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Abstract: We revise and extend the foundation of computable topology in the frame-
work of Type-2 theory of effectivity, TTE, where continuity and computability on finite
and infinite sequences of symbols are defined canonically and transferred to abstract
sets by means of notations and representations. We start from a computable topo-
logical space, which is a T0-space with a notation of a base such that intersection is
computable, and define a number of multi-representations of the points and of the open,
the closed and the compact sets and study their properties and relations. We study
computability of boolean operations. By merely requiring “provability” of suitable re-
lations (element, non-empty intersection, subset) we characterize in turn computability
on the points, the open sets (!), computability on the open sets, computability on the
closed sets, the compact sets(!), and computability on the compact sets. We study
modifications of the definition of a computable topological space that do not change
the derived computability concepts. We study subspaces and products and compare a
number of representations of the space of partial continuous functions. Since we are
operating mainly with the base elements, which can be considered as regions for points
(“pointless topology”), we study to which extent these regions can be filled with points
(completions). We conclude with some simple applications including Dini’s Theorem
as an example.
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1 Introduction

In the various publications considering computable topology as a foundation of
computable analysis the basic definitions as well as the terminology are partly
inconsistent so that the comparison of results is difficult. Furthermore, some
definitions are unwieldy or inappropriate [KW85, Wei87, Sch98, Wei00, Sch03,
GW05, GSW07, BHW08]. Repeatedly facts from computable topology have been
used in applications although they have never been proved or have not been
proved in sufficient generality. In this article we try to develop a core of com-
putable topology in a more uniform and general manner. It can be considered
as a careful revision of the corresponding parts in [Wei00].

We call the basic objects in this article computable topological spaces. Since
anyway various spaces have been called computable topological space in the
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literature (see the comments at the end of Section 3) and since the definition
in [Wei00] is not quite reasonable, we have decided to deviate from this source.
The results from this article show that the definition of a computable topological
space given here is appropriate for a foundation of computable topology.

Since in the literature often “local” abbreviations are used for the impor-
tant representations of the open, the closed and the compact sets and since
some names from [Wei00] should be changed, in this article we use short “lo-
cal” abbreviations leaving unchanged the symbols θ, ψ and κ mostly used for
representations of open, closed and compact sets, respectively.

Our work is based on the representation approach, TTE (Type-2 Theory of
Effectivity) [KW85, Wei00, BHW08, Wei08], which has significant advantages
over other approaches for studying computability in Analysis [Wei00, Chapter 9]
[BC06]. Some significant results are Theorem 13, the characterizations of the
open and the compact sets and of computability on the points, the open sets
and the compact sets by merely requiring “provability” of suitable relations,
Theorem 22 on equivalent computable topological spaces, Lemma 23, expressing
that starting the theory with a subbase is equivalent to starting with a base,
Theorems 35–37 on completions of computable topological spaces under stronger
and stronger restrictions, and Theorem 41, a general computable version of Dini’s
theorem, as an application.

In Section 2 we summarize some technical details, in particular definitions
and facts from TTE [Wei00, Wei08].

In Section 3 we introduce computable topological spaces and a number of
multi-representations of points and of the open, the closed and the compact
sets . As an example we introduce computable predicate spaces and the derived
computable topological spaces.

In Section 4 we study computability of boolean operations w.r.t. the intro-
duced representations of subsets.

The definitions of the representations in Section 3 look reasonable but are
ad hoc. In Section 5 we characterize their equivalence classes and therefore the
computability concepts induced by them abstractly by a simple common prin-
ciple. We show that requiring “provability” of x ∈ W , A ∩W �= ∅ and K⊆W
(for points x, open sets W , closed sets A and compact sets K) suffices to define
the open and the compact sets (!) and computability on the points and on the
open, the closed and the compact sets. By Theorem 13 the objects introduced in
Definition 5, including the open and the compact sets, are particulary natural.

In Section 6 we study and compare the introduced representations in more
detail. We also introduce three further representations that are equivalent to the
inner representation of the open sets.

In Section 7 we show that the definition of a computable topological space
can be modified in various ways without changing the computability concepts.
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In particular we show that introducing computability via a subbase and via a
base are equivalent.

Subspaces and product spaces are considered in Section 8 and the space of
continuous functions in Section 9. The use of multi-representations allows to
represent the class of all (!) partial continuous functions. We introduce a number
of such multi-representations and compare them.

For all the representations considered so far, names are combined from names
of base sets U ∈ β (or names of predicates U ∈ σ for predicate spaces). Not much
is known about the points in such sets U . Therefore they can be considered
as “frames” or “regions” of points rather than sets (“pointless topology”). In
Section 10 we fill these regions as much as possible (“completion”) under the
following three conditions: the domain of the subbase notation of predicate spaces
is fixed, for a computable topological space the intersection of base elements
is computed by a fixed program, and for a computable topological space the
inclusion relation on (the names of) the open sets is fixed.

In Section 11 we show that a number of basic operations on points, sets and
functions are computable w.r.t. the introduced representations. A concise proof
a general computable version of Dini’s theorem confirms that the concepts in
this article are chosen appropriately.

2 Preliminaries

In this section we summarize some technical details, in particular definitions and
facts from TTE. We will use essentially the terminology from [Wei00, BHW08,
Wei08]. For more details the reader should consult these sources.

We will use the word “iff” as an abbreviation for the logical “if and only if”.
A multi-function from A to B is a triple f = (A,B,Rf ) such that Rf⊆A×B (the
graph of f). We will denote it by f : A ⇒ B. Its inverse is the multi-function
f−1 := (B,A,R−1

f ). For X⊆A let f [X] := {b ∈ B | (∃a ∈ X)(a, b) ∈ Rf},
dom(f) := f−1[B], and range(f) := f [A]. For a ∈ A let f(a) := f [{a}]. If for
every a ∈ A, f(a) contains at most one element, f can be treated as a usual
partial function denoted by f : ⊆A→ B. In contrast to relational composition,
for multi-functions f : A ⇒ B and g : B ⇒ C define the composition g ◦ f :
A ⇒ C by a ∈ dom(g ◦ f) : ⇐⇒ f(a)⊆dom(g) and g ◦ f(a) := g[f(a)] [Wei08,
Section 3].

Let Σ be a finite alphabet such that 0, 1 ∈ Σ. By Σ∗ we denote the set of
finite words over Σ and by Σω the set of infinite sequences p : N → Σ over Σ,
p = (p(0)p(1) . . .). For a word w ∈ Σ∗ let |w| be its length. Let Σn be the set of
words of length n and let ε ∈ Σ0 be the empty word. For p ∈ Σω let p<i ∈ Σ∗

be the prefix of p of length i ∈ N. We write x � y if x is a prefix of y. We
use the “wrapping function” ι : Σ∗ → Σ∗, ι(a1a2 . . . ak) := 110a10a20 . . . ak011
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for coding words such that ι(u) and ι(v) cannot overlap properly. Let 〈i, j〉 :=
(i + j)(i + j + 1)/2 + j be the bijective Cantor pairing function on N. We con-
sider standard functions for finite or countable tupling on Σ∗ and Σω denoted
by 〈 · 〉 [Wei00, Definition 2.1.7], in particular, 〈u1, . . . , un〉 = ι(u1) . . . ι(un),
〈u, p〉 = ι(u)p, 〈p, q〉 = (p(0)q(0)p(1)q(1) . . .) and 〈p0, p1, . . .〉〈i, j〉 = pi(j) for
u, u1, u2, . . . ∈ Σ∗ and p, q, p0, p1, . . . ∈ Σω. For u ∈ Σ∗ and w ∈ Σ∗ ∪ Σω let
u � w iff ι(u) is a subword of w. For w ∈ Σ∗ let ŵ be the longest subword
v ∈ 11Σ∗11 of w (and the empty word if no such subword exists). Then for
u,w1, w2 ∈ Σ∗, (u� w1 ∨ u� w2) ⇐⇒ u� ŵ1ŵ2.

Let Y0, . . . Yn ∈ {Σ∗, Σω} and Y = Y1 × . . . × Yn. A function f : ⊆Y → Y0

is computable (called Turing computable in [Wei08]) if for some Type-2 ma-
chine M , f is the function fM computed by M . For computability theory see,
for example, [Rog67, Wei87, Coo04]. Informally, a Type-2 machine is a Turing
machine, which reads from input files (tapes) with finite or infinite inscription,
operates on work tapes and writes one-way to an output file (tape). For Y0 = Σ∗,
fM (y) = w, if M on input y halts with w on the output tape, and for Y0 = Σω,
fM = q, if M on input y computes forever and writes q ∈ Σω on the output
tape. The computable functions on Σ∗ and Σω are “essentially” closed under
composition (even under programming [Wei08]): the composition of computable
functions has a computable extension. For W,Z⊆Y , the set W is called “recur-
sively enumerable in Z” if for some Type-2 machine M , M halts on input y iff
y ∈ W (for all y ∈ Z) (equivalently, if W = Z ∩ dom(f) for some computable
function f : ⊆Y → Σ∗). If Z = Y , we omit “in Z”. For p ∈ Σω and a Type-2
machine M with (n + 1) input tapes let fMp(y) := fM (p, y) (fMp is called the
function computed by M with “oracle” p).

On Σ∗ we consider the discrete topology and on Σω the topology generated
by the base {wΣω | w ∈ Σ∗} of open sets. Every computable function is con-
tinuous and every r.e. set is open. Furthermore, a function f : ⊆ Y → Y0 is
continuous iff for some Type-2 machine M and some oracle p ∈ Σω, fMp ex-
tends f . Finally, W⊆Y is open iff for some Type-2 machine M with output set
Σ∗ and some oracle p, W = dom(fMp).

In TTE computability on finite or infinite sequences of symbols is transferred
to other sets by representations, where elements of Σ∗ or Σω are used as “con-
crete names” of abstract objects. We will need the more general concept of real-
ization via multi-representations. Here we give only the definitions, for a detailed
discussion see [Wei08, Section 6], see also [Sch03]. A multi-representation of a set
M is a surjective multi-function γ : Y ⇒ M where Y ∈ {Σ∗, Σω}. Examples are
the canonical (single-valued) notations νN : ⊆Σ∗ → N and νQ : ⊆Σ∗ → Q of the
natural numbers and the rational numbers, respectively, and the (single-valued)
representation ρ : ⊆Σω → R of the real numbers [Wei00]. Mathematical exam-
ples of proper multi-representations will be given below. An instructive example

1384 Weihrauch K., Grubba T.: Elementary Computable Topology



is the multi-representation ν of all people by their first names, for example,
ν(PETER) is the set of all people with first name PETER.

For multi-representations γi : Yi ⇒ Mi (i = 0, . . . , n), let Y = Y1 × . . .× Yn,
M = M1 × . . . ×Mn and γ : Y ⇒ M , γ(y1, . . . , yn) = γ1(y1) × . . . × γn(yn).
A partial function h : ⊆ Y → Y0 realizes the multi-function f : M ⇒ M0 if
f(x) ∩ γ0 ◦ h(y) �= ∅ whenever x ∈ γ(y) and f(x) �= ∅. This means that h(y) is
a name of some z ∈ f(x) if y is a name of x ∈ dom(f) . If f : ⊆M → M0 is
single-valued, then h(y) is a name of f(x) if y is a name of x ∈ dom(f). If only
the representations are single-valued, δ0 ◦ h(y) ∈ f(x) if δ(y) = x.

The multi-function f is called (γ1, . . . , γn, γ0)-continuous (-computable) if
it has a continuous (computable) realization. If the multi-representations are
fixed, we occasionally say that f is relatively continuous (relatively computable).
The relatively continuous (computable) functions are closed under composition,
even more, they are closed under GOTO-programming with indirect addressing
[Wei08]. We will apply this result without further mentioning. Now we extend
the definition of γ-r.e. sets [Wei00] to multi-representations:

Definition 1. With γi and γ from above, a point x ∈ M1 is γ1-computable iff
x ∈ γ1(p) for some computable p ∈ dom(γ1), and a set S⊆M is (γ1, . . . , γn)-r.e.
(-open) if there is an r.e. (open) set W⊆Y such that (x ∈ S ⇐⇒ y ∈ W ) for
all x, y such that x ∈ γ(y).

Therefore, S⊆M is (γ1, . . . , γn)-r.e. iff there is a Type-2 machine (with oracle for
the “open” case) that halts on input y ∈ dom(γ) iff y is a name of some x ∈ S.
Notice that γγ−1[S] = S if S is γ-open.

Finally, γ1 ≤ γ0 (γ1 is reducible to γ0) if M1⊆M0 and the identity id :
M1 → M0 is (γ1, γ0)-computable This means that some computable function h

translates γ1-names to γ0-names, that is, γ1(p)⊆γ0◦h(p). Continuous reducibility
γ1 ≤t γ0 is defined accordingly by means of continuous functions. Computable
and continuous equivalence are defined canonically: γ1 ≡ γ0 ⇐⇒ γ1 ≤ γ0 ∧
γ0 ≤ γ1 and γ1 ≡t γ0 ⇐⇒ γ1 ≤t γ0 ∧ γ0 ≤t γ1 . Two multi-representations
induce the same computability (continuity) iff they are computably equivalent
(continuously equivalent). For X⊆M1, if X is γ0-r.e. and γ1 ≤ γ0, then X is
γ1-r.e., and if X is γ0-open and γ1 ≤t γ0, then X is γ1-open.

From γ1 and γ2 a multi-representation [γ1, γ2] of the product M1 × M2

is defined by [γ1, γ2]〈y1, y2〉 := γ1(y1) × γ2(y2). Since (x1, x2) �→ (x1, x2) is
(γ1, γ2, [γ1, γ2])-computable and (x1, x2) �→ xi is ([γ1, γ2], γi)-computable, a mul-
ti-function is (γ1, γ2, γ0)-computable iff it is ([γ1, γ2], γ0)-computable. A set is
(γ1, γ2)-open iff it is [γ1, γ2]-open etc. By the conjunction of two multi-represen-
tations γ and δ, defined by (γ ∧ δ)〈p, q〉 := γ(p) ∩ δ(q), information from two
names is combined in a single name.

In [Wei00] representations ηab : Σω → F ab are introduced for a, b ∈ {∗, ω}.
F ∗∗ is the set of all partial functions f : ⊆Σ∗ → Σ∗, F ∗ω is the set of all partial
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functions f : ⊆Σ∗ → Σω, Fω∗ is the set of all partial functions f : ⊆Σω → Σ∗

with open domain and Fωω is the set of all partial functions f : ⊆Σω → Σω with
Gδ-domain (a Gδ-set is a countable intersection of open sets). While F ∗∗ and
F ∗ω consist of all continuous partial functions, every continuous partial function
f : ⊆Σω → Σ∗ has an extension in Fω∗, and every continuous partial function
f : ⊆Σω → Σω has an extension in Fωω. Each representation ηab satisfies the
“utm-theorem” and the “smn-theorem” [Wei00, Theorem 2.3.13]: the function
U : ⊆ Σω × Σa → Σb, U(p, x) = ηab

p (x) is computable, for every computable
function f : ⊆Σω ×Σa → Σb there is a computable function r : Σω → Σω such
that f(p, x) = ηab

r(p)(x).
For multi-representations γ1 : Σa ⇒ M1 and γ2 : Σb ⇒ M1, a, b ∈ {∗, ω},

a multi-representation [γ1 ⇒ γ2] of the (γ1, γ2)-continuous multi-functions f :
M1 ⇒ M2 is defined by: f ∈ [γ1 ⇒ γ2](p) ⇐⇒ ηab

p := ηab(p) realizes f w.r.t.
(γ1, γ2) [Wei08]. The restriction of [γ1 ⇒ γ2] to the single-valued functions is
called [γ1 →p γ2] [Wei08] or [γ1 → γ2]set [Wei00]. The restriction of [γ1 →p γ2]
to the total (γ1, γ2)-continuous functions is called [γ1 → γ2] ([Sch02, Wei08],
for single-valued representations [KW85, Wei00, Sch02]). The generalization of
utm- and the smn-theorem from the ηab to represented sets is the type con-
version theorem, [Wei00, Theorem 3.3.15] for single-valued representations and
total functions and [Wei08, Theorem 33]) as the most general version.

