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ABSTRACT. Throughout, rings are commutative with unit and modules are
unital. We prove that R  is an elementary divisor ring if and only if every finitely

presented module over R  is a direct sum of cyclic modules, thus providing a con-
verse to a theorem of Kaplansky and answering a question of Warfield. We show

that every Bezout ring with a finite number of minimal prime ideals is Hermite.
So, in particular, semilocal Bezout rings are Hermite answering affirmatively a
question of Henriksen. We show that every semihereditary Bezout ring is Hermite.

Semilocal adequate rings are characterized and a partial converse to a theorem of
Henriksen is established.

1. Introduction. All rings considered will be commutative and have identity;

all modules will be unital. A ring is a Bezout ring if every finitely generated ideal
is principal. An R-module Al is finitely presented if AI SS P(n'/K for some finitely

generated submodule K of the free module Rl   . Finitely presented modules can

be interpreted matricially (see remarks at the beginning of §3). Thus a study of
decompositions of finitely presented modules leads one to the study of matrices
over rings.

Following Kaplansky [il] a ring is said to be an elementary divisor ringif

every matrix over R  is equivalent to a diagonal matrix. As a part of a study of

elementary divisor rings and other related types of rings,  Kaplansky proved that

if R is an elementary divisor ring then every finitely presented R-module is a
direct sum of cyclic modules.

In v3 we prove the converse of this theorem, thus answering a question of War-

field [19]. A ring is said to be Hermite if every 1 by 2 and 2 by 1 matrix over it is

equivalent to a diagonal matrix. We show that every Bezout ring with a finite num-

ber of minimal prime ideals is Hermite. In particular this shows that a semilocal

Bezout ring is Hermite and provides an affirmative answer to a question of Henriksen [7],
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232 M. D. LARSEN, W. J. LEWIS AND T. S. SHORES

In addition we show that semihereditary Bezout rings are Hermite.

A ring R is said to be adequate if R is Bezout and for a, b £ R with a 4 0,
there exist r, s  £ R such that a = rs, (r, b) = (1), and if a nonunit s   divides s,

then (s , b) 4 (l). Adequate rings have been studied by Helmer [6], Kaplansky [ll]

and Gillman and Henriksen [3], [4], [7]. We obtain a complete characterization of
semilocal adequate rings and a partial converse to a theorem of Henriksen [7] con-

cerning the prime ideal structure of an adequate ring.
The Jacobson radical of a ring R will be denoted by J(R). The terms semi-

local and local will not imply chain conditions. The ring itself will not be considered
a prime ideal. Following Kaplansky the term valuation ring will refer to a ring, not

necessarily an integral domain, in which given any two elements, one divides the

other. The use of the word domain will imply that there are no zero divisors
(e.g., a Bezout domain is a Bezout ring with no zero divisors).

2. Hermite rings. We shall call two matrices A and B over a ring R equiva-

lent (notation: A ~ B) if there exists invertible matrices P, Q such that B = PAQ.
An m by re matrix A admits diagonal reduction if A is equivalent to a diagonal

matrix [ii..] (i.e. a\. = 0 whenever i 4 j) with the property that every d. . is a
divisor of a", j  .  ,. If every 1 by 2 and 2 by 1 matrix over R admits diagonal
reduction then R is an Hermite ring. If every matrix over R admits diagonal

reduction then R is an elementary divisor ring.

Hermite rings and elementary divisor rings were introduced by Kaplansky in
[ll]. Obviously an elementary divisor ring is Hermite and it is easy to see that
an Hermite ring is Bezout. Examples that neither implication is reversible are
provided by Gillman and Henriksen in [3]. In the papers mentioned above as well

as in [4] and [7], effort has been made to find conditions under which the notions
of Bezout ring and Hermite ring are equivalent. Also pursued is a search for con-
ditions under which an Hermite ring will be an elementary divisor ring. This section
is concerned with the same problems.

In [ll, Theorem 3.2, p. 467] Kaplansky proved that a Bezout ring is Hermite
when all the zero divisors of the ring are in the Jacobson radical, establishing in
particular the fact that all Bezout domains are Hermite. Henriksen [7, Theorem 2,
p. 160] changed Kaplansky's hypothesis to the assumption that the Jacobson radical

contains a prime ideal and proved that the theorem is still valid.
A Bezout ring with either of these two conditions on its Jacobson radical be-

comes quite special. In fact, all that is needed is that a ring be arithmetical [9],
(i.e. the localization at each maximal ideal is a valuation ring). A Bezout ring is,

of course, arithmetical. Let us consider the following conditions for an arithmetical
ring R:

(i) All zero divisors of R ate contained in J(R).

(ii) The set of zero divisors of R is a prime ideal contained in J(R).
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ELEMENTARY DIVISOR RINGS, FINITELY PRESENTED MODULES 233

(iii) J(R) contains a prime ideal.
(iv) R has a unique minimal prime ideal.

