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ABSTRACT 

Starting with the well-known de Broglie relation mv = h/A that holds for 

a particle in zero magnetic field we give an elementary (freshman physics) 

derivation of the generalized de Broglie relation that'holds for a charged 

particle in a circular orbit in a cylindrically symmetric magnetic field. We 

~e/no use of "div, grad, curl, and all that", and do not introduce canonical 

momentum, the vector potential, or the Schroedinger equation. This generalized 

de Broglie relation is then applied to two examples: (1) a single charged 

particle in a uniform external magnetic field and (2) a superconducting hollow 

cylinder. In both cases we find the result that the flux 0 enclosed by the 

orbit (in example 1) or trapped by the cylinder (example 2) obeys the relation 

0=nh/q, but that the sameness of these two results is "accidental", since 

superconducting Cooper pairs have velocities about a million times too small for 

them to be in equilibrium "cyclotron orbits" in the magnetic field they experience. 

We also show that this de Broglie relation gives the correct value (i.e., the 

Schroedinger theory value) for the London penetration distance. In the 

appendices (junior physics course level) we show that this de Broglie relation also 

implies (correctly) the Meissner effect, and that it (correctly) insists on 

0=nh/q for the superconducting flux, ruling out, for example, (n~)h/q. Less 

correctly, it g~ves for the quantized cyclotron-orbit. energy levels of example 

(1) the result E=n~ whereas the correct (Schroedinger theory) result is 

well ·known to be (n~)~w • 

iii 
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1. INTRODUCTION 

One of the most fascinating results of quantum mechanics is the famous 

prediction that the magnetic flux trapped in a superconducting ring is 

quantized: 0=nh/q, where 0 is the trapped flux (SI units), his Planck's constant, 

q=2e is the charge of the superconducting Cooper electron pair, and n is an integer. 

It would be gratifying if a derivation of this prediction could be presented to 

students at the freshman physics level. Unfortunately for the freshman, the beautiful 

treatment by Feynman
1 

requires familiarity with the concept of the vector potential, 

and with the Schroedinger equation. It is therefore accessible only at the junic:>r 

physics level. 

It was therefore quite stimulating to read the.interesting "plausibility derivation" 

2 . .• 
by Higbie of this famous result. In abbreviated form, Higbie's argument goes as 

follows: Consider a single Cooper pair circulating on the inner wall of a superconduct-

ing ring of radius r. Assume that ~the flux this single pair would generate is that 

of a uniform magnetic field B which would confine the pair to an equilibrium 

"cyclotron" orbit of radius r. 
I 2 

That equilibrium requires qvB=mv /r, where m and v 

are the mass and velocity of the pair. Now demand that an integer number n of de Broglie 

waves of wavelength· A fit into the circumference: 2rrr=nX. Then use the de Broglie 

.relation, mv=h/X. Combine these three equations to obtain 0=rrr
2
B = nh/2q, which is 

half of the correct value given by the Schroedinger theory. The missing factor of 

two is then supplied by an additional argument involving a second Cooper pair. 

The virtue of this derivation is that it is at the freshman physics level. 

Unfortunately, Higbie's assumptions about superconducting pairs are incorrect not 

~ .by juot a factor of two but bymariy or~~?s' of magnitude. The magnetic 

field experienced by a single Coop~r pair c~rculat~ng in a .reaoonable 

18 
sized superconducting ring is of o~der 10 times greater than that 

produced by the pair itseLf. That is becau~e (in a reasonable geometr~ 

there are of order 10 18 pairs generating the field. Furthermore, the 

magnetic field experienced by a circulating Cooper pair is not even 
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approximately the field that would keep it in ari equilibrium cyclotron 

6 
orbit. Instead, pairs experience fields about 10 times str9nger than 

that. -6 
Put differently, their velocities are about 10 times too small 

for them to be. in cyclotron orbits in the field they experience. 

Cyclotron orbits have nothing to do with either the_radial equilibrium 

·of the pairs or with the size of the flux quantum, ~or a Buperconducting 

ring. 

How is it possible to be off by a factor of 10
6 

in velocity and still come 

within a factor of 2 of the correct f~rmula? This is partly accomplished by using 

the de Broglie relation h/A = mv. This relation is incomplete when there is a 

magnetic field: something else (s.e.) must be added to mv. This s.e. turns out 

to be about a million times larger than mv for a reasonable superconductor 

geometry. The correct de Broglie relation is mv+s.e. = h/A • After throwing 

away the s.e. one can compe~sate by taking mv to be a million times larger than 

it actually is. 

That still does not explain why the incorrect assumption of equilibrium 

cyclotron orbits for the Cooper pairs miraculously gives an answer within a factor 

of two of the correct one. · That is because in spite of the formula mv=h/A being 

incorrect by a factor of a million for a superconductor, it is. only wrong by a 

facton of two for a charged particle. in a uniform external field. In that case 

the "something else" turns out to have half the magnitude of mv, and the opposite 

sign, so that the sum, mv+s,e., equals~.· The correct de Broglie relation then 

gives ~v=h/A and' also gives 0=nh/q for the flux enclosed by the orbit, whereas 

the incorrect relation mv=h/A gives the incorrect result 0=~nh/q. For the 

superconductor the error in this approach is not, however, a factor of ~ but a 

factor of a million, as stated above. 

·,~· 
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An elementary derivation follows. The quantum physics is at the level of the 

Bohr atom and makes no mention of vector potential or of canonical momentum. It 

is thus accessible to a student who has had only. freshman physics. First we 

:. obtain the de Broglie relatio.n for a particle in a circular orbit in a magnetic 

field having cylindrical symmetry. As our first application we consider a particle 

in an equilibrium cyclotron orbit in a uniform external magnetic field and find 

that the flux enclosed by the orbit is nh/q, which is the same··formula as gives the 

famous flux quantum of superconductivity. That will lend credibility to the 

incorrect assumption that Cooper pairs are in equilibrium cyclotron orbits. Then 

we apply the de Broglie relation to a long superconducting hollow cylinder and 

again find that the flux is nh/q. But then we calculate the velocity of Cooper 

pairs and find that they are much too slow to be in equilibrium cyclotron orbits. 

