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Abstract

The basic chemico-physical concepts and the most recent developments

in the dynamics of the elementary electron transfer reactions are reviewed,

posing particular attention to discrete state approaches, which combine use

of a few experimental data with reliable ab initio calculations of the equilib-

rium nuclear configurations and normal coordinates of vibration of the redox

partners.
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Introduction

Elementary electron transfer (ET) reactions play a prominent role in chemistry and

biochemistry. Many fundamental processes in biosystems as the respiration, the

process by which living organisms obtain energy from food and oxygen, and the

photosynthesis, the process by which plants transform the solar energy in the food

and the oxygen we consume, mainly rely on electron transfer reactions between

cofactors in proteins.

Here we will mainly focus on the computational aspects of ET processes. In-

deed, the last two decades have witnessed the great impact of reliable ab initio

computations and molecular dynamics simulations on the understanding of molecu-

lar properties and chemical processes both in the gas phase and in condensed phase.

Before considering modern computational approaches to ET in biosystems and

in condensed phase, with the intent of providing as much as possible a thorough

picture of theoretical aspects of ET processes to non-expert readers, we start from

the basic chemico-physical concepts contained in the seminal papers of Lax and

Kubo on radiationless transitions in condensed phase,[1, 2, 3, 4] and of Marcus

on ET processes in solution,[5, 6] which provided the cornerstones of our actual

understanding of ET processes in condensed phases. Excellent reviews are already

available in the literature on those topics.[7, 8, 9, 10]

The other important breakthrough in the field of ET processes was provided by

realizing how realistic simulations of ET processes can be carried out on complex

systems; the surface hopping and the dispersed polaron models were the first com-

putational approaches by which complex biochemical systems could be realistically

handled.[11, 12, 13, 14] We will shortly discuss the basic ideas which those methods

rely on, for an excellent review see ref. [15]. Later on, fully quantum dynamics

simulations of ET rates employing the results of highly reliable ab-initio computa-

tions on single molecules have appeared.[16, 17, 18, 19, 20, 21, 22, 23] Combining

the results of highly reliable computations with quantum dynamics simulations of

ET rates is still a challenging task, but efforts along this line should hopefully

provide a significant contribution towards the achievement of a deeper knowledge
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of the structure-function relationships in complex systems, where single molecule

properties and the supramolecular structure of the systems concur to determine the

behavior of molecular machines.

Basic concepts of ET theory

Classical and semiclassical approaches

It is difficult to overemphasize the impact that Marcus’ ET theory had and still has in

Chemistry and Biochemistry.[5, 6, 7] Indeed, although its limitations inherent to its

classical nature, the theory provides all the basic physical concepts for understanding

ET processes in condensed media. Marcus was among the first to realize that ET

rates are regulated by the nuclear motions both of the two molecules which exchange

an electron and of the surrounding environment. Within the framework of the

absolute reaction rate theory, he thus wrote the rate expression of an elementary

ET process as:

kET = αfe
−∆G#

kBT , (1)

where α is a parameter related to the probability of ET and f is the collision

frequency in the liquid phase, ca. 1011 M−1 s−1 or a suitable vibrational frequency,

ca. 1013 s−1 for intramolecular ET.

The great merit of Marcus’ theory is in its ability of relating the ET activation

free energy to physically well sound quantities, i.e. the free energy change of the ET

reaction ∆G0, and the reorganization energy, λ, which is the energy to bring ET

reactants in the nuclear configuration of the products without changing electronic

state:

∆G# =
λ+∆G0

4λ
. (2)

The geometrical derivation of Eq. 2 is reported in the caption of Fig. 1 for the

simplest case of a system characterized by a single vibrational degree of freedom,

exhibiting the same vibrational frequency in both electronic states, a model which

does not account for entropic changes upon ET, but Marcus derived it for a multi-
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dimensional system, characterized by different frequencies, applying a full statistical

mechanics treatment.[5, 24, 25, 26, 27, 28, 29] An additional “work” term can be

added in order to account for other energy requirements, such as for the formation

of a binary complex leading to ET or for a conformational change.

The reorganization energy λ has been further separated into the sum of two

contributions, one coming from the nuclear degrees of freedom of the two molecules

which exchange an electron, the internal reorganization energy, the other from the

changes in the environment, the solvent reorganization energy. The former is imme-

diately seen to be:

λint =
1

2

∑

j

ω2
j∆j (3)

where ωj and ∆j are the vibrational frequency and the displacement upon ET of the

equilibrium position of the j-th vibrational mode of the whole system, acceptor plus

donor, the latter can be related to solvent polarizability by the expression: [5, 25]

λsolv =
e2

4πǫ0

(

1

2r1
+

1

2r2
− 1

r1 + r2

)(

1

Dop
+

1

Ds

)

, (4)

where e is the electron charge, r1 and r2 are the molecular radii of the acceptor and

donor molecule, Dop is the square of the refractive index of the medium, Ds its static

dielectric constant, and ǫ0 the vacuum permittivity.

Marcus equation is classical and its use is therefore limited to temperature high

enough that all vibrations are fully excited. Notwithstanding, it has been the head-

light for a huge number of experimental works. Marcus’ theory predicts a quadratic

dependence of ∆G# on ∆G0, so that maximum ET rates occur when ∆G0 = −λ,
a case for which no thermal activation is necessary, and the rate is predicted to de-

crease for more negative values of ∆G0. The free energy region where ∆G0 << −λ
has been called the Marcus inverted region; several experimental efforts were de-

voted to search for the existence of the inverted region, which would have provided

a stringent proof of the theory, but all experiments carried out on a series of re-

actions exhibiting more and more negative ∆G0 revealed only an increase of the

reaction rate up to the diffusion limit. It was only after about 30 years that stud-

ies of intramolecular electron transfer in systems where donor and acceptor groups

4



are separated by a stiff spacer have undoubtedly substantiated the existence of the

inverted region.[30]

The classical Marcus’ equation can also been obtained in a very different way,[31,

8] by considering ET as a radiationless transition between two electronic states |A〉
and |B〉 and resorting to the Landau-Zener expression for evaluating the transition

probability PAB per passage of the system through the intersection region:[32, 33]