In an arithmetical ring incomparable primes are comaximal [9, Corollary 2, p. 116],
and in any ring the zero divisors are a union of prime ideals. Using these two
facts one can see that (i) and (ii) are equivalent, and they imply (iii) which is

equivalent to (iv). An example of a Bezout ring which satisfies (iii) but not (i) can
be found as follows. Let R be a Bezout domain with exactly two maximal ideals
AL  and Al    and one nonzero prime P C Al, n AL. If m e A1j\A12, 0 ^ p e P, and
q = p772, then the example is provided by the ring R/qR. Another example is pro-
vided by taking the direct product of p   - and q   -groups of Prüfer type where p, q

are distinct primes, endowing it with the trivial multiplication, and adjoining an
identity.

A slight generalization of the proof of [7, Theorem 2, p. 160] will prove the
following. Here (0 :d) = jx e R\xd = 0i.

(2.1) Proposition. A Bezout ring R is  Hermite if (0 : d) C J(R) for all d 4' }(R).

We do not know whether or not this condition is actually weaker for arithmetical
rings than Henriksen's hypothesis discussed earlier (i.e., J(R) contains a prime
ideal).

We now prove the equivalence of Bezout and Hermite under less stringent
hypotheses than (i)—(iv) considered above.

(2.2) Theorem. Every Bezout ring R with a finite number of minimal prime
ideals is Hermite.

Proof. Let P(R) be the ptime radical of R, and let P., • • •, P    be the mini-
mal prime ideals of R. Since every Bezout ring is arithmetical, the P.'s   are pair-
wise comaximal, and hence R/PÍR) is a direct sum of integral domains R/Pj, • • •, R/E„.
Thus there exist mutually orthogonal idempotents «,»•••» e~    with e . e R/P.
such that *.+•••+*   =1. Lift them to mutually orthogonal idempotents e,,...,
e   e R [14, Propositions 1 and 2, p. 73]. Since 1 — ie. +•••+« ) is an idempotent
element in Pip), it must be zero. Thus R = t?,R ©•••©*? J? and each e. R has

1 72 7.

a unique minimal prime ideal. Each e.R is a homomorphic image of R, so is

Bezout. Thus Henriksen's theorem says that each e.R is Hermite. Now use coor-
dinatewise manipulations to show that R satisfies condition (T) of Gillman and
Henriksen [4, Theorem 3, p. 363] and conclude that R is Hermite.

As a corollary to Theorem 2.2 we obtain an affirmative answer to a question

of Henriksen posed in [7, Question 3, p. 162]. This solution (actually (2) implies
(3) in the corollary below) provides the final link in the equivalence below.
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234 M. D. LARSEN, W. J. LEWIS AND T. S. SHORES

(2.3) Corollary.  The following are equivalent for a semilocal ring R:

(1) R is an arithmetical ring.
(2) R is a Bezout ring.
(3) R is an Hermite ring.
(4) R is an elementary divisor ring.

(5) Every finitely presented module over R is a direct sum of cyclic modules.

Proof.  The implications (4) =» (3) =»(2) =»(1) and (4) =» (5) are true without

the semilocal hypothesis [ll] as is (5)=>(1) [19, Theorem 3, p. 1691. Let R be
a semilocal arithmetical ring. By [9, Theorem 5, p. 119] R is a Bezout ring. Since
R is arithmetical, each maximal ideal contains a unique minimal prime ideal; hence
there are finitely many minimal prime ideals. The theorem now says that R is
Hermite and [7, Corollary 2, p. l6l] can be applied to conclude that R is an ele-
mentary divisor ring.

We provide one final condition under which a Bezout ring is Hermite. Recall
that a ring is semihereditary if every finitely generated ideal is projective.

(2.4) Theorem. Every semihereditary Bezout ring is an Hermite ring.

Proof. Let R be a semihereditary Bezout ring and let a, b £ R with (a, b) =
(d). We will verify that condition (T) of Gillman and Henriksen [4, Theorem 3,

p. 363] holds. Set K = (0 :d) and obtain from the projectivity of Id) that the exact
sequence 0 —> K —► R —» Id) —»0 splits, whence R = K © / for some ideal /.

Write d = k + i fot some k £ K, i £ I and from the equation kd = 0 and the direct-
ness of the sum obtain the fact that k   = 0. Since semihereditary rings have no
nontrivial nilpotent elements k = 0 and d £ I. Thus a, b £ I. Write 1 = e + / for
some e £ K, f £ I, and also write a = a d, b ■= b d where a , b   £ I. For some
772, re € R we have ma + nb = d, so by separation into components of K and / we

obtain m a + n b = d fot suitable 772, 72   £ I. Thus mad+nbd=d and hence
if —m a   — n'b')d = 0. Thus / - rzz'a' — re ¿>   e K O / = 0, so (a , f> ) = /. Now set
a.- a   and b. = e + b ; then a = a.d, b = b.d, and (a., bA = (a , b , e) = (l).

It is an open question [7, Question 1, p. 162] whether or not every Bezout

domain is an elementary divisor ring. More generally, we might ask whether or not

every semihereditary Bezout ring is an elementary divisor ring. We now turn to a
consideration of conditions under which an Hermite ring will be an elementary

divisor ring.
Gillman and Henriksen [4, Theorem 6, p. 364] prove that R is an elementary

divisor ring if and only if R is an Hermite ring and satisfies the following condition:

,_.». For all a, b, c £ R with (a, b, c) = (l), there exist p, q £ R such that

ipa, pb + qc) = (1).
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ELEMENTARY DIVISOR RINGS, FINITELY PRESENTED MODULES 235

Their proof is an adaptation of Kaplansky's ptoof [ll, Theorem 5.2, p. 472] that if

the zero divisors of a ring R are in /(R), then R is an elementary divisor ring if

and only if R is Bezout and satisfies (D ).

