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Abstract

In this paper, we give a theoretical foundation of EFS (elementary formal
system) as a logic programming language. We show that the set of all the unifiers
of two atoms is finite and computable by restricting the form of axioms and goals
without losing generality. The restriction makes the negation as failure rule
complete. We give two conditions of EFS’s such that the negation as failure rule
is identical to the closed world assumption. We also give a subclass of EFS’s
where a procedure of CWA is given as bounding the length of derivations We
compare these classes with the Chomsky hierarchy.

1. Introduction

In this paper we give a theoretical foundation of EFS (elementary formal system) as a logic
programming language.

EFS was first introduced by Smullyan [13] to develop his recursive function theory. Both
EFS and logic programming use definite clauses as axioms, but the structures of their terms
are different. Logic programming uses the first order terms, but the terms of EFS are patterns
in (XU X)* as terms. Arikawa [1] showed EFS is suitable to generate languages.

We formalize a derivation procedure for EFS, and give the same semantics to EFS as
that of logic programming. Our motivation for this is to give a unifying framework of
inductive inference of languages by combining MIS [12] with EFS. The framework is given
as MIEFS [2]. Thus we need a complete refutation procedure to accept languages defined
by EFS’s, nearly in the same way as that of logic programming.

Our theory is based on that of logic programming schema given by Jaffar et al. [7]. In
order to show the completeness of refutation for EFS, we give the declarative semantics of
EFS’s by introducing the associative law as an equational theory to represent the unification
of patterns. It would seem that our theory is an instance of the schema such that the
Herbrand universe is ¥*. However, there still remains a big problem in the operational
semantics, that is, there are infinitely many maximally general unifiers of two atoms. No
method for avoiding this problem was given in the schema, and so the NF(negation as failure
rule) is incomplete in general.



We give a solution of the problem by simply assuming that EFS’s are variable-bounded
and goals are ground. The assumption does not lose generality, because it is known that every
recursively enumerable language is definable by a variable-bounded EFS [2]. We show that
the set of all unifiers of two atoms is finite and computable when we use variable-bounded
EFS’s and ground goals. Thus NF is complete under the assumption.

Moreover, we give two procedures of the CWA (closed world assumption) for variable-
bounded EFS’s. One is to make use of NF by giving some restrictions to the axioms. We
show that NF is identical to CWA for hierarchical EFS’s and reducing EFS’s. The other is
to bound the length of derivations with the size of atoms in the goal. We show that this
procedure realizes CWA for weakly reducing EFS’s. Since EFS combines logic programming
and formal language theory, we can compare these classes with Chomsky hierarchy. We show
that every context-free language is definable by a reducing EFS. Tt is shown in [2] that every
context-sensitive language is definable by a weakly reducing EFS.

The paper is organized as follows. In Section 2 we give the fundamental definitions of EFS
and introduce the variable-bounded EFS. In Section 3, we give the derivation procedure for
EFS and show that all unifiers can be effectively computed for variable-bounded EFS’s and
ground goals. In Section 4 we give the same semantics to EFS as that of logic programming.
In Section 5 we prove the completeness of NF for variable-bounded EFS. In Section 6 we
discuss CWA mainly for weakly reducing EFS.

2. Elementary Formal System

We start with recalling the definitions of EFS.

Let 2, X, and II be mutually disjoint sets. We assume that ¥ and II are finite. We refer
to ¥ as the alphabet, to each element of it as a symbol, which will be denoted by a, b,¢, ...,
to each element of X as a variable, denoted by z,y, z, z1,z2,.. ., and to each element of II
as a predicate symbol, denoted by p, q, ..., where each of them has an arity.

Definition. A word over a set A is a finite sequence of elements of A. A1 denotes the set
of all non-empty words over the set A, and A* = AT U {A} where ) is the empty word.

Definition. A termof S is an element of (XU X)*. Each term is denoted by, 7,7, 71, 72,.. .,
Tiy T2y .. .. A ground term of S is an element of ¥¥. Terms are also called patterns.

Definition. An atomic formule (or atom for short) of S is an expression of the form

p(71,...,Tn), where p is a predicate symbol in II with arity n and 7,...,7, are terms of
S. The atom is ground if 7y,..., 7, are all ground.
Notation.

(1) For a term =, |r| denotes the length of 7, that is, the number of all occurrences
of symbols and variables in 7. For an atom p(my,..., ), let

ip(”rla' . '77rn)l = 17‘-1‘ +---+ iﬁnl

(2) For a term 7 and variable z, o(z, 7) is the number of all occurrences of z in .
For an atom p(my,...,7,), let

o{z,p(my,...,m)) = oz, m) + - + oz, 7).