PAB =
2π

h̄

|HBA|2
v∆F

, (5)

where |HBA|2 is the coupling between the initial and final ET states, v is the velocity

with which the system passes through X#, see fig. 1, and ∆F is the difference in

the slopes of the potential energy surfaces of the initial and final states at the

crossing point. For a classical harmonic oscillator with mass M and frequency ω,

v = ω
√

Xmax(E)2 −X#2 and ∆F = ω
√
2λM , where Xmax(E) is the maximum

amplitude of oscillation at a given energy E, Xmax(E) =
√

2E/Mω2. Considering

that the system passes through X# twice per vibration cycle, the rate at a given

energy E can be defined as kB←A(E) = ωPAB/π and the mean ET rate kET is

obtained by averaging over a Boltzmann distribution, integrating over E ≥ E#,

since lower energies are ineffective:

kET =

∫∞

E# kB←A(E)e
−βEdE

∫∞

0
e−βEdE

=
|HBA|2
h̄

√

π

λkbT
exp (−E#/kBT ), (6)

where E# = (λ + ∆E)/4λ. The semi-classical rate expression is equivalent to the

classical one, upon assuming that ET does not involve entropy changes and volume

work.

An analogous rate expression was later obtained by Hopfield, using a completely

different approach.[34] Following a previous treatment of the energy transfer between

two chromophores in a matrix,[35, 36] Hopfield wrote the ET probability per unit

time as:

kET =
2π

h̄
|HBA|2

∫ ∞

−∞

Da(E)Db(E)dE (7)

where HBA is the coupling term between the two electronic states involved in ET,

Da(E) represents the probability of removing an electron from the molecule A at a

given energy E, and Db(E) the analogous for adding an electron to the molecule B.
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The Franck-Condon principle states that ET occurs at fixed nuclei, therefore

Da(E) is given by the probability that molecule A is in the nuclear configuration

at which the process occurs at a given energy E. Since the equilibrium positions

of A and A+ are different, the maximum probability of ET will not occur at Ea,

the electronic energy difference between neutral and ionized states, but at a certain

Ea + λa, see figure 2, where λa depends on the displacement of the equilibrium

positions upon removing an electron from A. Similar considerations also hold for

adding an electron to B. Hopfield considered a one-dimensional harmonic system,

with force constants Ka and Kb. The classical probability distribution of A being

at the coordinate x is:

Pa(x) =

(

Ka

2πkBT

)1/2

exp

(

−Ka (x− xa)2
2kBT

)

. (8)

with xa denoting the equilibrium position. Then by considering that in harmonic

approximation, with equal force constants for both A and A+, and with equilibrium

positions 0 and xa, respectively, the energy required for ET to occurr at x is:

E = Ea + 1/2Ka(x− xa)2 − 1/2Kax
2, (9)

Hopfield obtained:

Da(x) =

(

1

2πkBTKax2a

)1/2

exp

(

− (E − Ea + 1/2Kax
2
a)

2

2πkBTKax2a

)

. (10)

A similar equation holds for an electron injection at B. By susbstituting Da(E) and

Db(E) in eq. 7, the ET rate expression (probability per unit time) is easily obtained:

kET =

(

1

2πh̄2σ2

)−1/2

|HBA|2 exp
(

− (Ea − Eb −∆)2

2σ2

)

, (11)

with:

σ2 = σ2
a + σ2

b , ∆ = 1/2Kax
2
a + 1/2Kbx

2
b , (12)

and

σ2
i = kBTKix

2
i or σ2

i = h̄ωi(Kix
2
i /2) coth

h̄ωi

2kBT
, i = a, b (13)
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according to whether the classical or the quantum mechanical distribution is used

for P (x).

Equation 11 is completely equivalent to the semiclassical Marcus equation, of

course upon assumption that Ka = Kb and ωa = ωb.

Noteworthy, Marcus’ rate expression can also be obtained by the surface-hopping

approach,[11] see below; for the derivation the interested reader can consult ref.s

[12, 37, 15]

The quantum mechanical approach

Most of the quantum mechanical treatments of ET reactions are strictly based on

the standard theory of non-radiative processes, developed by Lax and Kubo in the

fifties, often denoted as the generating function (GF) approach.[2, 3, 4]

Let |A〉 and |B〉 be the initial and final ET electronic states, each of them with

a manifold of vibrational states, denoted by |Am〉 (shortly |m〉) and |Bn〉 (|n〉). Ac-
cording to first order time dependent perturbation theory, the transition probability

B ← A is given by the sum over all vibrational states of |Bn〉, thermally averaged

over the vibrational states of the initial state:

kB←A = Avm
2π

h̄

∑

n

〈m|H†BA |n〉 〈n|HBA |m〉 δ(En −Em −∆E), (14)

where Avm stands for the Boltzmann average over the initial vibrational states, and

∆E = EA − EB. Introducing the integral representation of the delta function:

δ(En − Em −∆E) =
1

2π

∫ ∞

−∞

dτ exp [i (En −Em −∆E) τ ], (15)

and by assuming that the electronic coupling term HBA is independent of nuclear

coordinates, Eq. 14 can be rewritten:

kB←A =
2π

h̄
|HBA|2Avm

∫ ∞

−∞

dτ 〈m| eiHAτe−iHBτ/h̄ |m〉 e−i∆Eτ , (16)

where En and Em have been replaced by the corrresponding Hamiltonian operators,

HA andHB, in order to permit the closure sum over n. By performing the Boltzmann

average in the standard way, the transition probability per unit time can finally be

written as:
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kB←A =
|HBA|2
h̄

∫ +∞

−∞

e−i∆Eτf(τ)dτ, (17)

with

f(τ) = Tr{eiHAτe−(β+iτ)HBτ}/Tr{e−βHA}, (18)

where β = 1/KBT with KB the Boltzmann constant.

The transition probability is thus recast in terms of the Fourier transform of a

correlation function f in the dummy variable τ . As we will see later that is very

convenient for numerical approaches.