The following condition leads to a common generalization of [4, Theorem 8,
p. 364] and [7, Theorem 5, p. 161].

For a, b e R with zz i /(R), there exists 77z e R such that ib, m) - (l)
(N)

and if for some ne R in, a)/ (l) and (72, b) = (l), then (72, 772) 4- (l).

(2.5) Theorem. // R is a Bezout ring satisfying (N), then R satisfies (D ).

Proof.  Let a, b, c e R with (a, b, c) = (1). If a e J(R), then (b, c) = (1) and
we may choose p, q such that pb + qc = 1. Thus we assume a 4 ](R) and pick

772 e R such that ib, m) = (l), and if for some 72 e R (n, a) /=■ (1)   and (»2, b) = (l)
then (72, 772) 4 (l).

We note that if d is a nonunit and d\a then either id, b) / (l) or id, m) ¿ (l).

Now if we assume that d is a nonunit and (zz) - (a, b + mc) then there is a nonunit

d \d such that d \a, d \(b + mc), and either d \b or d \mc hence both. We shall
show that this is impossible. Indeed if d \a, d \b then ib, m) = (l) implies
id', m) = (l) and ia, b, c) - (l) implies id', c) = (l). Hence id', mc) = (l) and
we have the desired contradiction.

Using the result of Gillman and Henriksen [4, Theorem 6, p. 364] we immedi-
ately get the following

(2.6) Corollary.  Every Hermite ring satisfying (N) z's zz»z elementary divisor ring.

The most striking class of rings which satisfies (N) is the class of adequate

rings. More discussion of adequate rings occurs in §4; now we show only that (N)

holds in an adequate ring. Let a, b e R, an adequate ring, with a 4 0. Write a = rs
according to the adequate condition. Then r plays the part of 772 in condition (N).
Certainly (r, b) = (l). If (72, a) 4 (l) and in, b) = (l) for some 72, one can check
that (72, s) = (l) and thus (72, r) 4 (l).

Let Z(zz) denote the set of maximal ideals containing a. Henriksen

[7, Theorem 5, p. I6l] proves that an Hermite ring R  is an elementary divisor ring

if for every a, b e R with a 4 /(R) there exists r e R such that Zir) = Zia)\Zib).
Rings satisfying this hypothesis are another example of rings that satisfy (N).

Indeed, if Zir) = Zia)\Zib) we surely have (r, b) = (l). Also if (72, a) 4 (l) and
(72, b) = (l) for some 72 then 0 4 Zia) HZin) C Zir); so (72, r) 4 (l).

We note that in our proof of Theorem 2.3 we established a condition slightly

stronger than (D ), that is, if a 4 }(R) and (zz, b, c) = (l)> there exists m e R
such that ia, b + ttzc) = (l). This condition, for a Bezout ring, defines a B-ring as
studied in [l6].  Thus a Bezout ring satisfying (N) is a B-ring.
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Finally our Corollary 2.3 allows the more desirable wording of Henriksen's

Corollary 2 [7, p. I6l].

(2.7) Proposition.  // R is a Bezout ring and Z(a) is finite for each a 4 jlR),
then R  is an elementary divisor ring.

3. Elementary divisor rings. In this section a number of results about Bezout
rings are established. These results provide major links between Bezout rings,

Hermite rings, elementary divisor rings, and rings whose finitely presented modules

are direct sums of cyclic modules.

We begin with some remarks on naming of finitely presented modules by matrices.
If cf> e Hom„ (R     , R(m') we say that cp names the module M if the sequence

RM—*_^ RM-y M-> o

is exact, i.e., M = cokerG/j). The matrix representation of cf> with respect to

bases ie,, • • • , e j and [/.»•••»/ I of R1"' and Rl    , respectively, is the matrix
A = [a ..] where cbie A = a, ./,+••>+ a   ./   for z = 1, • • •, re. Now let A be anzj ^     z lz'1 mi'm
m by re matrix over R. Say A names M (with respect to bases E, F of R1"',

R      , respectively) if A  is the matrix representation of a homomorphism cf> with

respect to the bases E, F and cf> names M. Initially we can afford to be careless

about bases; for, if A names M with respect to bases E, F and names M   with

respect to bases E , F , then M is isomorphic to M . Thus when we say A names

M without reference to specific bases it will be understood that we mean the

canonical bases. Let E, F be bases of R     , R(m', respectively, and let Q~  ,

P be change of bases matrices which convert E to E   and F to F   respectively.
If A names M with respect to E, F, then PAQ names M with respect to E , F .

(3-1) Theorem.  All diagonal matrices over a ring R admit diagonal reduction

if and only if R is a Bezout ring.

Proof. If a, b £ R and the matrix

admits diagonal reduction, say

C3.-C3
where d divides e, then (a, b) = id, e) = id), so that R is a Bezout ring.