Next we calculate the magnitude of the "London penetration distapce" A. , of the 
0 

magnetic field into the superconductor, and obtain the same result as in the 

Schroedinger theory.
2 

Finally we answer ~he;question '~ow can the circulating 

pairs be in radial equilibrium if they are not in equilibrium cyclotron orbits?" 

The main text is kept elementary (no integrals, no differential equations) by 

taking the Meissner effect to be a given experimental fact that is independent of 

the de Broglie relation. In Appendices A and B (which are at the level of a junior 

physics course) we show that instead the Meissner effect is actually implied by 

the de Broglie relation, with no need to invoke the Schroedinger theory. In 

Appendix B we show that an ambiguity that arises in the choice of integer n 

versus half integer n~ can be resolved in favor of n, without invoking the results 

of the Schroedinger theory. 
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2. DE BROGLIE RELATION 

We want an elementary derivation of the de Broglie relation for a 

charged particle moving in a circular orbit in a magnetic field. Start with 

the more familiar case of a particle moving in a circle of radius r under 

the influence of a central Coulomb electric field, as in the Bohr atom. In 

that case we know we get correct results 

n of de Broglie waves fit into one orbit: 

if we demand that an integer number 

27Tr = n.A (1) 

and that the de B'roglie relation be given by 

mv = h/.A. · (2) 

Together these give ~the quantum relation 

mv = nh/27Tr (3) 

from which follow the familiar results·of the Bohr atom. 

Now consider a particle in a quantized Bohr orbit having a particular 

value of n. Build, surreptitiously, a fri~tionless hollow rigid "doughnut" 

that encloses the orbit without disturbing it. Then slowly "turn down" the · 

magnitude of the central positive charge that gives the Coulomb field. That 

is, slowly reduce to zero the radial electric field felt by the circulating 

particle. Since we do this very slowly, and n can only change by the dis

continuous jump of an integer, we expect n to remain fixed: frn = .0. Of 

course our frictionless rigid doughnut will have to take over more and more 

of the radial force that maintains radial equilibrium,- as we tum down the 

Coulomb field. During all this, will mv change? No, because all the forces 

.. 
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are always radial: ~(mv) =0. Therefore our quantum relation (3) continues 

to hold even after the central charge is entirely gone and the particle is 

~ confined radially by the frictionless tube alone. · Next we start slowly 

turning on a cylindrically synunetric magnetic field normal to the plane of 

the orbit. Because we do it very slowly n will remain unchanged: ~n = 0. 

However, mv no longer remains constant: ~(mv) ¥ 0. The magnetic flux con-

tained within the orbit at radius r, 0(< r), is changing with time. Accor-

ding to Faraday's Law, that will give an induced electric field tangential 

to the particle orbit, and the particle will be accelerated. Since mv does 

not remain constant we hope to find a new quantity that does stay constant, 

and that reduces to mv when there is no magnetic field. We can then hypothesize 

that we should replace the left sides of Eqs. (2) and (3) with that new quantity. 

The induced emf € at radius r is given by E=-d0(<r)/dt. But E also 

equals the induced azimuthal electric field, E, times the circumference 2'ITr• 

Therefore 
E = -d0(< r)/dt 

2'ITr 

The change in particle mv during time interval ~t is given by 

~(mv) = F~t = qE~t = -q~0(< r)/2'ITr, 

i.e.' 

~[mv + q0(< r)/2'ITr] = 0 (4) 

The left side of Equation (4) is the desired generalization of the result 

il(mv) = 0 that we found while turning down the Coulomb field, and which main-

tained the de Broglie relation of Eq.(2)and the quantization relation given 

by Eq.(3). Therefore the "something" to be added to mv in Eq.(2) 
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is just q0(<r)/2~r. Combining · this generalized de Broglie relation with the 

still-valid quantum condition of Eq.(l) gives us the generalization of Eq.(3): 

mv(r) + q0(<r)/2~r = nh/2~r. (5) 

The quantum relation (5) gives all of the results of this article. We will 

assume it holds more generally than its "derivation". We assume it gives all the 

allowed states for a single particle in a circular orbit with enclosed flux 0(<r). 

It is important to realize that we still need our "rigid frictionless tube" 

in order to maintain radial equilibrium and keep r fixed while we change the 

flux 0(<r). Our "tube" will turn out to be a radial electric field, but it will 

~ 

not be due to a point charge in the case of a superconducting ring. 

In our derivation we imagined that we started in a particular hydrogen-atom-like 

Bohr orbit, because for that case we know that Eqs.(l), (2), and (3) give the right 

answers (that is, answers that agree with experiment). However, that implies a 

constraining relationship between v and r (to give radial equilibrium, balancing the 

centrifugal force and the Coulomb attraction). Now that we have our "rigid 

frictionless tube" we can do away with that constraint. Therefore our allowed values 

of v, r, 0(<r), and 'the integer n are any values that satisfy Eq.(5). The velocity 

v(r) can be positive or negative (clockwise or counterclockwise circulation), the 

flux 0 can be positive or negative, and the integer n can be either positive or 

negative. We even assume n=O is allowed (infinite wavelength). 

Of course, we must keep in mind the fact that we are using the concept of 

a classical orbit with well defiped radius r, and that if we get the same result 

as the Schroedinger theory' we must count ourselves as perhaps lucky. 

... 

.• 
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3. PARTICLE IN A UNIFORM EXTERNAL MAGNETIC FIELD 

As our first application of the quantum relation (5) we consider a 

single particle of charge q traveling with ~velo.city v in a circle of ::radius r 

in a uniform magnetic !.field B normal to the plane of the circle. The frictionless 
I 

tube confines the particle to radius r, independent of v. The circulating 

particle can be thought of as an electric current loop, so that it makes a 

contribution to ·the total magnetic field; but we assume this contribution is 

completely negligible compared with the external field. (Even if it were not, we 

would have to exclude the action of the single particle's self-produced field on 

itself.) The flux contained within the orbit is 0(<r) = Tir
2

B, so that Eq.(S) 

becomes 

mv(r) + ~qrB = nh/2Tir- (6) 

The sign conventions in Eq.(6) are such that if the fingers of the right hand 

curl around in the direction of positive v then the thumb points along positive 

qB. Because of the frictionless tube any values of v and B that satisfy Eq.(6) 

are allowed. 

