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ELEMENTARY DUALITY OF MODULES

IVO HERZOG

Abstract. Let R bearing. A formula <p(x) in the language of left .R-modules
is called a positive primitive formula (ppf) if it is of the form 3y(AB) (*) = 0
where A and B are matrices of appropriate size with entries in R . We apply
Prest's notion of Dtp(x), the ppf in the language of right /{-modules dual to <p ,
to show that the model theory of left /{-modules as developed by Ziegler [Z] is
in some sense dual to the model theory of right /{-modules. We prove that the
topologies on the left and right Ziegler spectra are "isomorphic" (Proposition
4.4). When the lattice of ppfs is well behaved, there is a homeomorphism D
between the left and right Ziegler spectra which assigns to a given pure-injective
indecomposable left /{-module U the dual pure-injective indecomposable right
/{-module DU . Theorem 6.6 asserts that given a complete theory T of left
/{-modules, there is a dual complete theory DT of right A-modules with cor-
responding Baur-Garavaglia-Monk invariants. In the end, we give some condi-
tions on a pure-injective indecomposable rU which ensure that its dual DU
may be represented as a horn set of the form Hom^í/s, Eg) where S is
some ring making r Us into a bimodule and Es is injective.

Prest [P, Chapter 8] defined the dual of a positive-primitive formula f(x) of
the form 3w (//i/72)(*) =0 to be (Dtp)(x) o 3v (xv)(^ ¿) = 0 (Definition
2.1). In this paper, we develop an elementary theory of duality for modules by
extending Prest's definition to an appropriate category of functors. From this
and the work of Ziegler [Z] arises a reflexive class of pure-injective indecom-
posable modules.

In §1, we define (/î-Mod)eq, a category of functors from Ä-Mod, the cate-
gory of left i?-modules, to Ab, the category of abelian groups. (i?-Mod)eq is an
abelian reduct of Shelah's Leq [P, §10.T] which has proven sufficient for most
purposes. We define (Mod-Ä)eq, the right analogue of (J?-Mod)eq, similarly
and the content of Theorem 2.9 is that these two categories are isomorphic.

Nearly all our proofs depend on the following paraphrase of [S, Proposition
1.8.8].

Proposition 3.2. If a e NR and c G rM are tuples of the same length, then
a ® c = 0 in N ®RM iff there is a ppf <p(x) e rL such that RM 1= tp(c) and
NR 1= (Dtp)(a).
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38 IVO HERZOG

As a consequence, the definition of tensoring may be extended to the objects
of (Ä-Mod)««.

Ziegler [Z, Theorem 4.9] noticed that the set of (isomorphism types of) left
(right) pure-injective indécomposables may be endowed with a topology and
that a basis for this topology may be taken as the set of supports of the objects
of (tf-Mod)eq ((Mod-i?)eq). The duality between (7v-Mod)eq and (Mod-J?)eq
shows that the left and right Ziegler spectra have the same topology (Proposition
4.4). This leads to the definition of a reflexive pure-injective indecomposable
U and its dual DU whose lattices of pp-definable subgroups are related by

Theorem 4.10. Duality, the map which takes U to DU, is a bijection from
the set of (isomorphism types of) reflexive pure-injective indecomposable left R-
modules to the set of iisomorphism types of) reflexive pure-injective indecompos-
able right R-modules and conversely. For a reflexive U, we have

(i)  DDU = U,
(ii)   Latt(DU) = Latt(C/)°P via the map which takes tp(U) to Dtp(DU) =

{ceDU\c®tp(U) = 0 in DU®U).

As an example, the dual of a pure-injective indecomposable module over a
Dedekind domain is determined in §5.

Prest's notion of localization [P, Chapter 8] is then applied to our previous
results and one can define the dual DT of a complete theory T of left (right)
/^-modules. This allows us to show that, model-theoretically, left and right
/(-modules are intimately related.

Theorem 6.6. Duality, the map which takes T to DT, is a bijection from the
class of complete theories of left (right) R-modules to the class of complete theories
of right (left) R-modules. DT is uniquely determined by T via the equation
\tp/y/\r = \Dy//Dtp\DT. If U is reflexive, then D(Yh(U)) = Yh(DU).

As an application of Theorem 6.6, the dual of an indecomposable strongly
minimal module may be endowed with a topology which makes it a compact
(Hausdorff) topological module (see §7).

Our shift of emphasis (from finitely presented modules) to the pure-injective
indécomposables is justified by

Proposition 8.1.  rN —► rM is pure iff U ®rN-► U ®rM is injective for
each pure-injective indecomposable right R-module U.

This gives rise to the notion of local purity and the result (Proposition 8.9)
that DU is a direct summand of Horn (£7, DU ® (7).

As an application of §8, we prove that the dual of a flat (pure-injective)
module is injective and we put such findings in the context of the work of Eklof
and Sabbagh [E-S, S-E] on (left) coherent rings. We also prove

Theorem 10.5. If rU is a totally transcendental indecomposable R-module and
S = Ends U, then DUR S rIoms(RUs, DU ® Us).

Theorem 11.2. If U is a definably finitely generated totally transcendental in-
decomposable module, then DU <s> Us = E(A$)> where S = End^ U, A is its
residue ring and E(ZS.S) is the injective hull of As,
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ELEMENTARY DUALITY OF MODULES 39

I thank Edgar Enochs and Zeljko Sokolovic for some very helpful conversa-
tions.

0. Preliminaries

Although this article is not meant to be self-contained, we shall set down in
this section some of the necessary definitions and notation. We also take this
opportunity to emphasize certain aspects of the basic notions which are usually
left implicit, but will be of great use to us in the sequel. The reader is referred
to [P] or [Z] for a thorough treatment of what follows. Indeed, both of these
references are comprehensive enough that we shall routinely cite them in favor
of the original source.

We use left subscripts to indicate that left .R-modules are in question and a
right subscript to indicate the same for right .R-modules. The symbol «4- will
be used to express equality of formulae (as opposed to mere equivalence) and
tuples a will be printed boldface, while single elements a axe written plainly.
/(a) is the length of a.

The language rL = (+,-, 0, r)reR used for the study of left ü-modules
consists of the binary function symbol +, the unary function symbol -, a
constant symbol 0, and for each r e R a unary function symbol, also denoted
by r. A similar language LR = (+,-, 0, r)reÄ is used for studying right R-
modules. In this latter case, however, each r e R interprets a unary function
which acts on its argument from the right.   1 G R and all modules are unitary.

A.   Positive primitive formulae.

Definition 0.1. A positive primitive formula (henceforth ppf) of rL is one of
the form tp(x) <& 3y Ax + By = 0 where A and B are matrices with entries in
R and Ax e.g. really means Ax'. A ppf in Lr has the similar form tpix) «•
3y xA + yB = 0. Unless it is said otherwise, tp, y/, a, x, p, 6 and e will
always denote ppfs. If tpix) is a ppf in, say, one variable, then

tpnix) <=*• f\{tpixj) I 0 < i < n}    where /(x) = n.

Given RM g .R-Mod and tpix), then tpiM) = {a G Mn\M t= ç>(a)} where
n = lia) = /(x). This is a subgroup of (Af", +) and all such subgroups will
be referred to as a pp-definable. The mapping which assigns to M the pp-
definable subgroup tpiM) constitutes a functor from .R-Mod to Ab if for each
.R-homomorphism /: M —» N we set (pif) to be the restriction of / to <piM).
Note that the functor tp commutes with direct sums. The same considerations
hold for right .R-modules.

The pp-definable subgroups of M form a lattice under the operations n
and + and if tpiM) and y/iM) are such subgroups (in the same number of
variables) we denote by tp + y/ the ppf 3y, z\tpiy) A ^(z) A x = y + z| which
defines the subgroup tpiM) + y/iM) and by tp Ay/ the ppf which defines the
subgroup tpiM)n y/iM). The prominence which ppfs enjoy in the model theory
of modules stems from the fact due to Baur [P, Corollary 2.16; Z, Theorem 1.1]
that modulo a complete theory T, every formula is equivalent to a boolean
combination of ppfs. We shall not have recourse to this result directly, only
because it has been so completely absorbed into the subject.
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40 IVO HERZOG

A pp-pair tp/yi is just a pair of ppfs tp and y/ (in the same number of vari-
ables) such that 1= y/ —> tp . If it ever happens that we mention a pair a/x where
it is not clear that t= x —> a , it is because we really mean a/a A x. As above,
each pp-pair tp/y/ determines a functor from i?-Mod (Mod-i?) to Ab, the quo-
tient of the functor tp by the functor y/. So tp/y/iM) = tpiM)/'y/iM) and
for / G WloxrÍM, /V), tp/y/ifi): tp/y/iM) -► tp/y/iN) is just the induced Ab-
morphism. The importance of pp-pairs lies in the fact [P, Corollary 2.18] that
two modules M and N are elementarily equivalent iff \tp/y/iM) 1= \tp/y/iN)\
(mod oo) for each pair of ppfs in one variable (/c = À (mod oo) if k = X or
both are infinite).
Definition 0.2. For a complete theory T and a pp-pair tp/yi, \(p/y/\r e wU{oo}
is defined as \(p/y/\r = sup{«|T \= \<p/y/\ > n} (where n < oo for each n e co).

The \tp/y/\r are called the BGM-invariants (Baur-Garavaglia-Monk) of a
theory T and according to the above, they determine T.

If a G M, then tp+(a) = {tpix)\M 1= <p(a)} and tp" a) = {y/ix)\M N
-'(¿/(a)}. Then pp-tp(a) = tp+(a) U {-^(x) | i//(x) G tp~(a)} is the pp-type
of a. Conversely, a pp-type pix) is a maximal consistent (with some theory
of .R-modules) set of ppfs and their negations. p+(x) = {tpix) | tpix) e pix)} is
the positive part of p and p~ix) = {^(x) | ->^(x) G /?(x)} is the negative part
of p . If p is a pp-type and ?>/V is a pp-pair, we say tp/y/ ep to indicate that
tp e p+ and yi ep~ .
B. Purity. A homomorphism /: RM —> R/V is pure if one of the conditions
of the next proposition hold.
Proposition 0.3 [S, §1.11]. The following are equivalent:

(i) For each ppf tpix), N 1= tpifa) implies M 1= <pi&).
(ii)   Kr® M -> Kr® N is injective for each K e Mod-i?.

(iii) As (ii), but with K finitely presented.

Note that / is pure iff for each pp-pair tp/y/, (p/y/if) is an injection. So,
in particular, pure homomorphisms are imbeddings.

A module M is pure injective if every pure imbedding of M splits. Thus a
homomorphism from a pure submodule of N to M lifts to a homomorphism
from N to M. If A C M is just a subset, then Hm(A) , a pure injective hull
of A in M is nothing more than a minimal direct summand of M containing
A. It always exists and it is unique up to yl-isomorphism [P, Theorem 4.10,
Z, Theorem 3.6]. Indeed, the isomorphism type of HmÍA) depends only on
the pp-tp(/l) and so it makes sense to speak about Hip), the hull of the pp-
type pix). If we have the occasion to mention HiA) without there being any
pure-injectives in sight, it is because we always assume that we live in a huge,
sufficiently saturated (and hence pure-injective) model of rT iTR) (see below).
For our ends, the following characterization of pure-injectives will be the most
useful.
Proposition 0.4 [P, Theorem 2.8]. M is pure-injective iff every type p+ix/A)
of PPfis with parameters in A C M which is finitely satisftable in M, has a
realization c g M.

A pure-injective module is indecomposable iff it has a local endomorphism
ring [Z, Theorem 4.3]. A pp-type p(xZ) is indecomposable if H(/?) is.
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ELEMENTARY DUALITY OF MODULES 41

C. The Ziegler spectrum. Ziegler noticed [Z, Theorem 4.9] that rI ÍIr) , the
space of isomorphism types of pure-injective indecomposable left (right) jR-
modules may be endowed with a topology in which the support of the functor
tp/yi, i<p/y/) = {U e rI (Ir) \ tp/y/(U) ^ 0}, is an open set. In fact, we may
take {(y>/y/) \ tp/y/ is a pp-pair of ppfs in one variable} as a basis for Ziegler's
topology. We shall adhere to the convention that O denotes an open subset of
rI ÍIr) and I ç RI iIR) a closed set.

Given a complete theory T, we may associate to T the closed set 7(T) =
{U e rI ÍIr) I U occurs as a direct summand of some model of T} and
given a closed set I, there is a complete theory T for which I = 7(7) (just
let T = Th(®{t7 | U G /})) [Z, Corollary 4.10]. There is a unique complete
theory T(f) closed under products for which / = f(r(/)) and if I = 7(T),
then Tw = Til). We abbreviate T(RI) (TiIR)) by RT iTR). For a module
N, set 7(/V) = /(Th(/V)). If U G RI {lR), then /(£/") is the closure of {U} in
rI (Ir)■

The lattice of ppfs of a complete theory T = Th(/V), Latt(T), is defined as a
lattice isomorphic to Latt(/V), the lattice of pp-definable subgroups of N. This
determines Latt(T) within isomorphism and does not depend on the particular
model chosen. To be precise, we have for each n < to, Latt„(r), the lattice
of ppfs in n variables, but whatever we prove about Latt„(T) will hold for
arbitrary n so we omit the subscript. The elements of Latt(T) are represented
by ppfs tp. If'/ = I(T) = I(T'), then Latt(T) = Latt(r') and so we can
associate to I a pp-lattice Latt(7) = Latt(7). We endow I with a dual nature.
Along with being a closed set, I will also be the (not necessarily complete) theory
given in

Definition 0.5. I = {<p(x) -> y/(x) \ tp < y/ in Latt(/)} U {~*(<p(x) -> y/(x)) \
^(tp < y/) in Latt(/)} .