Furthermore, in this article we will use the following canonical notations and
representations of finite and of countable subsets and apply Lemma 3 without
further mentioning.

Definition 2. For notations μ : ⊆Σ∗ → M and representations γ : ⊆Σω → Y

define notations and representations of finite and countable subsets as follows
(where w ∈ Σ∗, q, p0, p1, . . . ∈ Σω and a0, a1, . . . ∈ Σ):

μfs(w) = W : ⇐⇒
{

(∀v � w) v ∈ dom(μ),
W = {μ(v) | v � w} ;

(1)

μcs(q) = W : ⇐⇒
{

(∀v � q) v ∈ dom(μ),
W = {μ(v) | v � q} ;

(2)

γfs(q) = W : ⇐⇒

⎧⎨⎩
(∃n)(∃p1, . . . , pn ∈ dom(γ))

q = 〈1n, p1, . . . , pn〉,
W = {γ(p1), . . . , γ(pn)} ;

(3)

γcs〈a0p0, a1p1, . . .〉 = W : ⇐⇒
{

(∀i)(ai = 0 =⇒ pi ∈ dom(γ)),
W = {γ(pi) | ai = 0} . (4)

If ai �= 0 for all i, then γcs〈a0p0, a1p1, . . .〉 = ∅.
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Lemma 3. For notations μ and notations or representations β, γ,

dom(μfs) is recursive if dom(μ) is recursive, (5)

μfs(w) = μfs(ŵ), (6)

(x, y) �→ {x, y} is (γ, γ, γfs)-computable, (7)

γ′ ≤ γfs ≤ γcs, where γ′(w) := {γ(w)}, (8)

βfs ≤ γfs and βcs ≤ γcs if β ≤ γ . (9)

3 Computable Topological Spaces

In this section we introduce computable topological spaces as the basic concept
for the computable topology presented in this article. We define explicitly multi-
representations of points and of open, closed and compact sets, which induce
computability on these classes of objects.

A topology τ on a set X is a set of subsets of X, the set of open sets, that is
closed under union and finite intersection. We denote the closure of a set A⊆X by
A. A base is a subset of β⊆τ such that every U ∈ τ is a union of base sets. (X, τ)
is a T0-space if the points can be identified by their neighborhoods, that is, for
all x, y ∈ X such that x �= y, there is some W ∈ τ such that (x ∈W ∧ y �∈W )
or (x �∈W ∧ y ∈W ) [Eng89].

Definition 4 (computable topological space). An effective topological
space is a 4-tuple X = (X, τ, β, ν) such that (X, τ) is a topological T0-space
and ν : ⊆Σ∗ → β is a notation of a base β of τ . X is a computable topological
space if dom(ν) is recursive and

ν(u) ∩ ν(v) =
⋃

{ν(w) | (u, v, w) ∈ S} for all u, v ∈ dom(ν) (10)

for some r.e. set S⊆(dom(ν))3.

Since the base β has a notation it must be countable. T0-spaces with count-
able base are called second countable [Eng89]. By (10) the intersection of two
base elements can be computed (is (ν, ν, θ)-computable, see Definition 5). For
every effective topological space there is some not necessarily r.e. set S such
that (10).

Example 1 (computable topological spaces).
1. (real line) Define R := (R, τR, β, ν) such that τR is the real line topology

and ν is a canonical notation of the set of all open intervals with rational
endpoints.

2. (lower real line) Define R< := (R, τ<, β<, ν<) such that ν<(w) := (νQ;∞).
The representation δ for R< is called ρ< in [Wei00]. Then τ< = {(x;∞) |
x <∞}

⋃
{∅,R},

1387Weihrauch K., Grubba T.: Elementary Computable Topology



3. (Sierpinski space) Define Si := ({⊥,�}, τSi, βSi, νSi) such that νSi(0) =
{⊥,�} and νSi(1) = {�}.

4. Define X = (N∪{−1,−2, }, τ, β, ν) where β is the set of all {n}, {i ≥ n | i ∈
N} ∪ {−1} and {i ≥ n | i ∈ N} ∪ {−2} for n ∈ N, and ν is some canonical
notation of β.

Further examples can be found in [Wei00]. See also Lemma 9 below. For the
topological space (X, τ) a set K⊆X is compact iff for every set α⊆τ such that
K⊆

⋃
α there is some finite α′⊆α such that K⊆

⋃
α′. Some authors such as

Bourbaki and Engelking [Bou66, Eng89] use the term ”quasi-compact” instead,
and reserve the term ”compact” for topological spaces that are Hausdorff and
”quasi-compact”. Since every open set is a union of base elements, it suffices to
consider only subsets from the base β, that is, a set K is compact iff for every
set α⊆β such that K⊆

⋃
α there is some finite α′⊆α such that K⊆

⋃
α′. For a

compact set K we will consider the set of all finite unions B of base elements
such that K⊆B.

We define explicitly several multi-representations of points and of classes of
subsets. We will use the notations

⋂
νfs and

⋃
νfs of the finite unions and finite

intersections of base sets, respectively, see (1). As usually we assume
⋂
∅ := X

and
⋃
∅ := ∅.

Definition 5. Let X = (X, τ, β, ν) be an effective topological space.
1. Define a representation δ+ : ⊆ Σω → X of the points, a representation
θ+ : ⊆ Σω → τ of the set of open sets, a representation ψ+ : ⊆ Σω → A
of the set of closed sets, a multi-representation ψ̃ of the powerset, and a
multi-representation κ : Σω ⇒ K of the set of compact subsets of X as
follows:

x = δ+(p) : ⇐⇒ (∀w ∈ Σ∗) (w � p ⇐⇒ x ∈ ν(w)) , (11)

W = θ+(p) : ⇐⇒
{
w � p =⇒ w ∈ dom(ν),
W =

⋃
{ν(w) | w � p}, (12)

A = ψ+(p) : ⇐⇒ (∀w ∈ Σ∗ (w � p ⇐⇒ A ∩ ν(w) �= ∅) , (13)

B ∈ ψ̃(p) : ⇐⇒ (∀w ∈ Σ∗ (w � p ⇐⇒ B ∩ ν(w) �= ∅) , (14)

K ∈ κ(p) : ⇐⇒ (∀w ∈ Σ∗) (w � p ⇐⇒ K⊆
⋃
νfs(w)) . (15)

For avoiding accumulation of indices in this article we abbreviate:
δ := δ+, θ := θ+, ψ := ψ+.

2. Define a representation δ− : ⊆ Σω → X of the points, a representation
θ− : ⊆Σω → τ of the set of open sets, and a representation ψ− : ⊆Σω → A
of the set of closed sets by
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δ−(p) = x : ⇐⇒ θ+(p) = X \ {x}, (16)

θ−(p) := X \ ψ(p), (17)

ψ−(p) := X \ θ+(p) . (18)

Notice that names in Definitions 2 and 5 must not be “polluted” by words
w �∈ dom(ν) since implicitly w ∈ dom(ν) if w � p ∈ dom(δ), w ∈ dom(ν) if
w � p ∈ dom(ψ) and w ∈ dom(

⋃
νfs) = dom(νfs) if w � p ∈ dom(κ). If dom(ν)

is recursive, these conditions can be checked easily.
A δ+-name of a point x is a list of all names of all of its basic neighborhoods,

while a δ−-name is a list of base elements exhausting the complement of {x}.
Therefore, δ = δ+ is the “inner representation” supplying positive information
and δ− is the “outer representation” supplying negative information. A θ+-name
of an open set W is a list of base elements exhausting W , while a θ−-name is
a list of all names of all basic sets intersecting its complement. Thus, θ = θ+ is
the “inner representation” supplying positive information and θ− is the “outer
representation” supplying negative information. For the closed sets, ψ = ψ+ (the
complement of θ−) is the “inner representation” and ψ− (the complement of θ+)
is the “outer representation” . Finally, K ∈ κ(q) iff q is a list of all names of all
finite unions of base elements that cover K. κ is the “cover representation” of
the compact sets.

Lemma 6.
1. δ is well-defined (single-valued).
2. ψ is well-defined (single-valued).
3. dom(ψ) = dom(ψ̃) and B ∈ ψ̃(p) ⇐⇒ B = ψ(p).
4. For q ∈ dom(κ) define Kq :=

⋂
{
⋃
νfs(w) | w � q}. Then

Kq ∈ κ(q) and K⊆Kq for all K ∈ κ(q) .

5. δ− is well-defined (single-valued).

Proof: 1. δ is well-defined (single-valued) since for the T0-space X,
{v | x ∈ ν(v)} = {v | y ∈ ν(v)} implies x = y.

2. Suppose ψ(p) = A �= B = ψ(q). Then w.l.o.g. x ∈ A and x �∈ B for some
x ∈ X. Since B is closed, its complement Bc is open, hence x ∈ V⊆Bc for some
V ∈ β. Then A∩V �= ∅ and B∩V = ∅, hence p �= q. Therefore, ψ is single-valued.

3. For every open set U ,

B ∩ U = ∅ ⇐⇒ B⊆U c ⇐⇒ B⊆U c ⇐⇒ B ∩ U = ∅. (19)

Therefore, B ∈ ψ̃(p) ⇐⇒ (w � p ⇐⇒ B ∩ ν(w) �= ∅) ⇐⇒ (w � p ⇐⇒
B ∩ ν(w) �= ∅) ⇐⇒ B = ψ(p).
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4. Suppose q ∈ dom(κ). Then K0 ∈ κ(q) for some compact set K0. For every
K ∈ κ(q), K⊆

⋃
νfs(w) for all w such that w � q, hence K⊆Kq. Therefore,⋃

κ(q)⊆Kq.
Suppose Kq⊆

⋃
{ν(v) | v ∈ I}. Then K0⊆

⋃
κ(q)⊆Kq⊆

⋃
{ν(v) | v ∈ I}.

Since K0 is compact, K0⊆
⋃
{ν(v) | v ∈ F} for some finite set F⊆I. There is

some u such that
⋃
{ν(v) | v ∈ F} =

⋃
νfs(u). Since K0⊆

⋃
νfs(u) and K0 ∈

κ(q), u � q, hence Kq⊆
⋃
νfs(u) by the definition of Kq and so Kq⊆

⋃
{ν(v) |

v ∈ F}, which is a finite subcover of Kq. Therefore, Kq is compact. For all
w ∈ dom(

⋃
νfs), Kq⊆

⋃
νfs(w) ⇒ K0⊆

⋃
νfs(w) ⇒ w � q ⇒ Kq⊆

⋃
νfs(w).

Therefore, Kq ∈ κ(q).
5. Suppose {x} = {y} Then by (19), x ∈ ν(u) ⇐⇒ {x} ∩ ν(u) �= ∅ ⇐⇒

{x} ∩ ν(u) �= ∅ ⇐⇒ {y} ∩ ν(u) �= ∅ ⇐⇒ {y} ∩ ν(u) �= ∅ ⇐⇒ y ∈ ν(u), hence
x = y. Therefore, δ− is single-valued. �

By Lemma 6.3, ψ can be defined by means of ψ̃ and vice versa. If A ∈
ψ̃(p), then ψ̃(p) = {B⊆X | A = B}. In particular, A ∈ ψ̃(p) since A =
A. A is the greatest set in ψ̃(p). The saturation of a set A⊆X is defined by
sat(A) :=

⋂
{U ∈ τ | A⊆U} [GHK+03]. For compact sets K, sat(K) =

⋂
{
⋃
α |

α⊆β, α finite, K⊆
⋃
α}. By Lemma 6.4 if K ∈ κ(q) then κ(q) = {L ∈ K |

sat(K) = sat(L)}. In particular, sat(K) = Kq ∈ κ(q), sat(K) is the greatest set
in κ(q). The restriction of κ to the saturated compact sets sets is a single-valued
representation.

In general, positive information cannot be found from negative information
and vice versa.

Theorem 7. In general, ( δ �≤t δ
−, δ− �≤t δ), ( θ �≤t θ

−, θ− �≤t θ),
and (ψ �≤t ψ

−, ψ− �≤t ψ).

Proof: It suffices to consider the computable topological space R< from Exam-
ple 1.2. Suppose, δ ≤t δ

−. Then there are a Type-2 machine M and an “oracle”
q ∈ Σω such that δ(p) = δ− ◦ fM (p, q) for all p ∈ dom(δ). Let δ(p) = 0. Started
on input (p, q) there are some time t and some word w such that the machine
has written ι(w) somewhere on its output tape in t steps. In t steps the ma-
chine M has read at most some prefix vι(u) of p. There is some r ∈ Σω such
that x := δ(vι(u)r) > νQ(w). Also on input (vι(u)r, q) the machine M will
write ι(w) in t steps somewhere on its output tape. By the definition of δ−,
(−∞;x] ∩ (νQ(w);∞) = {x} ∩ ν<(w) = ∅, hence x ≤ νQ(w). Contradiction.

Statements 2, 3 and 4 can be shown in the same way, Statements 5 and 6
follow from Statements 3 and 4. �

An important class of computable topological spaces can be constructed from
very simple assumptions. Let X be a set with a countable set σ of predicates
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U⊆X (the “atomic predicates”). We may say “x has property U” if x ∈ U . We
assume that each point of X can be identified by its atomic predicates, see (20).
For handling atomic predicates concretely we consider a notation λ : ⊆Σ∗ → σ

assigning names to them.

Definition 8 (predicate space).
1. An effective predicate space is a triple Z = (X,σ, λ) such that σ⊆2X , λ is a

notation of σ and

(∀x, y ∈ X) (x = y ⇐⇒ {U ∈ σ | x ∈ U} = {U ∈ σ | y ∈ U}) . (20)

Z is called computable predicate space if dom(λ) is recursive.
2. Define the representation δZ of X by

x = δZ(p) : ⇐⇒ (∀w ∈ Σ∗) (w � p ⇐⇒ x ∈ λ(w)) , (21)

3. Let T (Z) = (X, τλ, βλ, νλ) where βλ is the set of finite intersections of sets
from σ, νλ :=

⋂
λfs : ⊆Σ∗ → βλ (see (1)) and τλ is the set of all unions of

subsets from βλ.

Since the set βλ of the finite intersections of sets in σ is closed under intersection,
it is a base of the topology τλ. Since νλ(ι(u1)ι(u2) . . . ι(uk)) = λ(u1) ∩ λ(u2) ∩
. . . ∩ λ(uk), νλ can be called the notation by formal finite intersection.

Lemma 9. Let Z = (X,σ, λ) be an effective predicate space.
1. T (Z) is an effective topological space, which is computable if Z is computable

(that is, if dom(λ) is recursive).
2. Let δλ be the inner representation of points for T (Z)). Then δλ ≡ δZ.
3. for every representation γ0 of a subset of Y⊆X, {(x,U) ∈ Y ×σ | x ∈ U} is

(γ0, λ)-r.e. iff {(x, V ) ∈ Y × βλ | x ∈ V } is (γ0, νλ)-r.e.