In order to highlight the physical meaning of Eq.s 17 and 18, let us first con-

sider the simplest case consisting of a single harmonic oscillator with unit mass,

whose equilibrium position is displaced upon ET by an amount ∆, without fre-

quency change, namely the same model used before for discussing Marcus’ classical

treatment. In order to obtain an expression of ET rate as a function of the equi-

librium position displacement ∆ along the coordinate q, we have to evaluate the

matrix elements of the density operator:

ρW (ξ) = exp (−ξHW ) =
∑

n

exp (−ξEWn) |n〉 〈n| , (19)

in the coordinate representation. By using the Mehler formula for Hermite polyno-

mials:
∞
∑

n=0

(Z/2)n

n!
Hn(x)Hn(y) =

(

1− Z2
)−1/2

exp

{

Z (2xy − Zx2 − Zy2)
2 (1− Z2)

}

, (20)

the matrix elements of ρ are:

〈q| ρ(ξ) |q′〉 = {2πh̄ sinh(ξh̄ω)/ω}−1/2

× exp
[

−(ω/4h̄) tanh(ξh̄ω/2)(q + q′)2 − (ω/4h̄) coth(ξh̄ω/2)(q − q′)2
]

(21)

By substituting Eq. 21 in Eq. 18, with the appropriate ξ, using q̄ and q̄′ (q̄ = q−∆),

for the density matrix elements involving HB, and performing the trace operation,

corresponding to the integration over q, q′, q̄, and q̄′, one obtains:

f(τ) = exp

{

−∆
2ω

2h̄

1− e−(βh̄+iτ)ω − e−iωτ + e−βωτ

1− e−βh̄ω
}

. (22)
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Noting that ∆2ω/(2h̄) = λ/h̄ω = S, where λ is the Marcus internal reorgani-

zation energy, Eq. 3, and that the average quantum number, n̄, in an ensemble of

identical oscillator at thermal equilibrium is (eβh̄ω − 1)−1, f(τ) becomes:

f(τ) = exp{−S
[

2n̄ + 1− (n̄+ 1)eiωτ − n̄e−iωτ
]

}

= exp [−S(2n̄ + 1)] exp

[

x

2

(

y +
1

y

)]

, (23)

with x = 2S
√

n̄(n̄ + 1) and y =
√

n̄+1
n̄
eiωτ .

After expressing the τ dependent exponential factor in terms of the modified

Bessel functions Ip(Z) defined as:

Ip(Z) =
∞
∑

k=0

(Z/2)p+2k

k!(p + k)!
,

for which the following identity holds:

e(x/2)(t+1/t) =
∞
∑

n=−∞

In(x)t
n,

integration over τ finally yields:

kB←A =
|HBA|2
h̄

(

n̄+ 1

n̄

)
1
2
p

e−S(2n̄+1)Ip

(

2S
√

n̄(n̄ + 1)
)

, (24)

with p taken as the integer closest to ∆E/h̄ω.

At very low temperature n̄→ 0 and Eq. 24 becomes:

kB←A ≈
|HBA|2
h̄

e−S
1

p!
. (25)

At high temperature n̄ becomes large and the Bessel function can be approximated

by the asymptotic expression:[38]

Ip(Z) ≈ (2πZ)−1/2 exp(Z − p2/2Z),

which leads to:

kB←A ≈
2π

h̄

|HBA|2
(4πλkBT )−1/2

exp

{

−(∆E − λ)
2

4λkbT

}

. (26)
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Thus in the limit of very high temperature the quantum mechanical approach repro-

duces the classical behaviour, exhibiting an exponential dependence on an activation

energy, even though no potential energy barrier has been considered.

In the case of a multi-dimensional system with frequencies and normal mode

directions identical in the initial and final states, f(τ) is obtained by simply taking

the product of the density matrix elements for all normal modes qi− q0i . Written in

a compact form f(τ) takes the form:[39, 40, 9]

f(τ) = exp(−G)e−i∆Eτ exp{G+(t) +G−(t)} (27)

with:

G+(t) =
∑

k

Sk(n̄k + 1) exp(iωkt),

G−(t) =
∑

k

Skn̄k exp(−iωkt),

G = G+(0) +G−(0),

where the summations run over all normal modes of the system. This formula has

been the starting point of several works on ET.[31, 8, 40, 41, 42, 43, 44, 10, 45]

The role of solvent

A major contribution toward the development of the quantum mechanical theory of

ET processes in solution was initially provided by Levich[31] and his school,[43, 46]

and subsequently extended by Jortner and others.[40, 42, 41, 44] All those ap-

proaches start from Eq.s 17 and 27: the ET rate is expressed in terms of thermally

averaged transition probabilities from the vibronic states of the reactants to those of

the products. In the work of Levich the reactants with their first coordination layers

are regarded as rigid metallic spheres, neglecting changes in their nuclear configura-

tions. The solvent bulk, which in Levich’s scheme provide the whole contribution to

reactions rates, is considered as a continuous dielectric, and its polar normal modes

are treated in harmonic approximation, usually by approximating the frequencies of

the medium polar modes by a single frequency.[31, 8]

Levich’s treatment was mainly intended for ET between metal ions in solution;

in the case ET involves two polyatomic molecules in solution it is no longer possible
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to neglect configurational changes of the two molecules and of their first solva-

tion shell. Kestner, Logan, and Jortner have extended Levich’s theory along that

direction.[40, 42, 41] They considered a model in which the two ions strongly inter-

act with their first solvation shell and exert long-range electrostatic interactions on

the bulk of solvent. The first coordination layers of the two ions are treated as a

sort of supermolecules, each of them represented in their simplified model by only a

totally symmetric mode, qA and qB, whose vibrational frequencies are not allowed

to change upon ET, whereas the polar modes of the medium, qs, are considered

by polaron theory, as in Levich’s work. The equilibrium positions of qA, qB, and

qS’s are all displaced upon ET by an amount ∆A, ∆B, and ∆s
k, respectively. The

vibrational wavefunctions are then written as the direct product of harmonic wave-

functions of the two symmetric modes of the first coordination layer and of the polar

solvent coordinates. It is straightforward to verify that with the above separation

of intramolecular and solvent modes the correlation function f(τ) of Eq. 23 comes

out to be the product of two correlation functions, one for the coordination layer,

the other for the solvent bulk. Then the transition rate can be recast in terms of a

convolution of two line shape functions, Fs and Fc:

kB←A = 2π
|HBA|2
h̄

∫

dǫFs(∆E − ǫ)Fc(ǫ), (28)

which represent generalized transition probabilities at a given energy ǫ, obtained by

applying Eq. 17 to the modes of the solvent bulk and of the first coordination layer.