Note that I n (<p/y/) = 0 iff tp < y/ in Latt(f). We can think of I as a set
of formulae of the form \tp/y/\ > 1 or \y>/y/\ = 1 so that I can distinguish
between trivial (= 1) and nontrivial (> 1) BGM-invariants, but it does not
know their cardinalities. The BGM-invariants of T(I) axe given as

\y/<f\T(¡)    \x    if/i=|ç»/^i=i.
For example RI (IR) 1= \(p/y/\ = 1 tpiM) C y/iM) if for every left (right) R-
module M, which we shall write as RI (/«) N tpix) —> ̂(x). It will always be
clear from the context whether we are considering I as a closed set or a theory.

There is a measure of complexity, m-dimension, that one may place on
Latt(f) which indicates how well behaved I is.
Definition 0.6. For a pp-pair tp/y/, m-dim¡itp/y/) > a is defined by recursion
on the ordinal a as follows.

(i) m-dim¡itp/y/) > 0 if I i= \tp/y/\ > 1.
(ii) If a is a limit ordinal, then m-dimfitp/y/) > A if m-dim¡itp/y/) > y for

all y < X.
(iii) m-dim¡itp/y/) > a + 1 if there is an infinite descending chain tp = tpr,D

<Px 2 <p2 2 ••• 2 y> such that m-dim[itpn/tpn+x) > a for each n < œ or if
there is an infinite ascending chain y/ = y/o ç y/x ç y/2 ç • • ■ ç tp such that
m-dim/(^n+i/y,,) > a for each n < œ.
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42 IVO HERZOG

We set m-dim¡(tp/y/) = a if w-dim/(^/^) > a but not m-dim[iy>/y/) >
a + 1. If m-dimiitp/y/) > a for every ordinal a, we say m-dim¡itp/y/) = oo
and we say m-dim¡ig>/y/) < oo otherwise, w-dim(f) is defined as

m-dim;(x = x/x = 0).

If, for example, m-dim(I(M)) = 0, then M has a pp-composition series. In [Z.
Theorem 8.6], Ziegler expressed the intimate relationship between the Cantor-
Bendixson rank of the closed set I and Latt(f). The following is a special
case.

Proposition 0.7. If m-dim(I) < oo, then for each pp-pair tp/y/, m-dim¡(y)/y/) =
CB-rk(7 n (tp/y/)), the Cantor-Bendixson rank of I n (tp/y/).

1. The category (7?-Mod)eq

In this section, we make an abelian category out of the functors tp/y/ . The
morphisms will be the pp-definable natural transformations. We call this cate-
gory (i?-Mod)eq . Let us define (tf-Mod)eq.

a. Ob((.R-Mod)eq), the objects of (.R-Mod)eq, are the functors {tp/y/ \ tp/y/
is a pp-pair in RL}. We mean, by this, that if rI 1= tp <-► tp' and RI 1= y/ <->
y/', then tp/y/ and <p'/y/' axe identified, as they represent the same functor.
Sometimes we shall refer to the objects of (.R-Mod)eq as sorts.

b. p e Mox(tp/y/, o/x) iff there is a ppf p(x, y) e RL such that
(i) RI \= tpix) ^3y pix, y),

(ii) Rltyfix)^p(x,0),
(iii) Ä/l=3x/>(x,y)-xx(y),
(iv) */l=/>(0,y)->T(y).
This makes sense, for if M G .R-Mod and />(x, y) is a ppf as above, then

we can define a morphism of abelian groups pm'- tp(M)/y/iM) —► o(M)/x(M)
as follows. For a G <p(M), PmÍ* + v(M)) = b + x(M) for some b G M for
which M 1= p(a, b). (i) assures us that such a b exists, (iii) guarantees that
b G o(M) and (iv) implies that b is unique modulo x(M). (ii) says that y/(M)
is contained in the kernel of this map and so Pm is just the homomorphism
induced on tp(M)/y/(M). We say that p is represented by the ppf p(x, y) and,
as for objects, we identify elements of Moxitp/y/, o/x) which are represented
by /{/-equivalent ppfs.

Note that we have not restricted ourselves to ppfs in one variable. If, for
example, tp and y/ are ppfs in m variables and a and x are ppfs in n
variables, then a ppf p(x,y) representing p e Moxitp/y/, o/x) is a ppf in
m + n variables, /(x) = m , /(y) = n .

Given p\ e Moxitp/y/, o/x) and p2 e Moxio/x, e/S) and representing ppfs
Pxix, y) and p2(y, z), it is easy to check that the ppf (or one equivalent to
it) p2px(x, z) •«► 3y pxix, y) A/?2(y, z) represents the natural transformation in
Moxitp/y/, e/S) obtained by composing px with p2 .

The definition of (Mod-i?)eq, the corresponding category for right .R-modules,
is similar, with all formulae involved coming from LR . But by this, we mean
that p e Moxiy//tp, x/o) is a natural transformation from the functor x/a to
the functor yi/tp . In other words, p acts on the right when right i?-modules
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ELEMENTARY DUALITY OF MODULES 43

are in question. Thus in (Mod-.R)eq :
b'.  p G Moxiy//tp, x/o) iff there is a ppf p(x, y) e LR such that
(i') IR\=T(y)^3xp(x,y),

(ii') IR\=a(y)^p(0,y),
(iii') IR\=3y p(x,y)^ y/(x),
(iv') IR\=p(x,0)^tp(x).

For p\ e Moxiy//tp, x/o) and p2 e Moxix/o, S/e), the composition p2px is
represented by 3y pxix, y) A p2iy, z).

All this said, we are given an opportune moment to state

Goursat's Theorem. The morphism

p e Mor(3y p(x, y)/p(x, 0), 3x p(x, y)/p(0, y)),
represented by the ppf p(x,y), is an isomorphism.

2. Duality

Mike Prest noticed that to each ppf tpix) e RL, there corresponds a dual
ppf Dtpix) e LR and conversely. We shall extend the definition of D to the
objects and morphisms of (.R-Mod)eq in order to prove that (i?-Mod)eq and
(Mod-Ä)eq are isomorphic categories.

A. The dual of tpix). We shall begin with a brief mention of things contained
in [P, Chapter 8].
Definition 2.1. (i) For a ppf tp(x) e RL with <p(x) o 3w (Hx /f2)(*) = 0,
define Dtp (x) e LR as Dtp (x) •*=> 3v (x\)(¿ £ ) = 0 where I is the n x n
identity matrix, n = l(x) = the number of columns in Hx and /(v) = the
number of rows in iHxHf).

(ii) Dually, if y/(x) G LR with y/(x) <$■ 3v (xv)(J£) = 0, then let Dy/ (x) e RL
be the ppf 3*(5S)®«0.

That D behaves well is the content of the following.

Proposition 2.2. (i) RI (IR) t= D2tp(x) <-> tpix) for each ppf tpix) e RL (LR).
(ii) If RI (Ir) \= y/(x) - tp(x), then IR (RI) t= Dtpix) -* Dy/ix).
(i) follows from the definition of D and (ii) is just [P, Proposition 8.20].

Proposition 2.2 says that D is an anti-isomorphism between Latt^J) and
Latt(/Ä).

Example 2.3. If tpix) <=> rx = 0, then Dtpix) <=> 3v(xv)(lr) = 0 which is
equivalent to r\x. Suppose that RI 1= rx = 0 —> sx = 0. Then, since R/Rr 1=
r(l+Rr) = 0,it must be that R/Rr ts(l+Rr) = Q i.e., that s e Rr and that
s = tr for some t e R. But then it follows that IR \= s\x —> r\x .

Since D is inclusion reversing, RI (IR) 1= D(tp(x) A y/(x)) <-> Dtpix) + Dy/ix),
but one can easily check that when x and y are disjoint,

RI (IR) \= D(tp(x) A y/(y)) ~ Dtpix) A Dyt(y)

so that some must be taken when computing the dual of tp(x) as a formula in
more than l(x) variables. For if we take /(x) = l(y) = 1 and x ^ y, then
Dtpix) Ay = 0 will be the dual of tp(x) as a formula in two variables.
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IS

B. The dual of pix, y). We now turn out attention to ppfs of the form
pix, y). If we are working in RL (LR), we think of p as acting on the left
(right) so x is called the domain (codomain) variable and y the codomain
(domain) variable. It is because of this perspective that the dual of p(x, y) is
not simply the dual of pix A y) as given in Definition 2.1, but is rather that
dual with a twist.
Definition 2.4. The dual of

p(x,y)^3wiHx H2H,)ly)=0

I      0      0 \
0-/0      =0.

Hx    H2   Hi
If p{x, y) G LR is given as

(Hx
/>(x,y)«3v(xyv)    H2\=0,

I #3.
then

// 0 HA (x
Dp(x,y)^3w     0 -/ H2        y | = 0.

\0 0 Hj \wi
Example 2.5. If pix, y) & y = rx , then IR t= Dpix, y) <-» x = yr so that the
dual of the action by r e R on left R-modules is the action by r on the right.

We will often be interested in the dual of pix, y) as a formula with just one
sort of variable, i.e., we will want to take the dual of pix, y) in the sense of
Definition 2.1. In such cases we shall denote that dual by Dp(x~y). Note that
in that case, RI iIR) \= Dpix, y) <-> Dp(x~ -y). But Dp(x~ -y) is ambiguous!
It may be the dual x in the sense of Definition 2.1) of the ppf p(x~~ - y) or
it may be tpix, -y) where tpix, y) & Dp(x~y). It is easily verified that these
two formulae are equivalent. These considerations and Proposition 2.2 yield

Proposition 2.6. (i) RI (IR) t= D2/>(x, y) <-> pix, y) for each ppf pix, y) e
rL (LR).

(ii) // RI iIR) \= pix, y) -> a(x, y), then IR (RI) N Drj(x, y) -» Dpix, y).

C. The isomorphism. We begin by relating the duals of /?(x, y) and tp(y). As
in the next proposition, we shall from time to time lapse into proving a result
just for left .R-modules when a dual argument suffices to prove that same result
for the right side.
Proposition 2.7. For p(x, y) and tp(y) in RL (LR),

IR (RI) 1= D(3y pix, y) A <p(y)) - 3y (Dp(x, y) A Dtp(y)).
Proof. Assume that p(x,y) and tp(y) are in RL. Let

pix,y)^3wiHxH2H3){ y ) =0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ELEMENTARY DUALITY OF MODULES 45

and let p(y) o 3v (/, J2)(l) = 0. Then

/      0      0
0-/0

. Hx    H2   Hi,
and

/^(y) o 3v0 (yv0) (^     °J=0.

On the one hand we get

IR^3y(Dpix,y)ADtpiy))
l I      0      0     0     0\

3y, v0, w0 (xyvnwo)
0-/0/0
0      0      0     Jx    J2

\Hx    H2   H3    0     0 /
/      0      0     0

3v0, w0 (xv0w0) |    0     fi      0     J2 |
Hx    H2   H-}    0

= 0

whereas

RI f- (3y p(x, y) A tp(y)) - 3y, w, v (^    ^ 0     J2

so that
/ /     0     0     0

IR N D(3y pix, y) A tp(y)) « 3w0, v0 (xw0v0)    //,    H2   H3    0   ] = 0
V 0     fi     0    J2¡

and the proposition follows.   G

Corollary 2.8. (i) IR N />^(x, 0) <-> £>(3y />(x, y)),
(ii) /AÉ/)(/?(x,0))~3y/)/>(x,y),
(iii) /ÄND(3z/>i(x,z)A/)2(z,y)) «-» 3z Dpx(x, z) A Dp2(z, y).

Proof, (i) Let ç»(y) «=> y = y in Proposition 2.7. Then /Ä t= D(3y /?(x, y)) <-»
3y iDpix, y) a y = 0) and the result follows since IR 1= 3y(/)/>(x, y) A y = 0) <-►
Dp(x,0).

(ii) /Ä 1= 3y Dp(x,y) ~ /)2(3y(Dp(x, y)) «-» /)(/)2/>(x, 0)), by (i). But
/Ä|=öV(x,0)«/)(x,0).