To establish the converse let R be a Bezout ring and induct on m to show

that the diagonal m by n matrix A admits diagonal reduction. The case 7» = 1
offers no difficulty. If 772 > 1, write

0•[:;,]
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ELEMENTARY DIVISOR RINGS, FINITELY PRESENTED MODULES 237

where A,  is an 772 — 1 by »» — 1 diagonal matrix. By the induction hypothesis,
A,  admits diagonal reduction:

0    •   •   •    I"1

0      c.

Note that if d = ia, cA, say d = ma + ncy a = da   and Cj = dcl , then use of ele-
mentary row and column operations yield the equivalences

L° cJ L°      ci\ Lci °J L° -*cJ
Hence

-ZJ c,

Since zz" divides Cj, d must divide all the diagonal entries. Apply induction again
to the matrix obtained by deleting the first row and column of the right-hand side
to obtain the proper form.

There is some interest in knowing when the intersection of principal ideals is
itself principal; for instance, see Lemma 3-3 and Theorem 3.4 of Kaplansky [ll,
p. 468]. The following corollary shows that such is always the case in a (commu-
tative) Bezout ring.

(3.2) Corollary. The intersection of two principal ideals in a Bezout ring is
itself principal.

Proof. Let a, b e R. Then

C H 3
where d divides e. If Al is the module named by either of these equivalent matrices,
then we see that eR = 0: Al = \f e R\a and b divide f] = aR O bR.

A module Al over R will be said to have a canonical form if Al S R/A , © • • •
© R/A    where A.,«»«, A    are ideals of R and Aj Ç A2 Ç. • -C A    4 R- Kaplansky
shows in Theorems 9.2 and 9.3 of [ll, p. 478] that if Al has another canonical form
Al = R/B, © • • • © R/B   , then n = 722 and each A . = B ., and if Al has a canonical1 771 7 7
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form with re summands as above, then every generating set of Af requires at least

re elements.

Recall that a cyclic R-module of the form R/rR, where r £ R, is called a

cyclically presented R-module. Using Bourbaki [l, p. 37] one can show that a

finitely presented cyclic module over a Bezout ring is cyclically presented.

(3-3) Corollary.  // the ring R  is a Bezout ring, then every finitely presented

module over R which is a direct sum of cyclic modules has a canonical form.

Proof. Since finitely presented cyclic modules over R are cyclically presented,

a finitely presented module over R which is a direct sum of cyclic modules is

named by a (square) diagonal matrix A. Also A  admits diagonal reduction by

Theorem 3-1, say

A ~

0

where each d. divides  d.  ,. Since equivalent matrices name isomorphic modules

it follows that the module named by A  is isomorphic to   R/d^R © • • • © R/d R,
and reversing the order of the summands produces the canonical form.

Two lemmas precede our next theorem, Theorem 3-6. The second lemma as

well as the theorem were announced without proof by Lafon [13, Théorème 1 and

Proposition 2, p. 964]. We have been unable to obtain copies of his proofs and for

the sake of completeness have included our own proofs.

(3-4) Lemma.  Let M be a finitely presented R-module and let K be an ideal

of R  contained in 0 : Af    Then M is a finitely presented (R/K)-module.

Proof. Let M be named by the m by re matrix A. Then the re columns of A

span the kernel of the map <f> where the exact sequence

An). ->R (777). <t> -►Af ->0

gives M. Tensoring this sequence with R/K, we get an exact sequence

(R/K)M - lR/K){m) - M/KM - 0.

Since KC(0 : AI), M/KM = Al, and Al is a finitely presented R/K module.

(3.5) Lemma. Let R be an arithmetical ring and let M be a faithful finitely

presented R-module which is a direct sum of cyclic modules. Then M has a nonzero

free summand.
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ELEMENTARY DIVISOR RINGS, FINITELY PRESENTED MODULES 239

Proof. Write Al = R/A t © • • • © R/A    for ideals A . of R and argue by induc-
tion on 72. The case ?2 = 1  is clear. Let n>l and write Al = R/A.® • • .®R/A     ..1 77— 1

If K = 0: Al   then by Lemma 3.4 Al   is a faithful finitely presented (R/K)-module.
If K = 0 the proof is complete. If not induction at least gives Al  = P © R/K for

some P, whence Al = P © ÍR/K © R/A). Therefore (0 : Al) = K n An = 0. Since
R/K is finitely presented (since M is) we have that  K is finitely generated as is

A . Thus by arithmeticity and Theorem 3 of Jensen [9> p. 117]

(0:K) + (0:A ) = (0:(K nA )) = R,n n

say 1 = zz + b for some a e (0 : K), b e (0 : A  ). Now map R/K © R/A    onto R by
(r + K, s + A  ) I-» ra + sb to get the desired result.

(3.6) Theorem. Suppose that every module over R which is named by a matrix

of the form
-a   0"n

is a direct sum of cyclic modules.  Then R  is Hermite.

Proof.  First we show that R  is arithmetical.  Let  P be a maximal ideal of R

and let q> be the map with matrix representation

c a-
Tensoring the exact sequence

R(2) —;(2)        *    y  R(2)

with R„ shows that the cokernel of the map induced by cp is  R„ ® Al and that

it must be a direct sum of cyclic  Rp-modules. Since Rp satisfies the hypotheses

of the theorem, for simplicity of notation we temporarily assume R = R„. Assume
R is not a valuation ring; then there are elements zz, b e R such that neither
divides the other. Let A = (czR n bR) + aP + bP; then A C (a, b) C P. Consider
the exact sequence

(R/A)(2)      ^    o\ {R/A)(2)->-_> 0>

In the proof of Theorem 2 of [19, p. 168], Warfield shows that M is indecomposable.

