?(T d �m). From
now on it is the algebra we consider.

4. Weak Execution

In order to express a bound on the lengths of computation, we need first to define some measures on
clauses and combinations of clauses.
1The choice ofd+ 1 is done to keep the same notations when we interpret proof-structures, see section 7.
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A word of clausesw is a finite sequence of clausesw = (�1; : : : ; �n) with �i 2 Cd, and theproduct
clauseis �1��2� : : : ��n. A sub-productof the wordw is the product clause of a word(�i; : : : ; �j) for
somei � j � n.

Given a clause� = P (t0; : : : ; td) ` P 0(u0; : : : ; ud) its width is defined asjj�jj := supfjtkj; jukj = 0 � k � dg:
The width of a wordw is simply given byjjwjj := sup1�i�n(jj�ijj):
We also define thecardinality of w: N(w) := #f�i j 1 � i � ng:
Example: consider inC0 the clause� = P (x) ` P (rx) and letwn be the word(�; : : : ; �) of lengthn.
In that case we havejjwnjj = jj�jj = 1,N(wn) = 1 and the product ofwn is the clauseP (x) ` P (rnx).
Definition 4.1. (Acyclicity)
An acyclic clauseis a clause � = P (t0; : : : ; td) ` P 0(u0; : : : ; ud)
such thatP 6= P 0, or (P = P 0 and there existsk � d such that for everyi < k we haveui = ti anduk ? tk).

An acyclic wordis a word(�1; : : : ; �n) such that every sub-product is either an acyclic clause or
a projection.

A word isstrictly acyclicif and only if all its sub-products are acyclic clauses.

Example: consider the clauses�1 = P (sx0; x1) ` P (rx0; x1), �2 = P (rrx0; rrx1) ` P (sx0; rx1)
and�3 = P (sx0; rx1) ` P (rx0; sx1) in C1. Each of them is an acyclic clause. The wordw =(�1; �2; �3) has a non-null product but is not acyclic since its sub-product �1��2 = P (srx0; rrx1) `P (sx0; rx1) is not an acyclic clause. Note also that an acyclic clause is anull-square but that a null-
square isn’t necessarily acyclic (e.g.P (x0; rx1) ` P (rx0; sx1)).

We now introduce a restricted form of execution over strictly acyclic words of clauses. Contrarily
to usual execution, we define it not only for converging loopsbut for any pair of combinations(U; �);
theorem 4.6 will establish the fact that this definition always makes sense (i.e. the sum is finite).

Definition 4.2. (Weak Execution)
Given a pair of combinations(U; �) denoteU = P�(�)� and�U = P 
(�)�. Its weak executionis
defined as: Exy�(U) := X(�0; �1 : : : ; �n) 2 A�(�0)( nYi=1 
(�i))�0��1� : : : ��n

whereA := ((�0; �1 : : : ; �n) ����� �(�0) 6= 0; 
(�i) 6= 0 wheni 6= 0, and

the word(�0; : : : ; �n) is strictly acyclic

) :
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As a particular case, given a loop(U; �) its weak executionisExy�(U) = X(�0; �1 : : : ; �n) 2 A0�0��1� : : : ��n
whereA0 := ((�0; �1 : : : ; �n) ����� �0 2 U; �i 2 �U wheni 6= 0, and

the word(�0; : : : ; �n) is strictly acyclic

) :
The result of theWEAK EXECUTION is in that case defined asResulty�(U) := (1� �2)Exy�(U)(1� �2):
Remark 4.3. Note that in cases whereEx�(U) makes sense ((U; �) is a convergent loop), we have thatExy�(U) � Ex�(U).

Our first goal is to show that we can bound the width of the clause product of an acyclic word
(Proposition 4.4). In the case of a strictly acyclic word this implies that the length of the word cannot
exceed a certain bound (depending on its cardinality and width) without yielding zero as result. This
bound will be expressed as an exponential tower of heightd (Proposition 4.5).

Proposition 4.4. Given an acyclic wordw = (�1; : : : ; �n) with non-null product, we have the following
inequality: jj�1� : : : ��njj � L(jjwjjN(w); d), whereL is defined byL(a; d) := 8><>: 24a(d+1)2d d � 18a d = 0
and the repeated exponential is defined by:2m0 = m and2mN+1 = 22mN

Note thatjj�1� : : : ��njj should not be confused withjj(�1; : : : ; �n)jj, the former being the width of a
clause and the latter the width of the word.

This proposition will be proved in section 5. The result relies of course on the fact thatw is acyclic.
Otherwise given a fixed width (of word) and cardinality, one might exhibit non acyclic words whose
products are of arbitrary large width: see for instance the first example given above, where for anyn,jjwnjj = 1,N(wn) = 1 and the product ofwn is P (x) ` P (rnx) whose width isn.

Proposition 4.5. Given two integersa � 1 ands we defineB(a; s) := 29�a(s+1)2s+1 :
Letw be a strictly acyclic word with non-null product and such that jjwjj � 1, its length is bounded

byB(jjwjjN(w); d).
This result is a consequence of the proposition 4.4 and its proof will be given in section 5.1. We

now give the main result:WEAK EXECUTION always terminates and can be computed in anelementary
number of resolution steps. We state it first for a loop and then give the result for an arbitrary pair of
combinations:
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Theorem 4.6. Given a loop(U; �), letN = #�U andk = 1 +maxfjj�jj = � 2 �Ug. We haveExy�(U) = X(�0; : : : ; �n) 2 A0n � B(kN; d)�0��1� : : : ��n
whereA0 is the set given in definition 4.2.

More generally,(U; �) being simply a pair of combinations let us denoteU = P�(�)�, �U =P 
(�)�. PutN = #f�; 
(�) 6= 0g andk = 1 +maxfjj�jj = 
(�) 6= 0g. We have:Exy�(U) = X(�0; : : : ; �n) 2 An � B(kN; d)�(�0)( nYi=1 
(�i)) �0��1� : : : ��n
whereA is the set given in definition 4.2.

Proof: [Proof of theorem 4.6] Letw = (�0; : : : ; �n) be a word in the setA with n � 1. Let us denote
byw0 the word(�1; : : : ; �n) on�U . We haveN(w0) � N andjjw0jj � k. Now, if n > B(kN; d) thenn > B(jjw0jjN(w0); d) and we know by proposition 4.5 thatw0 (and consequentlyw) has a null product.

Therefore the sum inExy�(U) can be restricted to the words ofA such thatn � B(kN; d). ut
5. Proof of Proposition 4.4

Let us introduce a few more notations on clauses and words of clauses. To each predicate symbolPi of
our set we associated new predicate symbols, one for each arityk+1 in f1; : : : ; dg; we will denote them
all byPi as anyway in atoms the arity of the predicate will be made explicit by the number of terms. Fork in f0; : : : ; d� 1g, we denote byT k �m the language built fromT and the family of predicates of arityk + 1 andCk is defined as before fromT k �m.