Proof: 1. Obviously, βλ is a base of the topology τλ on X and νλ is a notation
of βλ that has recursive domain if λ has recursive domain. If x �= y, then by (20)
there is some U ∈ σ such that (x ∈ U ∧ y �∈ U) or (x �∈ U ∧ y ∈ U). Since σ⊆τλ,
(X, τλ) is a T0-space. Condition (10) holds for S := {(u, v, ûv̂) | u, v ∈ dom(νλ)}.

2. There is a machine M that on input p lists all ι(ι(v1) . . . ι(vk)) such that
v1, . . . , vk � p. Then the function fM translates δZ to δλ. There is another
machine N that on input q lists all ι(u) such that u � v � q for some v ∈ Σ∗.
Then fN translates δλ to δZ.

3. From a machine M , which halts on input (p, u) iff γ0(p) ∈ λ(u), we can
construct a machine N that halts on input (p, v) iff γ0(p) ∈ νλ(v) and and vice
versa. �

Roughly speaking, a δZ-name of a point is a list of all of its atomic predicates
while a δλ-name is a list of all finite intersections of such sets. Obviously, the
two representations are equivalent.
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Example 2. Define Z := (R, σ, λ) by λ(w) := (νQ(w); νQ(w) + 1) and σ :=
range(λ). Then Z is a computable predicate space and T (Z) = (R, τR, βλ, νλ)
is a computable topological space. The spaces T (Z) and R from Definition 1 are
equivalent (Definition 21).

A representation γ : ⊆Σω → X of a topological space (X, τ) is called ad-
missible (with respect to τ) if it is continuous and γ′ ≤t γ for every continuous
function γ′ : ⊆ Σω → X [KW85, Wei00, Sch02, Sch03]. The representation
δ is admissible [Wei00, Section 3.2] w.r.t. the topology τ . Also all the other
(single-valued) representations in Definition 5 are admissible w.r.t. appropriate
topologies [Sch03].

In the literature a number of variants of Definitions 4 and 8 have been in-
troduced. In [Wei00, Section 3.2] an effective topological space corresponds to
our effective predicate space, and for a computable topological space {(u, v) |
λ(u) = λ(v)} must be r.e. (as a consequence dom(ν) must be r.e., c.f. Theo-
rem 24) and δ′S is our δZ. The results in this article show that the condition
“{(u, v) | λ(u) = λ(v)} is r.e.” is unnecessarily strong for a general foundation.
Variants of Definition 4 are used, for example, in [KW85, GW05, GSW07]. In
[GW05], ν must have recursive domain. In [GSW07], the base must have com-
putable intersection (10). Sometimes U must be non-empty for U ∈ σ or U ∈ β.

Representations from Definition 5 have been studied for various topologi-
cal spaces under various names, for example in [KW85, KW87, WK87, Zho96,
BW99, Wei00, Zie02, ZB04, Zie04, BP03, Sch03, Wei03, GW05] the correspon-
dences of names being obvious, and have been used in many applications. The
representations δ− (which has no application so far) and ψ̃ or special cases of
them have not been considered before. As an application of ψ̃ consider our multi-
representation κ that is the T0-version of the cover representation κc [Wei00,
Definition 5.2.4] (equivalent to κ> [Wei00, Definition 5.2.1]). Then the multi-
representation ψ̃ ∧ κ is our T0-version of ψ< ∧ κ> [Wei00, Lemma 5.2.10]) that
is equivalent to the minimal cover representation κmc [Wei00, Definition 5.2.4,
Lemma 5.2.5]. See also Theorem 38.4 and 6. In [KW98, KW03], starting from
more general concepts Kalantari and Welch arrive at special computable topo-
logical spaces, which they study in detail.

In this section, computability on a computable predicate space T via T (Z) is
a special case of computability on a computable topological space. In Section 7
we show that equivalently, computability on a computable topological space can
be considered as a special case of computability on a computable predicate space
Z via T (Z).

In the following we will assume tacitly that δ, θ, ψ, ψ̃, κ, δ−, θ− and ψ− are
the representations from Definition 5 for the effective topological space X =
(X, τ, β, ν). If not assumed differently, X = (X, τ, β, ν) will be a computable
topological space since only very few results on computability remain valid for
general effective topological spaces.
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4 Boolean Operations

We will consider computability of union and intersection not only on pairs but
on sets of sets. The following observations will be used repeatedly.

Lemma 10.

1. ν ≤
⋃
νfs ≤ θ,

2. w ∈ dom(νfs) if w is a prefix of p for some p ∈ dom(δ).
3. δ[wΣω] =

⋂
νfs(w) for all w ∈ dom(νfs).

We summarize some computability results on union and intersection for com-
putable topological spaces. By (10), intersection is (ν, ν, θ)-computable. We apply
this axiom in the proof.

Theorem 11 (union and intersection).
1. Finite intersection on open sets is (νfs, θ)-computable and (θfs, θ)-computable.
2. Union on open sets is (θcs, θ)-computable.
3. On closed sets, finite union is ((ψ−)fs, ψ−)-computable and intersection is

((ψ−)cs, ψ−)-computable.
4. On the at most countable collections B of closed sets, the function B �→

⋃
B

is ((ψ)cs, ψ)-computable.
5. On the compact sets finite union is (κfs, κ)-computable.
6. The function (K,A) �→ K ∩ A for compact K and closed A is (κ, ψ−, κ)-

computable.

Proof: 1. For q = 〈1k, p1, . . . , pk〉,⋂
θfs(q) =

⋃
{ν(v1) ∩ . . . ∩ ν(vk) | v1 � p1, . . . , vk � pk}

and
k⋂

i=1

ν(vi) =
⋃

{ν(u) | u ∈ dom(ν), (∃k
i=0ui)(∀k

i=1(ui−1, vi, ui) ∈ S ∧ u = uk)} .

There is a machine M that on input 〈1k, p1, . . . , pk〉 ∈ dom(θfs) writes all ι(u),
for which there are v1 � p1, . . . , vk � pk and u0, . . . , uk ∈ dom(ν) such that
(ui−1, vi, ui) ∈ S for i = 1, . . . , k and u = uk). Remember that S is r.e. Then⋂
θfs(q) = θ ◦ fM (q) for all q ∈ dom(θfs).
Since ν ≤ θ, and hence νfs ≤ θfs by Lemma 10, intersection is also (νfs, θ)-

computable.
2. There is a Machine M that on input q = 〈a0p0, a1p1, . . .〉 lists all ι(v) such

that for some i, ai = 0 and ι(v) is a subword pi (and writes 11 from time to
time). Then fM realizes union.

3. This follows from 1. and 2 by (18).
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4. For every U ∈ β, U∩
⋃
B �= ∅ ⇐⇒ U∩

⋃
B �= ∅ ⇐⇒ (∃A ∈ B)U∩A �= ∅.

There is a machine that on input q = 〈a0p0, a1p1, . . .〉 lists all ι(v) such that for
some i, ai = 0 and ι(v) is a subword pi (and writes 11 from time to time). Then
fM realizes the function B �→

⋃
B.

5. Suppose Ki ∈ κ(pi) for 1 ≤ i ≤ k. Then K1 ∪ . . . ∪ Kk⊆
⋃
νfs(w) iff

Ki⊆
⋃
νfs(w) for 1 ≤ i ≤ k iff w � pi for 1 ≤ i ≤ k. There is a machine M that

on input 〈1k, p1, . . . , pk〉 lists all ι(v) such that v � pi for all 1 ≤ i ≤ k (and
writes 11 from time to time). Then fM realizes finite union on the compact sets.

6. Observe that for sets A,B,K⊆X, K ∩ A⊆B ⇐⇒ K⊆B ∪ X \ A. For
showing that he set K ∩A is compact, assume K ∩A⊆

⋃
α for some α⊆τ . Then

K⊆
⋃
α∪ (X \A) (an open cover) and hence K⊆

⋃
α′ ∪{X \A} for some finite

α′⊆α, therefore K ∩A⊆
⋃
α′.

For K ∈ κ(p), q ∈ dom(ψ−) and u ∈ dom(
⋃
νfs), K ∩ ψ−(q)⊆

⋃
νfs(u) ⇐⇒

K⊆
⋃
νfs(u) ∪ θ(q) ⇐⇒ K⊆

⋃
νfs(u) ∪

⋃
{ν(v) | v � q} ⇐⇒ (∃w �

q)K⊆
⋃
νfs(u) ∪

⋃
νfs(w) ⇐⇒ (∃w � q)K⊆

⋃
νfs(ûŵ) ⇐⇒ (∃w � q)ûŵ � p

(for � and û see Section 1). There is a machine M that on input (p, q) prints all
words û such that ûŵ � p for some w � q (and writes 11 from time to time).
Then fM realizes intersection of a compact and a closed set. �

By Theorem 11.6, (K,A) �→ A for A⊆K is (κ, ψ−, κ)-computable. A num-
ber of corollaries can be derived easily in combination with Lemma 10 and
Lemma 3, in particular for binary union and intersection. For example, union
(U, V ) �→ U ∪ V is (ν, ν,

⋃
νfs) computable by (7) and (

⋃
νfs, ν, θ)-computable

by Lemma 10.1. By definition, complementation is (θ, ψ−) computable on the
open sets and (ψ−, θ)-computable on the closed sets. Some negative results are
summarized in the following theorem.

Theorem 12.
1. In general complementation of open sets is not (θ, ψ)-continuous and not

(θ−, ψ−)-continuous.
2. In general complementation of closed sets is not (ψ−, θ−)-continuous and

not (ψ, θ)-continuous.
3. In general for no representations ψ1, ψ2 of the closed sets intersection is

(ψ1, ψ2, ψ)-continuous.

Proof: 1.,2. This follows from Theorem 7
3. For the computable real line (Example 1.1) there are no (!) representa-

tions ψ1, ψ2 of the closed sets such that intersection is (ψ1, ψ2, ψ)-continuous
[Wei00, DWW07]. �
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5 Abstract Characterizations of Computability

In Section 3 we have defined explicitly some representations of the points and of
spaces of subsets. In this section we characterize their equivalence classes without
defining representatives. Since two multi-representations induce the same kind of
computability on a set iff they are equivalent, we characterize the computability
concepts induced by these representations.

Theorem 13. Let X = (X, τ, β, ν) be a computable topological space.
1. For every representation γ of a subset Y⊆X,

{(x,U) ∈ Y × β | x ∈ U} is (γ, ν)-r.e. ⇐⇒ γ ≤ δ.
2. For every representation γ of a subset T ⊆2X ,

{(x,W ) ∈ X × T | x ∈W} is (δ, γ)-r.e. ⇐⇒ γ ≤ θ.
3. For every representation γ of a set B of closed sets,

“A ∩ V �= ∅” is (γ, ν)-r.e. ⇐⇒ γ ≤ ψ.
4. For every multi-representation γ of a subset S⊆2X ,

“A ∩ V �= ∅” is (γ, ν)-r.e. ⇐⇒ γ ≤ ψ̃.
5. For every multi-representation γ of a subset L⊆2X ,

{(K,W ) ∈ L × τ | K⊆W} is (γ, θ)-r.e. ⇐⇒ γ ≤ κ.
6. For every multi-representation γ of a set of compact sets,

“K⊆V ” is (γ,
⋃
νfs)-r.e. ⇐⇒ γ ≤ κ.

The statements remain true for effective topological spaces if “-open” is substi-
tuted for “-r.e.” and “≤t” is substituted for “≤” (the topological version of the
theorem).

Proof: 1. Suppose “x ∈ U” is (γ, ν)-r.e. Then there is some Type-2 machine
M that halts on input (p, u) ∈ dom(γ) × dom(ν) iff γ(p) ∈ ν(u). Let N be a
Type-2 machine that on input p successively for all (u, n) ∈ dom(ν) × N runs
the machine M on input (p, u) and writes 11 if the computation does not halt
in n steps, and writes ι(u) otherwise. Then for p ∈ dom(γ) and u ∈ dom(ν),
fN (p) has the subword ι(u) iff M halts on input (p, u) ∈ dom(γ) × dom(ν) iff
γ(p) ∈ ν(u). Therefore, γ(p) = δ ◦ fN (p) for all p ∈ dom(γ), hence γ ≤ δ.

On the other hand, suppose that there is a computable function f : ⊆Σω →
Σω such that γ(p) = δ ◦ f(p) for all p ∈ dom(γ). Let M be a Type-2 machine,
which on input (p, u) ∈ Σω×Σ∗ computes f(p) and halts as soon as ι(u) has been
detected as a subword of f(p). Then M halts on input (p, u) ∈ dom(γ)×dom(ν)
iff γ(p) ∈ ν(u), hence “x ∈ U” is (γ, ν)-r.e.

2. Suppose, “x ∈W” is (δ, γ)-r.e. Then there is an r.e. set R⊆Σ∗ ×Σ∗ such
that δ(p) ∈ γ(q) ⇐⇒ (p, q) ∈

⋃
{uΣω × vΣω | (u, v) ∈ R} for all p ∈ dom(δ)

and q ∈ dom(γ). Therefore, γ(q) =
⋃
{δ[uΣω] | (∃v)(q ∈ vΣω ∧ (u, v) ∈ R)}

for every q ∈ dom(γ). Since δ[uΣω] = ∅ if u �∈ dom(νfs) and δ[uΣω] =
⋂
{ν(v) |
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v � u} =
⋂
νfs(u) otherwise, δ[uΣω] = θ ◦ f(u) for some computable function f

by Theorem 11.1. Therefore, γ(q) =
⋃
{θ ◦ f(u) | (∃v)(q ∈ vΣω ∧ (u, v) ∈ R)}.

There is a machine M that on input q lists all words w ∈ dom(ν) such that
w � f(u) and q ∈ vΣω for some (u, v) ∈ R. Then fM translates γ to θ.

Next, we show that “x ∈W” is (δ, θ)-r.e. For p ∈ dom(δ) and q ∈ dom(θ),

δ(p) ∈ θ(q) ⇐⇒ (∃w, w � q)δ(p) ∈ ν(w) ⇐⇒ (∃w)(w � q ∧ w � p) .

There is a Type-2 machine M that halts on input (p, q) iff there is some w such
that w � q and w � p. This machine halts on input (p, q) ∈ dom(δ) × dom(θ)
iff δ(p) ∈ θ(q). Therefore, “x ∈W” is (δ, θ)-r.e.

Finally for W ∈ range(γ), “x ∈ W” is (δ, γ)-r.e. if γ ≤ θ, since “x ∈ W” is
(δ, θ)-r.e.

3. Let Z := (B, σ, λ) where λ is a notation of a family of subsets of B such
that λ(w) := {A ∈ B | A ∩ ν(w) �= ∅}. Then Z is a computable predicate space.
Let T (Z) := (B, τλ, βλ, νλ) be the associated computable topological space. Then
δZ = ψ by (21,13) and δZ ≡ δλ by Lemma 9. By Theorem 13.1 applied to T (Z)
and Lemma 9.3, γ(p) ∩ ν(u) is r.e. ⇐⇒ γ(p) ∈ λ(u) is r.e. ⇐⇒ γ(p) ∈
νλ(u) is r.e. ⇐⇒ γ ≤ δλ ⇐⇒ γ ≤ ψ.

4. Suppose A ∈ ψ̃(p). Then A ∩ ν(w) �= ∅ ⇐⇒ w � p. There is a machine
that halts on input (p,w) iff w � p. Therefore, “A ∩ V �= ∅” is (ψ̃, ν)-r.e. If
γ ≤ ψ̃, then “A ∩ V �= ∅” is (γ, ν)-r.e. .

On the other hand assume that “A ∩ V �= ∅” is (γ, ν)-r.e. . Then there is a
machine M that halts on input (p,w) (p ∈ dom(γ), w ∈ dom(ν)) iff A∩ν(w) �= ∅
for some (and thus for all) A ∈ γ(p). There is another machine N that lists all
w ∈ dom(ν) such that M halts on input (p,w). Then fN translates γ to ψ̃.