(iii) Let cxi(x~y, z) <£> />i(x, z) A y = y and let ff2(x~y, z) «• />2(z, y) A x =
x. Then IR \= Dox(x~y, z) <-> Ztyi(x, z) A y = 0 and IR t= Z)02(x~y, z) <->
D/?2(z, y) A x = 0. Thus //? t= D(3z />t(x, z) A /?2(z, y)) <-> D(3z Ox(x~y, z) A
o2(x~y, z)) <-► ßffi(x^y, z) + /Jcr2(x"y, z)|z=0, by (i). But this is equivalent
to the ppf 3xi, x2, y!, y2, z,, z2 Dpx(xx, zi) A yi = 0 A Dp2(z2,y2) A x2 =
0 A x = X! + x2 A y = yi + y2 A z = z, + Z2 = 0 which reduces to the ppf
3zDpx(x,z)ADp2(z,y).   D

It is now possible to define an isomorphism D: (R-Mod)eq —► (Mod-R)eq
by letting D(tp/yi) = Dyi/Dtp and if p G Moxitp/y/, o/x) is represented by
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p(x, y), then Dp e Mox(Dy//Dy>, Dx/Do) is represented by Dpix, y). We
just need to show that this makes sense. If we apply D to the four conditions
which assure that p(x,y) represents a natural transformation we get, by use of
Proposition 2.2 and Corollary 2.8, the following implications:

(i) RI\=tp(x)^3yp(x,y) implies (i')   IR\= Dp(x, 0) ^ Dtp(x),
(ii) RI N y/(x) -> p(x, 0) implies (ii')   IR 1= 3yDp(x, y) -► Dy/ix),

(iii) RI N 3x pix, y) -> er(y) implies (iii')  Ir \= Doiy) -► Dpix, 0),
(iv) rI N piO, y) -* T(y) implies (iv)   IR t= Dr(y) -► 3x D/?(x, y).

But (i')-(iv') are exactly the properties (permuted) that Dpix, y) must have
in order to represent a natural transformation Dp e MoxiDy//Dtp, Dx/Do).

Theorem 2.9.  D: (.R-Mod)eq s (Mod-/?)eq .
Proof. By Propositions 2.2 and 2.6, D2 = identity so we just need to show that
D respects composition of morphisms. In other words, we must prove that
D(PiPx) = Dp2Dpx. p2px may be represented by the formula (/?2/?i)(x, y) <$
3z  pxix, z) A p-A\z, y). Applying D and Corollary 2.8(iii), we get

IR N Dip2px)ix, y) <-► Z)(3z pxix, z) A p2{i, y))
<-» i3zDp\ix,z)ADp2iz,y)),

a ppf which represents Dp2Dpx .   U

3. Tensor, tensors!

To show that the definition of duality is a natural one, we shall explore how
duality behaves under tensoring. Example 2.3 has already hinted at what hap-
pens to tpiRM) and DtpiNR) in N®RM. One by-product of our considerations
will be that it is possible to define tensoring sortwise. 2{x, ®y,|0 < i < /(x) =
/(y)} will be denoted by x ® y. Note: all tensors in this paper are over R .

Lemma 3.1 [S, 1.8.8] Let {y¡\i e 1} be a family of generators of RM and let
{Xj | i e 1} e NR with almost all x¡ = 0. Then Y,{x¡ <g> y,■ \ i e 1} = 0 in
N <S>R M iff there exists a finite family {uj \ j e J} of elements of NR and
row-finite matrix H with \J\ rows and entries in R so that

ii)   Hy = 0
(ii)   x = uH.    D

The model-theoretic formulation of Lemma 3.1 is nicer.

Proposition 3.2. If a e NR and c G RM are tuples of the same length, then
a <g> c = 0 in N ®R M iff there is a ppf tpix) e RL such that RM N ç?(c) and
NR N Dtpia).
Proof. Suppose that a ® c = 0. By Lemma 3.1, there is an e e RM (a finite
subfamily of an extension of c to a generating family for RM and a finite
matrix H = (//] H2) such that (//i H2)(ce) = 0 and there exists u G NR such
that (a, 0) = u(//i H2). So if tp(x) & 3v (Hx /72)(*) = 0 then RM \= <p(c) and
since NR t= a = vxHx A uH2 = 0 we have that NR \= (a - u) ( ¿ j¡ ) = 0 and hence
NR \= Dtp(a).
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If RM N tpic) and NR 1- Dtpia) with <p(x) o 3v (Hi /72)(*) = 0, then

A^3„(au)(^    ¿)=0.

Thus a® c = -u//[ ®c = -u® Hxc = -u® -H2\ = u//2 ®v = 0®v = 0.   D

Corollary 3.3. a ® d = c ® b in N ®R M iff there is a ppf p(x,y) such that
RM \= p(d, b) and NR 1= Dp(a, c). If^s/za// wnte í/í/s as cDp®d = c®pd.   □

The last statement of Corollary 3.3 is telling, for it says that one can "pass
over" the tensor not only with the action of R, but with any pp-defined action.
Now pp-action is in general only partially defined and even then it is all too often
many-valued. This is why we choose as our objects of study the pairs tp/y/, for
it is on an appropriate pp-pair that a pp-action becomes a (total, well-defined)
function.

Corresponding to each tp/y/ e Ob(R-Mod)eq, we can define a subfunctor of
-®-, which takes NR x RM e Ob(Mod-.R x .R-Mod) into Dy/(N) ®R tp(M),
the abelian subgroup of N ®RM generated by the set {a ® c\RM t= tp(c) and
NR t= Dip (a)} . That this is indeed a functor is easily verified and we denote it by
Dip ® tp . This illustrates that it is in Afeq that tensoring really takes place. If,
moreover, we set R(tp/y/) = Mox(tp/y/, tp/y/), then a special case of Theorem
2.9 is

Proposition 3.4.  R(tp/y/) = RiDy//Dtp) as rings.
Proof. We just need to check that the duality D respects addition. If px, p2 e
R(tp/ip), then pi + p2 is represented by

(Px + p2)(x, y) & 3z px(x, z) A p2(x, y - z).

It is straightforward to check that this does indeed conform to the conditions
for being an element of R(tp/ip). We aim to show that IR \= D(px+p2)(x, y) <-►
(Dpx + Dp2)(x, y). To prove this, let <xi(x~y, z) ■& px(x,z) Ay = y and let
CT2(x~y, z) <* p2(x, y-z). Then

IR \= Dox(x~y,z) ~ Dpx(x, z) Ay = 0

and
IR N Do2(x~y, z) 4-» Dp2(x, -y) Az = y.

Thus

IR 1= D(px + p2)ix~y) <r+ £>(3z <Ti(x~y, z) A cr2(x~y, z))
^ Drji(x^y, z) + Do2(x~y, z)|z=0

by Corollary 2.8(i).   But this is equivalent to the ppf 3xi, x2, yi, y2, zi, z2
Dpx(xx, Zx)Ayx =0ADp2(x2, -y2) A z2 = y2 A x = X! + x2 Ay = yi + y2 Az =
Zi+z2 = 0 which reduces to the ppf 3zDpx(x-z, -y)ADp2iz, -y). It follows
that IR 1= Dip\+p2)ix, y) *-»• D(px+p2)(x~-y) <-» 3zDpx(x-z, y)ADp2(z, y) <->
(Dpx+Dp2)(x,y).   D

If we identify these two rings, simply calling it R(tp/y/), then tp/y/(M) is
naturally endowed with the structure of a left R(tp/y/)-module and Dy//DtpiN)
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can be thought of as a right -R(ç>/V)-module. All that said, we can illustrate the
above scenario with the diagram

Dy//DtpiN) x tp/y/iM) -> Dy//DtpiN)®R{ip/li/) tp/y/iM)

Dy/iN)xtpiM)        -> Dy/iN)®tpiM)
which is commutative and whose vertical arrows represent surjections.

In order to make some basic observations about the function which sends the
functor tp/y/ to the functor Dy/®tp we need to make the following definition.

Definition 3.5.   tp/y/ < o/x if there is a p e Mox(tp/y/, o/x) such that p:
tpiM)/y/iM) —► a(M)/x(M) is an imbedding for each M e R-Mod.

If p(x,y) represents some p e Moxitp/y/, o/x) which witnesses tp/y/ <
o/x, it is easily seen that in addition to the usual properties of p(x, y), we
have that RI1= ̂ (x) <-♦ pix, 0).

Proposition 3.6. (i) 3y Dpix, y)(N) ® 3y p(x, y)(M) Ç 3x Dp(x, y)(N) ® 3x
/>(x,y)(M).

(ii) If tp/y/ < o/x, then Dy/(N)R ® tp(M) ç Dx(N) ®R o(M).
Proof, (i) Let a G M such that M t= 3y p(a, y) and let b G M witness this
and take c G N for which N 1= 3y Dp(c, y) and let e e N be a witness. It is
enough to prove that c®a is in 3x Dp(x, y)(N)®3x p(x, y)(M). But Corollary
3.3 implies that c ® a = eDp ®a = e®/?a = e®b where M 1= 3x p(x, b) and
yV 1= 3x Dp(x, e) so the result follows.

(ii) Let p(x, y) represent some p e Mox(tp/y/, o/x) which witnesses tp/y/ <
o/x. We have noted above that, in this case, RI 1= ̂ (x) <-> p(x, 0), so from
Corollary 2.8 we get that IR 1= Dy/(x) <-> 3y Dpix, y). By (i) and the properties
of p(x, y) we see that Dy/(N)R ® <p(M) C 3x Dp(x, y)(N) ® o(M). Since
RI N r(y) <-> p(0, y), another application of Corollary 2.8 gives IR t= Dx(y) <->
3x Dp(x, y) and the proposition is proved.   D

Now that we have defined tensoring sortwise, we are forced to consider sort-
wise homing. Lest the notation become overly oppressive, we shall assume for
the rest of this section that tp/y/ is a pp-pair of formulae in one variable. Of
course, what follows may be applied to arbitrary pp-pairs. Let m be a tuple
of elements from <p/y/(M), then each mem is in <p(M) and «el is its
image in tp/y/(M) under the natural projection.

Definition 3.7. If (i) m e <p/y/(M) has /(m) = n, then tp+(m) = {cr(x) G
tp+(m)| E y/n(x) -* o(x) and 1= o(x) -► tpn(x)} .

(ii) For .R-modules M and yV, /: tp/y/(M) -> y)/y/(N) is a member of
HomRitp/y/iM), tp/y/iN)) iff tp+(m/) D tp+(m) for each m G tp/y/iM).

We shall refer to / G HomRÍtp/y/iM), tp/y/iN)) as a sort homomorphism
and if M = N, then we call / a sort endomorphism of M. The only fact
about sort endomorphisms which we shall need is the following

Proposition 3.8. If M is pure-injective, then each sort endomorphism of M is
induced by an endomorphism of M.
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Proof. Let / G HomR(tp/y/(M), tp/y/(M)) and let c G C = <p(M), 1(c) = n .
For each c e c choose cy G tp(M) such that (c + y/(M))f = cj + y/iM)
and let cy = (c/|c G c). Consider <r(x) g tp+(c) such that 1= aix) -» ç»"(x).
Then c(x) + ^"(x) g tp+(c) and so, by hypothesis, aix) + y/n(x) G tp+(c/)
and hence a(x) + y/"(x) e tp+(c/j. This means that tp+(c) ö {y/(x - Cf)}
is finitely satisfiable in M and hence that tp+(C) U {y/(xc - cf)\c e C} is
finitely satisfiable in M. As M is pure-injective, Proposition 0.4 says that
tp+(C)U{y/(x-Cf)\c G C} is realized in M by, say, {c/|c G C} . But then the
function / defined on tp(M) which takes c to cf is a partial homomorphism
from M to itself and hence, by [Z, Corollary 3.3], lifts to an endomorphism
fi of M. For c G tpiM) we have that M t= y(c/ - cf) and so / induces on
tp/y/iM) the sort endomorphism which behaves as (c+ y/(M))fi = cf+ y/(M) =
Cf + y/(M) = (c + y/(M))f and so must be equal to /.   D

4. The Ziegler spectrum
In this section, we use Theorem 2.9 to relate the left and right Ziegler spectra.

Some conventions need to be set. If O(x) is a filter of ppfs in the variable x,
then we shall often confuse <P(x) with the infinitary formula /\{tp(x)\(p(x) e
<P(x)}. Dually, an ideal *P of ppfs i.e., a downward closed set which is also
closed under +, will be confused with ^2{y/(x)\y/(x) e 'F(x)}. For <P(x), a
filter as above, Z)O(x) will denote the ideal {Dtp(x)\tp(x) e <P(x)} and dually.
We need a

Lemma 4.1. If Q> ç RL (LR) is a filter of ppfs and *F ç RL (LR) is an ideal,
maximal with respect to the property that tp\tp e Q>\J {->ip\ip e *¥} = 0 is
consistent (in RT), then there is an indecomposable pp-type p(x) ç LR (RL)
such that D*¥ = p+(x). In particular, p~(x) D DO.
Proof. Given the hypotheses, /)lP is a filter of ppfs maximal with respect to
the property {Dy/\Dy/ e D*¥} n {->Dtp\Dq> G /)$} = 0 (in TR). The lemma
then follows immediately from [P, Theorem 4.33].   D

Definition 4.2. Let O ç RI (IR) be open. Then the reflection of O, O =
\J{(Dy//Dy/)\(<p/y/)ÇO}çlR(RI).

It is clear from the definition that ' respects ç .