Given a clause� = P (t0; : : : ; td) ` P 0(u0; : : : ; ud) of Cd and0 � k � d � 1, its k-th layer is the
clause ofC0: [�]k := P (tk) ` P 0(uk)
and itsk-th truncationis the clause ofCk:[�](0;k) := P (t0; : : : ; tk) ` P 0(u0; : : : ; uk):

Thek-th layer of a wordw = (�1; : : : ; �n) is [w]k = ([�1]k; : : : ; [�n]k); similarly itsk-th truncation
is [w](0;k) = ([�1](0;k); : : : ; [�n](0;k)).

We define the width of an atom by:jP (t0; : : : ; tk)j = sup fjtij=0 � i � kg.
Proof: [Proof of proposition 4.4] We prove the proposition by meansof an intermediate inequality,
namely we will prove by induction ond the following one:jj�1� : : : ��njj � L0(jjwjjN(w); d) (5.1)
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whereL0(a; s) is defined inductively by:( L0(a; 0) = 2aL0(a; s+ 1) = 2a24(s+1)L0(a;s) (5.2)

then the announced result will be obtained as a consequence.
Next lemmas give the result ford = 0. Until it is differently specified we consider clauses inC0. IfP (t) andQ(u) are atoms inT 0 �m then we sayP (t) � Q(u) if P = Q andt � u.
Notice that if� �  6= 0 thentail( ) � tail(� ) andhead(�) � head(� ).

Lemma 5.1. Given two clauses� and ,

1. if tail(�) � head( ) thenjhead(� )j = jhead(�)j,
2. if tail(�) � head( ) thenjhead(� )j � jhead( )j + jhead(�)j.

Proof: In the first casehead(� ) = head(�), in the second onehead(� ) = head(�)� where� := m:g:u:(tail(�); head( )) = hu[x]=x�; x=x i;
and soju[x]j � jhead( )j. ut
Remark 5.2. Given a wordw = (�1; : : : ; �n) with non-null product, let us denotefj1; : : : ; jmg = fj � 2 j tail(�1� : : : ��j�1) < head(�j)g:
By induction over the integerm we deduce from the previous lemma the following inequality:jhead(�1� : : : ��n)j � jhead(�1)j+ mXi=1 jhead(�ji)j;
analogously fortail(�1� : : : ��n).
Lemma 5.3. An acyclic wordw = (�1; : : : ; �n) with non-null product = �1� : : : ��n, satisfiesjj jj � jjwjj(N(w) + 1):
Proof: In order to get contradiction assumejj jj > jjwjj(N(w) + 1). In that case eitherjhead( )j >jjwjj(N(w) + 1) or jtail( )j > jjwjj(N(w) + 1). Suppose for instance that we are in the first situation
(the second case is handled in a completely symmetric way). By remark 5.2, using the same notations
we have thatjhead(�1� : : : ��n)j � (m + 1)jjwjj; then we havem � N(w) + 1, so there existi1 < i2
such that� := �ji1 = �ji2 .

We claim that the sub-product�ji1 � : : : ��ji2�1 gives a cyclic clause, hence the contradiction with the
acyclicity ofw. Indeed: let us denote�0 = �1� : : : ��ji1�1 and�00 = �ji1+1� : : : ��ji2�1; then we havetail(�0����00) < head(�):
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So astail(���00) � tail(�0����00), we gettail(���00) < head(�):
Moreover, fromhead(�) � head(���00) we deducetail(���00) < head(���00)
and we are done. ut

This lemma ends the base case of induction (d = 0) sincejjwjj(N(w) + 1) � 2jjwjjN(w) = L0(jjwjjN(w); 0);
asN(w) � 1.

In order to get the induction step we need a few intermediary results about products of clauses.

Lemma 5.4. Let us consider a wordw = (�1; : : : ; �n) with non-null product; the product ofw induces
a unique substitution family(�01 ; : : : ; �0n) such that�0i is defined on the variable of�i only and�1� : : : ��n = head(�1)�01 ` tail(�n)�0n; andtail(�i)�0i = head(�i+1)�0i+1 when1 � i � n� 1:
Moreover, every substitution family(�1; : : : ; �n) such that�i is defined on the variable of�i only and
satisfying: tail(�i)�i = head(�i+1)�i+1 when1 � i � n� 1 (5.3)

can be obtained from(�01 ; : : : ; �0n) by means of a substitution� such that(�1; : : : ; �n) = (�01�; : : : ; �0n�):
Proof: We start by proving the existential part of the first claim by induction overn. If n = 1,�1 = hx=xi satisfies the property.

Now assume the property is satisfied forn � 1 and let us prove it forn+ 1:
there exists a family(�01 ; : : : ; �0n) such that�1� : : : ��n = head(�1)�01 ` tail(�n)�0n;� first case:tail(�n)�0n � head(�n+1).

There exists�0n+1 such thattail(�n)�0n = head(�n+1)�0n+1 and we have:�1� : : : ��n+1 = head(�1)�01 ` tail(�n+1)�0n+1:
Moreover the second condition (5.3) is satisfied by(�01 ; : : : ; �0n+1) with respect to�1; : : : ; �n+1.
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There exists� such thattail(�n)�0n� = head(�n+1) and we have:�1� : : : ��n+1 = (�1� : : : ��n)��n+1= (head(�1)�01 ` tail(�n)�0n)��n+1= head(�1)�01� ` tail(�n+1):
and the second condition (5.3) is satisfied by(�01�; : : : ; �0n�; hx=xi).

Now we check the uniqueness part of the first claim: assume(�01 ; : : : ; �0n) and(�01 ; : : : ; �0n) both satisfy
condition (5.3) and �1� : : : ��n = head(�1)�01 ` tail(�n)�0n= head(�1)�01 ` tail(�n)�0n:
Thenhead(�1)�01 = head(�1)�01 implies�01 = �01 and consequentlytail(�1)�01 = tail(�1)�01 . Using
(5.3) for�01 and�01 (i = 1) we gethead(�2)�02 = head(�2)�02 and again�02 = �02 . Applying this method
inductively we eventually conclude with(�01 ; : : : ; �0n) = (�01 ; : : : ; �0n).

As to the second statement, we prove it again by induction over n. The base case is trivial. Assume
given n � 1 the result is true for any(�1; : : : ; �n) and (�1; : : : ; �n) satisfying the hypothesis, and
consider the case of(�1; : : : ; �n+1) and of a family(�1; : : : ; �n+1) satisfying (5.3).

Let (�01 ; : : : ; �0n) be the family of substitutions induced by the product of the word (�1; : : : ; �n)
according to the first statement. As (5.3) (1 � i � n) is satisfied by(�1; : : : ; �n) and(�1; : : : ; �n), by
induction hypothesis there exists� such that for1 � i � n: �i = �0i �.