5. Suppose “K⊆V ” is (γ, θ)-r.e. Then there is a machine M that halts on
input (p, q) ∈ dom(γ)× dom(θ) iff K⊆θ(q) for all K ∈ γ(p). Let K⊆

⋃
u∈I ν(u).

There is some q ∈ Σω such that I = {u | u� q}. Since K⊆θ(q), the machine M
halts on input (p, q) and reads at most a finite prefix u of q. Since ι(v) has odd
length for all v ∈ Σ∗, there is some w ∈ Σ∗11 such that

⋃
νfs(u) =

⋃
νfs(uw).

Then q′ := uw1ω ∈ dom(θ) and M that halts on input (p, q′), hence K⊆θ(q′).
Now, θ(q′) =

⋃
u∈I′ ν(u) for some finite I ′⊆I. Therefore, K is compact. We

conclude that γ is a multi-representation of compact sets.
There is a machine N that on input p ∈ dom(γ) writes a list of all ι(u) such

that u ∈ dom
⋃
νfs) and M on input (p, u1ω) halts in at most |u| steps. Then

K ∈ κ ◦ fN (P ) if K ∈ γ(p). Therefore, γ ≤ κ.
We show that “K⊆W” is (κ, θ)-r.e. For K ∈ κ(p) and W = θ(q), K⊆W iff

there is some u � p such that v � q for all v � u. There is a machine that
halts on input (p, q) iff this condition is true. Therefore, “K⊆W” is (κ, θ)-r.e. If
γ ≤ κ, then “K⊆W” is (γ, θ)-r.e. (see Section 2).

6. By easy arguments for compact sets K, “K⊆V ” is (γ,
⋃
νfs)-r.e. iff

“K⊆W” is (γ, θ)-r.e. Apply Theorem 13.5.
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The continuous versions of the statements can be proved similarly using
Type-2 machines with an oracle r ∈ Σω on an additional input tape. �

Let F be a class of multi-representations and let γ ∈ F be such that γ′ ≤ γ

for all γ′ ∈ F . Then γ can be called complete in F (more precisely, ≤-complete).
Since translation cannot gain the amount and the quality of information con-
tained in names, a complete multi-representation can also be called the (up to
equivalence) “poorest” representation in F .

While a complete representation is unique only up to equivalence, the induced
computability concept is the same for all multi-representations complete in F .

Let γ : ⊆Σω → X be a multi-representation. If Y⊆X is γ-r.e., then there
is a Type-2 machine M that halts on input p ∈ dom(γ) iff p is a γ-name of
some y ∈ Y . A computation halting on input p can be interpreted as a proof
of “y ∈ Y ” for all y ∈ γ(p) and the machine M machine can be interpreted
as a “proof system” for Y . Correspondingly, if Y⊆X is γ-open, then there are
a Type-2 machine M and an “oracle” q ∈ Σω such that for p ∈ dom(γ), the
machine M halts on input (q, p) iff p is a γ-name of some y ∈ Y . In this case,
(M,p) is our “oracle proof system”. In our context the basic principle underlying
the concept of “proof” is finiteness. If a Type-2 machine halts, it can read only
a finite portion of its input. Therefore, a finite amount of information suffices to
obtain a positive answer.

Theorem 13.1 can be formulated as follows. The representation δ is complete
in the class of all representations γ of points such that the element relation
“x ∈ U” (x ∈ X, U ∈ β) becomes provable (precisely, (γ, ν)-r.e.). Provability of
the element relation “x ∈ U” does not define δ but only the equivalence class
of this representation, that is, the computability concept on X induced by it
(remember: two multi-representations are equivalent iff they induce the same
concept of computability). The other five statements from Theorem 13. can be
interpreted accordingly.

The following observation is noteworthy: while in 1., 3., 4. and 6. computabil-
ity concepts on the given sets (points, closed sets, all sets, compact sets) are
characterized by provability, in 2. the open sets and in 5. the compact sets are
characterized simultaneously. Thus provability of “x ∈W” (for points x) is char-
acteristic for the open sets W and provability of “K⊆W” (for open sets W ) is
characteristic for the compact sets. By the topological version of the theorem,
the open sets are the biggest class of sets W such that “x ∈ W” is δ-open and
the compact sets are the biggest class of sets K such that “K⊆W” is θ-open.

In summary, for a computable topological space by requiring provability we
can define in turn computability on the points, the open sets, computability
on the open sets, the compact sets and computability on the compact sets.
Roughly speaking, merely the idea of finiteness suffices to define these concepts
for computable topological spaces.
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Corollary 14. For points x, open sets W , closed sets A and compact sets K,

“x ∈W” is (δ, θ)-r.e., (22)

“K⊆W” is (κ, θ)-r.e., (23)

“A ∩W �= ∅” is (ψ, θ)-r.e., (24)

“K ∩A = ∅” is (κ, ψ−)-r.e. (25)

Proof: (22) Let γ := θ in Theorem 13.2.
(23) Let γ := κ in Theorem 13.5.
(24) ψ(p) ∩ θ(q) �= ∅ iff (∃w � q)ψ(p) ∩ ν(w) �= ∅. Apply Theorem 13.3.
(25)Observe that κ(p) ∩ ψ−(q) = ∅ iff κ(p)⊆θ(q). Apply (23). �

Theorem 13.1 generalizes [Wei00, Theorem 3.2.10]. The conclusion “W is
open iff W is δ-open” from Theorem 13.2 is the fact that τ is the final topology
of the admissible representation δ [KW85, Wei00].

6 Some Additions

Every singleton set {x} is compact. The representation κ can be considered as
an extension of δ.

Lemma 15. Define ec : X → K by ec(x) := {x}. Then ec is (δ, κ)-computable
and ec−1 is (κ, δ)-computable.

Proof: There is a machine that on input p ∈ Σω lists all ι(v), v ∈ dom(νfs),
such that u � p and u � v. Then fM realizes ec. On the other hand there is
a machine N that on input q lists all ι(u) such that u ∈ dom(ν) and ι(u) � q.
Then fN realizes ec−1. �

Although in a T0-space singletons {x} may not be closed (see Examples 1.2
and 1.3), the representations ψ and ψ− of the closed sets can be considered as
extensions of the representations δ and δ− of points, respectively.

Lemma 16. Define cl : X → A by cl(x) := {x}. Then cl is injective, cl is
(δ, ψ)-computable and (δ−, ψ−)-computable, and cl−1 is (ψ, δ)-computable and
(ψ−, δ−)-computable.

Proof: In the proof of Lemma 6.5 we have shown that cl is injective. For all
w ∈ Σ∗, {x} ∩ ν(w) �= ∅ ⇐⇒ x ∈ ν(w), hence ψ(p) = {x} ⇐⇒ δ(p) = x.
Therefore, the identity realizes cl and cl−1 w.r.t. δ and ψ.

By definition, cl ◦ δ−(p) = X \ θ(p) = ψ−(p) for p ∈ dom(cl). Therefore cl is
(δ−, ψ−)-computable and cl−1 is (ψ−, δ−)-computable. �
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Notice that (X, τ) is a T1-space [Eng89] iff all sets {x} (x ∈ X) are closed
(that is, {x} = {x} ). We show that for a T1-space the multi-representation κ is
single-valued. In general, however, κ may be properly multi-valued, but still the
sets κ(q) have a simple structure. In contrast to T2-spaces [Eng89], for T1-spaces
compact sets may be not closed and the intersection of compact sets may be not
compact.

Theorem 17.
1. There is a computable topological space such that κ is not single-valued.
2. For computable topological spaces that are T1, the multi-representation κ is

single-valued.
3. There is a computable topological space that is T1 with compact subsets,

which are not closed, and with two compact sets, the intersection of which is
not compact.

Proof: 1. In Example 1.2, K⊆R is compact iff K has a minimum or K = ∅
(which is the only closed compact set), and for non-empty sets, K1,K2 ∈ κ(p)
for some p iff K1 and K2 have the same minimum. Therefore, κ is not single-
valued.

2. Suppose, K,L⊆X are compact such that K �= L. Then w.l.o.g. x ∈ K \L
for some x ∈ X. Since τ is a T1-topology for every y ∈ L there is some Uy ∈ β

such that y ∈ Uy and x �∈ Uy. Since L is compact and L⊆
⋃

y∈L Uy, there is
some finite set F⊆L such that L⊆

⋃
y∈F Uy. Therefore, we have a finite cover of

L with base elements that does not cover K, since (∀y)x �∈ Uy. Since K and L

have different sets of finite covers, they cannot have the same κ-name.
3. In Example 1.4, N ∪ {−1} and N ∪ {−2} are non-closed compact sets, the

intersection N of which is not compact. In particular, the space is not T2. �

By Theorem 13.2 the relation x ∈ W is (δ, θ)-r.e. Therefore, a θ-name of an
open set W contains the information how to verify by a machine δ(q) ∈ W iff
δ(q) ∈ W . There are various equivalent other ways to encode this information.
First, we prove a more general lemma. Let ρ< and δSi be the inner representations
of the points of the lower real line R< and Sierpinski space Si, respectively
(Example 1). For W⊆X define the characteristic functions cfR

W : X → R and
cfSi

W : X → Si = {⊥,�} by cfR
W (x) = 0 and cfSi

W (x) = ⊥ if x �∈ W and
cfR

W (x) = 1 and cfSi
W (x) = � if x ∈W .

Definition 18. Let γ : ⊆Σω → X be a representation. Define representations
θdom

γ , θcfγ and θSi
γ of the γ-open sets as follows:

θdom
γ (p) = W ⇐⇒ γ−1[W ] = dom(ηω∗

p ) ∩ dom(γ) , (26)

θcfγ (p) = W ⇐⇒ ηωω
p is a (γ, ρ<)-realization of cfR

W , (27)

θSi
γ (p) = W ⇐⇒ ηωω

p is a (γ, δSi)-realization of cfSi
W . (28)
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Lemma 19. θdom
γ ≡ θcfγ ≡ θSi

γ .

By the utm-theorem for ηωa, there is a machine Ma that on input (p, q) com-
putes ηωa

p (q) (a ∈ {ω, ∗} ). By definition: θdom
γ (p) = W iff the machine M∗ halts

on input (p, q) iff γ(q) ∈W (for all q ∈ dom(γ)); θcfγ (p) = W iff the machine Mω

with input (p, q), q ∈ dom(γ), computes a list of all rational numbers c < 0 if
γ(q) �∈ W and a list of all rational numbers c < 1 if γ(q) ∈ W ; θSi

γ (p) = W iff
the machine Mω with input (p, q), q ∈ dom(γ), writes some r ∈ dom(δSi) such
that ι(1) � r iff γ(q) ∈ W . In the first case γ(q) ∈ W is detected by halting,
in the second case by writing some (code of a) rational number > 0, and in the
last case by writing ι(1) as a subword.

Proof: θdom
γ ≤ θcf

γ : The representation ρ′ of the real numbers, defined by
ρ′(q) = x iff q = ι(u0)ι(u1)ι(u2) . . . such that νQ(ui) ≤ νQ(ui+1) and x =
supi νQ(ui) is equivalent to ρ< [Wei00]. By the utm-theorem there is a machine
N that on input (p, q) computes ηω∗

p (q). There is a machine M that on input
(p, q) simulates the machineN on input (p, q). For the ith step ofN it writes ι(u0)
for some u0 with νQ(u0) = 0. If the machine N halts, the machine M continues
writing ι(u1) such that νQ(u1) = 1 forever. Then for all (p, q), ρ′ ◦ fM (p, q) ∈
{0, 1} and ηω∗

p (q) exists iff ρ′ ◦fM (p, q) = 1. Let h : ⊆Σω → Σω be a translation
of ρ′ to ρ<. Since (p, q) �→ h ◦ fM (p, q) is computable, by the smn-theorem
there is a computable function r : Σω → Σω such that h ◦ fM (p, q) = ηωω

r(p)(q).
Suppose, θdom

γ (p) = W . Then for all q ∈ dom(γ), ρ< ◦ ηωω
r(p)(q) ∈ {0, 1} and

ρ< ◦ ηωω
r(p)(q) = 1 ⇐⇒ ηω∗

p (q) exists ⇐⇒ γ(q) ∈ W ⇐⇒ cfR
W ◦ γ(q) = 1.

Therefore, θcfγ ◦ r(p) = W .
θcf

γ ≤ θSi
γ : There is a machine that on input (p, q) simulates a machine N

computing ηωω
p (q) writing ι(0) after every step of N . As soon as some subword

ι(v) has occurred in the output of N such that νQ(v) > 0 M continues writing
ι(1) forever. By the method used above a computable translation from θcfγ to θSi

γ

can be found.
θSi

γ ≤ θdom
γ : There is a machine that on input (p, q) simulates a machine

N computing ηωω
p (q) and halts as soon as the subword ι(1) has occurred in the

output of N . Continue as in the first case. �

Applied to our admissible representation δ we obtain three representations
of the open sets that are equivalent to θ.

Theorem 20. For the inner representations δ and θ of the points and the open
sets, respectively, for a computable topological space X,

θ ≡ θdom
δ ≡ θcfδ ≡ θSi

δ .

Proof: By Lemma 19 it suffices to prove θ ≡ θdom
δ .
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θ ≤ θdom
δ : By Theorem 13.2 “x ∈ W” is (δ, θ)-r.e. Therefore, there is a

machine M that on input (p, q), p ∈ dom(θ) and q ∈ dom(δ), halts iff δ(q) ∈ θ(p).
By the smn-theorem there is a computable function r : Σω → Σω such that
fM (p, q) = ηω∗

r(p)(q). Therefore, δ(q) ∈ θ(p) iff q ∈ dom(ηω∗
r(p)), hence θ(p) =

θdom
δ ◦ r(p).

θdom
δ ≤ θ: By (26) for p ∈ dom(θdom

δ ) and q ∈ dom(δ), δ(q) ∈ θdom
δ (p) iff

ηω∗
p (q) exists. There is a machine M that halts on input (p, q) iff ηω∗

p (q) exists.
Therefore, “x ∈W” is (δ, θdom

δ )-r.e. By Theorem 13.2, θdom
δ ≤ θ. �

For the special case of Rn and for computable metric spaces the theorem has
been proved in [BW99] and [BP03], respectively.

7 Inessential Modifications

The Definition 4 of a computable topological space X = (X, τ, β, ν) can be
modified in various ways without changing the induced computability concepts
on points and subsets.

If the T0-condition is violated, then there are points x �= y such that {U ∈
β | x ∈ U} = {U ∈ β | y ∈ U}, that is, x and y can not be distinguished by
their neighborhoods. By (11), δ becomes a multi-representation. After identifying
such points we obtain a representation of a T0-space. (Formally they are called
equivalent and the space must be factorized.) Notice that by (20) in Definition
8 the topology of a computable predicate space is T0.

The notation ν of the base β induces the various computability concepts on
points and open, closed and quasi-compact sets by means of Definitions 5. In
applications these concepts should be invariant under “inessential changes” of
the base β and its notation ν.

Definition 21. The computable topological spaces X = (X, τ, β, ν) and X′ =
(X, τ, β′, ν′) are equivalent iff ν ≤ θ′ and ν′ ≤ θ.

As an example of equivalent topological spaces consider the real line and
canonical notations ν and ν′ of the open intervals the endpoints of which are
binary fractions or ternary fractions, respectively. The computability concepts
introduced in Definition 5 can be called “computationally robust” since they
are the same for equivalent topological spaces. Usually, non-robust concepts
[BW99, Wei00, BP03] have only few applications.