However, this exact sequence is obtained by tensoring the first sequence with

R/A. So using the canonical isomorphism (R/A) ® AI Si M/AM one sees that

Al Si M/AM. Hence Al is indecomposable; for if M = N © K for nonzero submodules N and K,
then M/AM =N/AN © K/AK. But by Nakayama's lemma, neither summand is trivial. This
contradiction and the hypotheses say that M is cyclic. Pulling a generator back to R*- '

yields a generating set for R^ ' of the form
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O ED
for some c, d £ R. But [£] £ PR(2^ so R(2)/PR(2) is cyclic. The isomorphism
R'  '/PR      = ÍR/P)      provides the necessary contradiction and we conclude
that the local ring R is a valuation ring and the original ring is arithmetical.

Now we return to the original notation and show that if M is named byça
then Al is faithful. An element d annihilates Al if and only if

BCH'J-
say aa = d, ab = 0, /Sa = 0, and ßb = d lot a, ß £ R. Pass to localizations. If
a divides b, say b = ab^, then the above equations give 0 = ßa = ßab^ = ßb = d
locally. Likewise if b divides a in the localization, then d = 0 there. Hence

d = 0 and Al is faithful.
The proof can now be completed. Let M, a, b be as above. By Lemma 3«5

we write M = eR © Q where R is free on e. We have the sequence

R(2)^UeR®Q—?-+eR
where 77 is the projection and ifr is the map onto M in the sequence naming M.
If a is their composition, then we have that the sequence

R(2) —^->eR->0

splits, so R(2) Oí eR © ker a. By the proof of [15, Theorem 48, p. 143] ker a Si R.
Pick a basis if,, e2\ of R(2) such that ker a = e^R and iffle2) = e. One has that
Im^ = ker if/ Ç ker a = e.R. Consequently with respect to bases B,  and B2

where B.  is the canonical basis and B2 = le., f2i the matrix representation of

<f> has the following form:

c a
But this matrix is just PA where P is the change of basis matrix. A simple

computation shows that for some d £ R

PA

whence
n

[a, b]PT = [d, 0],

so R is Hermite.
This theorem has an interesting corollary in the spirit of [11, Theorem 5.1, p. 471].
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(3.7) Corollary. The ring R is an elementary divisor ring if (and only if)
every 2 by 2 matrix over R is equivalent to a diagonal matrix.

Proof. We need first to look at 1 by 2 and 2 by 1 matrices over R. Since R
is commutative we need only be concerned with the 2 by 1 matrices. Let Al be

named by

Since this mattix is equivalent (by hypothesis) to a diagonal matrix, Al is a direct
sum of cyclic modules. The theorem now says that R is Hermite. Thus each
2 by 1 matrix over R is equivalent to a diagonal matrix. Furthermore, R is Bezout
and thus all diagonal matrices admit diagonal reduction. Thus all 1 by 2, 2 by 1,
and 2 by 2 matrices over R admit diagonal reduction and the proof is complete
by Kaplansky's theorem [ll, Theorem 5.1, p. 471].

We are now able to prove the converse to a theorem proved by Kaplansky in
1949 [ll, Theorem 9.1, p. 477] thus completely characterizing those rings whose
finitely presented modules are a direct sum of cyclic modules. In 1970 Warfield
showed in [19, Theorem 1 and Corollary 2.1, p. 168] that valuation rings are pre-
cisely the local rings whose finitely presented modules are direct sums of cyclic
modules and concluded by stating (p. 171) that the global problem was still unsolved,
even for domains. We are now able to provide a solution. Lafon has informed us
that he has obtained this equivalence for rings whose zero divisors are contained
in the Jacobson radical of the ring.

(3.8) Theorem. The ring R is an elementary divisor ring if (and only if) every
finitely presented R-module is a direct sum of cyclic modules.

Proof. By Theorem 3.6 and [4, Theorem 6, p. 364] it is sufficient to show that
condition D   (of the same theorem) is satisfied. To that end, let a, b, c be ele-
ments of R such that (a, b, c) = (1). Let Al be the module named by the matrix'-C 3
and obtain from the hypotheses and Corollary 3-3 the fact that Al has a canonical
form R/dR © R/eR where d divides e. The second Fitting invariant of Al is just
the ideal generated by the entries of any 2 by 2 matrix which names Al. This ideal
depends only on Al (see, for example, [10, Appendix 4-3(b), p. 145]) and both

C 3 G 3
name Al, so (1) = (a, b, c) = (d, e) = (d). It follows that Al S£ R/eR, i.e., M is cyclic.
If K is the column space of A, select an element

[I]
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in R    ' such that its image in R^  '/K generates Al. Since R is Hermite, by
[4, Theorem 3, p. 363] one may find d, x, y £ R such that

era
and (x, y) = (1). The image of

generates Al so that R(  ' can be generated by

LOT
In particular note that for some m, n £ R, mx + ny = I. Also for suitable p, q, r £ R
we obtain that

[:m;hh]'
Consequently it follows that 1 = (pb + qc + ry)x - Ipa + rx)y = Ipb + qc)x — ipa)y.
Hence ipa, pb + qc) = (l) and condition D   is satisfied.