Now we consider the two cases we distinguished previously:� first case:tail(�n)�0n � head(�n+1)
There exists�0n+1 such thattail(�n)�0n = head(�n+1)�0n+1 and the family induced by the
product of(�1; : : : ; �n+1) is (�01 ; : : : ; �0n+1).
Now, head(�n+1)�n+1 = tail(�n)�n= tail(�n)�0n�= head(�n+1)�0n+1�
and so�n+1 = �0n+1�, (�1; : : : ; �n+1) = (�01�; : : : ; �0n+1�).� second case:tail(�n)�0n < head(�n+1)
There exists� such thattail(�n)�0n� = head(�n+1), and the family induced by the product of(�1; : : : ; �n+1) is (�01�; : : : ; �0n�; hx=xi) = (�001; : : : ; �00n+1):
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We have: head(�n+1)�n+1 = tail(�n)�n= tail(�n)�0n�
and head(�n+1)�n+1 = (tail(�n)�0n�)�n+1;
therefore� = ��n+1 and(�1; : : : ; �n; �n+1) = (�01�; : : : ; �0n�; �n+1)= (�01��n+1; : : : ; �0n��n+1; �n+1)= ((�01�)�n+1; : : : ; (�0n�)�n+1; hx=xi�n+1)= (�001�0; : : : ; �00n+1�0)
where�0 = �n+1.

So in both cases the result is true for(�1; : : : ; �n+1) and(�1; : : : ; �n+1), the induction step is proved
and we can conclude by induction. ut
Remark 5.5. Note that for2 � i � n � 1 we havetail(�i)�0i = head(�i+1)�0i+1 and that this
term is equal totail(�1� : : : ��i) if tail(�1� : : : ��i) � head(�i+1� : : : ��n), or tohead(�i+1� : : : ��n)
otherwise.

Lemma 5.6. Let us consider a wordw = (�1; : : : ; �n) with non-null product; the product ofw induces a
wordw0 = (�01; : : : ; �0n) such that�0i = �i�0i (1 � i � n) with �0i as in lemma 5.4. Then for everyi andh, we have that the sub-product�i� : : : ��i+h is a projection if and only if the corresponding sub-product
of w0, �0i� : : : ��0i+h is a projection.

If �i� : : : ��i+h is a null-square then�0i� : : : ��0i+h is a null-square.

Proof: Easily checked using lemma 5.4. The family of substitutions(�0i ; : : : ; �0i+h) satisfies condition
(5.3) with respect to the word(�i; : : : ; �i+h). So by lemma 5.4 there exists a family(�0i ; : : : ; �0i+h) such
that product�i� : : : ��i+h = head(�i)�0i ` tail(�i+h)�0i+h and a substitution� such that�0j = �0j � forj = i; : : : ; i + h. Then we have�0i� : : : ��0i+h = head(�i)�0i � ` tail(�i+h)�0i+h�, andhead(�i)�0i � =tail(�i+h)�0i+h� holds if and only ifhead(�i)�0i = tail(�i+h)�0i+h.

The second part of the proposition is obtained by the fact that:head(�i)�0i ? tail(�i+h)�0i+h implies head(�i)�0i � ? tail(�i+h)�0i+h�: ut
We establish now the induction step of inequality (5.1). Assume the inequality is true for any acyclic

word in Ck with k � d, and take a wordw = (�1; : : : ; �n) over C(d+1). Consider for every layer[w]k the induced family of substitutions:(�k1 ; : : : ; �kn). Let w0 be the word obtained by applying inw
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the substitution family to every layerk � d and by freezing variables by means of newly introduced
symbols of constantsak:( [�0i]k = [�i]k�ki hak=xki 0 � k � d;[�0i]d+1 = [�i]d+1: (5.4)

Notice that inw0, variables remain only in the last layerd + 1, so we can considerw0 built over
clauses ofC(0) with the firstd layers constituting the predicate (we enlarge our set of predicates).

Let us show thatw0 is an acyclic word: we take a sub-word(�0i; : : : ; �0i+h) and its product�0 :=�0i� : : : ��0i+h; we denote the corresponding sub-product inw by � := �i� : : : ��i+h. By lemma 5.6, if
the layer[�]k is a projection then[�0]k is a projection too and if[�]k is a null-square then[�0]k is a
null-square. Combined with the fact that� is an acyclic clause (definition 4.1), this implies that�0 is an
acyclic clause.

Sow0 is an acyclic word inC0 and by establishing theN(w0) and jjw0jj we obtain the following
inequality: jj�01� : : : ��0njj � L0(jjw0jjN(w0); 0): (5.5)

As the width of a word doesn’t depend upon predicates appearing in its clauses and terms inw0 are equal
to terms in the last layer ofw, we havejjw0jj � jjwjj. By definitionN(w0) is the number of distinct
clauses inw0; in order to bound it we can calculate the number of all possible instances of terms inw0. Re-
mark 5.5 tells us thattail([�0i]k) is equal totail([�1� : : : ��i]khak=xki or head([�i+1� : : : ��n]khak=xki
(similarly for head([�0i]k)). Moreover we havejj[�1� : : : ��i]kjj � jj[�1� : : : ��i](0;k)jj:
Since by induction hypothesis:jj[�1� : : : ��i](0;k)jj � L0(jj[w](0;k)jjN([w](0;k)); k), we can apply the
inequalitiesN([w](0;k)) � N(w) andjj[w](0;k)jj � jjwjj, and we getjj[�1� : : : ��i](0;k)jj � L0(jjwjjN(w); k);jj[�i+1� : : : ��n](0;k)jj � L0(jjwjjN(w); k):

Finally, we obtain jj[�0i]kjj � L0(jjwjjN(w); k):
Besides as the number of symbols of function in our language is 4, the number of terms of lengthk is4k, and the number of terms of length at mostl is

lXk=0 4k � 4l+1. Therefore the number of terms in our

language of length at mostL0(jjwjjN(w); k) is bounded by4L0(jjwjjN(w);k)+1.
We are now able to bound the number of clausesN(w0) in w0: the number of possibilities for the

choice of the head and tail predicates is bounded byN(w); at levelk the number of possibilities for the
head and tail terms is bounded by42(L0(jjwjjN(w);k)+1). Therefore we have:N(w0) � N(w) dYk=0 42(L0(jjwjjN(w);k)+1) = N(w) dYk=0 24(L0(jjwjjN(w);k)+1):
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By substitution of quantitiesN(w0) andjjw0jj in (5.5) we havejj�01� : : : ��0njj � L0(jjw0jjN(w0); 0) = 2jjw0jjN(w0)� 2jjwjjN(w) dYk=0 24(L0(jjwjjN(w);k)+1)� 2jjwjjN(w)24(d+1)L0 (jjwjjN(w);d) = L0(jjwjjN(w); d + 1) (5.6)

We used the following inequalityL0(a; k) + 2 � L0(a; d) for k � d� 1. We therefore getjj[�1� : : : ��n]d+1jj � L0(jjwjjN(w); d + 1);
and by induction hypothesis we have:jj[�1� : : : ��n](0;d)jj � L0(jjwjjN(w); d):
SinceL0(jjwjjN(w); d) � L0(jjwjjN(w); d + 1), we get:jj�1� : : : ��njj � L0(jjwjjN(w); d + 1):
This ends our proof for the induction step and inequality (5.1) is established. ut

Let us conclude this section with the bound of the quantityL0(jjwjjN(w); d) to a more readable
expression, so that it will explicitly appear as an exponential tower of heightd:L0(a; d) = 2a � 2 d(8a) � 2(d� 1)(8a) � 2. . .