We now apply Eq.(6) to the special case where, after the final value of B 

has been achieved, the particle is in an equilibrium "cyclotron orbit"; in that 

case we can remove the frictionless tube. (We needed it to maintain the radius 

constant during the build up of the field.) For such an orbit, Newton's 2nd 

law, "ma = F", gives mv
2 
/r = qvB (in MKS units). That gives 

mv = -qrB (7) 

where the minus sign comes from using the same "right-hand rule" sign convention 

"" as for Eq. (6). Combining Eqs. (6) and (7) gives -~qrB=nh/2Tir; or, dropping the 

minus sign, the flux contained within the orbit is 

2 
0(<r) = Tir B = nh/q (8) 

The fact that Eq.(8) is identical with the formula for the trapped flux 

in a superconducting ring is more or less an accident, since, as we shall show 

later, the superconducting pait:s are far from being in cyclotron orbits. 
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For a charged particle in a uniform magnetic field it is easier to think 

of ways to measure the particle's kinetic energy ~v 2 
than to measure the flux 

enclosed by the orbit. We can easily show that Eq.(8) implies quantized kinetic 

energy: solve Eq. (7) for r and substitute into Eq. (8) to get 

~v 2 
= -n(h/2~)qB/m = n~w 

where ~ equals h/2~ and w= qB/m is the cyclotron angular frequency. 

(9) 

The quantized energy differences implied by Eq.(9) have actually been 

observed in the beautiful "(g-2)/2" experiment, using trapped single electrons and 

inducing quantum jumps between neighboring cyclotron orbits (lm=l) by means of 

3 
microwave quanta having energy ~w • 

At this point we should restrain our enthusiasm. The Schroedinger theory 

does not give 
4 

Eq. (9); it gives 

2 
~ = (n~)~w • (10) 

The additional term ~~w is the "zero-point" energy. It is not detectable in 

the (g-2)/2 experiment, which measures only energy differences. If one asks why 

the simple de Broglie relation mis'sed this term one might look at the assumption 

of Eq. (l): 2~r = nA. • Is it that the Schroedinger theory wants to fit a half 

integer number of wavelengths into an orbit? No. It is rather that there is 

4 
no well defined orbit, and·r therefore has no well defined value. 

In the case of quantized trapped flux in a superconducting_ ring the 

1 
Schroedinger theory gives 0=nh/q, not (n~)h/q. That is also what we will find 

from the de Broglie relation (5). Perhaps we should attribute that agreement to 

good luck. :But, remarkably, if we generalize our de Broglie relation so as to 

replace n by n+k, where n is the usual integer and k is an unknown constant, we 

will find (App.B) that for a solid superconducting cylinder we must set k=O; 

otherwise . there is no solution. 
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4.THE DIFFERENCE BETWEEN ONE AND 10
18 

PARTICLES 

In the theory of superconductivity it turns out that, at absolute zero, 

1 
all the Cooper electron pairs are in the same "single-particle state". If we 

assume (following Higbie) that in that state the Cooper pairs in a superconducting 

ring are in equilibrium cyclotron orbits under the influence of the magnetic 

field traversing the ring and experienced by the pairs, then Eq.(8) should 

1 
apply, and we thus find a quantized trapped flux that agrees with the' correct value. 

Why is this wrong? The quantity 0(<r) that appears in Eq.(S) represents the 

total flux inside radius r. For a single particle in an external field we can 

neglect the flux produced by the particle itself. That is h.ow we obtained Eq.(8). 

' 
But when we have a superconductor and vary an external field the change in 0(<r) 

is due not only to the change in the external field but also to changes in the 

flux produced by changes in the velocities of the huge number of Cooper pairs 

distributed .through the superconductor. When we turn up the external field the 

flux change that the pairs produce is, by Lenz's Law, opposite in sign to the 

change in external flux, and, because we have a superconductor, equal in magnitude 

to the change in external flux. Thus the change in total flux, integrated over 

all radii r, is zero. However, the new total flux, even though equal in:~gnitude 

and sigh to the old flux, is distributed differently in space, because a 

different fraction of it is due to the circulating Cooper pairs. Thus at each 

r there is a change in 0(<r), with equal amounts of positive and negative changes 

at different r so that the integrated change is zero. In order to use Eq.(S) we 

must learn how the magnetic .field is distributed in space. Note also that the v(r) · 

that appears in Eq.(S) is proportional to the current density at radius r, and 

this in turn contribut~s to the part of 0(<r) due to the superconducting currents. 

Thus we also need to know how v(r) is distributed in space. We must consider the 

superconductor in more detail. 
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5. SUPERCONDUCTING CURRENTS 

We assume that Eq.(S), derived for a single particle, can be applied to 

a superconducting cylinder that (for our geometry) will have about 10
18 

contributing Cooper electron pairs. Each pair has charge q=-2e and a mass m 

which we take to be 2m , where m is the mass of a free electron. (The effective 
e e 

mass of a Cooper pair is a difficult subject that we avoid.) We assume the 

superconductor is at absolute zero and that all pairs are in the same state, i.e., 

all have the same value of n in Eq. (5), which we assume holds for each pair. It 

is important to realize that 0(<r) in Eq.(S) is the total magnetic flux at 

radius less than r, i.e~, it is the flux due to all of the Cooper pairs plus the 

flux due toany and all external sources of flux. 