Lemma 4.3.  (tp/y/) ç \j{(tpi/y/i)\l < i < n} implies

iDy//D<p) C \J{(Dyft/Dgn)\l < i < n}.
Proof. Suppose to the contrary. Let UR e (Dy//Dç>)\\J{(Dy/i/Dtpi)\l <i<n}
and take a G Dy/(U)\Dtp(U). Let D*¥(x) = tp+(a) and let D4>(x) be an ideal
maximal with respect to the properties Dtpix) e D$> and DO n D*¥ = 0. By
Lemma 4.1, <P(x) = tp+(c) for some c with //(c) = VR indecomposable. As
*P ç tp~(c), we get that c G tp(V)\y/(V) and so V e (tp/y/). By hypothesis,
there is an /, 1 < i < n, such that V e (tpi/y/¡). As in the proof of [Z,
Theorem 4.9], there is a ppf a(x, y) such that

3yg(x,y)AyI-(y)
3ya(x,y)A(,,(y)€PP-tP(C)
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and it follows that D(3y o(x, y) A <p¡(y)) G /)0 and hence by Proposition 2.7,
3y Do(x, y) A D(p,(y) e DO. Since /tyi(£/)/Z)ç>/(l/) = 0, U N 3y Doix, y) A
Dy/iiy) -+ 3y Doix, y) A Dtp¡iy). This means that the ideal generated by Z)i>
and {3y Doix, y) ADy/¡iy)} is contained in tp~(a). By maximality of D<¡>,
3y Doix, y) A Dip¡iy) G jDÍ>, so applying D, D(3y Do\x, y) A Dy/¡iy)) e O.
Another application of Proposition 2.7 shows that 3y aix, y) A y/j(y) G 4> =
tp+(c), a contradiction.   D

Lemma 4.3 is enough to prove that the topologies on rI and Ir axe the
same in the following sense.

Proposition 4.4. (i) (tp/y/)' = (Dip/Dtp),
(ii) 0" = 0,(iii) (u{4|/g/})' = u{o;i/g/},
(iv) (n{0,ii</<«})' = n{o;ii</<«}.

Proof, (i) (Dip/Dtp) C (tp/y/)' follows from the definition of ', so it is enough
to prove that (Dtp/Dtp) 2 i<p/y/)' • Suppose that (o/x) ç (tp/y/). Then Lemma
4.2 implies (Dx/Do) C (Dip/Dtp) so that (tp/y/)' = (j{(Dx/Do)\(o/x) ç
(tp/y/)} C (Dip/Dtp).

(ii) O ç O" is clear. To prove O" CO,let (tp/y/) CO" = \J{(o/x)\(Dx/Do)
ç O1}. By compactness of (tp/y/), there are (Dxj/Doj) ç O for 1 < i < n
such that (tp/y/) C \J{(oí/x¡)\1 < i < n}. Lemma 4.2 yields (Dip/Dtp) ç
\J{(Dxi/Doi)\l < i < n} ç O'. Repeating this whole argument gives that
if/y) Q O. By (ii), the lattices of open sets are isomorphic, whence (iii) and
(iv).   D

Thus the topologies on RI and Ir axe indeed the same. We do not mean to
say that rI and Ir axe homeomorphic, although this point will be addressed
shortly. We shall refer to any action of ' as reflection. So, for example, for
I Q rI ÍIr) a closed set, its reflection /' is defined via complements, i.e.,
/' = IR\iRI\I)'iRI\iIR\I)'). The relationship between / and /' is as expected.

Proposition 4.5. (i) / t= \<p/y/\ > I iff I'^ \Dy//Dtp\ > 1,
(ii) Latt(/') s Latt(/)°P.

Proof, (i) By use of Corollary 4.4 and the definition of /', / 1= \<p/y/\ > I  iff
Initp/y/)^0 iff /' n itp/y/)' ¿0 iff /n iDy//D<p) ¿0 iff /' 1= \Dy//Dtp\ > 1 .

(ii) The function which takes tp G Latt(Z) to Dtp e Latt(Z')  is inclusion
reversing by (i) and it has an inverse, D.   G

There are a number of ordinal (or oo)-valued measures of complexity which
may be placed on a lattice and which attain the same value for a given lattice
and its opposite. We have already encountered m-dimension in §0 and breadth
and width [P, Chapter 8] are other examples of such measures. Proposition 4.4
then implies m-dim(Z) = m-dim(Z') (and br(/) = br(/') and wil) = wil')).

Although we shall not give a complete treatment of localization until §6, the
following lemma will be our first local statement. It will serve to prove local
versions of things proved by Lemma 4.1.

Lemma 4.6 (local version of Lemma 4.1). Let T be a complete theory of left
iright) R-modules and 3> ç RL (LÄ) a filter of ppfs and ¥ ç RL iLR) and ideal,
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maximal with respect to the property that Q>U{-iy/\y/e*?} is T-consistent. Then
there is an indecomposable pp-type p(x) ç Lr (rL) such that D*¥ = p+(x) and
H(p)eI(T)'.
Proof. Let V = T(I(T)'). Then /_)¥ is a filter of ppfs, maximal with respect
to the property that D^U {-*Dtp\tp e O} is T'-consistent. If we relativize [P,
Theorem 4.33] to T', we obtain T'-consistent indecomposable pp-type p(x),
for which D"V = p+(x) and H(p) e I(T)'.   O

Next, we consider how close reflection comes to defining a homeomorphism
between RI and IR . The approach which we propose depends on the existence
of generic points of the irreducible closed subsets of RI (IR). Recall that an
irreducible closed set / is one which cannot be written as a union of proper
closed subsets and that a generic point U el is an element whose closure is /.

Lemma 4.7. If I Q rI(Ir) is an irreducible closed set so that the relative topology
on I has a countable basis, then I has a generic point.
Proof. Let {On\n < co} be an enumeration of the nonempty members of the
basis. We define a sequence {itpn/y/„)\n < to} of nonempty open subsets of
/ such that itpn/y/n) Q On and y/„ C y/n+x C tpn+x ç tpn with all ppfs in one
variable. Assume, for ease of argument, that Oo = rI (Ir) and so we can take
tpo o- x = x and y/Q <=> x = 0. Given <pn/y/n , we know that (j)„/^„)nO„+i ^ 0
since / is irreducible. Let U e i<pn/Vn)nOn+x and take c e tp„iU)\y/niU). By
[Z, Theorem 4.9], there is a tpn+\/y/n+x e tp(c) such that y/„ ç y/n+x ç tpn+x ç
tpn and ifpn+\ly/n+x) ç On+x.

Let <I> be the filter generated by the {tpn\n < co} and *F the ideal generated
by the {y/n\n < co}. Applying [P, Lemma 4.33] at Til), gives us a ^.in-
consistent indecomposable pp-type p for which 1= p+ix) -* O(x) and *F ç
p~ix). It is now clear that U = Hip) is a generic point of /, since U e
i<Pn/¥n) Q On for each n < to.   O

Definition 4.8. For U, V e RI (7Ä), set U « V if /((7) = /(F). Denote by
/?//« (/«/«) the quotient space endowed with the quotient topology.

Corollary 4.9. If R is countable, then «//« and //?/« are homeomorphic.
Proof. Let U e rI (/j?) represent a class in RI/ « (/Ä/ «). /(Í7) is an
irreducible closed set. It follows from Proposition 4.4 that I(U)' is irreducible
as well. Since R is countable, RI iIR) has a countable basis. By Lemma 4.6,
/(C7)' has a generic point V and if Vq is another such point, then V « V0, so
that the function h: RI —> IR ih': IR —> RI) defined by hiU) = V induces a
well-defined function from RI/ z¿ (/«/«) to /«/« (Ä//«). Since /?"'(//«)
= /'/«, h is continuous (and similarly for h'), h oh' and h' oh induce the
identity maps on RI/ « and IR/ « respectively and the result follows.   D

Let U e RI iIR) and let I = I(U). Suppose that U realizes an /-minimal
i.e., Latt(/)-minimal, pair tp/y/. In other words, tp(U)/y/(U) ^ 0 and there is
no a which, as far as / is concerned, lies strictly between y/ and tp . Call such
a U reflexive. By Proposition 4.5, Dip /Dtp is an /'-minimal pair. Let DU e I'
realize Dip ¡Dtp . By [Z, Lemma 7.10], DU is unique and by Proposition 4.4 it
does not depend on our choice of the minimal pair tp/y/ . We say that DU is
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the dual of U. Occasionally, we shall use the fact (which follows quickly from
[Z, Theorem 4.9]) that if U realizes an /-minimal pair, then for every a G U
there is an /-minimal pair o/x e tp+(a) i.e., <r(x) e tp+(a) and t(x) G tp~(a).

Theorem 4.10. Duality, the map which takes U to DU, is a bijection from
the set of iisomorphism types of) reflexive pure-injective indecomposable left R-
modules to the set of iisomorphism types of) reflexive pure-injective indecompos-
able right R-modules and conversely. For a reflexive U, we have

(i)  D2U = U,
(ii) i(DU) = i(uy,

(iii)   Latt(Dt7) = Latt(c7)op via the map which takes tp(U) to Dtp(DU) =
{c G DC7|c ® tp(U) = 0 in DU ® U}.

Proof, (i) follows immediately from the definition of DU.
(ii) follows as soon as we notice that because I(U) is an irreducible closed

set, so is I(U)' and DU is a generic point of I(U)'. So I(U)' = I(DU).
(iii) Using Proposition 4.5, everything is immediate except that Dtp(DU) =

{c G DU\c ® tp(U) = 0 in DU ® U} . From Proposition 3.2, we know that
Dtp(DU) ç {c G DU\c® tp(U) = 0 in DU® U} .

To prove the other inclusion, suppose that e G DU but that e £ Dtp(DU).
Let Dx/Do e tp+(e) be an /(DC7)-minimal pair. By [Z, Corollary 4.6], we may
choose Dx/Do so that Dtp ç Do ç Dx. Now let DO be an ideal maximal with
respect to the properties that Do e D<S> and D<Dntp+(e) = 0. Then O = DDO
is a filter and, by Lemma 4.6 at Th(DU), there is an indecomposable type p(x),
H(jj) e I(U) such that O = p+(x) and p~(x) D Dtp+(e). Let N p(a). Then
H (a) e I(U) and o/x e tp+(a) so //(a) G (o/x). This forces H(a) = U and as
o(U) ç tp(U), we have that a G tp(U). But, using Proposition 3.2, e®a ^ 0 in
DU ® U because if yi e tp+(a) = O, then Dip £ tp+(e), by the definition of
DO. Thus e ^ {c G DU\c ® <p(U) = 0 in DU ® U} and the second inclusion
is proved.   D

Problem 4.11. Compute DU ®RU.

Since we have associated to the left module U a right module DU, Problem
4.11 is a natural one to pose. We shall see in the sequel that it is easier to
compute DU ®rU en route to understanding DU.

If m-dim(/) < oo and U e I, then m-dim(I(U)) < oo and hence U realizes
an /([7)-minimal pair and is, therefore, reflexive. As m-dim(Z') = m-dim(Z),
the same considerations show that each V e I' is reflexive (cf. Proposition 0.7).
It follows that reflection is a homeomorphism between / and /'.

5. Dedekind domains

In this section, we determine the reflection of a pure-injective indecomposable
over a Dedekind domain. We shall rely heavily upon the consequence of Theo-
rem 4.10 that for a reflexive U, U t= y/(x) -i <p(x) iff DU t= Dtp(x) -> D^(x).
Recall that a pure-injective indecomposable U has a local endomorphism ring.
Thus when U is over a commutative ring R, there is a prime ideal p ç R,
p = m n R, m ç End/? U the maximal ideal, such that U is a module over
Rp, the localization of R at p. In the following lemma, assume that U is a
reflexive pure-injective indecomposable.
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Lemma 5.1. (i) ann([7) = ann(D<7).
(ii) rU = U iff DU[r] = 0 (M[r] = {m e M\rm = 0(mr = 0)}).
(iii) // R is commutative and U is an Rp-module, then so is DU.

Proof, (i) If r e ann(c7), then U£rx = 0*->x = x. Applying D shows that
DU 1= r\x <-> x = 0 i.e., that DUr = 0. The other inclusion is similar.

(ii) rU = U iff U 1= r\x «-» jc = x iff DU \= xr = 0 «-> x = 0 iff DU[r] = 0.
(iii) follows immediately from (i) and (ii).   □

Thus if R is a commutative (von Neumann) regular ring, then U = DU for
each reflexive U e rI . This is so because both U and DU are indecomposable
modules over some field of the form Rp.

Ziegler [Z, Lemma 5.1] has determined all of the pure-injective indécompos-
ables over a Dedekind domain, R. They are

(i)   Q, the field of fractions of R and for each nonzero prime ideal of R,
P

(ii)  R/pn for n > 1,
(iii)  Rp the p-adic completion of the localization of R at p, and
(iv)  Q/Rp.

As a matter of fact,  m-dimiRI) = 2, so that all of these are reflexive.   We
proceed to determine their reflections.

(i) As Q is the only pure-injective indecomposable over /?/0}, Lemma 5.1 (iii)
implies that DQ = Q.

(ii) DiR/p") must be a pure-injective indecomposable over Rp whose an-
nihilator is p" so it has no choice but to be itself.

(iii) and (iv) Both Rp and Q/Rp axe faithful /?p-modules and Rp is torsion-
free, but not divisible and Q/Rp is divisible, but not torsion-free. It follows
then from Lemma 5.1(h) that DRP = Q/Rp and hence that D(Q/Rp) = Rp .

6. Localization at a closed set
Mike Prest has introduced [P, Chapter 8] the notion of localization at a closed

set /. Localization is tantamount to doing things modulo T(I). Although
seemingly innocuous, it will be useful for us in making some key observations.
In particular, we shall show that a notion of duality exists for complete theories
of modules.

As Ob(Ä-Mod) = {M\I(M) Ç RI} , we define its localization at /, /-Mod,
to be the full subcategory of R-Mod for which Ob(Z-Mod) = {M\I(M) ç 1} .
In continuity with the definition of (/v-Mod)eq , (/-Mod)eq will be the category
of functors from /-Mod to Ab expressible as pp-pairs in Latt(Z).