Theorem 22 (robustness). Let X = (X, τ, β, ν) and X′ = (X, τ, β′, ν′) be
computable topological spaces.
1. ν ≤ θ′ ⇐⇒ δ′ ≤ δ ⇐⇒ θ ≤ θ′.
2. X and X′ are equivalent ⇐⇒ δ ≡ δ′ ⇐⇒ θ ≡ θ′.
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3. If δ′ ≤ δ, then

θ ≤ θ′, ψ′ ≤ ψ, ψ̃′ ≤ ψ̃, κ′ ≤ κ, (θ′)− ≤ θ−, ψ− ≤ (ψ′)−, δ− ≤ (δ′)− .

4. If X and X′ are equivalent, then γ ≡ γ′ for each naming system γ from
Definition 5, where γ′ is the representation for X′ corresponding to γ.

Proof: 1. Suppose ν ≤ θ′. Then [δ′, ν] ≤ [δ′, θ′]. Since θ′ ≤ θ′, by “⇐=” in
Theorem 13.2 for X′, x ∈ U (U ∈ τ) is [δ′, θ′]-r.e. Therefore x ∈ U (U ∈ β)
is [δ′, ν]-r.e. By Theorem 13.1, δ′ ≤ δ. Suppose δ′ ≤ δ. Since θ ≡ θ, x ∈ W is
(δ, θ)-r.e. by Theorem 13.2, hence (δ′, θ)-r.e. By “=⇒” in Theorem 13.2, θ ≤ θ′.
Suppose θ ≤ θ′. Then ν ≤ θ′ since ν ≤ θ.

2. Immediately from 1.

3. Suppose δ′ ≤ δ.
“θ ≤ θ′”: This follows from 1.
“ψ′ ≤ ψ”: By Corollary 14, A ∩ V �= ∅ (A closed and V open) is (ψ′, θ′)-r.e.
Since ν ≤ θ′, A ∩ V �= ∅ (A closed and V ∈ β) is (ψ′, ν)-r.e. Therefore, ψ′ ≤ ψ

by Theorem 13.3
“ψ̃′ ≤ ψ̃”: From the case above by Lemma 6.3.
“κ′ ≤ κ”: By Theorem 11,

⋃
νfs ≤ θ, hence

⋃
νfs ≤ θ′ by 1. By Corollary 14,

K⊆W (for quasi-compact K and open W ) is (κ′, θ′)-r.e., hence (κ′,
⋃
νfs)-r.e.

(for quasi-compact K and finite unions of base elements). Therefore, κ′ ≤ κ by
Theorem 13.2.
The remaining statements follow immediately from Definition 5.

4. This follows from 3. �

By Lemma 9, for a computable predicate space Z = (X,σ, λ) the space
T (Z) = (X, τ, βλ, νλ) where νλ(ι(u1) . . . ι(uk)) = λ(u1) ∩ . . . ∩ λ(uk) and τ is
the topology generated by the subbase σ is a computable topological space such
that δZ ≡ δλ. If σ is not only a subbase but a base of τ , Y := (X, τ, σ, λ) is an
effective topological space, which may be computable.

For the topology τ we have the basis βλ with notation νλ (defined via formal
intersections of subbase elements) and the basis σ with notation λ.

Lemma 23. Let Y = (X, τ, σ, λ) be an effective topological space such that Z =
(X,σ, λ) is a computable predicate space. Then T (Z) = (X, τ, βλ, νλ) and Y are
equivalent iff Y is a computable topological space.

Proof: Straightforward, apply Theorem 11. �

In this article we start from a computable topological space X = (X, τ, β, ν)
as the most general space for introducing computability and consider a com-
putable predicate space Z = (X,σ, λ) via T (Z) = (X, τ, βλ, νλ) as a special case
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(Lemma 9) where νλ(ι(u1) . . . ι(uk)) = λ(u1) ∩ . . . ∩ λ(uk) is the notation of
“formal intersections” of subbase elements.

By Lemma 23 we could equivalently start from a computable predicate space
Z = (X,σ, λ) as the most general space for introducing computability via the
space T (Z) = (X, τ, βλ, νλ) and consider a computable topological space X =
(X, τ, β, ν) as the special predicate space Z = (X,β, ν) for which β is a base of a
topology with computable intersection (10). Roughly speaking, the approach via
a base and the approach via a subbase to computable topology are equivalent.

For a computable topological space X = (X, τ, β, ν), the notation ν must
have a recursive domain. Admitting a recursively enumerable domain is no gen-
eralization.

Theorem 24 (r.e. domain). Let X′ = (X, τ, β, ν′) be an effective topological
space such that dom(ν′) is r.e. and (10) is true for some r.e. set S′⊆(dom(ν′))3.
Then there is a notation ν : ⊆Σ∗ → β such that ν ≡ ν′, X = (X, τ, β, ν) is a
computable topological space and for each representation γ from Definition 5 for
X, γ ≡ γ′, where γ′ is the naming system defined for X′ correspondingly.

Proof: If dom(ν′) is recursive, then define ν := ν′. Otherwise, there is a com-
putable injective function h : Σ∗ → Σ∗ such that dom(ν′) = range(h). Define
ν(u) := ν′◦h(u). Then ν has recursive domain and ν ≡ ν′ since h−1 : ⊆Σ∗ → Σ∗

is computable. Let (u, v, w) ∈ S ⇐⇒ (h(u), h(v), h(w)) ∈ S′. Then S is an r.e.
set such that (10) is true. Therefore, X is a computable topological space.

For the representations in Definition 5 the unprimed versions can be trans-
lated easily to equivalent primed ones by means of the function h and primed
versions can be translated to equivalent unprimed ones by means of the func-
tion h−1. �

If the set of non-empty base elements is r.e., the empty base elements can be
ignored.

Lemma 25. Let X = (X, τ, β, ν) be a computable topological space such that
β′ := {U ∈ β | U �= ∅} is ν-r.e. Then there is a notation ν′ of β′ such that
X′ = (X, τ, β′, ν′) is a computable topological space equivalent to X.

Proof: There is a computable function g : ⊆Σ∗ → Σ∗ with recursive domain B
such that g[B] = {u | ν(u) �= ∅}. Define ν′ := ν ◦ g. With S from (10) let

S′ := {(u′, v′, w′) | (g(u′), g(v′), g(w′)) ∈ S)} .

Then ν′(u′) ∩ ν′(v′) =
⋃
{ν′(w′) | (u′, v′, w′) ∈ S′}, hence X′ is a computable

topological space.
Since ν′(u′) = ν◦g(u′) for all u′ ∈ B = dom(ν′), ν′ ≤ θ. There is a machineM

that on input u writes all u′ ∈ B such that g(u′) = u (and writes 11 from time to
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time). If ν(u) = ∅, thenM writes 11 repeatedly, hence θ′◦fM (u) = ∅. If ν(u) �= ∅,
then M writes words u′ such that g(u′) = u, hence ν′(u′) = ν ◦ g(u′) = ν(u).
Therefore, θ′ ◦ fM (u) = ν′(u′) = ν(u). We obtain ν ≤ θ′. In summary, X and X′

are equivalent. �

8 Subspaces and Products

We consider restrictions and products of effective topological spaces. Let X =
(X, τ, β, ν) be an effective topological space. For B⊆X define the restriction
XB = (B, τB , βB , νB) of X to B by dom(νB) := dom(ν), νB(w) := ν(w) ∩ B,
βB := range(νB) and τB := {W ∩ B | W ∈ τ}. Let δB , θB , ... , ψ−

B be the
representations for XB from Definition 5. For a multi-function f : X ⇒ Y and
Z⊆Y define f |Z : X ⇒ Z by f |Z(x) := f(x) ∩ Z for all x ∈ X.

Lemma 26.

1. XB is an effective topological space, which is computable if X is computable,
2. δB = δ|B,
3. θB(p) = θ(p) ∩B for all p ∈ dom(θB) = dom(θ),
4. ψ−

B(p) = ψ−(p) ∩B for all p ∈ dom(ψ−
B) = dom(ψ−),

5. ψB |C = ψ|C for C := {C⊆B | C closed in X}.
6. κB|L = κ|L for L := {K⊆B | K compact in X}.

Proof: 1. Straightforward.
2. For x ∈ B, x ∈ ν(w) ⇐⇒ x ∈ νB(w), see (11).
3. Straightforward.
4. ψ−

B(p) = B \ θB(p) = B \ (θ(p) ∩B) = B \ θ(p) = B ∩ ψ−(p).
5. For C⊆B, νB(w)∩C �= ∅ ⇐⇒ ν(w)∩B ∩C �= ∅ ⇐⇒ ν(w)∩C �= ∅, see

(13).
6. Similar to 5., see (15). �

For i = 1, 2 let Xi = (Xi, τi, βi, νi) be effective topological spaces with rep-
resentations δi, θi, ... ,ψ−

i from Definition 5. Define the product X = (X1 ×
X2, τ , β, ν) of X1 and X2 such that dom(ν) = (〈u1, u2〉 | u1 ∈ dom(ν1), u2 ∈
dom(ν2)}, ν〈u1, u2〉 = ν1(u1)× ν2(u2), β = range(ν) and τ is the product topol-
ogy generated by β. Let δ, θ, ... , ψ

−
be the representations for X from Defini-

tion 5.

Lemma 27.

1. X is an effective topological space, which is computable if X1 and X2 are
computable.

2. δ ≡ [δ1, δ2]
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3. (x1, x2) �→ (x1, x2) is (δ1, δ2, δ)-computable, the projections (x1, x2) �→ xi are
(δ, δi)-computable.

4. For open sets, the product (W1,W2) �→ W1 ×W2 is (θ1, θ2, θ)-computable.
Furthermore, the product is (θ−1 , θ

−
2 , θ

−
)-computable if “U1 �= ∅” is ν1-r.e.

and “U2 �= ∅” is ν2-r.e.
5. For open sets, the projection W �→ pr1[W ] is (θ, θ1)-computable if “U2 �= ∅”

is ν2-r.e.
6. For closed sets, the product (A1, A2) �→ A1 × A2 is (ψ1, ψ2, ψ)-computable

and (ψ−
1 , ψ

−
2 , ψ

−
)-computable.

7. For compact sets, (K1,K2) �→ K1 × K1 is (κ1, κ2, κ)-computable and the
projection K �→ pr1[K] is (κ, κ1)-computable.

Proof: 1. There are sets S1 and S2 such that (10) for X1 and X2, respectively.
Let S := {(〈u1, u2〉, 〈v1, v2〉, 〈w1, w2〉) | (u1, v1, w1) ∈ S1, (u2, v2, w2) ∈ S2}. The
set S satisfies (10) for X. It is r.e. if S1 and S2 are r.e.

2. From a list of all pairs 〈u1, u2〉 such that (x1, x2) ∈ ν1(u1) × ν2(u2) a list
of all u1 such that x1 ∈ ν1(u1) and a list of all u2 such that x2 ∈ ν2(u2) can be
computed and vice versa.

3. Immediate or from 2.
4. Straightforward.
5. Straightforward.
6. Use: A1 ×A2 ∩ ν〈u1, u2〉 �= ∅ ⇐⇒ A1 ∩ ν1(u1) �= ∅ ∧ A2 ∩ ν2(u2) �= ∅.
7. First, we show that K1 ×K2 is compact. Suppose, K1 ×K2⊆

⋃
i∈I Ui ×Vi

(Ui ∈ β1, Vi ∈ β2). Suppose, x ∈ K1. For Ix := {i ∈ I | x ∈ Ui}, K2⊆
⋃

i∈Ix
Vi,

henceK2⊆
⋃

i∈Jx
Vi for some finite set Jx⊆Ix⊆I, sinceK2 is compact. ForWx :=⋂

i∈Jx
Ui, K1⊆

⋃
x∈K1

Wx, hence K1⊆
⋃

x∈F Wx for some finite set F⊆K1 since
K1 is compact. Therefore,

K1 ×K2⊆
⋃

x∈F Wx ×K2⊆
⋃

x∈F

⋃
i∈Jx

Wx × Vi⊆
⋃

x∈F

⋃
i∈Jx

Ui × Vi,
which is a finite subcover. If in the above consideration the finitely many finite
sets Jx are called F1, . . . , Fn, then

K1 ×K2⊆
⋃

i∈I Ui × Vi, iff there are finite sets F1, . . . , Fn⊆I such that
(∀j ≤ n)K2⊆

⋃
i∈Fj

Vi and K1⊆
⋃

j≤nWj (where Wj :=
⋂

i∈Fj
Ui) .

(29)

(The condition Wj �= ∅ is not necessary and has been omitted). Define a multi-
representation γ of a set of compact subsets of X1×X2 by γ〈p1, p2〉 := {K1×K2 |
K1 ∈ κ1(p1), K2 ∈ κ2(p2)}. Theorem 13.6 it suffices to show that K⊆U is
(γ,

⋃
νfs)-r.e.

Therefore, we need a machine that halts on input (〈p1, p2〉, w) iff for all
K1 ∈ κ1(p1) and K2 ∈ κ2(p2), K1 × K2⊆

⋃
i∈I Ui × Vi, where νfs(w) = {U1 ×

V1, . . . , Um×Vm}. By (29), we need a machine M that halts on input (〈p1, p2〉, w)
iff there are sets F1, . . . , Fn⊆{1, . . . ,m} such that
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(∀j ≤ n)K2⊆
⋃

i∈Fj
Vi and K1⊆

⋃
j≤n

⋂
i∈Fj

Ui.
There is such a machine, since from F1, . . . , Fn⊆{1, . . . ,m} for each j ≤ n a⋃
νfs
2 -name of

⋃
i∈Fj

Vi and a θ1-name of
⋃

j≤n

⋂
i∈Fj

Ui can be computed (Theo-
rem 11) and sinceK2⊆W is (κ2,

⋃
νfs
2 )-r.e. (apply Theorem 13.6 to γ := κ := κ2)

and K1⊆W is (κ1, θ1)-r.e. (apply Theorem 13.5 to γ := κ := κ1).
Computability of the projection on compact sets follows from the more gen-

eral Theorem 38.6 below. �

The generalization to finite products is straightforward.

9 The Space of Continuous Functions

In this section let Xi = (Xi, τi, βi, ν)i (i = 1, 2) be effective topological spaces
with representations δi, θi, ... ,ψ−

i from Definition 5. A partial function f : ⊆
X1 → X2 is continuous iff for every W ∈ τ2, f−1[W ] is open in dom(f), that is,
f−1[W ] = V ∩dom(f) for some V ∈ τ1. The following conditions are equivalent:

f is continuous, (30)

(∀x ∈ dom(f),W ∈ τ2)(f(x) ∈W =⇒ (∃V ∈ τ1)(x ∈ V ∧ f [V ]⊆W )), (31)

f [clsdom(f)(C)]⊆f [C] for every C⊆dom(f), (32)

f has a continuous (δ1, δ2)-realization. (33)

The equivalences of (30), (31) and (32) are well-known [Eng89]. The equivalence
of (30) and (33) is the “main theorem” for admissible representations [Wei00,
Theorem 3.2.11], since for an effective topological space X = (X, τ, β, ν) the
representation δ is admissible w.r.t. the topology τ . We use these characteriza-
tions to define a number of multi-representations of the set of partial continuous
functions f : ⊆X1 → X2. We use properly multi-valued representations since
in many applications specifying the domains of functions explicitly is difficult
or unnecessary and many computability results can already be proved with-
out explicit information about the domains of the functions. The names of our
multi-representations do not fix the domains (Theorem 29.2). The applications,
for example in Section 11, strongly justify using multi-representations.