Consider a long hollow cylinder of length t made of lead (which becomes 

superconddcting at low enough temperature). This/hollow cylinder has outer radius 

r
2 

and inner radius r
1

, with r
1 

and r
2 

both small compared with the length ~ • 

Initially the lead cylinder is at room temperature. Inside the hollow region 

there is a very long cylindrical permanent magnet of radius less than r
1 

that 

carries an unquantized external flux 0 through the hollow region. See Fig.1. 
0 

For simplicity we make the permanent magnet very long compared with the lead 

cylinder so that in our first discussion we can neglect leakage flux and "return" 

flux from the permanent magnet. 
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Fig. 1. Room temperature. End view of long hollow lead cylinder having 
inner radius r

1 
of order 1 em and outer radius r

2 
of order 2 em. A very 

long permanent magnet carries unquantized external flux 0 through the 
hollow region, the magnetic field lines being indicated a~ dots. Leakage 
flux and "return" flux in the lead are neglected. The warm lead is 
not superconducting. 
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Now cool the superconductoruntil it becomes superconducting; continue 

cooling all the way to absolute zero. Assume Eq.(S) applies to each of the 

Cooper pairs. We will find (Appendices A and B) that Eq.(S) implies the Meissner 

1 
effect- , according to which the total magnetic field (due both to external sources 

and to superconducting currents): must vanish in the interior of the superconductor~ 

both the total magnetic field and the superconducting currents are confined 

-6 
to very thin surface layers (about 10 em thick). If we had not assumed our 

permanent magnet to be very long compared with the hollow lead cylinder there 

would have been leakage and return flux from the permanent magnet in the 

material of the warm lead cylinder. When the cylinder became superconducting; the 

Meissner effect would demand the appearance of "spontaneously iriduced" surface 

currents on the cylinder surfaces, which are at r=r
1 

and r
2

• The "purpose" 

of these currents is to produce magnetic fields that will combine with the 

external fields to give a total field of zero in the main body of thE; superconductor 

(everywhere except very near the surfaces). Any leakage or return flux from the 

very long permanent magnet would give a small uniform external field throughout 

the region from r=O to r
2

• This would be cancelled by a small 'induced current 1
2 

on the outer surface of the cylinder, at r=r
2

• That is because such a current 

is equivalent to the current in a long solenoid, and it is shown in every 

freshman physics course that such a current produces a uniform field at smaller 

radii than that of the current, and negligible field at larg~r radii. Since 

the surface current 1
2 

is not of present in~~rest to us we assume there was no 

leakage or return flux from the permanent magnet and that therefore Ii remains 

zero. (In Appendices A and B we consider the case where there is a uniform external 

field and 1
2 

is then not zero.) For the same reasons (Meissner effect and no 

leakage or return flux) there are no spontaneously induced currents or magnetic 

fields anywhere in the body of the cylinder, between r
2 

and r
1 

(but not 

including the surface at r
1
). 
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6 · FLUX QUANTIZATION 

After the lead has become superconducting Eq.(5) applies. That implies 
' 

the Meissner effect, according to which the current density j(f),.vanishes in 

the main body of the superconductor. But J(r)=Nqv(r), where v(r) is the Cooper 

pair velocity in Eq.(S), and N is the number of-Cooper pairs per unit volume. 

· (N is just ~N , where N is the number of superconducting elect·rons per unit 
e e 

volume.) 
-4 

Consider a radius r that is sufficiently larger than r
1

( say 10 em 

greater than r
1

) that J(r) is zero, and hence v(r) is zero. Then according 

to Eq.(S) the total flux within that radius r is quantized and has the 

value 0(<r) = nh/q. That is the derivation! 

7 • INTEGER ROUND OFF FLUX 

We seem to have a problem. The total flux for radius r a few times 10-
6 

em 

greater than r
1 

is quantized: 0(<r)=nh/q. But the permanent magnet's contribution 

0 • is unquantized. The solution is that in general there must be a small induced 
0 

current I
1 

on the inner surface at r=r
1

• Otherwise we cannot satisfy Eq.(S). 

The sign and magnitude of I
1 

depends on the exact value of 0
0

• The surface 

current r
1 

provides a small unquantized flux which we shall call the "integer 

round off" flux. This integer-round-off flux will be some fraction (positive or 

negative) of a flux quantum h/q, such that the total flux is, quantized. The 

unquantized flux due to r
1 

might be expected to have magnitude equal or less 

than 1 quantum, i.e. , "round off to the nearest integer". That turns out to 

5 
be the case. The situation is summarized in Fig. 2. 
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Fig. 2. Superconductin,g. Because of the Meissner effect the only currents 

are the surface currents r
1 
~nd r

2
, but r

2 
is zero if there was no magnetic 

field in the superconductor when it was warm. The small current r
1 

is 

. -6 II f II 
contained in a layer of thickness A =3xl0 em, and provides an integer-round-o f 

0 . 

flux of less than one flux quantum, indicated by the crosses. The total flux, 

0
0 

+ round-off, is quantized. The round-off field is uniform for r<r
1 

and falls 

off exponentially along with the current density, in the thin surface layer 

at radius r
1

• 
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8. TRAPPED QUANTIZED FLUX 

We have exhibited quantized flux, 0=nh/q, but it is not yet in the form 

we desire--a trapped quantized flux entirely due to superconducting current. 

We need to get rid of the permanent ~gnet. Let us slowly (so as not to change 

the ingeter n) pull out the permanent magnet. As we do so we can no longer 

disregard the flux that emerges from one end of the permanent magnet and returns 

at the other. By the time we have removed the pe!IJlanent magnet all of these 

flux lines will have passed through the superconductor. During the slow removal 

there will be new induced currents both at r
2 

and r
1

• When the magnet has been 

completely removed the current r
2 

will hav~ returned to zero (it was only needed 

to give zero net field in the body of the superconductor during the removal). 

After removal, the surface current r
1

, which used to provide only the small 

"round off" flux, now provides the entire flux. This flux still has the same 

quantized value, nh/q, as before the removal. This flux is "trapped". We 

can pick up the hollow superconducting cylinder and carry it around with its 

trapped flux (provided we keep it cold). The trapped quantized flux nh/q equals 

the original· .unquantized flux 0 to within plus or minus about a half of a 
0 

flux quantum, the round-off flux. The situation is summarized in Fig. 3. 