28a
using inequalities� � 2� andx+ y � xy wheneverx � 2 andy � 2, we haveL0(a; d) � 22a+8aPdj=1 jd� 22a(1+2d(d+1))d� 24a(d+1)2d (5.7)

5.1. Consequence of Proposition 4.4

Proof: [Proof of Proposition 4.5] Let us takew = (�1; : : : ; �n) a strictly acyclic word. Let(�k1 ; : : : ; �kn)
be the family of substitutions induced by the product[w]k, for anyk = 0; : : : ; d. We consider the wordw0 := ( 1; : : : ;  n) such that[ i]k := [�i]k�ki for k = 0; : : : ; d andi = 1; : : : ; n. By the same argument
we already used in the proof of proposition 4.4, from lemma 5.6 we get that asw is strictly acyclic the
wordw0 is also strictly acyclic.

By proposition 4.4 we havejj[w0]kjj � L(jjwjjN(w); k). We proceed as before:N(w0) � N(w) dYk=024(L(jjwjjN(w);k)+1)
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(we appliedL(a; k) + 2 � L(a; d) whenk � d� 1),� N(w)24(d+1)�24jjwjjN(w)(d+1)2d� N(w)24jjwjjN(w)(d+1)2+4(d+1)d+1� 24jjwjjN(w)(d+1)2+4(d+1)+N(w)d+1� 29jjwjjN(w)(d+1)2d+1 (5.8)

the three last inequalities being obtained by using the samebasic inequalities as in the computation in
the proof of proposition 4.4.

Assume now the lengthn of w is such thatn > B(jjwjjN(w); d). As the length ofw0 is the same as
the length ofw, there exist1 � i < j � n such that i =  j. Let us now consider the sub-product� = i� : : : � j�1, thenhead(�) = head( i) andtail(�) = tail( j�1). But tail( j�1) = head( j) =head( i) thereforehead(�) = tail(�). This means that for every layerk, [�]k is a projection, which
contradicts the strict acyclicity ofw0. So finally the length ofw is bounded byB(jjwjjN(w); d). ut
6. Sub-associativity of weak Execution

Let �;�0;� be a partition of a set of indexes� [�0 [ �,2 such that indexes in� can be assembled in
pairs, noted dually as(B;B?), and the ones in�0 as well.

We consider the algebra�?(�;�0;�) built, as in section 3, using the language of termsT defined
over the set of unary symbols of functionfp; q; r; sg and the family of predicates of arity(d + 1):fPAgA2�[�0[�.

Let ��;�0;� = XB2�PB(x0; : : : ; xd) ` PB?(x0; : : : ; xd):
We denote��;�0;� by � and��0;�;� by � , so that� + � = ��;�0;�.

Proposition 6.1. (Sub-associativity of weak execution)

LetU be a wiring of�?(�;�0;�) and� and� defined as above, we have:Resulty�+� (U) � Resulty� (Resulty�(U)):
Remark 6.2. The equality is false in general, which contrasts with usualexecution and the expected
modularity of a valuable computation process. Still, as faras we are dealing with loops coming from
proofs, associativity is valid since we will prove in the sequel that weak execution and ordinary execution
coincide on such loops.

2in the sequel these indexes will vary over formulas of a sequent ` �;�;�0 of ELL, where formulas in� and�0 are cut-
formulas.
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We give an example of a pair(U; �) whose weak execution lacks compositional modularity; we
consider two combinations of clauses:U =P4i=1  i where

8>>>><>>>>:  1 = PA(sx0) ` PB(rx0) 2 = PB?(rx0) ` PC(sx0) 3 = PC?(ssx0) ` PB(rx0) 4 = PB?(rx0) ` PA(rx0)
and� = �1 + �2; where

( �1 = ��;�0;A�2 = ��0;�;A with � = B;B? and�0 = C;C?:
Then we have that in the computation of the weak execution, the word(�1; �2; �3; �4)

where�1 =  1, �2 = �1 �  2, �3 = �2 �  3,  4 = �1 �  4 is not included. Indeed, though its product�1 � �2 � �3 � �4 = PA(ssx0) ` PA(rx0)
is non-null and acyclic, there is a cyclic sub-product:�2 � �3 = PB(rsx0) ` PB(rx0):
So we have:Resulty�(U) = 0, butResulty�2(Resulty�1(U)) = fPA(ssx0) ` PA(rx0)g.
Proof: Let us first describe the result of the execution with this particular choice of hermitian wiring��;�0;�: Resulty��;�0;�(U) = (1� �2�;�0;�)Exy��;�0;�(U)(1� �2�;�0;�)= 8><>:� 2 Exy��;�0;�(U) ������� � is of the formPA(t0; : : : ; td) ` PB(u0; : : : ; ud)

whereA;B 2 � 9>=>; :
Let� be an element ofResulty�+� , then it can be written as a product 0� 1� : : : � n where the word( 0;  1; : : : ;  n) is a strictly acyclic word with:�  0 belongs toU ,�  i belongs to(� + �)U for 1 � i � n, which means that i belongs either to�U or to �U .� the termhead( 0) starts with a predicatePA whereA 2 �; the termtail( n) with a predicatePB whereB 2 �.
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Let i1; : : : im denote the indexes of the clauses i such that i belongs to�U (or equivalently: the
termhead( i) starts with a predicatePA whereA 2 �0). For j belonging tof1; : : : ;mg we introduceTj and 0ij the respective elements of� andU such that ij = Tj � 0ij .

Now, consider1 � j � (m � 1): by the fact that( 0;  1; : : : ;  n) is strictly acyclic, we know that
the word( 0ij ;  ij+1; : : : ;  ij+1�1) is strictly acyclic too and it has a non-null product, so the product 0ij � ij+1� : : : � ij+1�1 belongs toExy�(U).

Moreover 0ij � ij+1� : : : � ij+1�1 is of the shapePA(:) ` PB(:) whereA;B 2 �0, which insures by

what precedes that it belongs toResulty�(U).
Similarly:� the product 0� : : : � i1�1 belongs toExy�(U) and is of the shapePA(:) ` PB(:) whereA 2 � andB 2 �0, so it belongs toResulty�(U);� the product 0im � : : : � n belongs toExy�(U) and is of the shapePA(:) ` PB(:) whereA 2 �0 andB 2 �, so it belongs toResulty�(U).
To simplify the notations we seti0 = 0 andim+1 = n + 1. Let us then denote by�j the product ij � : : : � ij+1�1 for 0 � j �m.