Definition 28. Define multi-representations of the set CP(X1,X2) of all partial
continuous functions f : ⊆X1 → X2 as follows:
1. f ∈ −→

δ1(p) : ⇐⇒ f ◦ δ1(q) = δ2 ◦ ηωω
p (q) for all q ∈ dom(f ◦ δ1),

2. f ∈ −→
δ2(p) : ⇐⇒ f−1[θ2(q)] = θ1 ◦ ηωω

p (q) ∩ dom(f) for all q ∈ dom(θ2),

3. f ∈ −→
δ3(p) : ⇐⇒ f−1[ν2(v)] = θ1 ◦ η∗ω

p (v) ∩ dom(f) for all v ∈ dom(ν2),

4. f ∈ −→
δ4(p) : ⇐⇒

{
(w � p =⇒ (∃u ∈ dom(ν1), v ∈ dom(ν2))w = 〈u, v〉)
and f−1[ν2(v)] =

⋃
〈u,v〉�p ν1(u) ∩ dom(f),
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5. f ∈ −→
δ5(p) : ⇐⇒ f [C] = ψ2 ◦ ηωω

p (q) if C⊆dom(f) and C = ψ1(q),

6. f ∈ −→
δ6(p) : ⇐⇒ f [K] ∈ κ2 ◦ ηωω

p (q) if K⊆dom(f) and K ∈ κ1(q),

7. f ∈ −→
δ7(p) : ⇐⇒

{
U := ν1 ◦ ηω∗

p 〈q1, q2〉 exists, x ∈ U and f [U ]⊆W
if x = δ1(q1), W = θ2(q2) and f(x) ∈W,

8. f ∈ −→
δ8(p) : ⇐⇒

{
U := ν1 ◦ ηω∗

p 〈q1, v〉 exists, x ∈ U and f [U ]⊆V
if x = δ1(q1), V = ν2(v) and f(x) ∈ V.

For the multi-representation
−→
δ1 we will use the name [δ1 →p δ2] from [Wei00,

Wei08], see Section 2. If we call p a program of ηab
p , then in 1. a name p is a

program for computing f w.r.t. (δ1, δ2), in 2. a name p is a program for computing
W �→ f−1[W ] for open W w.r.t. (θ2, θ1), etc. By Lemma 6.3, f ∈ −→

δ5(p) iff p is a
program for computing C �→ f [C] for C⊆dom(f) w.r.t. (ψ̃1, ψ̃2).

Theorem 29. Let X1,X2 be computable topological spaces.
1. The multi-functions

−→
δi , i = 1, . . . , 8, are multi- representations of the set

CP(X1,X2) of all partial continuous functions f : ⊆X1 → X2 such that
−→
δ1 ≡ −→

δ2 ≡ −→
δ3 ≡ −→

δ4 ≡ −→
δ5 ≡ −→

δ6 ≤ −→
δ7 ≤ −→

δ8 . (34)

2. For 1 ≤ i ≤ 8 and every p ∈ dom(
−→
δi ), g ∈ −→

δi (p) if f ∈ −→
δi (p) and g is a

restriction of f .
3. For 1 ≤ i ≤ 6 and every p ∈ dom(

−→
δi ), f(x) = g(x) if f, g ∈ −→

δi (p) and
x ∈ dom(f) ∩ dom(g)

4. For 1 ≤ i ≤ 4 and every p ∈ dom(
−→
δi ) there is some fip ∈ −→

δi (p) such that for
every f : ⊆X1 → X2, f ∈ −→

δi (p) ⇐⇒ f is a restriction of fip .

5. In general, Theorem 29.3 is not true for
−→
δ7 and

−→
δ8 ,

−→
δ7 �≤ −→

δ1 ,
−→
δ8 �≤ −→

δ1 ,−→
δ8 �≤ −→

δ7 and Theorem 29.4 is not true for
−→
δ5 and

−→
δ6 .

By Theorem 29.2 the classes
−→
δi (p) are closed under restriction. By Theo-

rem 29.4 for 1 ≤ i ≤ 4 every non-empty class
−→
δi (p) contains a function with

maximal domain. By Theorem 29.3 for 1 ≤ i ≤ 6 the restriction of
−→
δi to a

class of continuous functions with fixed domain is single-valued. Single-valued
representations of classes of partial functions can also be obtained by adding in-
formation about the domains to names, for example

−→
δ1 ∧ θ and

−→
δ1 ∧ψ (or equiv-

alent ones) as a representation of the continuous functions with open domains
and with closed domains, respectively, [Her99, Wei01, WZ07]. The separation of
evaluation information from domain information is in particular meaningful if
(names of) the domains of the considered functions are not known. Theorem 38
shows that for many results the domain information of continuous functions is
not needed.

For the representations
−→
δ7 and

−→
δ8 , which are derived from the continuity

characterization (31), function values are no longer defined uniquely (if they
exist) by names, see Example 3.
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Proof: 1. By the main theorem for admissible representations [Wei00, Theorem
3.2.11] a function f : ⊆X1 → X2 is continuous iff it has a continuous (δ1, δ2)-
realization h : ⊆Σω → Σω. Since every continuous function h : ⊆Σω → Σω has
an extension ηωω

p (for some p ∈ Σω) and since every extension of a realization is
a realization, the function f : ⊆X1 → X2 is continuous iff, for some p, ηωω

p is a

(δ1, δ2)-realization, that is, iff f ∈ −→
δ1(p). Therefore,

−→
δ1 is a multi-representation

of CP(X1,X2).
If f ∈ −→

δ8(p), then for all x ∈ dom(f) and all V ∈ β2 there is some T ∈
τ1 such that x ∈ T and f [T ]⊆V , hence, f is continuous. Since in general
range(γ)⊆range(δ) if γ ≤ δ, from (34) we can conclude that the multi-functions−→
δi , i = 1, . . . , 8, are multi-representations of the set CP(X1,X2). We prove (34).−→

δ1 ≤ −→
δ4 : By Theorem 11 and Lemma 10 there is a computable function

h1 : ⊆Σ∗ → Σω such that δ1[wΣω] =
⋂
νfs
1 (w) = θ1◦h1(w) for all w ∈ dom(νfs

1 ).
By the utm-theorem for ηωω there is a machine M that computes the function
(p, q) �→ ηωω

p (q).
There is a machine N that on input p ∈ dom(δ1) writes all ι〈u, v〉 for which

there are w1 ∈ dom(νfs
1 ), w2 ∈ dom(νfs

2 ) such that M on input (p,w11ω) writes
w2 in at most |w1| steps, u � h1(w1), and v � w2. (We also force N to write
11 from time to time in order to produce a result in Σω .)

Let f ∈ −→
δ1(p). Then for v ∈ dom(ν2) and x ∈ dom(f),

x ∈ f−1[ν2(v)]
⇐⇒ f(x) ∈ ν2(v)
⇐⇒ (∃w1 ∈ dom(νfs

1 ))(∃w2 ∈ dom(νfs
2 ))(x ∈ δ1[w1Σ

ω], on input (p,w11ω)
the machine M writes w2 in at most |w1| steps and v � w2)

⇐⇒ (∃w1 ∈ dom(νfs
1 ))(∃w2 ∈ dom(νfs

2 ))(∃u� h1(w1))
(x ∈ ν1(u), on input (p,w11ω) the machine M writes w2

in at most |w1| steps and v � w2)
⇐⇒ (∃u)(x ∈ ν1(u) ∧ ι〈u, v〉 � fN (p))
⇐⇒ x ∈

⋃
{ν1(u) | 〈u, v〉 � fN (p)}.

Therefore, f−1[ν2(v)] =
⋃
{ν1(u) | 〈u, v〉 � fN (p)} ∩ dom(f), hence f ∈−→

δ4 ◦ fN (p). This shows that fN translates
−→
δ1 to

−→
δ4 .−→

δ4 ≤ −→
δ2 : There is a machine M that on input (p, q), p, q ∈ Σω, lists all

u ∈ Σ∗ such that v � q and 〈u, v〉 � p for some v ∈ Σ∗. Let f ∈ −→
δ4(p). Then

for x ∈ dom(f) and q ∈ dom(θ2),

x ∈ f−1[θ2(q)]
⇐⇒ (∃v � q)x ∈ f−1[ν2(v)]
⇐⇒ (∃v � q)(∃u)(〈u, v〉 � p ∧ x ∈ ν1(u))
⇐⇒ (∃u)(x ∈ ν1(u) ∧ u� fM (p, q))
⇐⇒ x ∈ θ1 ◦ fM (p, q)) .

By the smn-theorem there is some computable function g : Σω → Σω such
that fM (p, q) = ηωω

g(p)(q). Then f−1[θ2(q)] = θ1 ◦ ηωω
g(p)(q) ∩ dom(f), hence f ∈
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−→
δ2 ◦ g(p). Therefore, g translates

−→
δ4 to

−→
δ2 .−→

δ2 ≤ −→
δ3 : By the utm-theorem for ηωω and the smn-theorem for η∗ω, there

is a computable function g : Σω → Σω such that ηωω
p (ι(v)1ω) = η∗ω

g(p)(v).

Let f ∈ −→
δ2(p). Since ν2(v) = θ2(ι(v)1ω), f−1[ν2(v)] = f−1[θ2(ι(v)1ω)] =

θ1◦ηωω
p (ι(v)1ω)∩dom(f) = θ1◦η∗ω

g(p)(v)∩dom(f), hence f ∈ −→
δ3 ◦g(p). Therefore,

g translates
−→
δ2 to

−→
δ3 .−→

δ3 ≤ −→
δ1 : There is a machine M that on input (p, q) ∈ (Σω)2 prints all ι(v),

v ∈ dom(ν2), such that for some u ∈ dom(ν1), u � q and u � η∗ω
p (v) (apply

the utm-theorem).
Let f ∈ −→

δ3(p) and x = δ1(q) ∈ dom(f). Then
f(x) ∈ ν2(v)
⇐⇒ x ∈ f−1[ν2(v)]
⇐⇒ x ∈ θ1 ◦ η∗ω

p (v)
⇐⇒ (∃u)(x ∈ ν1(u) ∧ u� η∗ω

p (v)
⇐⇒ (∃u)(u� q ∧ u� η∗ω

p (v)
⇐⇒ v � fM (p, q),
hence f(x) = δ2 ◦ fM (p, q). By the smn-theorem there is a computable function
g : Σω → Σω such that fM (p, q) = ηωω

g(p)(q). Since f ◦ δ1(q) = δ2 ◦ ηωω
g(p)(q),

f ∈ −→
δ1 ◦ g(p). Therefore,

−→
δ3 ≤ −→

δ1 .−→
δ4 ≤ −→

δ5 : Suppose f ∈ −→
δ4(p). Let C⊆dom(f) and C = ψ1(q). Then

ν2(v) ∩ f [C] �= ∅
⇐⇒ ν2(v) ∩ f [C] �= ∅
⇐⇒ (∃x ∈ C) f(x) ∈ ν2(v)
⇐⇒ (∃x ∈ C)x ∈ f−1[ν2(v)] =

⋃
〈u,v〉�p ν1(u) ∩ dom(f)

⇐⇒ (∃x ∈ C)(∃u) (〈u, v〉 � p ∧ x ∈ ν1(u))
⇐⇒ (∃u) (〈u, v〉 � p ∧ C ∩ ν1(u) �= ∅)
⇐⇒ (∃u) (〈u, v〉 � p ∧ u� q).

There is a machine M that on input (p, q) lists all ι(v) such that for some
u, (〈u, v〉 � p ∧ u � q). By the smn-theorem there is a computable function
r : Σω → Σω such that fM (p, q) = ηωω

r(p)(q). Then f [C] = ψ2 ◦ ηωω
r(p)(q), hence,

f ∈ −→
δ5 ◦ r(p). Therefore, r translates

−→
δ4 to

−→
δ5 .−→

δ5 ≤ −→
δ1 : Suppose f ∈ −→

δ5(p). Let x ∈ dom(f) and x = δ1(q). Then
{x}⊆dom(f) and {x} = ψ1(q), hence f [{x}] = ψ2η

ωω
p (q) and v � ηωω

p (q) ⇐⇒
ν2(v) ∩ f [{x}] �= ∅ ⇐⇒ ν2(v) ∩ f [{x}] �= ∅ ⇐⇒ f(x) ∈ ν2(v). Therefore,
f(x) = δ2 ◦ ηωω

p (q). We conclude, f ∈ −→
δ1(p), hence the identity translates

−→
δ5

to
−→
δ1 .−→
δ2 ≤ −→

δ6 : Suppose f ∈ −→
δ2(p) and K ∈ κ1(q). Then f [K]⊆

⋃
νfs
2 (v) ⇐⇒

K⊆f−1[
⋃
νfs
2 (v)]. By Lemma 10,

⋃
νfs
2 (v) = θ2 ◦ h(v) for some computable

function h, hence f−1[
⋃
νfs
2 (v)] = θ1 ◦ ηωω

p ◦ h(v). There is a machine that on
input (p, q) lists all ι(v), v ∈ dom(νfs

2 ), such that there is some w � q such that
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u� ηωω
p ◦ h(v) for all u� w. Then fM realizes (f,K) �→ f [K].−→

δ6 ≤ −→
δ1 : In Lemma 15 let h1 realize ec1 and let h2 realize ec−1

2 . If f ∈ −→
δ6(p),

then ec−1
2 ◦ ηωω

p ◦ ec1 realizes x �→ f(x). There is a computable function g such

that ηωω
g(p)(q) = ec−1

2 ◦ ηωω
p ◦ ec1(q). Then g translates

−→
δ6 to

−→
δ1 .

−→
δ2 ≤ −→

δ7 : There is a machine M that on input (p, 〈q1, q2〉) ∈ (Σω)2 searches
for some u ∈ dom(ν1) such that u� q1, u� ηωω

p (q2) (apply the utm-theorem),
and writes u if the search was successful.

Let f ∈ −→
δ2(p). Let x = δ1(q1) ∈ dom(f) and f(x) ∈ W = θ2(q2). Then

x ∈ f−1[θ2(q2)] = θ1 ◦ ηωω
p (q2) ∩ dom(f), hence u � q1 and u � ηωω

p (q2) for
some u ∈ dom(ν1). Therefore, u := fM (p, 〈q1, q2〉) exists. Since u � q1 and
u� ηωω

p (q2), x ∈ ν1(u) and ν1(u)⊆θ1 ◦ ηωω
p (q2)), hence f [ν1(u)]⊆θ2(q2).

By the smn-theorem for ηω∗ there is a computable function r : Σω → Σω such
that fM (p, 〈q1, q2〉) = ηω∗

r(p)〈q1, q2〉. Then f ∈ −→
δ7 ◦ r(p). Therefore, r translates

−→
δ2

to
−→
δ7 .−→
δ7 ≤ −→

δ8 : This follows from ν2 ≤ θ2.
2. Let f ∈ −→

δ1(p) and let g be a restriction of f . Then g◦δ1(q) = δ2◦ηωω
p (q) for

all for all q ∈ dom(g ◦ δ1), hence g ∈ −→
δ1(p). Therefore for i = 1, . . . , 8, g ∈ −→

δi (p)
if f ∈ −→

δi (p) and g restricts f , since
−→
δ1 ≤ −→

δi .
3. Suppose f, g ∈ −→

δ1(p) and x = δ1(q) ∈ dom(f)∩dom(g). Then f(x) = g(x)
since f ◦ δ1(q) = δ2 ◦ ηωω

p (q) = g ◦ δ1(q). Therefore for i = 1, . . . , 6, f(x) = g(x)

if f, g ∈ −→
δi (p) and x ∈ dom(f) ∩ dom(g) since

−→
δi ≤ −→

δ1 .
4. Define fip by graph(fip) =

⋃
{graph(f) | f ∈ −→

δi (p)}. By 3. the function
fip is well-defined.

i = 1: Suppose x = δ1(q) ∈ dom(f1p). Then x ∈ dom(f) for some f ∈ −→
δ1(p).