• 
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Fig. 3. Trapped quantized flux. The permanent magnet has been slowly removed. 

The flux has the same quantized value as in Fig.2, but is now entirely provided 

by the large induced current 1
1

• A uniform field B
1 

(indicated by ~ots) fills 

the hollow region and falls exponentially to zero, as does 1
1

, in the thin 

surface layer at radius r
1

• The surface current 1
2 

is still zero • 
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9 ~ VARIATION OF VELOCITY AND FIELD IN THE SURFACE LAYER 

Now let us look more closely at the thin surface layer at r=r
1 

that 

carries the surface current I
1

, which provides the integer round-off flux 

before removal of the permanent magnet, or the entire flux after the removal. 

We demand that Eq.(S) hold for all r, with the same value of n. Start at 

-6 
r several times 10 em larger than r

1
, so we are well into the interior. Then 

v(r)=O and the flux 0(<r) includes the entire quantized flux nh/q. Now progress 

to smaller r, approaching the. surface at r=r
1

• 
1
We will eventually reach 

radii where v(r) starts to grow frC?m zero. As we pass through an increment dr 

that includes non-zero current density J(r).we will pass inside a small 

current increment di
1 

.= J(r)idr. This current increment gives magnetic field 

only at smaller radii than its radius. Thus the flux from di
1 

no longer lies 

entirely within our presently attained radius. Some of that flux lies ·outside. 

Thus 0(<r) decreases slightly, as v(r) increases, while we approach r
1 

from larger 

radii. But that is just what we need to maintain the left side of Eq. (5) constant. 

By pursuing this line of reasoning carefully we can derive the exact relation 

between v(r) and the magnetic field B(r) within the .thin layer that is needed 

in order to maintain Eq.(S). We do that in App.A. Here we shall simply say 

that it will turn out that v and B are always (at every r) proportional to one 

another and fall off together expenentially with the common factor exp-(r-r
1
)/A

0
, 

where A is c~lled the London penetration distance. 
0 

• 
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1 0 • INDUCED VELOCITY OF C01Jl:'ER PAIRS 

Let us find the Cooper-pair velocities after the permanent magnet has been 

removed, and compare them with veloci.ties that would give equilibrium cyclotron 

orbits. It will be sufficient to find the velocity v = v
1 

at r=r
1 

and relate 

it to the magnetic field B=B
1 

there,because at larger r, v(r) and B(r) are 

proportional, with the same proportionality constant as at r=r
1 

(See App.A.) 

It is a good enough approximation for our present purpose to say that the total 

trapped flux is 0
0

, and that it is essentially all contained between r=O and r=r
1 

in the form of a uniform magnetic field B
1

• 

Now look. at Eq.(5) and think of how we can maintain the left side constant as 

we progress from r sliehtly greater than r 
1

, to r=r 
1 

.'·,He can neglect the tiny 

change in r as far as its effect ·in Eq.(5). The only variables are v(r) and 0(<r). 

For r slightly greater than r
1 

we have y=O and 0=0
0

• When we have reached r=r
1 

we have v=v
1 

and the flux 0(<r) must have been decreased by an amount ~0 

such that the change in the left side of Eq.(5) is zero: 

Or, since ~v equals v
1

, we have, dropping a minus sign, 

(11) 

The flux Af/J is the fiux contained in the small annular ring of radius r
1 

and effective 

thickness A
0
in which B falls exponentially from its maximum value of B

1 
to 

zero. We can estimate ~0 as the maximum fieid Bi times the area 2 ~r 1 A 0 : 

Combining this with Eq.(11) gives 

(12) 

Eq. (12) gives the correct ratio · between v and B throughout the layer of surface 

current. · (Eq. (12) is derived more rigorously in App.A.] 

Let us compare the actual induced velocity v
1 

with the velocity v
0 

that 

would give an equilibrium cyclotron orbit in the magnetic field B
1 

experienced 

by Cooper pairs at r=r
1

• According to Eq.(7) we have 
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(13) 

Comparing (13) and (12) we see that the induced velocity v
1 

is less than the 

cyclotron-orbit velocity v 
0 

by a factor of A
0
/r 

1
• Since we shall find that . 

-6 I · -6 A
0 

is of order 10 em, then in a geometry having r
1 

~1 em, we have v
1 
v 0 ~ 10 • 

Thus the magnetic field tends to press the circulating pairs firmly against the 

-6 
inner wall of the hollow cylinder.This same factor of about 10 holds 

throughout the surface layer. 

11. RADIAL EQUILIBRIUM 

If the magnetic field is so strong (or the velocity so small), how do the 

Cooper pairs remain confined to a given radius? The simplest reply is that the 

inner wall of the hollow cylinder confines them. But then we must worry about 

whethe'r the surface.layer of thickness A gets "squashed flat". It seems we 
0 

might really need our "rigid frictionless tube" to confine the orbits and 

maintain radial equilibrium. The "frictionless tube" exists. It is provided by 

radial electric fields. The magnetic field .produces a tiny inwards drift of the 

Cooper pairs. This induces a small negative charge on the inner surface and 

simultaneously uncovers the same amount of positive nuclear charge spread through· 

the thin layer. This gives a "radial-Hall-effect" electric field that halts the 

radial drift and establishes radial equilibrium. The distance the pairs 

drift radially before equilibrium is established is tiny compared with A • 
0 

For a reasonable magnetic field B
1 

= 0.1 T the radial drift is about 10-
12 

A
0

• 

(See App. C) The "squashing" of the surface layer is thus negligible. The 

"tube" is very rigid. 
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12 • . LONDON PENETRATION DISTANCE 

Let us estimate the penetration distance A • We can do that because 
0 

Eq.(_l2) relates the induced velocity (and hence the current density) to the 

trapped magnetic field and the penetration distance, and we know how to cal-

culate the magnetic field of a long solenoid, given the current. 