Definition   6.1.  (/-Mod)eq   ((Mod-/')eq),   the   localization   of   (/?-Mod)eq
((/?-Mod)eq) at / (/') is defined as follows.

(a) Ob((/-Mod)eq) Ob((Mod-/')eq) = {(p/y/\I(V) 1= y/ -> <p and both formu-
lae are ppfs in RL (LR)} modulo / (/') i.e., we identify tp/y/ and tpo/Wo if
/(/') 1= tp <-> y>o and / (/') t= y/ <-► y/o.

(b) p e Moxi(tp/y/, o/x) (Mox¡>(y//tp, x/o)) iff there is a ppf p(x, y) e
RL (LR) such that

(i)   / 1= <p(x) - 3y p(x, y) (/' Ï x(y) - 3x p(x, y)),
(ii)   / 1= y/(x) - pix, 0) (/' N <7(y) - p(0, y)),
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(iii)   / f^ 3x pix, y) - <x(y) (/' 1= 3y p(x, y) - y/(x)),
(iv)   / 1= p(0, y) - T(y) (/' 1= pix, 0) - tpix)).

As with (/?-Mod)eq ((Mod-R)eq), we identify morphisms which are represented
by /-equivalent ppfs.

Consider the category R-Top (Top-R) whose objects are the closed subsets
of RI (IR) and such that Mor(/, J) = 0 iff J <JL I and if / ç /, then
| Mor(/, J)\ = 1. Reflection, taking / to /', may be thought of as an isomor-
phism between R-Top and Top-/?. There is a functor Latt from R-Top (Top-/?)
to the category of modular lattices which takes a closed set / to Latt(Z), its
pp-lattice. If J c I, then there is a natural projection of Latt(Z) onto Latt(7)
which takes the element of Latt(Z) represented by the ppf tp to the element
of Latt(7) represented by tp . This is well defined because / N tp <-> ip implies
J t= tp <-> ip . Proposition 4.5 states that Latt commutes with reflection.

More generally, / 1= \tp/y/\ = 1 implies / N \tp/y/\ = 1 when J ç I and this
gives rise to a functor from (/-Mod)eq to (7-Mod)eq which takes an object of
(/-Mod)eq represented by a given pp-pair into the object of (/-Mod)eq repre-
sented by that same pair and similarly for morphisms. This constitutes a functor
( -Mod)eq ((Mod- )eq) from .R-Top (Top-/?) to the category of categories. As
above, Proposition 4.5 asserts that this functor commutes with reflection. If, in
the proof of Theorem 2.9, we replace rI 1= with / 1= and Ir N with I'\ = , we
get

Proposition 6.2 (local version of Theorem 2.9). (/-Mod)eq * (Mod-/')eq .

In particular, we can localize at / the xingR(y>/y/) = Moxicp/ip, tp/ip) to get
(definition) Ritp/y/)1 = Moxjitp/y/, tp/y/). The following is then a consequence
of Proposition 6.2.

Corollary 6.3 (local version of Proposition 3.4). Ritp/y/)1 = RiDip/Dtp)1'.

If U is a pure-injective indecomposable, then S = End/? U is a local ring.
Denote by A the residue division ring of S If U e R-Mod, let S act on U
from the right and if U is reflexive, let S' = EndjjD/7 act on DU from the
left and denote the corresponding division ring by A'.

Proposition 6.4.  ASA'.
Proof. Let tp/ip be a /(L7)-minimal pair and let / = I(U). To prove the
proposition, it is enough, by Corollary 6.3, to show that A = R(y>/y/)' and
A' = RiDy//Dtp)1' . As in the case of vector spaces, these isomorphisms are not
canonical. Since the two assertions have the same proof, we only prove the first.
We shall show that q>(U)/ip(U) is a one-dimensional (left) vector space over
the division ring R(tp/y/)1 and a one-dimensional (right) vector space over A.
The two actions respect each other -A = R(tp/y/)' will follow.

(a) The right action. tp(U)/y/(U) is a right ¿'-module. Let a G tp(U)\y/(U).
By [P, Corollary 9.25], U t= pp-tp(a) «-> tp+(a) A -iip(x). So if / G 5 is not
a unit then [P, Corollary 4.13] implies U 1= y/(af) and <p(U)/y/(U) is killed
by /. This means that tp(U)/y/(U) has the structure of a right vector space
over A. We want to show that it is one dimensional. So let c G tp(U)\y/(U).
If a G tp+(a) and t= o —> tp, then since tp/y/ is minimal o + ip = tp. Thus
{c = x + y, i//(y), cr(x)|rj(x) G tp+(a)} is finitely satisfiable in U and hence, by
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Proposition 0.4, realized in U by say (b, d). Let f e S be such that (a)/ = b.
Then U \= ̂ ((a)/-c) and (a)/ = c (mod^(C7)). This means that tp(U)/\p(U)
is a one-dimensional vector space over A.

(b) The left action. We saw earlier how tp(U)/y/(U) is a left R(tp/y/y-
module. Since tp/y/ is an 7(C7)-minimal pair, an argument akin to the proof
of Schur's Lemma shows that each nonzero p e R(tp/y/)1 is an isomorphism
and hence that Ritp/y/)' is a division ring. We want to show that tp(U)/y/(U)
is one dimensional over R(tp/y/)1.

Using the /-minimality of tp/y/ and the fact that I = I(U), the definition of
Ritp/y/)1 = MoT¡iu)(fp/\p, tp/y/) indicates that we may identify it with the pp-
definable Z-endomorphisms of tp(U)/y/(U). Thus if a, c G tp(U)\\p(U) are
such that their images in tp(U)/y/(U) are linearly independent over Ritp/y/)1,
we would get, by Proposition 3.8, an f e S that induces a sort endomorphism
of <piU)/y/iU) which fixes ä and takes c to 0. This means that N ->y/(sif)
and 1= y/(cf) so that [P, Corollary 4.13] gives the contradiction that / is at
the same time a unit as well as a nonunit of S.   D

Corollary 6.5. If tp/y/ isa U-minimal pair, then

\tp(U)/y/(U)\ = \Dy/(DU)/Dtp(DU)\.
Proof. By the proof of Proposition 6.4,

\tp(U)/y/(U)\ = \A\ = \A'\ = \Dy/(DU)/Dtp(DU)\.   D

Let T be a complete theory of left (right) jR-modules and I = I(T) its
closed set. Let /„ be the closed set {U e I\U is T-unlimited i.e., r©Th(L7) =
T}. This is closed because by [P, Corollary 4.44] any T-limited U realizes
a T-finite pair o/x and hence a T-minimal pair which isolates U among
I(T). In particular, every U e I\IU is reflexive. If tp/y/ is T-minimal and
isolates U e I\IU, then \<p/y/\T is a power of \tp(U)/y/(U)\ and du(T) =
l°ê\<p(U)/i//(U)\ \<pIv\t is the number of times that U occurs as a direct summand
of any pure-injective model of T (cf. [Z, p. 180]). Define the complete theory of
right (left) A-modules DT as DT = Th({®(D?7)^<r)|l/ G 7\7„}{© VW\V e
K})-
Theorem 6.6. Duality, the map which takes T to DT, is a bijection from the
class of complete theories of left iright) R-modules to the class of complete theories
of right (left) R-modules. DT is uniquely determined by T via the equation
\tp/y/\T = \Dy//D<p\DT. If U is reflexive, then D(Th(U)) = Th(DU).
Proof. From the definition of DT, we have that IiDT) = ICT)' so that
Latt(Dr) = Latt(/(Dr)) = Latt(/(7/)') & Latt(/(r))°P = Latt(r)°P. We split
the proof of \y>/y/\r = \Dy//Dtp\DT into two cases, depending on whether or
not tp/yi has a composition series of pp-definable subgroups (in T).

if) If not, then Dyi/Dtp does not have such a composition series either and
we get that \<p/y/\r = oo = \Dy//Dtp\DT .

(ii) If tp = tpo 2 tpx 2 ••• 2 tpn+x = W is a composition series of tp/y/ in
T, then Dip = D<pn+l ç Dtpn C ••■ Ç Dtpx ç Dtpç, = Dtp is one of Dip /Dtp in
DT. Since \tp/y/\r = IIÍIí'í/Vh-iMO < i < «} (mod oo) and \Dy//Dtp\DT =
Y[{\Dtpi+x/Dtpi\DT\0 < i < n} (mod oo) we may assume that tp/y/ is a minimal
pair.   Take U e I(T) isolated by tp/yi.   If U e Iu, then (tp/y/) n /„ / 0
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and so iDip/Dtp) n I'u ± 0 and so, by definition of DT, \<p/y/\r = 00 =
\Dy//Dtp\DT. On the other hand, if U $ Iu , then \<p/\p\r < 00 and \tp/y/\j =
\tp(U)/y/(U)\d^. But \Dy//Dtp\DT = \Dy/(DU)/Dtp(DU)\d^DT^ and we de-
fined DT so that dDU(DT) = duiT). By Corollary 6.5, \tp(U)/y/(U)\ =
\Dy/(DU)/D(p(DU)\ and so \tp/y/\T = \Dy//Dtp\DT follows.

For U reflexive, D(Th(C7)) = Th(DÍ7) follows from computing the respec-
tive BGM-invariants and applying the first part of the theorem.   D

Let RN t= T and N' \= DT and / = I(T). Then tp/y/(N) is a left R(tp/y/)'-
module. Let A = R(fp/y/)1. We also know that (Dy//Dfp)iN') is a right
A-mod\ile, from Corollary 6.3.

Proposition 6.7. Under the above conditions,

D(Th(Atp/y/(N))) = Th((Dy//Dy>)(N')A).
Proof. We may assume that tp/y/ is a pair of ppfs in one variable.

Lemma 6.8. For each ^a(x) G AL, /(x) = n, there is a ppf Roix) e RL with
t= ̂ m(x)-»ä(t(x) and 1= Roix) -> tpnix) such that AoiAtp/ipiN)) = RoiN)/y/iN)
and DiAo)iDip/DtpiN')A) = DiRo)iN')/DtpiN').

Once this lemma is proved, the proposition follows from Theorem 6.6 and
the fact that for every pp-pair ^cr/^T G AL in one variable \iAa/Ax)iAtp/y/iN))\
= \Ro(N)/y/(N)/Rx(N)/y/(N)\ ' = \Ro/Rx(N)\ = \D(Rx)/D(Ro)(N')\ =
\D(rx)(N')/D<p(N')/D(ro)(N')/Dcp(N')\ = \D(Ax)/D(Ao)(Dy//Dtp(N')A)\.
Proof of Lemma 6.8. Let Ao(x) <& 3y (//"/)(*) = 0 with H an my. n matrix
over A and J and m x k matrix over A . Thus l(x) = n and /(y) = k . Note
that (7/7) G Mox((tpIy/)n+k, (tp/y/)m) and that if we denote by (HJ)(x~y, z)
a ppf representing (HJ), then the dual D(HJ)(x^y,z) represents (cf. Ex-
ample 2.5). (77/) G Mox((Dy//Dtp)n+k , (Dip/Dtp)"1), the morphism which
acts from the right as (77/): (Dip/Dtp)"1 -» (Dy//Dtp)n+k. Let p(x, y) o
3z (HJ)(x~y, z) A (^w)(z) and let Ro(x) «■ 3y p(x, y) ; then Ro(x) induces
Ao(x) on tp/yi. By Proposition 2.7, we get V t= DpixZ'y) <-> 3z D(HJ)(x~y, z)A
D(y/m)(z) and so it follows that I' t= Dp(x, y) <-> 3z D(HJ)(x~ - y, z) A
D(y/m)(z). Applying to (HJ)(x^y,z) condition (i) of the definition of a
morphism, we get / 1= Ro(x) <-> 3y p(x,y) A q>k(y). By Proposition 2.7
/' N D(Ro)(x) *-» 3y D/?(x, y) A D(tpk)(y) so that

/' N Oht)(x) ^ 3y, z D(HJ)(x~ - y, z) A D(^m)(z) A D(^fc)(y)

follows and hence /'^D(Ärj)(x)~3y, z D(HJ)'(x~y, z)AD(y/m)(z)AD(tpk)(y).
But it is clear that D(Ro)(x) induces on (Dip/Dtp)"(N') the subgroup defined
by 3z z(777) = (*) A y = 0 i.e., the subgroup defined by 3z z/7 = z A z7 = 0
i.e., the subgroup defined by D(Ao)(x).   D

7. Strongly minimal indécomposables
As an application of Theorem 6.6, this section is devoted to the example

of strongly minimal modules. Recall that an infinite module M is strongly
minimal if every proper pp-definable subgroup tp(M) (tp in one variable) of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ELEMENTARY duality of modules 57

M is finite. All such modules are pure injective [P, Theorem 3.1] and one can
readily verify that in this case m-dim(M) < 1. Thus every strongly minimal
indecomposable module U is reflexive and so, in particular, are all V e I(U),
although I(U) is not very big, as we shall see.

Note that if U is strongly minimal, then for each r £ ann({7), rU = U so
that R/ ann(U) has no zero divisors. We separate our analysis into two cases,
depending on m-dim(U).