Since the former ones are characterized by low frequencies, the high temperature

limit can be used leading to:

Fs(∆E − ǫ) ≈
2π

h̄

|HBA|2
(4πλskBT )−1/2

exp

{

−(∆E − λs − ǫ)
2

4λskbT

}

. (29)

For the coordination layer, assuming the same frequency for both oscillators in both

electronic states:

Fc(ǫ) = exp[(−∆2
c/2)(2n̄c + 1)×

∫

dτ exp(iǫτ) exp

[

∆2
c

2
(n̄c + 1) exp(ih̄ωcτ) +

∆2
c

2
n̄c exp(−ih̄ωcτ)

]

, (30)
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with:

∆2
c = ∆2

A +∆2
B.

Eq. 28, together with Eq.s 29 and 30, provides a manageable quantum mechan-

ical expression for the transition probability per unit time, in which ∆c and ωc can

be obtained from experimental results, whereas λs can be evaluated from polaron

theory.

Jortner applied his approach to rationalize the non-Arrhenius behavior of ET

from bacteriopheophytin anion (BPh) to primary quinone (QA) in bacterial photo-

synthetic reaction centers. That ET step is characterized by a temperature indepen-

dent rate up to T=130 K and a rough T−
1
2 dependence at higher temperatures.[47]

Jortner’s quantum theory predicts a T−
1
2 dependence for an activationless ET, a

process for which the nuclear potential energy surfaces of the initial and final elec-

tronic states cross at the minimum energy configuration of the initial state. Bixon

and Jortner obtained a reasonable fit of the experimental data by using the sin-

gle mode approximation of the multiphonon ET theory and by setting the average

wavenumber of the displaced modes at 100 cm−1.[48] From that low value a dominant

contribution of the vibrational modes of the protein medium was argued. Although

the theoretical curve is in reasonable agreement with the experimental results, the

theoretical ET rates are temperature independent up to T=50 K, rather than 130 K

as observed. Inclusion of a few higher energy quantum modes did not improve the

situation, whereas a very satisfying fit of ET rates was obtained by using a slightly

modified version of Jortner’s quantum theory, including quadratic coupling terms

originated by the vibrational frequency changes.[44] Recently, a very satisfying sim-

ulation of the temperature dependence of ET from BPh to QA has been obtained

by applying a generalized Kubo formalism, which allows for using in computations

the whole set equilibrium position displacements and of normal modes of the two

isolated partners, calculated by reliable DFT computations, see infra.[23]

The importance of quadratic coupling terms in ET processes is now well recognized.[49,

50, 51, 52, 53] Those terms arise both from normal mode mixing and frequency

changes. Frequency changes have an important physical meaning, inasmuch they
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lead to different densities of vibrational states for the initial and final electronic

states, allowing for entropy changes, which make ∆G to be a function of tem-

perature. In order to include those effects in the computation of ET transition

probabilities numerical approaches are needed.

Numerical approaches

Numerical approaches based on the generating function method

The evaluation of the time correlation function of Eq. 18 is not an easy task, and can

be carried out analytically only for a few selected model Hamiltonians. However,

within the limits of applicability of the Fermi golden rule, Kubo’s GF method is

an extremely powerful and convenient method for numerical approaches. In the

case of weak coupling between the electron donor and acceptor redox pair, the most

frequent situation in biosystems, the electronic coupling term between the initial

and final states can be considered independent of nuclear coordinates, so that the

expression for ET rate can be written:

kB←A =
2π

h̄
|HBA|2F (∆E, T ), (31)

where F (∆E, T ) is the Franck-Condon weighted density of states (FCWDS), given

by:

F (∆E;T ) =
1

Z

∑

m,n

e−βEm|〈m|n〉|2δ(En − Em −∆E) (32)

where 〈m|n〉 is the Franck-Condon integral, Z is the vibrational partition function

of the initial electronic state |A〉, and the sum runs over all vibrational states |m〉
and |n〉 of |A〉 and |B〉.

The evaluation of F (∆E, T ) for large ET cofactors is not an easy task, even in

the harmonic approximation. The calculation of FC integrals by use of multi-index

recurrence relations,[54, 55, 56, 57, 58, 59, 60] poses problems for the extremely large

amount of data which has to be stored. Data storage problems can be somewhat

limited by using algorithms based on an judicious way of choosing normal mode ex-
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citations, and completely overcome by using a perturbative treatment of the normal

mode mixing effect.[61]

From a computational point of view, the most efficient method for evaluating

F (∆E, T ) is just the generating function discussed in the previous section, consisting

in writing F (∆E, T ) as the inverse Fourier transform of a correlation function

F (∆E, T ) =
1

2π

∫ +∞

−∞

ei∆Eτf(τ)dτ, (33)

where

f(τ) = Tr{e−iτHBe−(β−iτ)HA}/Tr{e−βHA}. (34)

Harmonic approximation can be used for modeling HA and HB, assuming that

the normal modes of vibration (QA and QB) differ both for equilibrium positions,

frequencies, and directions.

The equilibrium position displacements and the elements of the rotation matrix,

which describe normal mode mixing upon ET, can be determined by Duschinsky’s

normal mode transformation, a fundamental tool for understanding mechanistic

details of both radiative and radiationless photochemical processes in polyatomic

molecules.[62] Let QA and QB be the normal mode vectors of a molecule in the

electronic states |A〉 and |B〉, respectively. According to Duschinsky, the two sets

of normal coordinates are related by the expression:

QA = JQB +K, (35)

where J is a rotation matrix and K a displacement vector, the former accounts for

mixing of normal modes upon electronic transition, the latter for changes in the

nuclear equilibrium configurations.[62, 55, 63, 54, 58, 60]

If QA and QB are expressed in terms of Cartesian displacement coordinates

ξi = qi − q0i , which is the most convenient representation for small equilibrium

displacements,

Qα = T+
αm

1/2(ξ − ξ0
α) α = A,B (36)

then:

J = T+
Am

−1TB, K(x) = T+
Am

−1/2(ξ0
B − ξ0

A), (37)
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where m is the diagonal matrix of the atomic masses, and Tα and ξ◦α are the

normal mode matrix and the equilibrium position vector of the electronic state |α〉.
In the case the two electronic states exhibit large equilibrium geometry differ-

ences, the normal mode transformation in the rectilinear Cartesian coordinates can

pose problems in harmonic approximation, which can be partially solved by using

the internal coordinate representation.[64, 65, 66, 67]

Performing the Gaussian integration over normal modes in Eq. 34, which cor-

responds to the trace operation, and taking into account Eq. 35, f(τ) takes the

form:[23]

f(τ) = [detΦ]−1/2 exp
(

−K̃JTg(Tg +Te)
−1TeJ̃K

)

, (38)

where

Tg = ωg tanh[(β − iτ)ωg/2]; Te = J̃ωe tanh(iτωe/2)J (39)

Cg = ωg/ tanh[(β − iτ)ωg/2]; Ce = J̃ωe/ tanh(iτωe/2)J (40)

Φ = [2 sinh(βωg/2)]
−2ω−1g sinh[(β − iτ)ωg](Tg +Te)(Cg +Ce)ω

−1
e sinh(iτωe),

(41)

ωg,ωe being the diagonal matrices of the vibrational frequencies of the initial and

final states.