The study of rings whose finitely presented modules are direct sums of cyclic

modules has been interpreted matricially in terms of Fitting equivalence. Two

matrices A, B are said to be Fitting equivalent if
fa   o   o,   re   o   o-i
Lo   /   oJ   Lo   /   oJ

for suitable identity matrices / and zero matrices. Hans Fitting [2, Satz 2(a), p. 579]

proved that A and B name isomorphic modules if and only if A and B are Fitting

equivalent. Since every finitely presented module over R  is a direct sum of cyclic

modules if and only if every matrix over R is Fitting equivalent to a diagonal
matrix, we obtain the following corollary.

(3-9) Corollary. Every matrix over a ring R is Fitting equivalent to a diagonal

matrix if and only if every matrix over R is equivalent to a diagonal matrix.

Note that there is no need to mention canonical form here, for if every matrix

over R is equivalent to a diagonal matrix, then R is Hermite, whence Bezout, so
by Theorem 3<1 diagonal matrices admit diagonal reduction.

4. Adequate rings. Adequate domains were introduced by Helmer in [6]. It had
been known that principal ideal domains were elementary divisor rings and Helmer
showed that the less restrictive hypothesis that an integral domain be adequate is

sufficient. Kaplansky [11, p. 473] began the consideration of adequate rings with

zero divisors by showing that an adequate ring whose zero divisors are in the

Jacobson radical is an elementary divisor ring. As a result of our discussion of
this hypothesis in §2 and a theorem of Henriksen (Theorem 4.1(b) stated below),
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we note the somewhat surprising fact that the only adequate rings whose zero
divisors are in the Jacobson radical are either integral domains or valuation rings.
The following theorem provides two important facts about adequate rings. We record

it for easy reference.

(4.1) Theorem,  (a) [6, Theorem 8] An adequate ring is an elementary divisor

ring if and only if it is an Hermite ring.
(b) [9, Theorem 4] Every nonzero prime ideal of an adequate ring is contained

in a unique maximal ideal.

The (b) part provides a complete picture of the spectrum of an adequate ring

when considered as a partially ordered set. Since an adequate ring is Bezout, the

set of prime ideals contained in a given prime ideal is linearly ordered. Thus if R

is an adequate ring and not an integral domain, then the spectrum of R is a disjoint
union of totally ordered sets. If R is an adequate integral domain, then the spec-
trum of R is a union of totally ordered chains with one and only one common ele-

ment (the zero prime).
For semilocal rings we can completely describe the adequate rings.

(4.2) Theorem. Ler R be a semilocal ring. R is adequate if and only if either
(i) R  z's zz finite intersection of pairwise independent valuation domains

(with a common quotient field), or

(ii) R  z's a finite direct sum of valuation rings.

Proof. If R is adequate, it is, of course, Bezout. Let us assume that R is
an integral domain. Then R is an intersection of valuation domains R = f*)"_i ^m ■
where   M,, • • • , Al     are the maximal ideals of R. If  V is a valuation overring of

R containing both R„    and R„    for some  i / j, then  V = Rp tor a prime ideal

P of R which must be contained in both Al. and M.. Thus P must be the zero
7 i

prime ideal of R and V is the quotient field of R. Thus the valuation domains
RM    are pairwise independent. On the other hand if R is not a domain it still has

only a finite number of minimal prime ideals and can (by Bezoutness and Theorem 2.2)

be written as a direct sum of rings R,, • • •, R    each of which has a unique minimal

prime ideal. Obviously each R . is Bezout, and since each minimal prime ideal of

R is contained in a unique maximal ideal, each R . is local. Therefore each R.
is a valuation ring.

Now if R is an intersection of a finite number of independent valuation domains,

R is a semilocal Prüfer domain [17, Theorem 11.11, p. 38], hence by [9, Theorem 5,

p. 119] a Bezout domain. Let a, b e R, a 4 0. Let AL ,•••, Al., Al ..,•••, Al    be
the maximal ideals of R  labeled so that b 4 M . for  i = 1, • • •, / and b e M . for
i = j + 1,. •., n. Let v., • • •, v    be the valuations corresponding to the valuation
domains RM  ,•••, RM  . By the approximation theorem [20, Theorem 18 , p. 47]
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there exist r, s £ R such that

v.ir) =

and

v .is) =

v .(a),    if 1 < i < /',

o,       if y +1 < i < «,

0, if i < i < j,

via),   if ;' + 1 < i < n.

Clearly v .(a) = v .(rs) for z = 1,« • •, re, so there is a unit u in R such that a = urs.
We may assume a = rs without loss of generality. There is no maximal ideal of R
containing both r and b, hence (r, b) = (1). If s   is a nonunit which divides s,
then Z(s') Ç Zls) C Zlb). Thus is', b) 4 (l). This proves that R is adequate.