First we find the total current r
1

. That equals. the maximum current 

density J 1 = Nqv
1 

times the effective cross sectional area tA
0 

seen by the 

current: 

The magnetic field B
1 

is equivalent to that inside a long solenoid and is 

given by Ampere's circuital law (MKS units): 

Combining Eqs. ( 15), ( 14), and (12) gives 

2 2 
A = m/Nq J.l • 

0 0 

(We derive Eq.(l6) more rigorously in App. A.) 

Setting q = 2e, m = 2m , and N = ~ , where N is the number of conduction 
e e e 

("14') 

.\15) 

(16) 

electrons per unit volume (twice the number of Cooper pairs per unit volume) 

.we find 

This I 
result is identical with that of the Schroedinger theory. 

22 . 
For lead uc take Ue=3xl0 per cc (one conduction electron per lead nucleus). 

Express everything in MKS units. Then Eq.(17) gives 
-6 

A =3x10 em. 
0 
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13. NUMBER OF COOPER PAIRS 

How many Cooper pairs contribute to I
1

? The effective volume is the length R. 

times the perimeter 2~r 1 times the effective thickness A
0 

of the surface layer. 

22 
Thus the number of pairs equals N 2~r 1 A 0 • Taking N=1.5x10 per cc, R.= 10 em, 

18 
and r

1 
= 1 em gives 3x10 pairs. 

DISCUSSION 

It is remarkable that the quantum relation (5), based on the 

"old quantum theory" ,which retains the concept of a definite orbit, gives 

many of the results of the more sophisticated Schroedinger theory. It 

gives the Meissner effect (App.A), the correct value for the flux quantum, 

and the correct value for the London penetration distance. Surprisingly, we 

also find by considering the exact solution of Eq.(S) for a solid cylinder (App.B) 

that there is no freedom to replace n by, for example, n~. That is surprising 

because it is often the case that the "old quantum theory'' gives a result that 

agrees with the'Schroedinge:t theory in the limit of large quantum numbers but 

disagrees for low quant~m numbers. That is apparently the case when we try to 

apply Eq.(S) to finding the energy levels of a single particle in a un~form 

magnetic field. We don't get the "zero-point energy". Thus the result of 

App. B was a plea~ant. surprise. 

,,_. 
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APPENDIX A. THE MEISSNER EFFECT 

Start with the generalized quantum relation, Eq.(5). Rather than 

induced velocity v(r) we work with the induced current density 

J(r) = Nqv(r) 

Multiply Eq. (5) by rNq/m to get the equivalent .quantum relation 

2 
rJ(r) + (Nq /2rrm)0(< r) = n Nqh/2rrm 

. (18) 

(19) 

·The flux 0(< r) is the sum of an external fluX plus the induced flux due to 

the superconducting current: 

0(< r) = 0 t(< r) + 0i (< r) ex n · 

The induced flux is due to induced magnetic field Bin: 

r 

0in(< r) = fBin(r')2rrr'dr' 
0 

The induced magnetic field is obtained by applying Ampere's circuital law 

to a long solenoid of length~: 

B. (r')~ = 1.1 I(> r') 
1n o 

where 1.1 comes from the MKS units, and I( >r') is the induced current at 
0 

larger radii than r': 

r2 . 

I(> r') = J J(r") ~dr" 

r' 

Inserting (20) through (23) into (19) and defining 

2 2 
A. = m/Nq 1.1 , 

0 0 

the quantum relation (19) becomes 
r· r2 

rJ(r) + 0 (< r)/(2IT1.1 A.
2

) + (l/A.
2

) Jr'dr' JJ(r")dr" = nNqh/2rrm 
ext o o o 

0 
r! 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Eq.(25) relates current density and external flux in such a way that, as we shall 

see, the total magnetic field and current density go to zero in the body of the 

superconductor (provided r
2
-r

1 
is large compared with A.

0
). That is the Meissner 

effect. 
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In our example in the main text the external flux ~ t(< r) is due to 
ex 

a permanent magnet carrying flux ~ through the hollow space. In this Ap
o 

pendix we will instead consider the external flqx to be due to a uniform 

external field B directed along the cylinder axis and filling all space. 
0 . . 

That gives 

2 
~ (< r) = B ~r . 111ext o · 

(26) 

In order to solve Eq. :{25) for J(r) .we will differentiate it twice with 

respect to r and obtain a second order differential equation. In so doing 

we will lose the boundary conditions contained in (25), and will have to 

put them back when we have found a solution. First differentiate Eq. ( 2 5) 

once with respect to r. The first term gives rdJidr + J. The second 

term inc·ludes ·the factor d,0 .t(<r)ldr= ~rB • 
ex o 

In differentiating 

the double integral with.respect tor we simply erase the first integral sign 

and the dr 1 
, and replace r 1 by r wherever it appears. Thus (25) becomes . r 

2 2 
2 

rdJ I d r + J + B rl (lJ A. ) + (liA. )r J J(r")dr" = 0 (27) 
0 0 0 0 

r 

· Notice that in obtaining ('27) from (25) we have lost the quantum condition, 

that n be an integer. Any constant on the right side of Eq.(?5) would have 

sufficed to give (27). Now divide (27) by r, ·and then differentiate with 

2 2 2 
respect to r. The first two terms give d J I d r + (1 I r) dJ I d r-J I r ; the next 

gives zero. Differentiating the integral gives a minus sign (because r is at 

the lower limit of the integral), erases the integral sign and the dr", and 

replaces r" by r. Then (27) becomes 

d
2 
Jldr

2
+(llr)dJidr- Jlr

2 
- (liA.

2
)J = 0 (28) 

0 

In obtaining .(28) from (27) we lost the numerical value of B and also lost 
0 

the boundary condition that J is zero for r > r
2

, and for r < r
1

• 

.... 
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For convenience we introduce the dimensionless variable 

x = r/A. • 
. 0 

(29):': 

Multiplying Eq. (26) by r
2 

and using (29) we get 

x
2

(d
2
J/dx

2
) + x(dJ/dx)-(l+x

2
)J = 0. (30) 

Equation (30) is an example of Bessel's modified differential eq~~tion 6 

(31) 

2 
with, in our case, s = 1. For the region where r is of order 1 em, we have 

~ x of order 10
6

• In that region we need the asymptotic solutions of (30) ·for 

large x. To obtain them consider C30) • For large x neglect the "1" in 

2 
the factor (1 + x ). 

be indistinguishable.) 