(i) If m-dim(i7) = 1, we may endow DU with a topology which makes
it a compact (Hausdorff) topological module. In this case, U has arbitrarily
large finite pp-definable subgroups and /(£/) contains only one point apart
from U. This point, to which we shall refer as A, is called the unlimited
indecomposable. A is not isolated in I(U) and there is a unique nonzero type
p(x) for which A = H(p). This type p(x) is called the unlimited type and
it is determined by the equation p~(x) = {y/(x)\ \y/(U)\ is finite}. A is thus
pp-simple i.e., contains no nontrivial pp-definable subgroups, and belongs to
that class of strongly minimal indécomposables considered in (ii).

Let DU be the reflection of U. By Corollary 6.5, every nonzero definable
subgroup of DU is of finite index in DU. As I(U) and I(DU) axe home-
omorphic, I (DU) also has a unique nonisolated point, DA, the dual of A.
DA is also called the unlimited indecomposable. As above, DA is pp-simple
and there is a unique nonzero pp-type Dpix), the unlimited type, for which
DA = H(Dp). Dpix) is determined by Dp+ix) = {tpix)\[DU : tpiDU)] is
finite}.

Consider the topology on (DU, +) whose basis of (clopen) neighborhoods
of the identity is given by the nonzero pp-definable subgroups of DU. DU is
Hausdorff since it omits Dp(x)—so if a G f]{tp(DU)\[DU : tp(DU)] is finite}
then a = 0. + is continuous by definition and for every r e R and ppf tp(x)
for which [DU : tp(DU)] is finite we have that r~x(tp(DU)) is a subgroup of
DU of finite index defined by the ppf tp(xr). DU is thus a topological module.

We claim that DÍ7 is compact. For let D£7 = \J{tpa(DU) + ca \ a < k}
be a cover consisting of basis neighborhoods no finite subset of which covers
DU.   Then  {-*tpaix - ca) \ a < k}  is consistent and realized by a e M,
some pure-injective extension of DU. By [Z, Theorem 9.1], M = DU © DA"
so a = ax + a2 with ax e DU and a2 e DA~ . But then M \= tpaia2) for
each a < k and it follows that ax realizes {-><pa(x - ca) \ a < k} as well,
contradicting the assumption that \J{tpaiDU) + ca \ a < k} be a cover of DU .

(ii) If U is pp-simple, then there is a ring homomorphism R —» A of /? into
a division ring A such that rU = rA and DU = AR.

First we note that if U is strongly minimal and w-dim(t7) = 0, then U
is pp-simple. This is so because if 0 ç tpx(U) ç ••• ç <p„_x(U) ç U is a
pp-composition series, then, as in the proof of Corollary 6.5, all the quotients
<Pk+x(U)/<piciU) have the same cardinality. This must be infinite and so by
the definition of strongly minimal, U must be pp-simple. Conversely, any
infinite pp-simple indecomposable is strongly minimal. Thus the only other
indécomposables which we take into account when considering pp-simple ones
are the finite pp-simple indécomposables.

As in the proof of Proposition 6.4, U is a one-dimensional (left) vector space
over the division ring A = Ritp/y/)1. There is a ring homomorphism a: R —► A
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which sends r e R into the action of r on A and so we see that R/ ann(U)
imbeds into A, making A a left .R-module. Then RU = rA. Using a similar
argument for DU yields DUR = DAr and our claim follows from Proposition
6.4.

8. Local purity

To test a homomorphism RN -¿-* RM for purity, it is enough, according
to Proposition 0.3, to tensor / against each finitely presented K e Mod-R.
Another class of test modules is provided by the next result. The method of
proof brings together many elements of this paper. We shall have occasion to
use it more than once.

Proposition 8.1.  RN —► RM is pure iff U ®RN-► U ®RM is injective for
each U e IR.
Proof. Left to right is trivial, so assume that the right-hand side holds. Let
a G 7Y and suppose that M 1= tp(af). We must show N N tp(a). Suppose not.
Let D*P(x) = tp+(a) and let DO be an ideal of ppfs, maximal with respect to
the properties that tp e DO and DO n D*F = 0 . By Lemma 4.1, there is an
indecomposable type p(x) such that t= p+(x) <-► O(x) and *F ç p~(x). Let
1= p(c) and let U = 77(c) be the indecomposable hull. Proposition 3.2 implies
that c ® a ^ 0 in U ® N because for every ^(x) for which N t= y/(a) we
have that U N -iDy/(c). But c ® a/ = 0 in U ® M since M N y>(af) and
U N Dtp(c). This contradicts the injectivity of 1 ® /.   D

For / ç RI, a closed set, we shall say that the homomorphism RN —► RM

is I-pure iff U®RN —-* U®RM is injective for each U e I'. Note that we
have not placed on / the requirement of being injective. We shall also need
the following

Definition 8.2. If O(x) is a filter of ppfs G RL and / ç RI is a closed set,
then the localization of O at / is 07(x) = {y/(x) | there is a tp(x) e O and
71= tp -* y/}.

Proposition 8.3. RN -¿-» RM is I-pure iff tp+(a/) ç tp+(a)7 for each a G N.

Proof. (=>) Suppose to the contrary that M h ip(af) and y/ £ O(jc) = tp+(a)/
for some a G A7. Thus for each tp G tp+(a), 7 \= \tp/y/\ > 1. Let *F(x) be an
ideal of ppfs maximal with the properties ip e *P and Ou{-kj | o e ¥} is T(I)-
consistent. Then Lemma 4.6 at T(I) implies that N Dx¥(x) <-» p+(x) for some
indecomposable type p(x), H(p) e T. Let t= p(c) and let U = 77(c) g 7'.
Then, using Proposition 3.2, c®a^0 in U ® N, but c®a/ = 0 in U ® M,
contradicting the /-purity of RN -?-> RM.

(<=) Suppose that U e /', a G M and ce U, and c®a/ = 0 in U ® M.
By Proposition 3.2, there is a ip e tp+(a/) and Dip e tp+(c). Since tp+(a/) ç
tp+(a)7, there is a tp e tp+(a) such that / 1= tp —> y/. Then /' t= Dip —> Dtp and
so Dtp G tp+(c). But then, Proposition 3.2 implies that a ® c = 0.   D
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{Corollary 8.4 (local version of Proposition 8.1). RN —► RM is pure iff it is
I(Th(RN))-pure.

Proof. Let / = I(Th(RN)).  One direction is clear, so take RN —► RM to
be /-pure. By Proposition 8.3, tp+(a/) ç tp+(a)7 for each a G N. But if
tp G tp+(a) and / t= tp —> y/, then ip e tp+(a). Hence tp+(a) = tp+(a)7. Since
tp+(a/) D tp+(a) is always true, we get that tp+(a/) = tp+(a) and hence that
/ is pure.   D

Thus to test RN —► RM for purity, it is enough to tensor this homomor-
phism against the pure-injective indécomposables which live in the reflection of
7(Th(7Y)). In a similar vein, we can define a homomorphism RN -£-* RM to

be U-pure, for a reflexive U if DU ®RN-> DU ®RM is injective. In this
case, we also say that RN is U-pure injective if every U-pxixe homomorphism
RN —> j¡M isa split imbedding. There is a canonical way of constructing
t/-pure-injective modules.

Example 8.5. Let S be a ring making sDUR an 5-/?-bimodule and let sE be
an injective left ¿-module. Then we claim that RrIomsisDU ,SE) is {7-pure-
injective. For suppose that RHomsisDU, sE) —► RM is ÍT-pure. Then

0 -» SDU ® HomsisDU, SE) -A SDU ® M

is exact. Since sE is injective,

Hom(5D[7 ®M,sE)-> Hom(sDU ® HomsisDU, SE), SE) -» 0
is exact. But his is tantamount to the exactness of

Hom(M, Hom(DU,E)) -* Hom(Homs(5DÍ7, SE), HomsisDU, SE)) -» 0.
If we choose a preimage of 1 G End(Hom5(sDÍ7, SE)), g say, then fig is the
identity on HomsisDU, sE) and so / is a split imbedding.

To prove a pointwise version of Corollary 8.4, we need the following lemma,
whose proof appears as a proof of [P, Corollary 9.25] in an early draft of [P].

Lemma 8.6. Suppose that U = Hip), tp/y/ e p is a U-minimal pair. Then
N pix) «-» p+ix) U {-iff(x) | I(U) \=<r^tp}.
Proof. It is enough to show that t= p+ix) U {->ct(x) | / 1= a —> y/} -* p~ix).
So let S e p~ix). By [Z, Theorem 4.4], there isa i € P+ix) such that
N t(x) -» tpix) and (t n S) + (t n ip) e p~ix). Now Tn^CTn^ + TnáCT
and x/xC\ip isa (7-minimal pair, so it must be that L7 ̂  (Tn^ + Tn<J/Tn^) =
ixnS/xnSlly/) = ixnS + y//y/) and N (tA-i(ti~i¿ + y/)) -+ xA->ixtlS). Since
t ep+ix), and (xr\S) + y/ e {->oix) \ I(U) 1= a -» y/} , and t= ta-i(tDi5) -> ->S ,
the result follows.   G

Proposition 8.7. Suppose that H(RN) = U  and that  U  is reflexive.    Then
fRN —► RM is pure iff it is U-pure.
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Proof. Suppose that RN -?-> RM is  C7-pure, so that 0 -► DU ® N —^L*
DU ® M is exact. Let a e N and let tp/ip e tp+(a) be a £/-minimal pair.
If we assume that RN —| RM is not pure, then / restricted to a is not a
partial isomorphism i.e., tp+(a/) strictly contains tp+(a). By Lemma 8.6,
we can assume that there is a o e Vp+(af) which is not in tp+(a) and that
I(U) t= cr —> ip . Replacing ip with (ofxtp)+ip, we can assume that M 1= ipiaf).
Let O(x) = to+(a) and let *F(x) be an ideal of ppfs which is maximal with
respect to the properties that yi e *P and Ou{-kt | o e *F} is Th({7)-consistent.
Applying D and Lemma 4.6 at Th(f7), we get an indecomposable type p(x)
such that H(p) e I(U)', \= p+(x) «-» DV(x) and p~(x) D {DO(jc)} . But then
H(p) e (Dip/Dtp) and H(p) has no choice but to be DU. Let 1= p(c) with
c G DU. We know that DC/ 1= Dy/(c) so by Proposition 3.2, c ® afi = 0 in
DUR ® M. But, by choice of O and Proposition 3.2, c ® a # 0 in DUR ® N,
contradicting the {/-purity of rN -Í-* rM .   u

Corollary 8.8.   U is U-pure-injective.
Proof. H(U) = U, so any U-xnxxe mapping of U is pure and hence splits, by
Proposition 8.7.   □

In §12, we treat modules of the form Hom(i7, E), exhibited in Example
8.5. But in the general case, we content ourselves with the next result. There is
a natural map T: DUR -> Hoxns(RUs, DU ®Us) which takes c e DU to the
homomorphism Tc defined by Tc(a) = c®a.

Proposition 8.9. If U is reflexive, then T: DUr -> Hoxxxs(rUs , DU ®Us) is a
split imbedding.
Proof. By Corollary 8.8, it is enough to show that  T is D77-pure, i.e., that
0^Drj®L7^^UHom(L/,D(7®i7)®c7 is exact. Let c G DC7 and a G U be
of the same length and suppose that re® a = 0 in Hom(C7, DU ®U) ® U. By
the definition of tensoring, there is a map E: Hom(t7, DU®U)®U -> DU®U
which is determined by E(f ®c) = f(c). Then c ® a = E(Tc ® a) = 0.   D

9. Coherent rings
In this section, we consider reflection as it pertains to flat and injective mod-

ules. In fact, it is the absolutely pure modules that are, in some sense, the
reflections of flat modules—a module M is absolutely pure if every imbedding
of M is pure.

Proposition 9.1. If I(RM)' is a set of flat modules, then M is absolutely pure.

Proof. Let 0 -+ RM -L RN be exact.   By hypothesis, 0 -» F ®R M -^
F ®RN is exact for each F e I(RM)'. Thus / is I(M)-p\ixe and hence, by
Corollary 8.4, pure.   D

If M is pure-injective and satisfies the hypothesis of Proposition 9.1, then
M is injective. Thus we get
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Proposition 9.2. (i) If Ur g Ir is flat and reflexive, then rDU is injective.
(ii) If I Q Ir is a closed set of flat modules, then I' ç RI is a set of injective

modules.
Proof, (ii) is immediate from Proposition 9.1. To prove (i), let 0 -> RDU -*-*

rM be exact. By hypothesis, 0 -+ U ®RDU > U ®RM is exact and so fi
is DfJ-pure. But, by Corollary 8.8, DU is DCZ-pure-injective so / splits.   D

In 1971, Eklof and Sabbagh wrote two articles, [E-S] and its reflection [S-E].
[E-S, Theorem 3.16 (with Proposition 3.23)], states that if /? is left coherent,
then the class of absolutely pure left /?-modules is elementary. It follows that
the absolutely pure pure-injective i.e., injective, indecomposable left R-modules
form a closed subset ¡nj/ of RI. [S-E, Theorem 4] says that if R is left coherent,
then the class of flat right .R-modules is elementary (in the language LR). As
above, it follows that the flat pure-injective indecomposable right 7?-modules
form a closed subset /flat ç IR of the right Ziegler spectrum. For the purposes
at hand, this is all that one needs to know about left coherent rings.