The above formulation is very efficient for numerical treatments because the

calculation of F (∆E, T ) can be recast into a discrete Fourier transform problem

F (∆E, T ) =
1

N

N
∑

k=1

w(τk)f(τk)e
i∆Eτk (42)

where w(τ) is a proper window function, necessary to avoid boundary and spectral

leakage problems.[68]

The appealing feature of the GF approach is in the fact that its computational

cost is independent on the value of the temperature used in calculation, making thus

it possible the analysis of the temperature dependence of ET rates between large

redox cofactors.

Thermally averaged FCWDS’s computed with the above approach for ET from

BPh anion to QA at different temperatures, ranging between 5 and 300 K, are shown
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in Fig 3 as a function of the electronic energy difference between the initial and

the final state ∆E. Equilibrium positions and vibrational frequencies and normal

modes of the pairs BPh−/BPh and QA/Q
−
A were computed by reliable DFT/B3LYP

calculations of the isolated molecules in the gas phase.

At very low temperature and for lower values of ∆E, the FCWDS’s show peaks

characteristic of a system consisting of a discrete set of quantum states superimposed

to a continuum. As ∆E increases, the FCWDS’s become a smooth function of the

vibrational energy of the final state for all T, exhibiting a broad maximum, which

shifts at longer wavenumbers as the temperature increases.

The computed temperature dependence of ET rates, obtained from the Fermi

Golden rule expression 31 using FCWDS’s of Fig. 3, are shown in Fig. 4, together

with the experimental results. The temperature dependence of the ET rates is well

reproduced by computations. At lower temperatures there is a close agreement

between theoretical and experimental data, the computed rates being within the

range of the experimental error reported by Kirmaier et al. At higher temperatures,

above 250 K, the computed rates are slightly underestimated, suggesting that the

role of the surrounding medium in promoting ET dynamics, not explicitly considered

in the present treatment, but for the adopted values of ∆E and HBA, becomes more

important.

The dispersed polaron model

A different approach to the calculation of ET rates has been developed by Warshel

and collaborators who have pioneered the use of molecular dynamics in the compu-

tation of electron transfer rates in complex biochemical systems, using fully micro-

scopic models including both reactants and their environment (solvent or protein

matrix).[12, 13, 15, 37, 69, 70] The approach is based on the semi-classical surface

hopping method,[11] according to which the rate of hopping from one electronic

state to another can be obtained by running classical molecular mechanics trajecto-

ries on the potential energy surface of the reactants, and considering that each time

the energy gap between the two potential energy surfaces vanishes a transition (ET)
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occur with a certain probability factor.

The surface hopping is a semi-classical approach inasmuch the probability of

reaching a crossing point is evaluated classically, whereas ET transition probabilities

at the crossing point are evaluated at quantum mechanical level. In principle, a rig-

orous treatment would require an energy average over a large number of trajectories

and the consideration of quantum interference effects arising because of trajectory

branching in the phase space. In practice, the approach works quite well in complex

biochemical systems, where the high dimensionality of the system provides for a

fast energy redistribution and makes quantum interference effects negligibly small,

because of the low probability that two trajectories originated at a crossing point

come back in a same point of the phase space. Thus the only significant drawback

is in the neglect of nuclear tunneling, which makes the method not suitable at low

temperatures.

As discussed before, inclusion of tunneling effects requires the knowledge of the

vibrational frequencies and equilibrium nuclear configurations of both reactants and

products. Warshel realized that those pieces of information can be obtained from the

Fourier transform of the time dependence of the energy difference between reactant

and product states computed from classical trajectory simulations. This was the

basic idea behind the dispersed polaron model; the Fourier transform of the reactant

(R) autocorrelation function AR(t),

AR(t) =< u(τ + t)u(τ) >R, u(t) = ∆ERP (t)− < ∆ERP >R, (43)

yields the spectral density function J(ω),

J(ω) =

∫ ∞

−∞

dtAR(t)e
iωt, (44)

which picks out the ET active vibrational normal modes, namely those modes which

exhibit significant displacements (∆) of their equilibrium positions upon ET, with an

amplitude J(ωi) proportional to ωi∆
2
i . Thus, by properly scaling the spectral density

function to yield the overall reorganization energies, Eq. 3, the key parameters

(ωi and ∆i) for evaluating tunneling effects can be obtained. Many interesting

applications of the dispersed polaron model were concerned with the early electron

transfer steps in photosynthetic reaction centers.[13, 14, 15]
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The Spin-Boson Hamiltonian

The general model provided by Kubo and Toyozawa can be simplyfied in a variety

of ways. A common approximation is to assume that frequencies and directions

of the normal modes of vibration do not change upon ET. The resulting so called

spin-boson (SB) model is representative of a wide class of problems in physics and

chemistry, and describes two (or more generally a few) discrete states of a subsystem

linearly coupled to one or many harmonic oscillators (the boson field). Using the

standard formalism in the literature the SB Hamiltonian can be written as:

H = −HAB

2
σx −

∆E

2
σz +

1

2
σz
∑

k

ωk∆kqk +
1

2

∑

k

ωk(p
2
k + q2k) (45)

where σx = |A〉 〈B| + |B〉 〈A| and σz = |A〉 〈A| − |B〉 〈B|, are the standard Pauli

operators, HAB is the “bare” coupling between the two electronic states (the tun-

neling matrix element), and the parameters ∆k describe the interaction between the

discrete (electronic) states and the bath of oscillators.