(That also means we are considering s = 0 and s = 1 to 

2 
Then assume we can neglectx{dJ/dx) compared with x J. 

2 . 2 2 . 
After cancelling a common factor x we then get d J I dx - J = 0, with general 

solution 

(32) 

We easily verify that neglect of x(dJ/dx) was justified for x>>l. The largest 

x for which there can be any non-zero J is x = x
2 

= r
2

/A.
0

• Assume J = J at 
2 

x.= x
2

. As we go to smaller x, with r decreasing by as much as 1 em and 

hency x decreasing by as much as 10
6

, we must set c
2 

= 0 in order to prevent 

"blow up" of J(x). That gives 

(33) 

After r has decreased from r
2 

to a few millimeters less than r
2

, the current 

den~i ty (33) is negligible. However when we reach the inner surface at r = r
1 

we have to consider again the general solution (32) and fit it to the 

boundary conditions at r = r
1

. 
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Before doing that we shall verify that 03) provides exactly the right 

flux to cancel the external flux to zero inside the body of the superconductor, 

thus giving the Meissner effect. Go back to (27) • Express it in terms of x. 

Divide by x. The result is 
x2 

dJ/dx + J/x + B /(A ~ ) + fJ(x")dx" = 0 (34). 
0 0 0 

~ 

According to (33) we have dJ/dx=J •. For our asymptotic solution we have neg-

lected 1 compared with x, so we neglect J/x in (34) •. The integral, using 

(~3) , is just J(x
2

) - J(x). Then (34) becomes 

J(x) + 0 + B /(A ~ ) + J(x
2

) ~ J(x) = 0, 
0 0 0 

which gives 

J(x
2

) = J
2 

= -B /(A ~ ). 
0 0 0 

We can now find the induced magnetic field. Use (22) and (23) with 
.. ,: 

(33} and (35) for J: 
x2 

A 0 ~ 0 f J(x")dx" = 
X 

(35) 

(36) 

The total field, B +B. (x), equals B at r = r
2 

and then falls exponentially 
0 J..n · 0 

to zero with decreasing radius. For r only 10-
4 

em smaller than r
2 

(and 

.letting A = 3 x l0-
6

cm) the magnetic field is down by a factor of about 10-l~ 
0 

which we might.as well call zero. Thus we have shown that Eq.(S) given the Meissner 

effect. We may note that our Eq. (27), which gives the Meissner effect, would still 

hold if the "n" in Eq.(S) were replaced br n~, or by any constant. 

. . 

In all the results of this Appendix, so far, we have not used the fact 

that our cylinder is hollow, with inner radius r
1

• If in fact the cylinder 

is solid, i.e., r
1 

is zero, then the solution we have found can, to a first 

approximation, be'extrapolated all the way tor= 0. That is only an approxi-

mation, because the solution given by (33) was to the .':asymptotic differential 

equation with x >> 1. In Appendix B we will use the exact equation so that 

. .. 

~ 

• ¥ ....... 
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we can more carefully examine a solid cylinder all the way to the origin. But 

already we can see that, since the current I
2 

we have found at r = r
2 

is 

equivalent to the current in a long solenoid, it gives a uniform induced 

field for radii sufficiently smaller than r
2

, and hence, in this example, 

cancels the external field B all the way to r = 0. For radii from slightly 
0 

less than r
2 

to r = 0, the state is indistinguishable from one for which· there 

is no external field B
0 

and no surface current I
2 

at r = r
2

, just as we 

assumed in the main text. 

Returning to our hollow cylinder with inner radius r
1

, let us start at 

r
2 

and proceed to smaller radii. The solution we have just found continues 

to hold as long as we have x >> 1. \~en we are at r slightly less than r
2 

the induced surface current density has become completely negligible and 

the induced field has; risen to its "cancellation" value of -B • As we 
0 

approach the inner surface at r = r
1 

the same differential equation, holds, namely 

= 0; but now, in order to satisfy the boundary conditions, we 

must superpose onto the existing solution ~33) another term. This term will 

be due to surface current at r = r
1

• Since we are still in the regime 

x >> 1, the new term must be picked from the general solution given by (32). 

In order to prevent "blow up" of this term for x increasing beyond x = x
1

, we 

need the decreasing exponential. Thus we get 

(37) 

In the region between r
1 

and r
2 

, J(x) is the superposition of (37) and (33). 

Of course, in most of that region they are both negligible, but each gives 

induced fields that extend to r = 0. 

The magnetic field produced by I
1 

is obtained by using (37) in Eqs. (22) 

and (23). The res'ult is 
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(38) 

Eq. (38) gives the induc,ed field for r ::._r 
1

.. Of course for r ~r 
1 

this field 

is constant and equal to B
1 

= 1J
0

A.
0

J
1 

;, this relation, with Eqs.(l8) and (16) 

verif;ies our qualitatively derived Eq. (12). 

The total flux,from r = 0 to a radius r that is sufficiently greater 

thq,n r
1 

(i.e., r - r
1 

>> A.
0

) ,is g~ven by integrating (38) from r = r 1 to 

2 
this sufficiently large r, and· !adding that .flux to the flux 'IT'r 

1 
B

1 
from r<r 

1
• 

The _result·. is 

(39) 

where the setting of thie flux equal to nh/q came from (19),. with J(r) = 0 

for r - r
1 

>> A. • Recall that fn this same region (from r=O to r several 
. 0 

times .\great,er than r
1

) the external magnetic field B
0 

is completely cancelled 

by the induced field due to the current r
2 

on the outer surface. 