Theorem 9.3. If R is left coherent, then inj/' = /flat. Thus the largest theory
Tihm) of flat right R-modules is the dual of 77(^7), the largest theory of abso-
lutely pure left R-modules.

Before proving Theorem 9.3, we make a few observations and recall some
facts. For a right module FR and tp e LR in ppf in one variable, denote by
Ftp(R) the subgroup of F consisting of linear combinations of elements in F
with coefficients in <p(R).

Fact 9.4 [P, Theorem 14.9]. A right module F is flat iff tp(F) = Ftp(R) for each
ppf tp e LR in one variable.

If /? is left coherent, then by the remarks above, I(RR) ç /flat. But if
F e /«at and F e (?/y/), then <p(F) çl y/(F) and so Ftp(R) cf. Fy/(R) and
hence <p(Rr) <£ y/(RR) i.e., I(Rr) n itp/ip) ^ 0 . This means that F is in the
closure of I(RR) and hence that F e I(RR) and hence that /flat = I(RR).

Fact 9.5. If M is injective, a e M, and pix) = pp-tv(a), then p+iM) =
annj!/(ann(a)).
Proof. p+iM) C annA/(ann(a)) is easy to let c e annM(a)) • By the injectivity
of M there is an fie End«M such that afi = c and hence t= p+ic).   D

Proof of Theorem 9.3. By Proposition 9.2(h), /flat ç in¡I, so /flat = 7fl'at ç iniT.
To prove the other inclusion, let FR e ^¡1' and tp e LR a ppf in one variable.
Let M be an \R + No I """-saturated (and hence pure-injective) model of T(in¡I).
Let a e M be such that M t= tp+(a) <-> Dtpix). Since M is pure injective
and absolutely pure, it is injective and hence M \= tp+(a) <-+ ann(a)x = 0.
This follows from Fact 9.5 and the saturation of M. Consequently, M \=
ann(<3)x = 0 <-» Dtpix). Since Dtp(x) is finitary and M saturated, this means
that there are rx, ... , rn e ann(a) such that M t= Dq>(x) <-> /\{nx = 01 1 < i <
n} . Since this equivalence then holds in 77(inj7), an application of D yields
inj/' 1= tp(x) *-> X^i/iM1 <'<"}• Because FR e miV the same equivalence
holds in Th(F). Therefore <p(F) = YZFr¡. Similarly, /flat - I(RR) implies
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that RR \= tp(x) <-► ¿Ziri\x\l < i < n} and hence that tp(R) = £/?r,. Thus
9(E) = £7>; = ¿ZERr¡ = F(£Rn) = Ftp(R) and F is flat, by Fact 9.4.   D

Note that in the course of the above proof, we showed that every pp-definable
subgroup of RR , R left coherent, is a finitely generated left ideal. The converse
holds for arbitrary rings and so we see that Latt(/?j{) is isomorphic to the lattice
of finitely generated left ideals of /?. By Proposition 4.5 and Theorem 9.5,
m-dim(inj/) < oo iff m-dim(/flat) < oo iff m-dim(7?Ä) < oo iff the lattice of
finitely generated left ideals of R does not contain a dense chain [Z, Lemma
8.5]. Applying the considerations made at the end of §4 gives us the following

Corollary 9.6. If R is left coherent and the lattice of finitely generated left ideals
does not contain a dense chain, then duality constitutes a bijection between the
{isomorphism types of) injective indecomposable left R-modules and the iiso-
morphism types of) flat pure-injective indecomposable right R-modules.

Corollary 9.6 applies, in particular, to left noetherian rings.

10. Totally transcendental modules
In this section, we specialize to the case of totally transcendental modules.

Recall [P, Theorem 3.1] that a module is totally transcendental iff it has the de-
scending chain condition on pp-definable subgroups. Every totally transcenden-
tal module M is pure-injective and m-dim(M) < oo so that every U e I(M) is
reflexive. A main feature of a totally transcendental module M is that for each
a G M, there is a ppf <p(x) such that M 1= tp(x) <-► tp+(a). We shall regularly
exploit the fact [Z, Corollary 3.3] that c G tp(M) iff there is an fie EndRM
such that a/ = c. We begin with a closer look at the situation in Proposition
8.9 by showing that in this case, elements of Hom^i/s, DU ®Us) locally re-
semble elements of DU . Throughout this section and the next, S will denote
the endomorphism ring of R U.
Lemma 10.1. Suppose that RU is a totally transcendental indecomposable mod-
ule and that f e Homs(Us, DU® Us) ■ Then for each a e U, there is a ce DU
such that fi(a) = c®a.
Proof. Let f(a) = b ® e and let p(x, y) be a ppf such that U 1= p(x, y) <->
tp+(e, a). We aim to show that D(p(x, 0)) G tp+(b). By Theorem 4.10, it
suffices to prove that for each d G U for which U \= p(d, 0), we have that
b ® d = 0 in DU ® U. But if U 1= p(d, 0), then by the choice of p(x, y),
there is a g e End/? U such that eg = d and ag = 0 and so b®d = b®eg =
f(ag) = 0. By Corollary 2.8(h) this means that DU N 3y Dp(b, y) and if
c G DU witnesses this, then Corollary 3.3 gives that f(a) = b®e = (c)Dp®e =
c® pe = c® a .   O

If U is totally transcendental, we may define elementary socles on it.
Definition 10.2. For each ordinal a, we define soca(77) ç U by recursion on
a.

(i)   soc°(C/) = 0.
(ii)   soca+1(77) = EM7-7) I <P{U) t soca(c7) and tp{U) is minimal such} +

socQ(C7).
(iii)   soc*(£7) = £{socQ(<7) | a < X} if A is a limit ordinal.
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ht(U) is defined as the least a for which soca(t7) = U and xk(tp(U))
will denote the foundation rank of tp(U) in Latt(77). Since everything is de-
fined inside U, one may prove by induction on a that if xk(tp(U)) < a, then
tp(U) c soca(U). We shall often confuse soca(C7) with the ideal {y/ \ y/(U) ç
soca(C7)}. Since Latt(Dc7) = Latt(í7)op (Theorem 4.10), we may dually define
the elementary radicals rada(D77) of D77.

Definition 10.3. xada(DU) = D(soca(U))(DU), the subgroup of DÍ7 defined
by the filter of ppfs dual to the ideal soc" (77). We would like to be able to con-
fuse rada(D77) with the filters D(soca(U)) and {Dtp \ Dtp(DU) D rada(Dt/)}
and we may, according to

Proposition 10.4.   tp e soca(U) iff Dtp(DU) D xada(DU).
Proof. (=>) follows from the definition so we just prove (<=). Suppose that
tp <£ soca(c7) is a minimal such tp. Let a e tp(U)\ soca(U). Then U t=
tp <->• tp+(a) and we can find yi such that tp/y/ e tp(a) is a (/-minimal pair.
By the minimality of tp, y/ G soca((7). Lemma 4.6 at Th(?7) provides us
with an indecomposable type p, H(p) e I(U)' = I(DU), for which N p+ —>
D(socQ(L7)) and -^Dtp e p . As Dip/Dtp e p it must be that H(p) = DU and
if c G DC7 is a realization of p, then c e xada(DU), but c <£ Dtp(DU).   D

It is sometimes easier to determine DU ®U than D77.

Theorem 10.5. 7/77 is a totally transcendental indecomposable module, then
DUR S Hörnet/s, DU ® Us).
Proof. Let / G Hom(77, D77 ® U). For each ordinal a, we shall provide an
element ca e DU such that (/- 7/ca)(socQ(c7)) = 0 (T is defined prior to
Proposition 8.9). Letting a = ht(U) together with Proposition 8.9 will yield
the theorem. We proceed by induction on a.

(i) c0 = 0.
(ii) For the successor case, it suffices to prove that /(soca(<7)) = 0 implies

that there is a c e DU such that (/- rc)(soca+1(77)) = 0. Then, if we replace
/ with / - Tca and let ca+\ = ca + c, the induction goes through.

Let F = {tPyiU) \ y < K, tp7iU) çl socQ(77) is minimal such} be a family
of pp-definable subgroups of U maximal with respect to the property that for
each finite J ç k and y0 $ J, <PyoiU) <£ ¿Z{<Py(U)\y e 7} + socQ(77). By
the maximality of F, soc" (77) + F = soca+1(77). Let y0 < k and aya G
ç>,,0(77)\soca(77). By the minimality of <pyo(U), U 1= tpyo <-► tp+(ayo) and if
<Py0/y/7o G tp(aï0) is a 77-minimal pair, then y/yoiU) ç soca(77).

By Lemma 10.1, there is an eya e DU such that f(ayo) = eyo ® ayo. As
each m e y/yo(U) may written as ang with g e S = End/? U, we get that
e7o ® m = eya ® aYog = f(ayo)g = f(ayog) = f(m) = 0, by assumption, so
that Theorem 4.10 implies that eyo e Dy/yo(DU) and Proposition 3.2 gives
that if f(ayo) t¿ 0, then Dy/yJDtpyo e tp(^0). If y/ e xada(DU) is such that
1= yi —► Dy/yo and J C k is finite, then, by the definition of F, it follows that
<Py0(V) <t EMU) | y G J} + Dy/(U) so that f\{Dfy(DU) \ y G J}ny/(DU) £
Dtpyo(DU), by Theorem 4.10. Now the same argument used in part (a) of the
proof of Proposition 6.4 shows that {eyo = x + y , Dtpyo(y), x e xada(DU),
Dtpyix) | y y¿ yo} is finitely satisfied in D77 and hence, by Proposition 0.4,
realized by say (e' , en - e' ) e DU.   Then we have that e'   e xada(DU),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



64 IVO HERZOG

D77 1= Dtpy(e'yo) for each y ^ y0 and Dtp7o(e7o - e'yf] so that, by Proposition 3.2,
f(ayo) = e7o ® a7o = e'yo ® ayo. If /(ayo) = 0, let e'yo = 0.

Set e7o = e'yo. Thus we may assume that we have for each y < k , ey e DU
such that fiay) = e7 ® a7, e7 e rada(D77) and that DU t= Dtp¿iey) for each
S t¿ y. It is easy to see now that {x e rada(DÍ7)} u {Dtpyix - ey) \ y < k} is
finitely satisfied in D77. In fact, if J ç k is finite, then J2{e7 | y e J} is a
realization of {x e xadaiDU)}U{Dtpyix-ey) | y e J} . By Proposition 0.4, there
isa ce DU such that c e rada(DC7) and DÍ7 \= Dtpyic - ey) for each y < k .
Since each m e tp7iU) may written as a7g with g e S = End« U , it follows
that soca+1(C/) = ¿HS \ y < k} + soca{U). So for each b e soca+xiU),
there is a finite J ç k and a e socQ(77) such that b = Yl{ay8y \ y e J} + a
with gy eS and therefore fib) = fiT,{aygy \ y e J} + a) = ¿Z{f(ay)gy | y G
J} + f(a) = EK ®gy\yeJ} + 0 = E{c ® gy\y e J} + c® a, by choice of c
and Proposition 3.2. Thus fib) = c ®b and hence (/ - Tc)isoca+xiU)) = 0.

(iii) Suppose that A is a limit ordinal and that for each a < a , we are
given an element ca e DU such that (/- 7/ca)(soca(77)) = 0. We claim that
{x - ca e radQ(D77) \ a < X} is finitely satisfied in DU. This is so because
if y < S < X, then Ticy - c5)(soc}'(l7)) = 0 i.e., for each tp e soc^ij),
ic7 -cs) ® tpiU) = 0 in DU® U. By Theorem 4.10, this means that icy - cs) e
DtpiDU) for every such tp and hence that (c,, - eg) e rada(D77). Thus if
qi <a2<-<a„ = S<X is a finite sequence of ordinals less than X, then
c¿ realizes {x - ca, e rada'(D77) \l < i < n} . Let Cx e DU realize {x - ca e
rada(D77) | a < X} . Then for each a < X, /(q - ca)(soca(77)) = 0 and hence
for each a < X, if- rcA)(soca((7)) = 0 and hence (/- rcA)(socA(7/)) - 0.   D

If tp/ip is a /?C/-minimal pair, then we see from the proof of Proposi-
tion 6.4 how tpiU)/y/iU) is a one-dimensional right vector space over A,
the residue division ring of S = End/* U, and how Dip {DU) ¡DtpiDU) is a
one-dimensional left vector space over A. Thus DipiDU) ® tpiU) is a (one-
dimensional) A-A-bimodule when viewed as a submodule of the S'-S-bimodule
DU ®U where S' = EndR DU. We shall refer to DipiDU) ® tpiU) as 5-As .
This does not, however, give tp/y/ any prominence among (/-minimal pairs,
for if o/x is another such pair, then [Z, Corollary 4.6] supplies us with a third
(/-minimal pp-pair S/e such that S/e <¡ tp/ip and S/e <¡ o/x (Definition
3.5 localized at 7 = 7(C7)). By Proposition 3.6(h) at /, De(DL7) ® ¿(77) is
an S"-S-submodule of both DipiDU)® tpiU) and Dt(DÍ7) ® <j(7/) and hence
Dx(DU)®o(U)=s-As.

In the following, E(M) denotes the injective hull of M.