We have shown that�0 belongs toResulty�(U) and�j belongs to�Resulty�(U) for 1 � j � m.
By associativity of resolution we have:� =  0� 1� : : : � n= ( 0� : : : � i1�1)�( i1 � : : : � i2�1)� : : : �( im � : : : � n)= �0��1� : : : ��m

In fact,(�0;�1; : : : ;�m) has a non-null product and since the word( 0; : : : ;  n) is strictly acyclic,
we get that(�0;�1; : : : ;�m) is also strictly acyclic. So its product� belongs toExy� (Resulty�(U)).

Moreover we know that� is of the shapePA(:) ` PB(:) whereA;B 2 �, so � belongs toResulty� (Resulty�(U)). ut
7. Interpretation of ELL Proof-Structures

We consider second order elementary linear logic witht-promotion and without additives. Let us recall
briefly the sequent calculus; the rules are given as in multiplicative exponential linear logic except for:

- dereliction which is not included in the system,

- the introduction of the !-modality (promotion): the new rule (t-promotion) acts as derelictions on
the context formulas followed by the usual promotion.� Identity Group

Axiom ` A?; A ax

Cut
` A;� ` A?;�0` �;�0 cut
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Par
` A;B;�` A}B;� }

Times
` A;� ` B;�0` A
B;�;�0 


Universal
` A;�` 8�A;� 8

Existential
` A[C=�];�` 9�A;� 9

provided� is not free in�� Structural Rules

Weakening
` �`?A;� we

Contraction
`?A; ?A;�`?A;� co

t-Promotion
` A;�`!A; ?� pro

We now give the corresponding definition ofELL proof-structures. As usual there is a translation of
proofs into proof-structures, yieldingELL proof-nets.

7.1. ELL Proof-Structures

They can be defined in the same way as ordinary (LL) proof-structures (introduced in [5, 9, 11]); the
only difference is in the typing constraints of the exponential boxes (reflecting the multi-functoriality oft-promotion). We recall briefly this definition.

We consider labelled graphs (with pending edges, calledconclusions) built over the nodes and typing
constraints of Figure 2. We assume that each8-node binds a distinct propositional variable, itseigen-
variableand that eigenvariables are not free in conclusions.

axA A? A A?
cut

A BA}B} A B
A
 B
?c ?w

?A ?A

?A ?A

! !AA A
??A 88�AA AfC=�g99�A

Figure 2. links in proof structures
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To each?w-node we associate another node (distinct from a cut) of the graph (ajump).
A boxof such a graph is a subgraph such that exactly one pending edge is premise of a!-node and

the others (possibly none) are premises of?-nodes (see Figure 3). The!A (resp.?Bi) edge is called the
principal port (resp. auxiliary port) of the box. Such a graph is an (ELL) proof-structure if any! or?-node (box node) is associated to a box and if given two distinct boxes, either they are disjoint or one is
included in the other.

A nodedepends on an eigenvariable� if � is free in its conclusion, or if it is a9-node and� is free
in the instantiating formulaC of its premise.

Thedepthof a node (resp. an edge, a box) is the number of boxes it is contained in. The depth of the
proof-structure is the maximal depth of its nodes.

A B1 : : : Bn?B1 : : :!A ?Bn
R

! ? ?

Figure 3. a box in a proof structure

Definition 7.1. A switching graphof a proof-structureR is defined in the following way:� for each}- and?c-node we choose one premise and erase the other one;� for each?w-node we add an edge between the node and its jump;� for each8-node we either keep its premise or erase it and add an edge to anode depending on its
eigenvariable;� each box of depth 0 is erased and its conclusions are connected altogether.

A proof-structure is called aproof-netif all its switching graphs are connected and acyclic and if every
proof-structure in a box at depth 0 is a proof-net (correctness criterion).

The following result is the statement of the sequentialization theorem ([9, 11]) in the case of ELL
proof-structures (the proof is unchanged):

Theorem 7.2. (J.Y. Girard)
A proof-structure issequentializable(i.e. comes from an ELL proof) iff it is a proof-net.

We consider in proof-structuresstraight paths(terminology of [4]) that is to say oriented paths cross-
ing multiplicative, exponential and quantifier nodes either from a premise to the conclusion or from the
conclusion to a premise, crossing axiom nodes (resp. cut nodes) from a conclusion (resp. premise) to
the other conclusion (resp. premise) and not changing direction in the conclusions of the proof-structure.
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By pathwe will now meanstraight path. A path isascending(resp.descending) if it only crosses nodes
from conclusion to premise (resp. premise to conclusion).

The lengthof a path is the number of edges it goes through. If
1 is a path ending upwards (resp.
downwards) with an edge conclusion (resp. premise) of a nodeN and
2 starts upwards (resp. down-
wards) with an edge premise (resp. conclusion) ofN , we denote by
1; 
2 their concatenation.

An elementary pathof R is a path going upwards from a conclusion or a cut node to an axiom and
then downwards to a conclusion or a cut node; we denote their set byPe(R). A constant-depth pathofR is a path ofR which doesn’t cross any box node, axiom node or cut node and starting upwards with
a premise of box node or downwards with a conclusion of box node. The depth of such a path is the
number of boxes ofR it is contained in.

A proof-structureR gives a multiset� of conclusion formulas and a multiset� of cut formulas
(associated dually in pairs(B;B?) by cut nodes). The language we consider isT d �m whered is the
depth of the proof-structureR andm is the cardinality of�;�. Predicates are indexed by formulas in�;�. The wiring partUR of the loop interpretingR will be obtained by interpreting each elementary
path ofR by a clause.

7.2. Interpretation of a proof-structure

For the sake of simplicity we will consider proof-structures with axioms labelled by atomic formulas.
Representation of a constant-depth path by a term:as they don’t cross axiom or cut nodes,

constant-depth paths are ascending or descending. We only consider constant-depth paths which don’t
visit any weakening node; this is enough to give the interpretation of proof-structures.

We associate to such a path
 of depthi a termt
 [xi]; we define this interpretation below in the
case of an ascending path by induction on the length of the path. In the case of a descending path the
interpretationt
 is that of the reverted ascending path (orientation will be taken into account when we
introduce the clauses...).� if 
 is reduced to an edge premise of a box node or conclusion of theproof-structure, thent
 = xi,� otherwise we can write
 = 
1; 
2 where
2 is reduced to an edge premise of a multiplicative,

contraction or quantifier node:

– if 
2 is the left (resp. right) premise of a multiplicative node thent
 = t
1hpxi=xii (resp.t
 = t
1hqxi=xii),
– if 
2 is the left (resp. right) premise of a contraction node thent
 = t
1hrxi=xii (resp.t
 = t
1hsxi=xii),
– if 
2 is the premise of a quantifier node thent
 = t
1 :
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Representation of an elementary path by a clause: if 
 is an elementary path of the proof-structureR of depthd, it can be decomposed as:
 = 
i; 
i+1; : : : ; 
j ; 
0j ; 
0j�1; : : : ; 
0k
where0 � i; j � d and the path
l (resp. 
0l) for i � l � j (resp. k � l � j) is an ascending (resp.
descending) constant-depth path of depthl.