The seminal work of Leggett[71, 72] and co-workers has provided an in depth

and systematic analysis of the rich dynamical features of the SB Hamiltonian. The

rate constant for a SB Hamiltonian has already been given in Eq.s 17 and 27 and

can be written in the form

kB←A =
H2

BA

h̄

∫ +∞

−∞

exp[−iτ∆E +G(τ)−G(0)]dτ (46)

with:

G(τ) =
∑

k

Sk(n̄k + 1) exp(iωkτ) +
∑

k

Skn̄k exp(−iωkτ).

Within this model the sign of the system-bath coupling parameters ∆k is irrel-

evant in the computation of the decay rate, however this does not hold for more

sophisticated models including, for example, Duschinsky effects. The effect of the

system-bath interaction on the rate constant can be condensed in the spectral den-

sity function defined as

J(ω) =
∑

k

∆2
kδ(ω − ωk). (47)
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Using the above definition of spectral density it is possible to rewrite the function

G(τ) as[72, 37, 73, 74]

G(τ) =

∫ ∞

0

dω{(1 + n̄(ω))J(ω)e−iωτ + n̄(ω)J(ω)eiωτ} (48)

n(ω) being the mean number of vibrational quanta for an oscillator of frequency ω

at thermal equilibrium.

The calculation of the rate constant has been thus traced back to the calculation

of a suitable spectral density, describing the process under investigation. In solid

state processes usually a power law J(ω) ∝ ωs with a cutoff frequency is employed.

The so-called Ohmic, sub-ohmic and super-ohmic spectral-densities, as well as the

Debye one have been widely investigated and much is known about their physics,[72,

75] but what is the correct spectral density for a given molecular redox pair process

remains an open question. Indeed, in most cases a discrete subset of the molecular

vibrations of the redox couple is strongly coupled to the ET process, giving rise to

a highly structured and non-uniform spectral density (see infra).[76, 77, 20] Bath

spectral densities having distinct resonances have been recently discussed, mainly

in relation with the field of quantum computation.[78]

Since the microscopic parameters ∆k can be related to the change of the equi-

librium positions of the atoms of the reacting systems upon ET, it is possible to

directly determine the bath spectral density, from first principles calculations, using

the tools of modern quantum chemistry. This approach, pursued by the authors for

ET in biochemical systems, requires the calculations of the normal vibrations of the

entire reacting system, being therefore effective only for medium sized redox pairs

when the driving force of the reaction is associated mainly to intramolecular motion

of the two redox partners. Extension of this approach to ET between a redox pair

embedded in a protein matrix has been discussed by Basu et al.[79].

When the role of the environment can not be neglected, ab initio calculations

can be quite troublesome and different techniques have been developed to indirectly

obtain an “effective” spectral density. In particular molecular dynamics calculations

have been used to numerically estimate J(ω) for ET processes in solution;[80, 81] in

that case the spin-boson and the dispersed polaron are clearly identical models.[73]
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A similar approach has been used by Zheng et al.[82], Marchi et al.[83], and Xu and

Schulten[84] who have computed numerical spectral densities for the primary ET in

bacterial photosynthetic reaction centers. The spectral density can then be plugged

into the rate expression of the SB model.

Quantum dynamics

Another approach pursued by several authors consists in the numerical resolution

of the time dependent Schrödinger equations, using special algorithms for handling

the diagonalization of very large matrices.[85, 86, 87, 60, 88, 89, 90] In short, the

approach consists in expressing the time dependent wavefunction of the whole system

in terms of a time independent manifold of vibronic states, one set of which, denoted

by |A〉, corresponds to ET reactants, the other, |B〉, to ET products, with time

dependent expansion coefficients:

|Ψ(t)〉 = |A〉CA(t) + |B〉CB(t), (49)

In the Born-Oppenheimer approximation the elements of the |B〉 and |A〉 are
given by the direct product of the electronic and vibrational wavefunctions:

|A, v̄〉 = |ψA〉 ⊗ |v̄A〉 , |B, w̄〉 = |ψB〉 ⊗ |w̄B〉 , (50)

where v̄ and w̄ denote the set of the vibrational quantum numbers associated to

each normal mode of vibration. Therefore CA and CB of Eq. 49 are column vectors,

whose sizes are given by the dimensions of the vibrational subspaces of |A〉 and |B〉
considered relevant to the problem under consideration. The time dependence of

the expansion coefficients C(t) of eq. 49 determines the time evolution of |Ψ(t)〉 and
therefore the dynamics of ET. CA(t) and CB(t) are obtained by solving the time

dependent Schrödinger equation:

−ih̄
( .

CA (t)
.

CB (t)

)

=

(

HAA HAB

H
†
AB HBB

)

(

CA

CB

)

, (51)

with initial conditions specifying the initial state of the system, where each HXY in

equation 51 is a matrix, with dimensions corresponding to those of CA and CB.
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The matrix elements of the diagonal and extradiagonal blocks of H are:

HAw̄Av̄ = 〈Av̄|Hel + TN |Aw̄〉 = 〈v̄A| EA(R) + TN |w̄A〉 = Etot
Av̄δw̄,v̄ (52)

HAw̄Bv̄ = 〈Av̄|Hel + TN |Bw̄〉 = 〈v̄A|λ(R) + 〈A| TN |B〉 |w̄B〉 , (53)

where TN is the nuclear kinetic energy operator, EA(r) is the potential energy oper-

ator of |A〉 and:

λ(R) = 〈A| Hel |B〉 . (54)

The extradiagonal terms can be further simplified by making the reasonable

assumption that:

λ(R) >> 〈A| TN |B〉 . (55)

Furthermore, since ET takes place in a small region of nuclear coordinates, see infra,

the dependence of the electronic coupling term λ(R) on the nuclear coordinates can

be usually neglected, although it seems to play a role in some biosystems,[91] leading

to the well known result that the off-diagonal terms of the Hamiltonian matrix are

proportional to the overlap of the vibrational states of |A〉 and |B〉, the so called

Franck-Condon (FC) integrals:

HAw̄Bv̄ = λ〈v̄A|w̄B〉. (56)

In a discrete state approach to ET dynamics, such as that outlined before, the

selection of the vibronic states to be used in the time evolution is probably the most

important problem to deal with. In fact, as shown in figure 5, the density of the

vibrational states increases very rapidly as the internal energy increases, see fig. 5

Thus a selection of the most important state for ET dynamics becomes mandatory.