Proposition 10.6. 7/77 is a totally transcendental indecomposable module, then
E(DU ® Us) = E(AS) as right S-modules.
Proof. We will show that for each a®bGD77®C7, there is an f e S such
that a®bf e As, i.e., that DU ® Us is an essential extension of As . Suppose
that U 1= tp/ip <-> pp-tp(b) and U t= tp <-* tp+(b). If a ® b ^ 0 in DU ® U,
then DU t= ̂ Dtp(a), by Proposition 3.2. By [Z, Corollary 4.6], there is a DU-
minimal pair Dx/Do e tp(a) such that Dtp ç Do ç Dt . Then x Co ç tp and
o/x is 77-minimal. Let c G ct(T7)\t(c7) . Then 77 N tp(c) so there is an / e S
such that b/ = c and hence it follows that a®b/ = a®cG Dx(DU) ® a(U) =
As.   G
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If 77 is an indecomposable injective left .R-module over a left noetherian
ring R, then, according to Fact 9.5, all of its pp-definable subgroups have the
form Jx = 0, / a left ideal of /?. Thus 77 is totally transcendental and the
above results apply.

11. Finitely generated modules
We now solve Problem 4.11 for a certain class of modules. 5 = End/? 77 in

this section.
Definition 11.1. A module M is definably finitely generated by a G M if for
each c e M, there is a ppf p(a, x) e tp+(c/a) and M 1= p{0, x) <-> x = 0.

If M is definably finitely generated by a, then M is the positive definable
closure of a. If M is finitely generated as an /?-module by a, then it is
definably finitely generated by a. If M is definably finitely generated, then
\M\ < \R\ + No j the cardinality of the language rL , so if R is countable and
77 is a pure-injective indecomposable which is definably finitely generated, then
77 must be totally transcendental. This does not hold for uncountable /? and
not every totally transcendental module is definably finitely generated {Zip00),
for example).
Theorem 11.2. If rUs is a definably finitely generated totally transcendental
indecomposable module, then DU ® Us = E{AS).
Proof. Let U be definably generated by a. Then D77 ® U = DU ® a, for if
e®c e DU® U is an elementary tensor, then there is a ppf p{a, x) e tp+(c/a)
such that U 1= p(0, x) <-» x = 0. By Theorem 4.10 and Corollary 2.8 DU 1=
3y Dp(y, x) <-> x = x and so e ®c = e ® p(a) = eDp ® a. Choose (p(x) such
that 77 t= tp(x) <-► tp+(a). We have proved that DU ® U = (DU)n ® tp{U) =
{{x = x)n ® <p){DU x U) (in the sense of §3) where n = /(a).

Next we see that <p{U)s — Ss . This is so because for each c G tp{U) there is,
by choice of tp , an / g S for which a/ = c. If c = 0 and e e U is arbitrary,
then considering a ppf p{a, x) e tp+(e/a) such that 77 N p{0, x) <-> x = 0
shows that U 1= p{af, efi) and hence that efi = 0 and that / = 0 .

It follows that R{tp)¡ ç Ends tp{U)s where I = I{U) and tp is an abbrevi-
ation for tp/{x = 0)" . We claim that, in fact, equality holds, for if c G tp{U)
and p{&, y) e tp+(c/a) is such that U N p{0, y) <-► y = 0 then the following
four conditions are satisfied.

(i)   It<p(x)-*3y p(x,y),
(ii)   /fx = 0-»/)(x,0),

(iii)   I\=3xp(x,y)^tp(y),
(iv) /i=/>(0,y)->y = 0.

Thus p(x, y) represents an element p e R(y>Y for which p{&) = c.
Thus we have that R(tp)1 = S and s<p{U)s = S. It was noted earlier (just

after Proposition 3.4) how n: {DU)n/Dtp{DU)s = {DU)n/Dtp{DU)s ® S ->
{DU)nIDtp{DU) ®tp{U) = DU ® Us induced by n{e) = e ® a is surjective. On
the other hand if n{e) = e ® a = 0, then Proposition 3.2 forces D77 h Dtp{e)
so that n is injective as well. By Proposition 6.7, Th{{DU)n/Dtp{DU)s) =
DTh{stp{U)) = DTh{sS) = Th{D{sS)). But by the isomorphism and Proposi-
tion 10.6, {DU)n/Dtp{DU)s is a pure-injective indecomposable right S-module.
It is pure injective because, by Lemma 6.8, every S-pp-type p+{x/A), Ac

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



66 IVO HERZOG

{DU)n/Dtp{DU)s is induced by a pp-type tp+(e/C), C C {DU)n , e G (DU)n
and hence realized by e + Dtp(DU)s . It must be that {DU)n/Dtp{DU)s =
D{SS). By Proposition 9.2(i), {DU)n/Dtp{DU)s is injective. The theorem
now follows from Proposition 10.6.   □

In the proof of the previous theorem, we used without mentioning the fact
that s$ is a reflexive pure-injective module. This is obvious just as soon as we
extract the following consequence of the proof of Theorem 11.2.

Corollary 11.3. // RU$ a totally transcendental indecomposable which is defin-
ably finitely generated by a, /(a) = n, then SS is totally transcendental as well
and xksS < n-xk{U).
Proof. We interpreted the module s S as the left R(y)1 -module tp{U). By
Lemma 6.8, each pp-definable subgroup of sS is defined on tp{U) by a ppf in
RL. If /(a) = n , then xk{sS) < xk{tp{U)) < n ■ xk{U).   D

A ring R is said to be left pure semisimple if every left /?-module is a direct
sum of indecomposable modules. In this case, every U e rI is totally tran-
scendental and finitely generated [P, §11.1]. In fact m-dim{RI) < oo so that all
left and right pure-injective indécomposables are reflexive.

Corollary 11.4. Let R be a left pure semisimple ring. Then the duality D, which
takes the indecomposable left R-module U to DUr = Hom^T's, E{A)S), is a
homeomorphism between rI , the left Ziegler spectrum and Ir , the right Ziegler
spectrum.   D

Example 11.5. If U is definably finitely generated and m-dim{U) = 0, then
m-dim{DU) = 0, but DU need not be definably finitely generated. The follow-
ing is an example where U is only finitely generated. This is a counterexample
to the mistake [H, Proposition 1.11.1].

Let K/L be an infinite dimensional field extension of L with L = K. Let
/ : L —► K be an isomorphism. Let the ring be R = {{ 'W k ) \ k G K, n e L} .
Rr will play the role of the U above. Note that /? is a local ring with maximal
ideal J(R) = (° * ) satisfying J{R)2 = 0 and /?//(/?) Ö LLL . Now RJ{R) s
¿K where the left action of 7 on A' is got from KK by restriction of scalars
along i. Thus RJ{R) is simple and rR is artinian with a composition series
of length 2. On the other hand, J{R)r = KL where the right action of L on
K is that induced by field multiplication. Thus J{R)r is not finitely generated
and Rr is not artinian.

The pp-lattice of Rr looks like the lattice of left ideals of /?. It consists of
three points x = 0 ç tp{x) ç x = x where Rr 1= tp{x) <-> r\x for every r e
J{R), r t¿ 0. By Proposition 9.2(i), rE = D{RR) is injective and its pp-lattice
consists of three points x = 0 ç y/{x) ç x = x where rE 1= y/{x) <-> rx = 0
for every r G J{R), r f^O.

RM = RJ{R) is the unique (up to isomorphism) simple left R-module. Since
every left .R-module contains a copy of M, E = E{M) where E{M) denotes
the injective hull of M. Let N = {(£') | k, e K} and define the action of /?
on TV by

(i(n)   k\(kx\ = (i(n)kx+k2\
V   0      n)\h)      \      nk2      )■
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Consider (K 0) = {(g) | k e K} c N. It is a simple submodule which is pp-
definable—(K 0) = y/(N) for any y/(x) of the form rx = 0, re J(R), r ^ 0.
TV is an essential extension of (K 0) = M so that E(N) = E{M) = E. If we
think of TV as a submodule of E, then {K 0) coincides with M. We claim
that N = E. For, let c e E . There is an r e R such that re e M, re ±0. If
r is a unit, then c e M ç N. Otherwise, r = (° £) G /(/?) and re = (k0), say.
But then r(kZ°tk,) = re so r(c - (k0)) = 0 and c - (g) G M and hence c e N.
Thus N = E.

By looking at the bottom component of elements in E, it it clear that E is
not finitely generated. Indeed, it is not even definably finitely generated. For, if
c, e G E and c £ Re = ~LRe¡, then Re + Re/Re is isomorphic to M whence
arises a homomorphism / from Re + Re to M which kills e but f(c) ^ 0.
/ lifts to an endomorphism of E. Thus c cannot be pp-definable from e.

12. MORITA DUALITY

Recent work of Zimmermann-Huisgen and Zimmermann deals with the pp-
lattice of the right .R-module Homs(RMs, Es) when Es is injective; S is a
ring making RMS into a bimodule.

Proposition 12.1 [ZH-Z, Lemma 2].IfEs is injective, then Dtp(Homs(RMs,Es))
= Homs{M/tp{M),Es). Thus I{Homs{RMs, Es)) ç I (M)' and if Es is a
cogenerator, equality holds.
Proof. Dfp{Homs{RMs, Es)) = Homs{M/tp{M), Es) follows from the proof
of [ZH-Z, Lemma 2]. Since Es is injective, {tp/ip) n 7(Af) = 0 iff tp(M) ç
y/(M) implies that

Homs(M/y/(M), Es) ç Homs(M/<p{M), Es)

iff
Dy/{Homs{RMs, Es)) ç Dtp{Homs{RMs, Es))

iff
{Dip/Dtp) n I(Woms(RMs, Es)) = 0,

thus
I(rIoms(RMs,Es))cl(M)'.

If, in addition, Es is a cogenerator, then all the above implications become
equivalences and we get that I(Homs(RMs, Es)) = I(M)'.   O

Corollary 12.2. 7/ MR is injective, then I(M)' ç I(RR). If M is a cogenerator,
equality holds.
Proof. Apply Proposition 12.1 to MR = Hom(RRR, MR).   D

If S and T axe arbitrary rings, recall that the functor Homs(-, TCs) is
equivalent to a Morita duality between T-mod and mod-5" iff jCs is an in-
jective cogenerator as both T-module and S-module and T = Ends Cs and
S = EndrrC [F, 23.16]. The functor Homs(-, TCS) is called a rG-duality.
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Proposition 12.3. Suppose that jCs-duality constitutes a Morita duality between
T-xnod and mod-S. If RUs is a reflexive pure-injective indecomposable R-
module which is yCs-reflexive, then tDUr = Homs{RUs, tCs) and RUs —
HomrirDUji, TCS) ■
Proof. As in Example 8.5, Horns{RUS, tCs) is pure-injective. From the hy-
pothesis and Proposition 12.1, 7(Hom5(Ä7/5, TCS)) = I{U)'. By [F, 23.15],
the class of rCs-reflexive 7/-modules is a Serre class forcing Hom,^T75, TCs)
to be indecomposable. Let tp/yi be an 7(7/)-minimal pair. Then Dip/Dtp
is an 7(7/)'-minimal pair. It is realized by the pure-injective indecomposable
Hom5(Rf/s, tCs) e 7(7/)'. By the definition of dual, Homs{RUs, TCS) =
tDUr . rUs = HomrirDUR, tCs) is proved similarly.   D

Proposition 12.4. Suppose that rU and DUr are both definably finitely gen-
erated and totally transcendental. Let S = End« U and T = EndRDU and
tCs = tDUr®Us ■ jCs-duality is a Morita duality between T-mod and mod-
S and Us  {tDU) is jCs-refilexive.
Proof. Both S and T are local rings with residue ring tAs (cf. Proposition
6.4). By Theorem 11.2, Cs = E{AS) and TC = E{TA) so TCS is an injective
cogenerator on both sides. By Theorem 10.5, both Us and tDU are jCs-
reflexive [S, 1.6.7]. By Proposition 12.3,

T a HomR{DU, DU) = rIomR{DU, Homs(Ä7/s, TDUR ® Us))
= rIoms{TDUR ® Us, tDUr ® Us) = Ends Cs.

The proof of S = Endr j-C is similar.   D

Note that when Proposition 12.4 applies, both   U  and DU  have a pp-
composition series.

Example 12.5. If 77 is a finite indecomposable .R-module, then it is pure in-
jective and reflexive. By Theorem 6.6, \DU\ = \U\ so that U and DU satisfy
the hypothesis of Proposition 12.4.

Example 12.6. If /? is representation finite, then every indecomposable (right)
.R-module is pure-injective and finitely generated [P, §11.4]. Proposition 12.4
applies to 77 and DU for every U e rI .

Example 12.7. If R is an Artin algebra with center C{R), then every finitely
generated module M has a composition series as C(/?)-module. Since pp-
definable subgroups of M axe C(/?)-submodules, M has a pp-composition
series. Thus a finitely generated indecomposable U is pure-injective. Let
0 Q tpx(U) c ■•■ ç <p„(U) = U be a pp-composition series for 77. Then
for each 0 < k < n, tpk+\(U)/tpk(U) = c(/?)A as C(/?)-modules so that A is
a finitely generated C(/?)-module. Ac(r) is also finitely generated and since
0 = Dtpn{DU) ç • • • ç Dtpx{DU) ç DU is a pp-composition series for D77 and
Dtpk{DU)/Dtpk+x{DU) = AC(R) for each 0 < k < n , DU is finitely generated
as C(/?)-module and hence as .R-module. Thus Proposition 12.4 applies to 77
and DU for every finitely generated indecomposable 77.
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