Finally let R be the direct sum of valuation rings R.. It is easy to see that
R is a Bezout ring. Let a = (a,, •• •, a ) and b = ib., « • •, b ) be elements of R^ in in
with a 4 0. Define elements r, s £ R coordinatewise as follows:

!1,    if b. is a nonunit in R., la.,    if è. is a nonunit in R.,

af, if ¿. is a unit in R., '     (1,     if b. is a unit in R-

Clearly a = rs and (r, ¿) = (l). Let s  = (s. , • • •, s  ) be a nonunit of R which
divides s; if s.   is a nonunit, then s. is a nonunit and hence b. is a nonunit. Thus

' z ' Z 1

is . , b ' ) 4 (l) in R • • Therefore is , b) 4 (l) and we can conclude that R is adequate.
If we replace the semilocal hypothesis in the previous theorem by a finite

character condition, we obtain the following partial converse to Theorem 4.1(b).

(4.3) Theorem. Let R be a ring such that Z(a) is finite for all a 4 JlR).
Then R is an adequate ring if (and only if) R is a Bezout ring and every nonzero
prime ideal of R is contained in a unique maximal ideal of R.

Proof. If R is semilocal the previous theorem applies. If R has an infinite
number of maximal ideals we note (as did Henriksen [7, p. I6l]) that JÍR.) must be

a prime ideal. Thus since /(R) is contained in every maximal ideal, /(R) = 0 and
R is an integral domain. Let a, b £ R, a 4 0, and label the maximal ideals AL,
• • •, A4    that contain a such that b 4M. fot i = 1, • • •, ; and b £ M . fot 2 = 7 + 1,

72 i ' i '

• • •, re. Let S = R\U"_i ^ ■ • Then Rs is a semilocal Bezout domain in which
every nonzero prime ideal is contained in a unique maximal ideal; hence Rc is
adequate. As in the previous theorem, there are u, v £ Rs such that in Rs, a = uv,
iu, b) = (l), and if v   is a nonunit of Rs which divides v, then iv , b) 4 (l). Write
u = 772// and v = re// with m, n £ R, t £ S. Back in R, let r = (a, 772) and s = (a, 72).
Then Zir) = Zia) n Zim) = ¡Al,, • • •, M .} and Zis) = Zia) O Zin) = ¡Al. ,,•••, M ].

I 7 J + l Tí
Therefore ir, b) = (l) and if s   is a nonunit which divides s, then is', b) 4 (l)
since Z(s ) Ç Z(s) C Z(b). We conclude the proof by showing (a) = 1rs), fot then
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a = rs (up to a unit multiple). We accomplish this by showing that these ideals
are equal locally. Let Al be a maximal ideal of R. If a 4 Al, then r, s 4 M and
a, r, s are all units in R„. If zz e Al, use the fact that in Rs (and thus in R„)
(r) = (a, m) = (ttz) and  (s) = (a, n) - (n) to obtain the desired local equality.

We pause to discuss the behavior of the tings we have been investigating.

Bezout rings, Hermite rings, and elementary divisor rings are closed under homo-
morphic images. If R is the direct product of R.'s for i in any index set, then R
is a Bezout ring (respectively, Hermite ring, elementary divisor ring) if and only
if each R . is a Bezout ring (respectively, Hermite ring, elementary divisor ring).
The behavior of adequate rings is not nearly as nice. Indeed, from Theorem 4.1(b)

one can see that if R is an adequate domain with at least two maximal ideals,

then R x S is not adequate for any nonzero ring S. We can however establish the
following two positive results.

(4.4) Proposition. // R is an adequate ring and A  is an ideal of R contained
in }(R), then R/A  is an adequate ring.

Proof. Let a, b  be elements of R/A with ä 4 0 which are the images of
a, b e R, a 4 0, under the canonical map. From the fact that R is adequate we get
r, s e R such that ¿7 = r"s  and (7', b) = 1. Let /   be a nonunit in R/A which
divides s. Then for some k e }(R) we have t divides s + k. Hence Z(t) C
Z(s + k) = Z(s). Thus (t, s) 4 (l); thus there is a nonunit zz in R which divides
both t and s. Thus (zz, b) 4 (l), and hence iü, b)4(l). Since zz" divides t   we
have (F, b) 4 (1).

(4.5) Proposition. Let R be the direct product of R .'s where i el (an index
set with more than one element).  Then R is an adequate ring if and only if each

R . z's adequate and for each R . and each b. e R ., there exists r., s. e R . such
that r.s.=0,(r.,b.) = (l) and if s .   is a nonunit of R. which divides s., then
is'., b'A 4 il). '

Note that the condition in the sufficiency part is merely the adequate property
in each R . for a = 0.i

Proof. Assume that R is an adequate ring. Fix one index /' and pick a. e R .
(here a. could be zero). Let a = (a.) be an element of R defined by a. = a. if; ! *    i       j
i = /' and zz\ =1 if i 4 j. Let b. e R. and define b = (bA in R similarly. Then
a 4 0 and there exist r = (r A, s = (s.) in   R satisfying the adequate conditions.
Thus r.s. = zz. and if i 4 j, r.s. = 1 so r., s. are units in R.. Since (r, b) = (l)

we have (r., è.) = (l) in R.. If s.   is a nonunit in R. which divides s., let

s = (si ) be defined by s¿   = s.   if i = ;' and s. =1 if i 4 ]• Then s' is a nonunit
of R which divides s and hence is', b) 4 il). But for all i 4 /'» s' = b. = 1 so we
conclude that (s . , b.) 4 (l). Thus- R. is adequate and the additional condition
holds.
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Now suppose each R . is adequate and that the adequate condition holds for

a = 0 in each R .. Let a = (a .), b = (b A be elements of R. Choose the appropriate
r.'s and s.'s in each  R . (the hypothesis allows this even if some of the a 's are

zero). If r =(r A and s = Is A, then clearly a = rs and (r, b) = (1). Let s' = (s. )

be a nonunit which divides s. For each i such that s.   is a nonunit in R. we have
7 Z

is'. , b.) 4 U). Thus we can see that is', b) 4 (1) and that R is adequate.