The assumptions that the nuclear dependence of the electronic coupling term can

be neglected allows to easily identify the active modes for ET, namely those modes

whose quantum number can change during the electronic transition. Since the cou-

pling term is proportional to the Franck-Condon integral, eq. 56, and since FC

integrals between vibronic states with different quantum numbers are vanishingly
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small whenever changes in quantum numbers are associated to normal coordinates

whose equilibrium positions or directions are the same in the two electronic states,

only displaced or rotated normal modes can change their quantum numbers for de-

generacy condition needed for ET is met; all other modes will act as spectators in

dynamics, inasmuch their quantum numbers are frozen to the initial values. The

displaced and mixed modes can be determined by Duschinsky’s normal mode trans-

formation previously discussed, Eq. 35.

With the modern technologies for electronic computations, reliable estimates

of the equilibrium positions and normal modes of vibration of ET reactants and

products can be obtained, even for large size molecules. That has opened the way

to several works in which ET dynamics have been computed completely from first

principles, using parameters obtained by highly reliable ab initio computations, and

choosing the ET active modes by employing Duschinsky’s transformation. That

kind of calculations was pionereed by Warshel at empirical level of computation,[92]

and subsequently reconsidered at ab-initio level.[88, 87, 16, 76, 21] The main prob-

lem to be faced with in the discrete state approach is the huge number of vibronic

states which should be considered. The situation for the case of the redox pair bac-

teriochlorophyll (BChl) anion/pheophytin (BPh), two cofactors involved in the early

ET steps occurring in bacterial reaction centers, is illustrated in Fig. 6, where the

displacements of the modes of the two pairs BChl−/BChl and BPh/BPh− have been

reported as a function of the vibrational wavenumber. There are tens of displaced

modes in the region 0-1700 cm−1, many of them falling at wavenumbers less than

100 cm−1,[93] in substantial good agreement with dispersed polaron results.[13, 15]

A such large number of displaced modes can not be taken into account in quantum

dynamics, so that a judicious choose of the active modes is necessary. By taking

only ten displaced modes for the BChl− molecule and six for the BPh partner, and

limiting the maximum excitation numbers to 2 and 1 for the low and high frequency

modes, respectively, dynamics showing essentially an irreversible decay toward the

products have been obtained.[93]. That is a very important point, showing that

the use of the whole set of the normal coordinates of the redox molecular pair into
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Duschinsky’s transformation and the use of simple algorithms, based on the en-

ergy difference between initial and final state and on the strength of the coupling

factors, i.e. Eq. 56, allows to partially include in dynamics the faster dephasing

effects, inasmuch there would be several final states, with different vibrational fre-

quencies, which are populated in the electronic transition, a situation which makes

the recurrence times much longer than the transition time.[16, 93]

BChl and BPh are two large size cofactors of bacterial reaction centers leading

to fast ET; for such a system it is largely expected that models including only

intramolecular vibrational modes are sufficient to account for ET transition times.

The situation is somewhat different for ET from BPh to the primary quinone QA,

an ET step which takes a significantly longer time. Although QA is much smaller

than BChl, the density of vibrational states of the ET products which are quasi-

degenerate with the ground vibronic state of the reactants is as large as 1013, see

Fig. 5. In Fig 7 the absolute values of the FC integrals between the vibronic ground

state of the reactants with a selected manifold of states of products, falling at about

the same total energy of the initial state (∆E for ET between BPh and QA is in the

range 4500–5000 cm−1[94, 95]), are reported.

Fig. 7 shows the existence of a quasi-continuum of states which are weakly

coupled with the initial ground state. However, quantum dynamics simulations

computed by using the coupling terms of Fig. 7 are characterized by recurrence

times of the same order of magnitude of the transition time,[16] showing that only a

few states are effectively coupled with the initial ground state.[16, 87] That undesired

behaviour, no oscillations are experimentally observed, is mainly due both to the

paucity of vibrational states considered in dynamics and to the fact that the results

of dynamical simulations have not been temperature averaged.

With the development of the multi-configuration time dependent Hartree (MCTDH)

methodology [96] and of its multi-layer extension [97, 98, 99] for the solution of the

time-dependent Schrödinger equation, it has been possible to provide exact numer-

ical simulations for such large size systems, thus opening new perspectives for the

study of ET processes in large chemical systems.
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The MCTDH algorithm was introduced in 1990 by Meyer, Manthe and Cederbaum[96],

and its theoretical aspects can be found in several papers[100, 101]. In its standard

formulation the method is based on the expansion of the nuclear wavepacket in

terms of a time-dependent basis set

|Ψ(t)〉 =
∑

j1

∑

j2

...
∑

jp

Aj1j2...jp(t)

p
∏

κ=1

|ϕ(κ)
jκ
(Qκ, t)〉 =

∑

J

AJ (t)|ΦJ(t)〉 (57)

where the ϕ(κ) are known as single particle functions (SPF). The coordinate for each

set of nκ functions is a composite coordinate of one or more system coordinates, i.e.

Qκ = (qa, qb, ...), thus the SPFs basis functions are d-dimensional where d is the

number of degrees of freedom that have been grouped into a single coordinate.

The above equation is very similar to the standard wavepacket expansion with the

exception that the ΦJ , i.e. the direct product of the SPFs, form a time-dependent

basis set i.e.

|ϕ(κ)
jκ (t)〉 =

∑

i1

∑

i2

...
∑

iNκ

Bκ,jκ
i1i2...iNκ

(t)

Nκ
∏

q=1

|v(κ,q)iq 〉 (58)

Where the coefficients B(t) of the expansion are time-dependent, and the |v(κ,q)iq 〉
functions are time-independent primitive functions. Nκ is the number of degrees of

freedom which have been grouped into the jκ SPFs. With the above ansatz one

obtains a set of non-linear coupled differential equations for the time-dependent

coefficients, AJ , and for the SPFs, i.e. for the B(t) coefficients. From this point of

view the MCTDH method can be considered as a time-dependent contraction of the

basis set: the number of physically significant SPFs is usually much smaller than

the number of time-independent primitive functions. Furthermore, a key advantage

of the MCTDH formulation is in its flexibility to combine more degrees of freedom

and represent them through a single particle time-dependent wavefunction. Usually

tens degrees of freedom are combined to give a much lower number of SPFs. This

techniques allows to strongly reduce the computational effort of the time-dependent

calculation by drastically reducing the size of the basis set.