Since f1p ◦ δ1(q) = f ◦ δ1(q) = δ2 ◦ ηωω
p (q), f1p ∈ −→

δ1(p).

i = 2: Suppose x = δ1(q) ∈ dom(f2p). Then x ∈ dom(f) for some f ∈ −→
δ2(p).

We obtain x ∈ f−1
2p [θ2(q)] ⇐⇒ f2p(x) ∈ θ2(q) ⇐⇒ f(x) ∈ θ2(q)

⇐⇒ x ∈ θ1 ◦ ηωω
p (q) ∩ dom(f) ⇐⇒ x ∈ θ1 ◦ ηωω

p (q) ∩ dom(f2p).

Therefore, f2p ∈ −→
δ2(p).

i = 3: Replace θ2(q) by ν2(q) and ηωω by η∗ω in “i = 2”.
i = 4: Similar to the case “i = 2”.
5. See Example 3. �

Example 3. 1. Let X1 = X2 = (X, τ, β, ν) be a computable topological space
such that X has at least two elements. There is a machine M that on input
〈q1, q2〉 writes some u such that u� q1 and diverges if no such word u exists.
Then fM = ηω∗

p for some p ∈ Σω.

Let c ∈ X and fc(x) := c for all x ∈ X. Suppose (see Definition 28.7)
x = δ(q1), W = θ(q2) and fc(x) ∈W . Then ηω∗

p 〈q1, q2〉 = u for some u such
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that x ∈ ν(u) and fc[ν(u)] = {c} = {fc(x)}⊆W . Therefore, fc ∈ −→
δ7(p).

For c, d ∈ X, c �= d, fc, fd ∈ −→
δ7(p) but fc(c) = c �= d = fd(c). Therefore

Theorem 29.3 is false for
−→
δ7 .

Since
−→
δ7 ≤ −→

δ8 , Theorem 29.3 is false also for
−→
δ8 . If

−→
δ7 ≤ −→

δ1 or
−→
δ8 ≤ −→

δ1 , then
Theorem 29.3 must be false also for

−→
δ1 . Therefore

−→
δ7 �≤ −→

δ1 and
−→
δ8 �≤ −→

δ1 .
2. For showing

−→
δ8 �≤ −→

δ7 consider the computable topological space R for the
real line from Example 1. We may assume that the basis β contains only
intervals of length < 1. For i ∈ N define fi⊆R → R by dom(fi) := (−1; 1)
and fi(x) := 3i + x. Let (a; b) + c := (a + c; b + c). There is a machine
M that on input (q, v) such that −1 < ρ(q) < 1 and v ∈ dom(ν) searches
some i ∈ N such that ν(v) ∩ (3i − 1; 3i + 1) �= ∅ and writes some u such
that u� q and ν(u)⊆(−1; 1) ∩ (ν(v)− 3i). Notice that there is at most one
number i. Suppose fj ◦ ρ(q) ∈ ν(v). Then on input (q, v) the machine M
finds i = j and some u such that ρ(q) ∈ ν(u)⊆(−1; 1) ∩ (ν(v) − 3j), hence
fj [ν(u)]⊆fj [ν(v) − 3j] = ν(v). There is some p ∈ Σω such that fM (q, v) =
ηω∗

p 〈q, v〉 if fM (q, v) exists. Therefore, fi ∈
−→
δ8(p) for all i ∈ N.

Suppose
−→
δ8 ≤ −→

δ7 . Then there is some p ∈ Σω such that fi ∈ −→
δ7(p) for all

i ∈ N. Let ρ(q1) = x = 0 and θ2(q2) = W =
⋃

i∈N{(3i− 2−i; 3i+ 2−i)}. Let
i ∈ N. Since fi ∈ −→

δ7(p) and fi(x) ∈ W . Then u := ηω∗
p 〈q1, q2〉 exists such

that 0 ∈ ν1(u) and fi[ν(u)]⊆W . Therefore, the length of ν(u) ∩ (−1; 1) is
less than 2 · 2−i. Since 0 ∈ ν1(u), ν1(u) must have length 0. Contradiction.

3. Let X = (X, τ, β, ν) be a computable topological space such that there are
u, v ∈ dom(ν) and c, d ∈ X such that c ∈ ν(u), d ∈ ν(v) and ν(u)∩ν(v) = ∅.
Let fc, fd and fcd be the restriction of the identity on X to {c}, {d} and
{c, d}, respectively. There is a machine that on input q ∈ Σω copies q to the
output tape but halts as soon as it has detected ι(u) and ι(v) as subwords
of q. There is some p ∈ Σω such that fM = ηωω

p . Then fc, fd ∈ −→
δ5(p) but

fcd �∈ −→
δ5(p). Therefore, the condition in Theorem 29.4 is violated for

−→
δ5 .

A similar example violates the condition in Theorem 29.4 for
−→
δ6 .

Some of the equivalences in Theorem 29.1 have been proved in [Sch03] for
slightly less general spaces. For the case of semi-computable metric spaces the
equivalence of

−→
δ1 and

−→
δ4 has been proved in [Wei93]. The function eval : (f, x) �→

f(x) is (
−→
δ1 , δ1, δ2)-computable, even more, we can characterize the equivalence

class of
−→
δ1 = [δ1 →p δ2] as follows:

Theorem 30. For every multi-representation γ : Σω ⇒ F of a set F of partial
functions f : ⊆X1 → X2,

eval : (f, x) �→ f(x) is (γ, δ1, δ2)-computable ⇐⇒ γ ≤ [δ1 →p δ2] .
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Proof: We apply the more general result [Wei08, Corollary 34]. For every multi-
representation γ′ of a class F ′ of multi-functions f : X1 ⇒ X2, the apply multi-
function is (γ′, δ1, δ2)-computable iff γ′ ≤ [δ1 ⇒ δ2]. Since γ is such a multi-
representation, the apply function is (γ, δ1, δ2)-computable iff γ ≤ [δ1 ⇒ δ2].
Since γ is a multi-representation of partial functions and [δ1 →p δ2] is the re-
striction of [δ1 ⇒ δ2] to the (single-valued) partial functions [Wei08], γ ≤ [δ1 ⇒
δ2] ⇐⇒ γ ≤ [δ1 →p δ2]. �

Compare this result with Theorem 13, which is of similar type. In accordance
with Theorem 29.5, in general evaluation (f, x) �→ f(x) is not computable for−→
δ7 and

−→
δ8 . The reason is shown in Example 3: in general for x ∈ dom(f) and

f ∈ −→
δ8(p), the value f(x) is not defined uniquely by the name p of f (Theo-

rem 29.3). We only mention that some of the above statements of Theorem 29
remain true for effective topological spaces and that all the statements remain
true for effective topological spaces if “≤” (reducible) is replaced by “≤t” (con-
tinuously reducible), (use oracles for dom(ν) and S in Definition 4).

10 Where are the Points?

In our approach we have started from a computable topological space X :=
(X, τ, β, ν), that is, a set of points, a topology on it and a notation of a base
such that for some r.e. set S, ν(u)∩ν(v) =

⋃
{ν(w) | (u, v, w) ∈ S} (Definition 4).

However, the only information about X we have used is the set S, which contains
some, but not all, Boolean information about the sets ν(v). Similarly we can a
consider an effective predicate space Z := (X,σ, λ) where the only concrete
information is dom(λ). Finally, we can assume that the full Boolean information
on the topology is given.

In all these cases the elements U ∈ β can be interpreted as “regions for points”
(see pointless topology, locales [Joh82, Joh83]). Given an abstract notation ν : ⊆
Σ∗ → β we can ask in which way the regions can be filled by points. The answer
depends on the axioms for β and ν.

Definition 31. Let Z := (X,σ, λ) be an effective predicate space and let X :=
(X, τ, β, ν) be an effective topological space.
1. L⊆Σ∗ realizes Z if L = dom(λ).
2. S⊆dom(ν)3 realizes intersection for X if

ν(u) ∩ ν(v) =
⋃
{ν(w) | (u, v, w) ∈ S} for all u, v ∈ dom(ν),

3. Q realizes inclusion (on the topology) for X if
Q = {(u,D) | u ∈ dom(ν), D⊆dom(ν), ν(u)⊆

⋃
ν[D]}.

Lemma 32. Let Q realize inclusion for the spaces X := (X, τ, β, ν) and
X′ := (X ′, τ ′, β′, ν′). If S realizes intersection for X, then S realizes intersection
for X′.
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Proof: Obviously, dom(ν) = dom(ν′) and for all u, v ∈ dom(ν), ν(u)⊆ν(v) ⇐⇒
ν′(u)⊆ν′(v) (choose D = {v}). Then ν(w)⊆ν(u)∩ ν(v) =⇒ ν′(w)⊆ν′(u)∩ ν′(v),
hence

⋃
{ν′(w) | (u, v, w) ∈ S}⊆ν′(u) ∩ ν′(v). On the other hand,

ν′(t)⊆ν′(u) ∩ ν′(v) =⇒ ν(t)⊆ν(u) ∩ ν(v) =⇒ ν(t)⊆
⋃
{ν(w) | (u, v, w) ∈ S} =⇒

ν′(t)⊆
⋃
{ν′(w) | (u, v, w) ∈ S}, hence ν′(u)∩ν′(v)⊆

⋃
{ν′(w) | (u, v, w) ∈ S}. �

From the set S inclusion on the base cannot be defined, since after deleting
some points in X the set S still realizes intersection but the inclusion order
on the base may have changed. For filling the regions ν(w) with points we will
consider three cases:
(1) only dom(λ) is fixed in T (Z) (Definition 8),
(2) a fixed set S for realizing intersection, and
(3) a fixed set Q for realizing inclusion.

Definition 33.
1. For effective topological spaces X := (X, τ, β, ν) and

X′ := (X ′, τ ′, β′, ν′) a function f : X → X ′ embeds X into X′ if dom(ν′) =
dom(ν), f is injective and ν(w) = f−1[ν′(w)] for all w ∈ dom(ν). If some f
embeds X into X′, we write X � X′.

2. An effective topological space X′ is called complete in a class T of effective
topological spaces if X′ ∈ T and X � X′ for all X ∈ T .

Roughly speaking, X � X′ means that X can be obtained from X′ by deleting
some points from the regions and renaming the remaining points. In 1. we refrain
from further generalizations, for example, from changing dom(ν). Obviously, �
is a preorder on the class of all effective topological spaces.

Proposition 34.
1. In Definition 33 the embedding f : X → X ′ is (δ, δ′)-computable and its

inverse is (δ′, δ)-computable.
2. If S realizes intersection for X′ and X � X′, then S realizes intersection

for X.

Proof: 1. For every x ∈ X, x ∈ ν(w) ⇐⇒ f(x) ∈ ν′(w). By (11) the identity
on Σω realizes f as well as f−1.

2. By assumption, ν′(u) ∩ ν′(v) =
⋃
{ν′(w) | (u, v, w) ∈ S′}. Apply f−1. �

First we consider the spaces T (Z) where Z is an effective predicate space
(Definition 8).

Theorem 35. For L⊆Σ∗ define the effective predicate space ZL = (ZL, σL, λL)
by ZL := 2L, dom(λL) := L and λL(u) := {A⊆L | u ∈ A}, Then T (ZL)
is complete in the class TL of all spaces TL(Z) such that Z = (Z, σ, λ) is an
effective predicate space with L = dom(λ).
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Proof: First we show (20) for ZL. Let A,B ∈ ZL such that {U ∈ σL | A ∈ U} =
{U ∈ σL | B ∈ U}. Then {u ∈ L | A ∈ νL(u)} = {u ∈ L | B ∈ νL(u)}, hence
{u ∈ L | u ∈ A} = {u ∈ L | u ∈ B}, that is, A = B. Therefore, ZL is an effective
predicate space.

Let Z = (Z, σ, λ) be an effective predicate space with L = dom(λ). Define
f : Z → ZL by f(x) := {u ∈ L | x ∈ λ(u)}. Then f(x) = f(y) =⇒ {u ∈ L | x ∈
λ(u)} = {u ∈ L | y ∈ λ(u)} =⇒ {U ∈ σ | x ∈ U} = {U ∈ σ | y ∈ U} =⇒ x = y,
hence f is injective. Since x ∈ f−1[λL(u)] ⇐⇒ f(x) ∈ λL(u) ⇐⇒ u ∈
f(x) ⇐⇒ x ∈ λ(u), λ(u) = f−1[λL(u)] and hence νλ(v) = f−1[νλL

(v)] for
v ∈ dom(νfs). Therefore, T (Z) � T (ZL). �

Notice that (XL, σL) is a Scott domain [Sco76]. For a computable topological
space X a set S that realizes intersection was the only concrete information we
have used so far.

Theorem 36. For S⊆(Σ∗)3 let TS be the class of all effective topological spaces
X := (X, τ, β, ν) such that S realizes intersection for X. If TS �= ∅, then there is
some space XS that is complete in TS.

Proof: Let S⊆(Σ∗)3 such that TS �= ∅. Since an effective topological space is a
T0-space with countable base, its cardinality is at most 2ℵ0 , the cardinality of
the real numbers. Therefore, every effective topological space X can be obtained
from an effective topological space on a subset of the real numbers X ′⊆R by
bijective renaming. Formally,

(∀X ∈ TS)(∃X′ ∈ TS) (X ′⊆R ∧ X � X′ ∧ X′ � X) . (35)

Let D := pr1(S) be the first projection of S and let {Xi | i ∈ I}, Xi :=
(Xi, τi, βi, νi), be the set of all effective topological spaces on the set of real
numbers in TS . By assumption I �= ∅. Define the disjoint union X of the sets Xi

and a notation ν of subsets of it by dom(ν) := D and

X := {(i, x) | i ∈ I, x ∈ Xi}, ν(w) := {(i, x) ∈ X | x ∈ νi(w)} .

Since S realizes intersection for every Xi, ν(u) ∩ ν(v) = {(i, x) | x ∈ νi(u) ∩
νi(v)} = {(i, x) | (∃w)((u, v, w) ∈ S ∧ x ∈ νi(w))} =

⋃
{ν(w) | (u, v, w) ∈ S},

ν is a notation of a base of a topology τ on X, which, however, may not be T0.
We define an equivalence relation ≡ on X by

(i, x) ≡ (j, y) ⇐⇒ {u ∈ D | (i, x) ∈ ν(u)} = {u ∈ D | (j, y) ∈ ν(u)}

and factorize.
Define XS := X/≡. Since (j, y) ∈ ν(u) if (i, x) ∈ ν(u) and (i, x) ≡ (j, y),

ν(u) is a union of full equivalence classes. For u ∈ D define νS(u) := ν(u)/≡ =
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{(i, x)/≡ | (i, x) ∈ ν(u)}. Finally, let βS := range(νS) and let τS be the topology
generated by βS . By the definitions, (i, x)/≡ ∈ νS(u) ⇐⇒ x ∈ νi(u). We show
that XS = (XS , τS , βS , νS) is complete in TS .

Since {u | (i, x)/≡ ∈ νS(u)} = {u | (j, y)/≡ ∈ νS(u)} ⇐⇒ {u | (i, x) ∈
ν(u)} = {u | (j, y) ∈ ν(u)} ⇐⇒ (i, x) ≡ (j, y) ⇐⇒ (i, x)/≡ = (j, y)/≡, the
smallest topology τS containing βS , is a T0-topology.