Observe that if R is an adequate ring and the adequate condition does not

hold when a = 0, then R is indecomposable (into a direct product of rings).

Valuation rings trivially satisfy the adequate condition, even for a = 0. It is

known [4, Theorem 11, p. 365] that (von Neumann) regular rings are adequate. We

see below that regular rings satisfy the adequate condition for a = 0.

(4.6) Proposition. // R is a regular ring and b £ R, then there exist r, s £ R

such that 0 = rs, (r, b) = (l), and if s   is a nonunit which divides s, then

is', b) 4 (i).

Proof. Since  R is regular any principal ideal is idempotent generated.  Let

e be an idempotent such that eR = bR. Then R = eR © (l - e)R. Pick r = 1 - e
and s = e; they will do the job.

We return now to the problem of when a Bezout ring is adequate and pose the

following question. If R is a Bezout domain with the property that every nonzero

prime ideal is contained in a unique maximal ideal, is R necessarily an adequate

ring?
Our method of approach will be in terms of the group of divisibility of a

Bezout domain. The group of divisibility of an integral domain  R with quotient

field K is the ordered group of nonzero elements of K modulo the units of R,

ordered by letting the image of R in this group be the positive elements. The

group will be written additively. For properties of the group of divisibility see

[8] and [18]. The group of divisibility of a Bezout domain is a lattice ordered

group (every pair of elements  a, b has an infimum, written a A b). In [8, Theorem 3,

p. 78] Jaffard proves that every lattice ordered group is the group of divisibility

of some integral domain and Ohm in [18, Theorem 6.6, p. 590] pointed out that the

integral domains obtained by Jaffard's construction are Bezout domains.
Let A be a lattice ordered group. For notational convenience, let A    =

ix e A|x > 0Î. Let us say A is adequate if for every a, b  eA, there exist r, s £A
such that a = r + s,r/\b = 0, and if 0 < s  < s for some s   £ A, then s  A b 4 0.

It is easy to see that we have simply translated the Bezout ring adequate condi-
tion into the language of ordered groups. We obviously have the fact that a Bezout
domain is adequate if and only if its group of divisibility is adequate.

Let A be a lattice ordered group and let b £ A . Set A, = \a £ A \a A b = 0i
and A, = \a. - aAa., a2 £ A* \. Noting that if a. A b = 0 and a2 A b = 0, then
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(a, + a A A b = 0, we see that  A,  is a lattice subgroup of A.

(4.7) Theorem. Let A  be a lattice ordered group. Then A  is adequate if and

only if for each b £ A  , A,   is a summand of A.

Proof. Let A be adequate and choose b £ A  . Let Bfe = fa e A  \a  A b 4 0
whenever 0 < a' < a!. If a^, a2 £ B,  and 0 < s < at + a2 for some s £ A, then
either s A a, 4 0 or s A a2 4 0; hence s A b 4 0 and a. + a2 £ B,. Thus
B, = ¡a, - a2|aj, a2 e B, ! is a lattice subgroup of A. Clearly Afc H Bfc = Í0Í.
Since A is adequate, if a e A  , then a = r + s fot some r £ A,  and s £ B.. Since
any element of a lattice ordered group is the difference of two positive elements

we get A= Ah@ By
Conversely suppose A = A, © B for some lattice subgroup B of A. Let

a 6 A    and write a = r+ s fot some r £ A,, s £ B . Then r A b = 0. Suppose
0 < s  < s for some s   e A. Then s   £ B and hence s A b 4 0. Thus A is adequate.

It is well known that any lattice ordered group can be lattice embedded into

a product of totally ordered groups in such a way that infimums are preserved.
Both a direct product and a direct sum of totally ordered groups are adequate groups,

as is easily seen. Thus we get the following corollary to the previous theorem.

(4.8) Corollary.  Let R be a Bezout domain. Then R is adequate if its group

of divisibility is order isomorphic to either a direct sum or direct product of totally

ordered groups.

One can check that the groups of divisibility of the adequate domains considered
in Theorem 4.3 are isomorphic to a direct sum of totally ordered groups. There are,

of course, adequate domains whose group of divisibility does not satisfy the con-
dition of Corollary 4.8. One such example is the Bezout domain constructed by

Heinzer and Ohm in [5, Example 2.2, p. 276]. We have been unable to determine

whether or not a complete converse for Henriksen's Theorem 4 (Theorem 4.1(b)

above) exists for an integral domain.

[Added in proof. J. W. Brewer, P. F. Conrad and P. R. Montgomery have con-
structed a lattice ordered group which, in light of (4.7) above, answers negatively
the question following (4.6). Their article Lattice-ordered groups and a conjecture
for adequate domains will appear soon in Proc. Amer. Math. Soc]
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