The multi-layer formulation of MCTDH[97, 98, 102] has extended the basic

MCTDH approach by introducing other layers of time-dependent contractions. The
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wave function is represented by a recursive, layered expansion of time dependent

SPFs, the final layer is expanded, as for the standard MCTDH, in terms of a time-

independent basis set. The inclusion of several dynamically optimized layers in the

ML-MCTDH method provides more flexibility in the variational functional, which

significantly advances the capabilities of performing wavepacket propagations in

complex systems.

The possibility to numerically solve the TDSE for systems with a large number

of degrees of freedom has also opened the way to a significant number of applications

to homogeneous as well as heterogeneous ET processes. Model systems with differ-

ent spectral densities and coupling parameters were solved numerically, [97, 103,

104]; quantum dynamics of heterogeneous ET between organic dyes (alizarin and

coumarin derivatives) and semiconductors (TiO2) were studied by using electronic

structure calculations to obtain a microscopic Hamiltonian[105, 17, 18, 19, 22]; full

quantum dynamics of ET in model biochemical systems comprised of a porphyrin-

quinone redox pair has also been recently studied including more than 130 vibra-

tional degrees of freedom, with a full ab initio microscopic Hamiltonian.[106, 107]

The ML-MCTDH techniques is a quite impressive methodology for studying

exact quantum dynamical problems, but it requires a careful attention in choosing

how nuclear degrees of freedom are grouped to form a single particle and in testing

the convergence of the SPFs basis for each layer.

Future perspectives

The comprehension of ET processes in complex systems at atomistic level has largely

grown in the last years. The development of the modern computational techniques

for the electronic properties of large size molecules have allowed the implementa-

tion of several computational approaches to ET, in which the evaluation of rate

constants or of the time evolution of the reactants configuration is carried out from

first principles, starting from realistic microscopic models of the two redox partners,

and employing a few selected experimental data, which often serve to account for

the role of the environment. Further progresses are expected in short time, which
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should hopefully open the way toward a detailed microscopic understanding of the

mechanisms regulating molecular machines.
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FIG. 1: The role of nuclear motion in electron transfer. Curve R and P represent

schematic profiles of the change of Gibbs free energy with the nuclear coordinate

for ET reactants and products. In the classical Marcus theory the passage from

R to P can occur at xC where R and P cross each other. λ is the reorganization

energy, i.e. the energy the system has to spend to reach the equilibrium position

of one state, but staying in the other state. ∆G0 and ∆G# indicates the ET free

energy change and the free energy activation energy. In a one dimensional system

with equal curvatures for the curves R and P, the free energy activation energy

can be easily related to λ and ∆G0 by noting that, since GR = Kx2/2 + ∆G0 and

GP = K(x − xP)
2/2, xC = xP/2 − ∆G0/KxP, so that GR(xC) − ∆G0 = ∆G# =

λ/4 + (∆G0)2/4λ−∆G0/2 = (λ−∆G0)2/4λ.
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FIG. 2: Probability energy distributions for removing an electron from the donor

and for releasing an electron to the acceptor, in the framework of the Franck-Condon

principle. EA is the energy required to adiabatically extract an electron from donor,

and EB that gained for the injection of an electron to the acceptor. Because the

potential energy profiles corresponding to the neutral and charged (initial and final)

states are displaced each other, the maximum probability for removing an electron

occurs at EA +λA, and that for releasing an electron to the acceptor at EB - λB
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FIG. 3: Thermally averaged FranckCondon weighted density of states for ET from

B− to QA as a function of the electronic energy difference between initial and final

states. The FC weighted density of states has been computed by the generating

function method, including the whole sets of normal coordinates of the two redox

pairs, without posing any limit to normal modes excitation numbers.
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FIG. 4: Computed (lines) and observed (squares and circles) temperature depen-

dence of ET rates for the redox pair BPh/QA of bacterial photosynthetic reaction

centers. Circles and squares refer to measurements at 545 nm and 665 nm, respec-

tively. Computed curves: DE = 5400 cm−1(dashed line), DE = 6200 cm−1(dotted

line), DE = 5830 cm−1(full line). Experimental values are taken from ref. 58.

Theoretical rates have been obtained by evaluating the two parameters ∆E and

|HBA|2 by a least squares fit of the experimental data, which yielded 5830 and 10.0

cm−1, respectively. The other two curves have been obtained by setting ∆E to 5400

and 6200 cm−1, and evaluating the electronic coupling term by least squares, which

yielded |HBA|2 = 9.9 and 10.1 cm−1, respectively. Reprinted with permission from

ref. [23]

30



0 1000 2000 3000 4000 5000
100

105

1010

1015

1020

Energy (cm-1)

D
en

si
ty

 o
f 

vi
br

at
io

na
l s

ta
te

s

BPhe/Ubi-

BChl/BPhe-

BPhe

BChl

Ubi

Ubi-/Ubi

1000 cm-1

4500 cm-1

500 cm-1

FIG. 5: Total density of states versus energy for some of the redox pairs present

in bacterial photosynthetic reaction centers: bacteriochlorophyll/pheophytin, pheo-

phytin/ubiquinone, and ubiquinone/ubiquinone. The curves have been calculated

by using the vibrational frequencies obtained at DFT/B3LYP level for the isolated

molecules in the gas phase and the Beyer-Swinehart algorithm. The curves indicate

how the density of the manifold of vibrational states of the ET products change as

the exothermicity of the ET reactions increases. The experimental ∆E of the three

processes are also reported.[108, 109] The case of the pair ubiquinone/ubiquinone

anion is intriguing for the huge the difference with respect to the other two long

range ET processes, which would suggest that different mechanisms must probably

be invoked.[110, 111, 112, 113, 114, 115, 116, 117, 118]
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FIG. 6: Displaced modes of bacteriochlorophyll anion (blue) and bacteriopheophytin

(red) upon relieving and accepting an electron. Displacements are in dimensionless

units.
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FIG. 7: Franck-Condon integrals (absolute values) for ET from bacteriopheophytin

(BPh) to ubiquinone (QA) as a function of the energy difference between the ground

vibronic state of BPh−-QA and the final state of BPh-Q−A. Twenty vibrational states

were allowed to change quantum number, with a maximum change of three quanta.
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