If we now slowly turn down the external field to zero the surface C:urrent r
2 

will also go to zero. The current r
1 

will not change. We will be left with 

trapped flux given by Eq.(39). Note that not only the flux is quantized, but also 

the field value B
1 

and, because of Eq. (12), the current density J
1 

at r=r
1

• 

That implies that the current r
1 

is quantized. 
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APPENDIX B. THE QUANTUM NUMBER IS n, NOT n ~. 

Consider a solid superconducting cylind~r .of radius r
2 

in a uniform external 

field B directed along the axis.· All of the discussion of Appendix A that 
0 

led to the solution (33) still holds. But now we have no inner surface, so 

that we need not only the ~asymptotic solution given by (33) but also the 

solution all the way in to the origin. When we go all the way to the origin 

we can of course distinguish between s = 0 and s = 1 in (31). Even· though 

our equation has s = 1 it turns out that the solution for s = 0 will be 

useful. By using a power series expansion at x = 0 we easily verify that 

the solutions of (3i) for s = 0 and s = 1 that do not blow up at the origin 

6 
are 

2 4 6 
0: I (x) 1 

X . JC"' 

+ 
X 

+ s = = +-+--·-
0 22 ' 22•42 22· 42· 62 

3 5 7 
1: I

1
(x) =~+ 

X 
+ 

X 
+ 

X 
+ s = 

2 22· 22· 42· 22· 42· 62· 4 6 8 

with 

di
0 

(x) /dx ·. = r
1 

(x). 

The function I
0

(x) resembles coshx; r
1

(x) resembles sinhx. 

(40) 

... (41) 

(42) 

At large x, I 
0 

and I
1 

are both proportional to exp (x), and are nearly indistinguishable as 

discussed after Eq.(31). We now take the exact solution of (30) corresponding 

to the ~asymptotic solution (33), to be 

J(x) =A r
1

(x) (43) 

with A as unknown coefficient. The quantum condition (25) expressed in terms 

of x becomes 



xJ + x'dx' 
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x2 

J J(x")dx" 
x' 

= nNqh • 
27TmA 

0 

J J(x")dx" = A[I
0
(x

2
) - I

0
(x')]. 

x' 
Then 

0 x' 0 

(44) 

(45) 

(46) 

Multiplying (40) by x and integrating term by term, and then comparing with 

(41), we find 

X 

Jx'I
0

(x')dx' = xi
1

(x). 
0 

(47) 

Inserting (47) into (46), a~d then (46) into (44) we find the happy result 

that the term xi
1

(x) cancels and we are left with a simple result that holds 

for all-values of x: 

The right side of (48) is independent of x. Therefore the left side must 

vanish. That gives 

A = ~H /A. ~ I (x
2

) 
0 0 ·O 0 

(49) 

and the exact result 

n=O. (50) 

At this point we may recall our "enthusiasm tempering" discussion after 

Eq. (9) where we pointed out that in using the "old quantum theory" we could 

not be sure whether we should use n or n~. In the present example of a solid 

cylinder in a uniform external field, Eq.· (48) can only be satisfied for n=O. 

That is if we replace n by n~ and then set n=O there is no solution. We conclude 

_that at least for this case we can resolve the ambiguity and firmly choose the 

quantum number to be n, not n+'-~, without resorting to··;·,the Schroedinger theory. 

.. 
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To complete the pret;~ent example we find the magnetic field for all values 

of x. The field is obtained from Eqs. (22), (23), (45), and (49). The result is 

Btot(x) = Bi (x) + B 
n o 

= B I (x)/I (x
2

) 
0 0 0 

(51) 

This agrees with Eq.(33), except that (51) holds all the way in to x=O whereas 

(33) holds only for x >>1. Remarkably, they agree at x=O as well as at x >>1. 

To summarize: for a solid cylinder the magnetic field is essentially 

excluded from the intire cylinder and flux-quantum integer n is exactly zero. 
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'· 
APPENDIX C. RADIAL EQUILIBRIUM: THE RADIAL HALL EFFECT 

We have found . that everywhere in ·the thin surface-current layer at r = r 
1 

the magnetic field is r
1

/A.
0 

times larger than that which would give an 

equilibrium cyclotron orbit. Therefore the orbits of the Cooper pairs will 

drift to slightly smaller radii until a negative surface charge is induced 

on the inner surface, and a positive nuclear charge is slightly uncovered 

throughout the surface .layer. The drift will continue until radial equil-

ibrium is established between the induced radial electric field E and the 
r· 

.magnetic field. Since we have found that the magnetic force is of order 10 
6 

times mv
2
/r, the electric force must nearly cancel the magnetic force at all 

radii. At r=ra that gives qEr=qvLBl Since v and B each fall off exponentially 

with increasing r [see Eqs.(37) and,(38)] that gives E as a function of r: 
r 

(52) 

Integrating Eq. (52) from r=r 
1 

to r
2

, .with r
2
-r 1>> A.

0 
gives a radial 

"Hall effect" emf 

(53) 

where in the last step we used Eq.(12) to eliminate v1• For B1=0.1T, m=2me' 

q=2e, and A = 3x1o-
6 

em this gives V =0.8 microvolts. 
o . r 

How far do the Cooper pairs drift before they establish the equilibrium 

electric field? (It had better be small compared with A or we are in deep 
0 

trouble!) The largest drift needed will be where there is the largest B, at 

2 
r = rl" The radial field there is Er = v

1
B

1 
= qA.QB

1
/m. The corresponding 

total induced charge Q is given by using Gauss' Law: Er27Tr 
1 

R- = Q/ E
0 

Let the drift distance be d. Then Q is given by the pairs in the volume of 

the very thin layer of thickness d: Q=Nq27Tr
1

.fd. Putting all these togetl!er 

gives 
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2 
d/A. = B

1
e.:. /Nm • 

. 0 ' 0 
(54) 

22 ( . h. f .. 
For B = O.lT and N = 1.5 x 10 per cc we get putt1ng everyt 1ng 1rst 

0 

-12 I b II "d d b h into MKS) d/A. = 3 x 10 • Thus the "frictionless tu e prov1 e Y t e 
0 

4 radial electric field is extremely rigid. There is no tendency for the 

surface layer to be "squashed flat". 
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