(3) v(a) denotes the set of all variables in a term or an atom a.
Example 1. Let A = p(az,bycz). Then |A| =6, o(z, A) = 2, and v(A) = {z,y}.
A well-formed formula is defined in the same way as in first-order predicate logic.

Definition. A clause is a well-formed formula of the form
V(A1 V... VA, V(=B V...V (=B,)),

where Ay, ..., A, By,..., B, are atomns of § and n,m > 0. The formula with n =m =0 1s
assumed to denote O, and called the empty clause. We denote the above clause by

Aly-"aAn (—Bl,...,Bm.
The clause is ground if the atoms Ay,..., A, By,..., By are all ground.

Definition. A definite clause is a clause of the form
A« By,...,B, (n > 0).

Definition (Smullyan [13]) . An elementary formal system (EFS for short) S is a triplet
(X,1L,T), where I is a finite set of definite clauses. The definite clauses in ' are called azioms

of S.

Now we explain the provability of atoms in the theory of EFS. Arikawa [1] gave his theory
of formal languages using this provability.

Definition. A substitution 8 is a (semi-group) homomorphism from (X U X)* to itself such
that ad = a for every @ € ¥ and the set {z € X|z0 # z}, denoted by D(#), is finite. The
substitution is ground if z is ground for every z € D(§).

Let 8 be a substitution. If D(#) = {zy,...,z,} and ;6 = 7;, then § is denoted by

{21 =71y, Ty = Tn}-

We alsc define
p(Ta,. .., )8 = p(1b,...,7,6)

and
(A= By,...,Bn)0 =A0 « Bb,...,B,0.

for a substitution 4, an atom p(7y,...,7,) and a clause A «— B;,..., B,,.

Definition. Let S = (X,1I,T) be an EFS. We define the relation I' - C for a clause C of S

inductively as follows:

(2.1) KT 3 C, then T F C.

(2.2) KT F C, then T F C6 for any substitution 8.

(2.3) KT F A< By,...,Byand T+ B, «,then T F A — By,..., B,_1.
C'is provable from T if T F C.



Definition. For an EFS S = (X,II,T') and p € II with arity n, we define
L(S,p) = {(a1,...,an) € (ET)*|TF play,...,an) «}.

Incasen =1, L{S,p) is a language over I. A language L C I¥ is definable by an EFS or
an FFS language if such S and p exist.

We introduce an important subclass of EFS’s.

Definition. A definite clause A «— Bi,..., B, is variable-bounded if v(A) D v(B;) (i =

1,..,n). An EFS is variable-bounded if its axioms are all variable-bounded.
Example 2. An EFS S = ({a,b,¢}, {p,q},T) with
p(e,b,c) «,
I'=< plaz,by,cz) « p(z,y, z),
q(zyz) « p(z,y,2)

is variable-bounded and defines a language

L(S,q) ={a"bt"c"|n > 1}.

3. Derivation Procedure

First we give a derivation procedure for an EFS with unification defined as follows:

Definition. Let « and 8 be a pair of terms or atoms. Then a substitution § is a unifier of
a and B, or § unifies a and § if af = 6. o and B are unifiable if there exists a unifier of o

and 3. U(a, ) denotes the set of all unifiers § of o and f such that D(#) C v(e) U v(B).

It is often the case that there are infinitely many maximally general unifiers.

Example 3 (Plotkin[10]). Let S = ({a,b},{p},T). Then {z := &'} for every i is the
unifier of p(az) and p{za). All the unifiers are maximally general.

We overcome the problem with the following proposition.

Lemma 1. Let « and f§ be a pair of terms or atoms. If one of them is ground, then every
unifier of a and f is ground and U, ) is finite and computable.

Proof. First we show that the result holds in case a and 5 are terms. Assume that o is
ground, v(f) = {z1,...,2,} and 0 = {xy := m1,..., 3} := 7%} unifies o and § where k < n.
Then £ = n and 7y, ..., 7 are all ground; that is, § is ground by the definitions of ground
terms and substitutions. By comparing || with |§6], it holds that |r;] < |a|. Since the
number of ground terms = with |r| < |a| is finite, and the set

T{a,B) = {c] D(c) = v(f) and |zo| < |a| for every z € D(0)}

is finite and computable, we can compute U(a, 3) by testing every element o of T'(e, 3) to
see whether « = ffo or not.
Now let « be a ground atom and 3 be an atom. If the predicate symbols of o and S are

different, it is clear that o and B are not unifiable. Thus we assume o = p(r,...,7,) and
B = p(71,..., 7). A unifier of @ and § is also a unier of 7; and =; for s = 1,...,n. Then
U{a, f) can be computed by testing every tuple of (o1,...,0,) where o; € U(r;,m;) (3 =
1,...,n) to see whether @ = fo; - - - 0, or not.
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Next, we formalize the derivation for an EFS with no requirement that every unifier
should be most general.