LetA (resp.A0) be the beginning (resp. ending) conclusion or cut formula.Their respective depths
(i.e. the depths of their edges) arei andk. Theweightof 
 is the clauseW (
) given by:PA(x0; ::; xi�1; t
i ; ::; t
j ; xj+1; ::; xd) ` PA0(x0; ::; xk�1; t
0k ; ::; t
0j ; xj+1; ::; xd)
(with the natural adjustment in the cases wherei = 0; j = d or k = 0. For instance ifi = 0 andj = d
the head of the clause becomes:PA(t
0 ; : : : ; t
d)).

See figure 4 for an example: we give the intermediary steps of computation of the weight of the path
, for which we obtainW (
) = PA(prx0; px1) ` PA(qx0; px1).

x0px0 A =!(�( �)(!(�( �)
?? !?c

ax }}
� �?�? �

?(� 
 �?) !(�?}�)
�? �ax ax
 




x1t
1 = px1

t
0 = prx0 x0
x1t
00 = qx0
t
01 = px1

Figure 4. Computation of the weight of the path

Remark 7.3. Notice that if
 and
0 are two elementary paths starting in the same terminal formula
and forking in a node at depthk we have: ifhead(W (
)) = PA(t0; : : : ; td) and head(W (
0)) =PA(t00; : : : ; t0d) then fori � k � 1 we haveti = t0i andtk ? t0k.

The ELL proof-structureR is interpreted by the loop(UR; �R) with:UR = X
2Pe(R)W (
)�R = XB2�PB(x0; : : : ; xd) ` PB?(x0; : : : ; xd):
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8. Weak execution of proof-nets

In this section we prove that for every proof netR the associated loop(U; �) satisfies:Result�(U) � Resulty�(U):
The equalityResult�(U) = Resulty�(U) follows then by remark 4.3.

First we will prove a proposition (8.5) and then we will derive this result as a corollary (8.7). Let us
give before a few definitions.

A balanced pathof R is a path starting upwards in a conclusion or downwards in a cut premise,
and ending downwards in a conclusion or in a cut premise. Anelementary balanced path
 of R is a
balanced path crossing at most one cut node, so that:� if 
 crosses no cut node it is an elementary path and its weight is given in the previous section;� if it crosses a cut node from the premiseB to the premiseB? then it can be decomposed in the path

just crossing the cut with weight�0 = PB(x0; : : : ; xd) ` PB?(x0; : : : ; xd) and in an elementary
path
0 with weightW (
0), so its weight isW (
) = �0�W (
0).

Any balanced path
 can be written as a concatenation of elementary balanced paths:
 = 
0; : : : ; 
n
and itsweightis given by the productW (
) =W (
0)� : : : �W (
n):
Definition 8.1. We say a clause� = P (t0; : : : ; td) ` P 0(u0; : : : ; ud) is cyclic at depthk � d if:

(1) P = P 0,
(2) for all i < k, ti = ui,
(3) tk 6= uk andtk anduk are comparable.

We say the clause is cyclic at depth+1 if it is a projection.

We need three intermediary lemmas.

Lemma 8.2. LetR be a proof-net and
 be a balanced path ofR such thatW (
) is non-null and cyclic
at depthk. Then
 crosses at least one cut inR at depth lower thank (i.e. at depthl � k).

Proof: First, the fact thatW (
) is cyclic implies thathead(W (
)) andtail(W (
)) have the same
predicate symbol and therefore that
 starts and ends in the same terminal formulaA (either a cut formula
or a conclusion). In order to get a contradiction assume
 doesn’t cross any cut at depth lower thank.
Let us write the decomposition of
 into elementary balanced paths:
 = 
1; 
2; : : : ; 
n. We denote the
weights by�i =W (
i) and� =W (
).� first case:A is a conclusion. We know that each
i with 2 � i � n starts in a cut formula at depth

strictly greater thank and that each
i with 1 � i � (n� 1) ends in a cut formula at depth strictly
greater thank. Consequently for2 � i � (n� 1), the weight�i is of the shape:�i = PB?i (x0; : : : ; xk; tik+1; : : : ; tid) ` PCi(x0; : : : ; xk; uik+1; : : : ; uid)
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Therefore we get: head([�](0;k)) = head([�1](0;k));tail([�](0;k)) = tail([�n](0;k)):
But asA is a conclusion we know by remark 7.3 (applied to
1 and the reverted path
�1n ) that ifhead([�1](0;k)) = PA(t0; : : : ; tk) andtail([�n](0;k)) = PA(u0; : : : ; uk) then:

– either for all0 � i � k , ti = ui,
– or there existsj � k such that for0 � i � (j � 1), ti = ui andtj ? uj .

Both cases contradict the fact thatW (
) is cyclic at depthk, so that we are done.� second case:A is a cut formula. Let us call� the corresponding cut node. By assumption we
know that� is at depth strictly greater thank, so in the same way as before we get:[�](0;k) =PA(x0; : : : ; xk) ` PA(x0; : : : ; xk). This contradicts the hypothesis.

This last case ends the proof. ut
We will need in the sequel the notion ofspecial cut. A special cut w.r.t. a path
 is an exponential cut� such that
 crosses� but doesn’t cross any cut below the auxiliary ports of the boxassociated to the

!-premise of� (special cuts have been introduced by Regnier and Danos in [16], [2]). We use a variant
of the “special cut lemma” stated in [16] whose proof followsthe same line.

Lemma 8.3. Let 
 be a path of a proof-netR that crosses at least one cut at depth lower thank. If all the
cuts crossed by
 at depth lower thank are exponential, thenR has a special cut w.r.t.
 at depth lower
thank.