Since (i, x)/≡ ∈ νS(u) ∩ νS(v) ⇐⇒ x ∈ νi(u) ∩ νi(v) ⇐⇒ (∃w)((u, v, w) ∈
S ∧ x ∈ νi(w)) ⇐⇒ (∃w)((u, v, w) ∈ S ∧ (i, x)/≡ ∈ νS(w)) ⇐⇒ (i, x)/≡ ∈⋃
{νS(w) | (u, v, w) ∈ S}, XS ∈ TS .

It remains to show X � XS for every X = (X, τ, β, ν) ∈ TS . Since X � Xi

for some i ∈ I by (35), it suffices to show Xi � XS .
Define f : Xi → XS by f(x) := (i, x)/≡. For x, y ∈ Xi, f(x) = f(y) =⇒

(i, x)/≡ = (i, y)/≡ =⇒ (i, x) ≡ (i, y) =⇒ (∀u)((i, x) ∈ ν(u) ⇐⇒ (i, y) ∈
ν(u)) =⇒ (∀u)(x ∈ νi(u) ⇐⇒ y ∈ νi(u)) =⇒ x = y, therefore, the function f

is injective. Finally, x ∈ νi(w) ⇐⇒ (i, x) ∈ ν(w) ⇐⇒ (i, x)/≡ ∈ νS(w) ⇐⇒
f(x) ∈ νS(w), hence νi(w) = f−1[νS(w)]. Therefore, Xi � XS . �

For a topology τ , F⊆τ is a filter of open sets if F �= ∅, ∅ �∈ F , U ∩ V ∈ F if
U, V ∈ F and V ∈ F if U ∈ F , and U⊆V ∈ τ [Eng89]. The filter F is completely
prime if for every α⊆τ with

⋃
α ∈ F , U ∈ F for some U ∈ α. The space is sober

if every completely prime filter is the set of open neighborhoods of a unique
point [Sün00]. Sobriety of X is precisely a condition that forces the lattice of
open subsets of X to determine X up to homeomorphism.

For a point x ∈ X of an effective topological space X = (X, τ, β, ν) by (11),
p ∈ Σω is a δ-name of x if it is a list of the set H := {u ∈ dom(ν) | x ∈ ν(u)}.
The set H has the properties

H �= ∅, ∅ �∈ ν[H] , (36)

(∀u, v ∈ H)(∃w ∈ H) ν(w)⊆ν(u) ∩ ν(v) , (37)

(∀D⊆dom(ν)) ((∃u ∈ H)ν(u)⊆
⋃
ν[D] =⇒ (∃w ∈ D)w ∈ H) , (38)

(∀u, v ∈ dom(ν)) ((u ∈ H ∧ ν(u)⊆ν(v)) =⇒ v ∈ H) . (39)

By (36) and (37), FH := {U ∈ τ | (∃v ∈ H) ν(v)⊆U} is a filter and ν[H] is
a filter base [Eng89]. (39), which follows already from (38), is a normalization
axiom for the filter base and induces H = ν−1ν[H]. By (38), FH is a completely
prime filter, which is the set of open neighborhoods of the point x. The point x
is defined uniquely by the set H since X is a T0-space. There may be, however,
completely prime filters that are not neighborhood filters of a point. Sobrification
adds points for all these completely prime filters such that the inclusion relation
on the open sets remains unchanged. We will consider the class of all effective
topological spaces X which have a common set Q realizing inclusion.
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Theorem 37. For Q⊆Σ∗ × 2Σ∗
let TQ be the class of all effective topological

spaces X := (X, τ, β, ν) such that X �= ∅ and Q realizes inclusion for X. If
TQ �= ∅, then there is some effective topological space X0 that is complete in TQ.

Proof: First, observe that for every effective topological spaces X := (X, τ, β, ν)
such that X ∈ TQ, dom(ν) is the first projection of Q. Since TQ �= ∅ there is
some effective topological space X := (X, τ, β, ν) ∈ TQ such that X �= ∅. Let

X0 := {H⊆dom(ν) | (36)-(39)},
dom(ν0) := dom(ν),

ν0(u) := {H ∈ X0 | u ∈ H} for all u ∈ dom(ν) .

Let β0 := range(ν0), let τ0 be the topology generated by β0 and let X0 :=
(X0, τ0, β0, ν0). Notice that H ∈ ν0(u) ⇐⇒ u ∈ H ⇐⇒ ν(u) ∈ ν[H] (the last
“⇐=” by (39)).

X0 is a T0-space: For H,H ′ ∈ X0, {u | H ∈ ν0(u)} = {u | H ′ ∈ ν0(u)} ⇐⇒
{u | u ∈ H} = {u | u ∈ H ′} ⇐⇒ H = H ′. Therefore, X0 is an effective
topological space.

We show that for all u ∈ dom(ν) and D⊆dom(ν),

ν(u)⊆
⋃
ν[D] ⇐⇒ ν0(u)⊆

⋃
ν0[D] . (40)

Suppose ν(u)⊆
⋃
ν[D] and H ∈ ν0(u). Since u ∈ H, w ∈ H for some w ∈ D

by (38). Therefore, H ∈ ν0(w) for some w ∈ D, hence H ∈
⋃
ν0[D]. This

proves “=⇒”. On the other hand, suppose ν0(u)⊆
⋃
ν0[D] and x ∈ X. Let

Hx := {u ∈ dom(ν) | x ∈ ν(u)}. Then Hx ∈ X0 and x ∈ ν(u) =⇒ u ∈ Hx =⇒
Hx ∈ ν0(u) =⇒ (∃w ∈ D)Hx ∈ ν0(w) =⇒ (∃w ∈ D)w ∈ Hx =⇒ (∃w ∈ D)x ∈
ν(w) =⇒ x ∈

⋃
ν[D]. This proves “⇐=”.

Since Q realizes inclusion for X, by (40) Q realizes inclusion for X0. Since
there is some x ∈ X, Hx �= ∅ and Hx ∈ X0, hence X0 �= ∅. Therefore, X0 ∈ TQ.

We show X � X0. Define f : X → X0 by f(x) := Hx = {u | x ∈ ν(u)}. Since
X is a T0-space, f is injective. Since x ∈ f−1[ν0(w)] ⇐⇒ f(x) ∈ ν0(w) ⇐⇒
Hx ∈ ν0(w) ⇐⇒ w ∈ Hx ⇐⇒ x ∈ ν(w), f−1ν0(w) = ν(w) for all w ∈ dom(ν).
Therefore, X � X0.

We show that X0 is complete in TQ. Above we have constructed X0 from
some arbitrary X ∈ TQ via (36 - 39). Since from X only the set Q was needed
to define X0, X0 remains unchanged if in the above proof X is replaced by any
other X′ ∈ TQ. Therefore, X′ � X0 for all X′ ∈ TQ. �

The space X0 constructed above is sober. The constructions in Theorems 35,
36 and 37 are various kinds of completion, where Theorem 37 presents “effective”
sobrification.
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11 Examples of Computable Operators

A variety of operations on points, sets and functions are computable w.r.t. the
representations from Definition 5. We give some additional examples.

Theorem 38.
1. eval : (f, x) �→ f(x) is ([δ1 →p δ2], δ1, δ2)-computable.
2. For f : ⊆X1 → X2 and g : ⊆X2 → X3, (f, g) �→ g ◦ f

is ([δ1 →p δ2], [δ2 →p δ3], [δ1 →p δ3])-computable.
3. The multi-function (f,W ) |⇒ T mapping every continuous function f : ⊆

X1 → X2 and every open set W⊆X2 to some open set T⊆X1 such that
f−1[W ] = T ∩ dom(f) is ([δ1 →p δ2], θ2, θ1)-computable.

4. The function (f, C) �→ f [C] for C⊆dom(f) is ([δ1 →p δ2], ψ̃1, ψ̃2) - com-
putable.

5. The function (f,A) �→ f [A] for closed A⊆dom(f) is ([δ1 →p δ2], ψ1, ψ2) -
computable.

6. The function (f,K) �→ f [K] for compact K⊆dom(f)
is ([δ1 →p δ2], κ1, κ2)-computable.

Proof: 1. By Theorem 30 or as follows: The function h, h(p, q) := ηωω
p (q), is

computable. Suppose (f, x) ∈ dom(eval), that is, x ∈ dom(f), f ∈ −→
δ1(p) and

x = δ1(q). By Definition 281, eval(f, x) = δ2 ◦h(p, q). Since
−→
δ1 = [δ1 →p δ2], eval

is ([δ1 →p δ2], δ1, δ2)-computable.
2. Suppose, f ∈ [δ1 →p δ2](p1), g ∈ [δ2 →p δ3](p2), x = δ1(q) and y = δ2(r).

By 1. there are computable functions f12 and f23 such that f(x) = δ2 ◦f12(p1, q)
and g(y) = δ3 ◦ f23(p2, r). Setting y := f(x) and r := f12(p1, q) we obtain
(g◦f)(x) = δ3◦f23(p2, f12(p1, q)) = δ3◦ηωω

h(p1,p2)
(q) for some computable function

h. Therefore, composition is computable.
3. Suppose, f ∈ −→

δ1(p) and W = θ2(q). By Theorem 29 there is a computable
function h such that f ∈ −→

δ2 ◦ h(p). By the definition of
−→
δ2 , f−1[W ] = θ1 ◦

ηωω
h(p)(q) ∩ dom(f). By the utm-theorem for ηωω there is a computable function
H such that H(p, q) = ηωω

h(p)(q). Then H realizes (f,W ) �→ f−1[W ].

4. Suppose, f ∈ −→
δ1(p) and C ∈ ψ̃1(q). By Theorem 29 there is a computable

function h such that f ∈ −→
δ3 ◦ h(p). By the definition of

−→
δ3 for v ∈ dom(ν2),

ν2(v) ∩ f [C] �= ∅ ⇐⇒ f−1[ν2(v)] ∩ C �= ∅ ⇐⇒ θ1 ◦ η∗ω
h(p)(v) ∩ C �= ∅ ⇐⇒

(∃u)(u � η∗ω
h(p)(v) ∧ u � q). There is a computable function H such that

H(p, q) is a list of all ι(v), v ∈ dom(ν2), such that u � q and u � η∗ω
h(p)(v) for

some u. Then f [C] ∈ ψ̃2 ◦H(p, q), therefore, H realizes (f, C) �→ f [C].
5. This follows from 4. above.
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6. By Definition 28.6, f ∈ δ6(p), K ∈ κ1(q) and K⊆dom(f) implies f [K] ∈
κ2◦ηωω

p (q). By the utm-theorem for ηωω the function h, h(p, q) = ηωω
p (q), is com-

putable. Therefore, (f,K) �→ f [K] is (δ6, κ1, κ2)-computable. By Theorem 28,
the operation is ([δ1 →p δ2], κ1, κ2)-computable. �

As a simple application let γ := ψ̃ ∧ κ. Then γ generalizes the (equivalence
class of the) minimal cover representation κmc of the compact subsets of Rn

in [KW87, BW99][Wei00, Definition 5.2.4] and of a computable metric space
in [BP03] . From Theorem 38.4 and 6 we conclude that (f,K) �→ f [K] for
compact K⊆dom(f) is ([δ1 →p δ2], γ1, γ2)-computable. As shown in [Wei08] the
relatively computable functions are not only closed under simple composition
but more generally under flowchart programming. Thus Theorem 38.2 can be
generalized to operators defined by flowcharts. As another example we consider
Dini’s Theorem.

Theorem 39 (Dini). Let (fn)n∈N be a monotonically increasing sequence of
real-valued functions on a compact space that converges pointwise to a continuous
function. Then the convergence is uniform.

The first effective version of Dini’s theorem has been proved by Kamo [Kam05].
He works in the terminology introduced by Pour-El and Richards [PER89]
using the definitions of an “effectively compact metric space” and of “com-
putable sequence of computable functions” introduced by Mori, Tsujii and Ya-
sugi [MTY97, YMT99]. His theorem is formulated as follows.

Theorem 40 (effective Dini, Kamo’s version). Let (M,d,S) be an effec -
tively compact metric space. Let (gn) be a computable sequence of real-valued
functions on M and f a computable real-valued function on M . If gn converges
pointwise monotonically to f as n→ ∞, then gn converges effectively uniformly
to f .

Roughly speaking, on a compact metric space with natural computability
assumptions on compactness and sequences of real-valued functions, there is a
computable modulus of convergence. Here we prove as a more effective version
that for the more general computable topological spaces the modulus of con-
vergence can be computed from the functions and from the compact subset, see
[GW05] for a preliminary version.

Let ρ< be the lower representation of the real numbers (Example 1). It suf-
fices to prove the theorem for an increasing sequence of real functions converg-
ing to 0 pointwise. It suffices to consider only (δ, ρ<)-continuous (lower semi-
continuous) functions.
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Theorem 41 (computable Dini). The multi-valued operator D mapping each
triple ((fn)n∈N,K, k) such that

(∀n) fn : ⊆X → R is (δ, ρ<)-continuous,

K is compact and k ∈ N,

(∀n) K⊆dom(fn),

(∀n)(∀x ∈ K) fn(x) ≤ fn+1(x),

(∀x ∈ K) sup
n
fn(x) = 0

to some j ∈ N such that (∀x ∈ K) 2−k < fj(x) is ([δ →p ρ<]ω, κ, νN, νN)-
computable.

Proof: Let ρ< be the inner representation of points let κ< be the representa-
tion of the compact subsets for the lower real line R< = (R, τ<, β<, ν<) from
Example 1. By Dini’s theorem, supn∈N infx∈K fn(x) = 0. Since infx∈K fn(x) =
inf fn[K],

sup
n∈N

inf fn[K] = 0 ∧ (∀n) inf fn[K] ≤ inf fn+1[K] .

By Theorem 38, (f,K) �→ f [K] is [δ →p ρ<], κ, κ<)-computable. Since L �→ inf L
is (κ<, ρ<)-computable, (f,K) �→ inf f [K] is [δ →p ρ<], κ, ρ<)-computable.
Therefore, ((fn)n∈N,K) �→ (inf fn[K])n∈N is ([δ →p ρ<]ω, κ, ρω

<)-computable. Fi-
nally, the multi-function h : ((xn)n, k) |⇒ j such that 2−k < xj for nondecreasing
sequences (xn)n with supxn = 0 is (ρω

<, νN, νN)-computable. The multi-function
D is obtained by composition from the above computable multi-functions. There-
fore, D is computable. �

By type conversion [Wei08, Theorem 35] the multi-function ((fn)n∈N,K) |⇒m

where m : N → N is a modulus of uniform convergence is ([δ →p ρ<]ω, κ, [νN →
νN])-computable. The upper bound 0 can be replaced by an upper semi-continuous
function g, which then is a further argument of D.

12 Final Remarks

In this article we have laid merely a basis for a general computable topology.
From here an immense number of further fields can be studied. A next step
could be the search for δ-computable points in a computable topological space.
In Example 2 there are a recursive set L⊆Σ∗ realizing Z, an r.e. set S realiz-
ing intersection and an r.e. set Q realizing inclusion for T (Z). If we delete the
computable real numbers from R, still L, S and Q are realizers. Therefore it is
meaningful to search for computable points in the complete spaces for recursive
sets L and for r.e. sets S and Q found in Theorems 35–37, see also [GSW07].
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For the complete space TL(Z) from in Theorems 35 the answer is simple: an ele-
ment A ∈ ZL = 2L is δ-computable iff it is an r.e. subset of L. Other next steps
could be the study of computable separation and the investigation of computably
locally compact spaces started already in [XG07].

In applications usually there are fixed representation for the sets. Of course,
in this case one can simply say “r.e.” or “computable” and omit the unwieldy
prefixes such as “([γ →p δ], ψ)-”.
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