Proof: We proceed by induction over the number of nodes of the proof-net. We use the sequentializ-
ability property of proof-nets : ifR is a proof-net it can be obtained by a last rule (of course there might
be several possible last rules).� If R can be obtained by a}-rule on a proof-netR0 then
 gives a path ofR0 satisfying the hypoth-

esis. By induction hypothesis onR0 we know thatR0 has a special cut w.r.t.
 at depth lower thank, which yields inR a special cut w.r.t.
.� If R can be obtained by a contraction, weakening or quantifier rule from a certainR0 then the same
argument applies.� If R is obtained fromR1 andR2 by a
-rule then
 is contained in one of theRi’s and we can use
the i.h. onRi.� If R is obtained fromR1 andR2 by an axiom or multiplicative cut�, then� is at depth 0 inR and
by assumption on
 we know that the path is contained in one of theRi’s.� If R is obtained fromR0 by at-promotion, then
 gives a path
0 in R0 andk � 1. By assumption
on 
 we know that
0 crosses inR0 only exponential cuts at depth lower thank � 1 (and at least
one) and by i.h. we conclude thatR0 has a special exponential cut� w.r.t. 
0 at depth lower thank � 1. Then� is a special cut ofR w.r.t. 
 and is at depth lower thank in R.
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0. Let us callB 1 , : : : , B n the boxes ofR at depth 0. Consider the relationR between theB i ’s
defined by :(B iRB j ) if there exists a cut between the principal port ofB j and an edge hereditary
conclusion of an auxiliary port ofB i . The correctness ofR implies that the transitive closureR?
of R is antisymmetric; therefore there is a boxB i0 such that there exists no cut below the auxiliary
ports ofB i0 . Let us denote by� the cut on the principal port ofB i0 . The proof-netR is obtained
by the cut� between a proof-netR0 andB i0 . Now, if 
 doesn’t cross� then it is contained inR0 orB i0 and as usual we can conclude by induction hypothesis. Otherwise if 
 crosses�, then by the
property ofB i0 the cut� is special w.r.t.
 and we are done. ut

Lemma 8.4. Let R be a proof-net and
 be a balanced path ofR such thatW (
) is cyclic at depthk.
Assume� is a cut ofR at depth lower thank and crossed by
 which is either a multiplicative, axiom or
quantifier cut or a special cut w.r.t.
. LetR0 be the proof-net obtained fromR by reducing�. ThenR0
has a balanced path
0 such thatW (
0) is non-null and cyclic at depthk.

Proof: Let d(�) denote the depth of�, thend(�) � k by hypothesis. AsW (
) is cyclic the path

starts and ends in the same terminal formulaX. We consider each case of cut�:� � is an axiom cut, then let
0 be the path obtained by removing from
 the edges conclusions of

the erased axiom; hence, we haveW (
0) =W (
) andW (
0) is cyclic at depthk;� � is a quantifier cut then
0 is obtained by removing from
 all the edges premises of the cut�.
ThenW (
0) is equal toW (
) up to a possible change of the predicate, so that the result (W (
)
cyclic impliesW (
0) cyclic) follows immediately.� � is a multiplicative cut, letB1 
 B2 andB?1 }B?2 be its premises. Let us decompose
 into
maximal balanced subpaths 
 = 
1; 
2; � � � ; 
n
such that:

– 
1 starts inX (upwards if it is a conclusion, downwards if it is a cut premise), ends in a
premise of� downwards and crosses� at most once in the beginning ifX is premise of�,

– when1 < i < n, 
i starts and ends in a premise of� downwards, and crosses� once,

– 
n starts in� downwards and ends inX crossing� once.

We denote by�i the clauseW (
i). Now, let 
0i (1 � i � n) be the path ofR0 defined in the
following way (we call itresidual pathof 
i in R0):

– for 2 � i � n, 
0i = �i; 
00i where
00i is obtained from
i by removing the edges labelled byB1 
B2 orB?1 }B?2 and�i is the path of length 2 crossing the cut(Bj ; B?j ) of R0 (fromBj
toB?j if 
00i starts inB?j , fromB?j toBj if 
00i starts inBj);

– if 
1 starts in a premise of� (i.e. X is premise of�) then
01 is obtained from
1 in the
same way; otherwise
01 is simply obtained by removing the edges labelled byB1 
 B2 orB?1 }B?2 .
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We examine the composition of
i and
i+1 for 1 � i � (n � 1). AsW (
) 6= 0, we know thattail(�i) unifies withhead(�i+1); this implies in particular that they share the same predicatePB1
B2 or PB?1 }B?2 , let us assume for instance it isPB1
B2 . We have:tail([�i]d(�)) = PB1
B2(cud(�))head([�i+1]d(�)) = PB1
B2(c0td(�));
wherec = p (resp.c = q) if 
i passes throughB1 (resp.B2) before ending inB1 
 B2; c0 = p
(resp. c0 = q) if 
i+1 passes throughB?1 (resp. B?2 ) afterB?1 }B?2 . Now, astail(�i) andhead(�i+1) are unifiable we getc = c0 and one can check that
01; 
02; : : : ; 
0n is indeed a path inR0 which we denote by
0.
Let us denote by�0i the clauseW (
0i), then we have :tail([�0i]d(�)) = PBj (ud(�))head([�0i+1]d(�)) = PBj (td(�))
wherej = 1 if c = c0 = p, j = 2 if c = c0 = q. The term oftail([�0i]h) (resp.head([�0i+1]h))
whereh 6= d(�) is equal to that oftail([�i]h) (resp.head([�i+1]h)). As a result we have :

– if X is notB1 
B2 orB?1 }B?2 thenhead(�01) = head(�1)tail(�0n) = tail(�n);
we get : �01��02 � � � �0n = �1��2 � � ��n;
soW (
0) =W (
) and thus
0 has a weight non-null and cyclic at depthk.

– if X is one of the premises of�, sayX = B1 
B2 for instance : asW (
) is cyclic at depthk we know thattail([�n](0;k)) is unifiable withhead([�1](0;k)), so if :tail([�n]d(�)) = PB1
B2(cud(�))head([�1]d(�)) = PB1
B2(c0td(�));
by the same argument as before we getc = c0 and :tail([�0n]d(�)) = PBj (ud(�))head([�01]d(�)) = PBj (td(�));
wherej = 1 or j = 2. Thus[W (
)]d(�) is of the shapePB1
B2(cvd(�)) ` PB1
B2(cwd(�))
and[W (
0)]d(�) = PBj (vd(�)) ` PBj (wd(�)). Fork < d(�), the atomstail([W (
0)]k) andtail([W (
)]k) (resp.head([W (
0)]k) andhead([W (
)]k)) have the same term. ThereforeW (
0) is non-null and cyclic at same depthk asW (
).
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, let ?A? and!A be its premises. Notice that� cannot be a
weakening cut since
 crosses� and no balanced path crosses any edge conclusion of a weakening
node. So� is either a contraction cut or a commutative cut. As before wedecompose
 into
maximal balanced subpaths 
 = 
1; 
2; � � � ; 
n
such that:

– 
1 starts inX, ends in a premise of� and crosses� at most once in the beginning ifX is
premise of�,

– when1 < i < n, 
i starts and ends in a premise of� downwards, and crosses� once,

– 
n starts in� downwards and ends inX crossing� once.

We have two cases: the case of an exponential cut of contraction type and the case of one of
commutative type.

– we consider the case of a special cut� of contraction type. As� is a special cut w.r.t.
,
if 
i starts in?A? then
i ends in!A and is contained in the box of principal port!A but
for its initial crossing of� (see figure 5). Therefore if
i starts in?A? we have:[�i]d(�) =P?A?(xd(�)) ` P!A(xd(�)). Now if 
j starts in!A then
j ends in?A?. This case can be
handled as the multiplicative cut case:� if X is not a premise of� then
 has a residual path
0 in R0 of same weight;� if X is a premise of�, say for instanceX =!A. Then forh < d(�), [W (
)]h and[W (
0)]h have the same terms and the layer[W (
)]d(�) is of the shapeP!A(cvd(�)) `P!A(c0wd(�)) with c; c0 belonging tofr; sg. AsW (
) is cyclic at depthk we havec = c0.

We get[W (
0)]d(�) = P!A(vd(�)) ` P!A(wd(�)) and so finallyW (
0) is cyclic at depthk.

?A??A? !A ?B?

i
j

!
?A? A

cut

?c ?

Figure 5. case of a contraction cut
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– The last case is the exponential cut between an auxiliary port and a principal port: in this
case the cut node� is replaced inR0 by a cut node�0 at depthd(�) + 1, therefore weights
are modified by reduction exclusively in the predicate part,so that the result (W (
) cyclic
impliesW (
0) cyclic) follows immediately. ut

Proposition 8.5. Given a proof netR and
 a balanced path of non-null weight, the clauseW (
) asso-
ciated to
 is acyclic.

Remark 8.6. In [16], Regnier shows that in aGOI model for pure nets the weightW (
) of a path

satisfies:W (
)2 = 0 (it follows from his theorems 3.3.1, part 3 and 2.2.1, part 4); it can be easily
extended to MELL proof-nets. The property we give here (for ELL proof-nets) is stronger since all
acyclic clauses are null-square but the converse is not true(see the example following definition 4.1).

Proof: In order to get contradiction we assume the proof-netR has a balanced path' of non-null weight
cyclic at depthk. By lemma 8.2 this implies that' crosses at least one cut inR at depth lower thank.
The idea is then to reduce progressively all the cuts at depthlower thank crossed by' in such a way that
at each step we keep in the corresponding proof-net a path satisfying the hypothesis. Now in order to do
so we need to consider a particular strategy of reduction:� if there is a multiplicative, axiom or quantifier cut at depthlower thank crossed by the path, then

we reduce it,� otherwise, if all cuts crossed by the path at depth lower thank are exponential then we choose a
special cut w.r.t. the path and reduce it.

We build a sequence(Ri; �i) of pairs of a proof-net and a path in it satisfying the property: W (�i) is
non-null and cyclic at depthk. PutR0 = R and�0 = '. Now assume the sequence has been defined
up to ranki � 0. By lemma 8.2,�i crosses at least one cut inRi at depth lower thank. If it crosses a
multiplicative, axiom or quantifier cut� at depth lower thank take forRi+1 the proof-net obtained fromR by reducing�; then by lemma 8.4 we know thatRi+1 has a path satisfying the hypothesis which we
take as�i+1. Otherwise lemma 8.3 ensures that�i has a special cut� at depth lower thank and this is
the cut we choose.

This way we build an infinite sequence(Ri; �i) of pairs of a proof-net and a path in it with these
properties. This sequence contradicts the strong normalization property of ELL. ut
From this proposition, we derive the two following corollaries:

Corollary 8.7. Let (U; �) be the loop associated to a proof-netR; we have:Resulty�(U) = Result�(U):
Proof: As we know thatResulty�(U) � Result�(U) we only need to prove that the reverse inclusion
holds. Let us recall (see [4]) that the result of the execution of a loop coming from a proof net is given
by Result�(U) = X
2Pc(R)W (
);
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wherePc(R) is the set of balanced paths from conclusion to conclusion. Consider a path
 2 Pc(R)
such thatW (
) 6= 0 and its decomposition into elementary balanced paths
 = 
0; 
1; � � � ; 
n. We show
that the associated word(W (
0);W (
1); � � � ;W (
n)) is strictly acyclic: for any sub-product we haveW (
i)� : : : �W (
i+h) =W (
i; � � � ; 
i+h) 6= 0
and
i; � � � ; 
i+h is a balanced path. By proposition 8.5 the clauseW (
i; � � � ; 
i+h) is acyclic. Thus the
clauseW (
) =W (
0)�W (
1)� : : : �W (
n) belongs toResulty�(U). ut
Corollary 8.8. Let (U; � + �) be the loop associated to a proof-netR, then:Resulty�(Resulty� (U)) = Resulty�+� (U) = Result�+� (U):
Proof: As by sub-associativity we know thatResulty�+� (U) � Resulty�(Resulty� (U));
we only need to prove the reverse inclusion.

Let  =  0� � � � � m be an element ofResulty�(Resulty� (U)) with for all 1 � i � m,  i 2�Resulty� (U) and 0 2 Resulty� (U). So there exist�0 2 U and�i’s in �U or in �U such that 0� : : : � m = �0� : : : ��n:
Now the product�0� : : : ��n belongs toResult�+� (U) since:�0 2 U , the�i’s belong to(� + �)U ,

andhead(�0) andtail(�n) are of the formPA(:) andPB(:) with A andB conclusions ofR. By
corollary 8.7, we conclude that belongs toResulty�+� (U). ut
Conclusion and perspectives

Broadly speaking our aim is to define a setting as large – and assimple – as possible for elementar-
ily bounded computations. The operation we introduced,WEAK EXECUTION, does indeed satisfy the
complexity requirement for pairs of combinations(U; �) of our algebra; furthermore the establishing of
this elementary bound doesn’t need any assumption on(U; �) (typically U and� are not required to be
wirings). This yields a large possibility as to the choice ofthe pairs we wish to consider as proper “pro-
grams” of our model. However,WEAK EXECUTION (partially) fails to fulfil the modularity requirement:
this is the point which should guide us in the search for conditions on pairs to require to ensure good
properties of the computation. Hence the work can be pursuedin two directions: the first possibility is
to search for a sufficient condition on pairs which guarantees this modularity/associativity property for a
larger class of operators than those coming from proof-nets. One could then look for an untyped calculus
whose computations could be performed in this algebra. A second option would be to come back to usual
EXECUTION and use the techniques developed in this work to try to establish a result of the following
kind: there exists a functionB(N; d) expressed as an exponential tower of height (depending on)d such
that for any pair(U; �) (satisfying certain conditions: : : ) if �U is nilpotent then its degree of nilpotency
is bounded byB(N; d) (whered is the depth of�U andN is given by its size).

Finally let us stress the fact that one goal of this work is to provide a basis for the study of the system
LLL (Light Linear Logic) which, at the price of a more delicate syntax, offers a polynomial complexity
bound. We believe that the study of ELL and of ElementaryGOI is a worthwhile step in this more
practically interesting direction.
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