Definition. A goal clause (or goal for short) of S is a clause of the form
— By,...,B, (n >0).
Definition. Let C and D be two clauses. Then (' is a variant of D if C = D and C¢' = D

for some substitutions § and &. Similarly we define variants of a clause.
Definition. A computation rule is a rule which selects an atom from every goal clause.

Definition. Let S be an EFS, G be a goal of 5, and R be a computation rule. A derivation
from G is a (finite or infinite) sequence of triplets (G}, 8;, C;) (i = 0,1,...) which satisfies the
following conditions:

(3.1) G; is a goal, 8; is a substitution, C; is a variant of an axiom of S, and Gy = G.
(3.2) v(C;) Nv(C;)=¢ (i #j), and v(C;) Nv(G) = ¢ for every i.
(3.3) If G; =« A4,...,A; and A, is the atom selected by R, then C; = A «

By, ..., B,, 0; is a unifier of A and A,,, and

Gig1=(— A1, ..., An1,B1,..., By, Asa, -, Ap)bs.

An, 1s a selected atom of Gy, and Gj4q is a resolvent of G; and C; by ;.
Definition. For a finite derivation (G}, 8;,C;) (t = 0,...n), we define its length as n.
Definition. A refutation is a finite derivation ending with the empty goal O.

Example 4. Let EFS S = ({a,b}, {p},T') with
_ { p(a) <, }
p(bry) « p(z),p(y) |-

Then a refutation from «— p(babaa) is illustrated in Figure 1, where the computation rule
selects the leftmost atom from every goal.

The aim of our formalization of derivation is to give a procedure accepting languages
definable by EFS’s. Thus we assume every derivation starts from a ground goal. Then we
get the following lemma by Lemma 1 and the definition of variable-bounded clauses.

Lemma 2. Let S be a variable-bounded FFS, and G be a ground goal. Then every resolvent
of G is ground, and the set of all the resolvenis of G is finite and computable.

The power of variable-bounded EFS’s is shown by using the derivation procedure in [2].

Theorem 1 ([2]). Let ¥ be an alphabet with at least two symbols. Then a language L C £F
is definable by a variable-bounded EFS if and only if L is recursively enumerable.

Thus the variable-bounded EFS’s are powerful enough, and we make the following as-
sumption.

Assumption. Every EFS is variable-bounded and every derivation starts from a ground
goal.

Moreover, by Lemma 2, we can implement the derivation in nearly the same way as for
the traditional logic programming languages under the assumption. If we don’t have the
assumption, we need another formalization, such as given by Yamamoto[14], in order to
control the nondeterministic algorithm of unification.
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« p(babaa) p(bzoyo) « p(2a), p(o)

{zp := a,yo := baa}

— p(a),p(baa)  pla)

 p(baa) p(bz1y1) « p(z1), p(y1)

{z1:=a,y1 :=a}

—pla),pla)  pla) —

— p(a) pla) «

Figure 1: A refutation

4. Completeness of Refutation

We describe the semantics of EFS’s according to Jaffar, et al.[7]. They have given a general
framework of various logic programming languages by representing their unification algo-
rithm as an equality theory. To represent unification in derivations for EFS’s we use the
equality theory

E = {cons(cons(z,y),z) = cons(z, cons(y, z))},

where cons is to be interpreted as the catenation of terms.

The first semantics for an EFS § = (%I, T) is its model. To interpret well-formed
formulas of S we can restrict the domains to the models of £. Then a model of S is an
interpretation which makes every axiom in I" true. We use Lt as the Herbrand universe and
the set

B(S)=A{p(r1,...,m)| pelland n,...,7, € E¥ }

as the Herbrand base. A subset I of B(S) is called an Herbrand interpretation in the sense
that A € I means A is true and A ¢ I means A is false for A € B(S). Then
M(S) =n{M|M is an Herbrand model of S }

is an Herbrand model of S, and every ground atom in M (S) is true in any model of S.
The second semantics is the least fixpoint [fp(Ts) of the function Ty : 28¢5) — 2B(S)
defined by

there is a ground instance
Ts(I)y= (A€ B(S) Ae—B,...,B,
of an axiom in I" such that By € I for k =1,...,n.
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Ts is shown to be continuous in {7]. We use the following sets defined by Ts:

TS T 0 = ¢7
TsTa =Ts(Ts T (a—1)), if aisa successor ordinal,
TsTa =U{Ts T BB <a}, if aisa limit ordinal,
Ts | 0 = B(S),
Tsla =Ts(Ts | («—1)), if ais a successor ordinal,
Tsla ={Ts !l 8|8 <ea}, if aisa limit ordinal.
[fp(Ts) is characterized by the fact that
lfp(Ts) =Ts T w.
The third semantics, using refutation, is defined by
SS(S) = {A € B(S)|there exists a refutation from «— A}.
These three semantics were shown to be identical:
Theorem 2 (Jaffar et al.[7]). For any FFS S,
M(S) = lfp(Ts) = SS(S).
Now we give another semantics of EFS using the provability as the set

PS(S) = {A € B(S)|T + A}.

Theorem 3. For any EFS S,
PS(8)=55(9).

This theorem is important from the viewpoint of language theory because the refutation
is complete as accepling EFS languages. The proof of the theorem is clear from the definition.
5. Negation as Failure Rule

Now we discuss the inference of negation.

Definition. A derivation is finitely failed with length n if its length is n and there is no
axiom which satisfies the condition (3.3) for the selected atom of the last goal.

Example 5. Let S be the EFS in Example 4. Then the derivation illustrated in Figure 2
is finitely failed with length 2.

Definition. A derivation (G;,6;,C;) ( = 0,1,...) is fair if it is finitely failed or, for each
atom A in G|, thereis a k > ¢ such that Af; - - - 6;_1 is the selected atom of G}. A computation
rule is fair if it makes all derivations fair.



« p(baaa) p(bzy) « p(z), p(y)

{z :=a,y := aa}

— p(a), p(aa) pla)

Figure 2: A derivation finitely failed with length 2

The negation as failure rule (NF for short) is the rule that infers =A when a ground atom
A is in the set

FF(S)= {A € B(S)

for any fair computation rule, there is an n such that
all derivations from « A are finitely failed within length n

FF(S) is characterized by the fact that
Fr(S)y=Ts | w.

Note that FF(S) is not always identical to the set

GF(S) = {A € B(S)

for any fair computation rule, all derivations
from « A are finitely failed ’

The following example was pointed out in [7].
Example 6. Let an EFS S = ({q, b}, {p,¢,7},T’) with
pla) < qlaz,za),
I'=<¢ ¢lz,z) «r(z), .
r(az) « r(z)

Then p(a) € GF(S) but p(a) &€ FF(S) because there are infinitely many unifiers of az and

za, as was shown in Example 3.

We put ecj(8) = (z; = W A ... Az, = 7,,) for a substitution § = {2 :=7,..., 2, =7},
and ecj(#) = true for an empty 6. From the discussions in Jaffar, et al. [7], NF for EFS is
complete if the following two conditions are satisfied:

(5.1) There is a theory E* that logically implies
(r=71) = VE eci(6)
for every two terms 7 and 7, where 0y,...,8;, are all the unifiers of 7 and 7.

(5.2) FF(S) = GF(S).



In general, NF for EFS is not complete, by Example 6, and there is no £* of (5.1) for an
EFS, because there are infinitely many maximal unifiers.
Now we prove that NF for variable-bounded EFS’s is complete. We prove that #F(S) is

also identical to the set

from < A such that all goals in them
are ground are finitely failed

GGF(S) = {A € B(S)

for any fair computation rule, all derivations }

The inference rule that infers —A for a ground atom A if A is in GGF(S) is called the
Herbrand rule[8].

Theorem 4. For any variable-bounded EFS S,
FF(S) = GF(S)=GGF(S).

Proof. Since S is variable-bounded, GF(S) = GGF(S) by Lemma 2. It is also shown that
FF(8)=GF(S) by Lemma 2 and Kénig’s Lemma.

By Lemma 2 we use the following equational theory for a variable-bounded EFS instead

of (5.1):

N ko cp. i T is a term, 7 is a ground term,
BT = {T =7 = Viceei(0) I and 6y,...,8; are all the unifiers of # and 7

This £* exists by Lemma 1. Thus NF is complete and identical to the Herbrand rule for
variable-bounded EFS’s.

6. Closed World Assumption

In this section we discuss the closed world assumption (CWA for short) for EFS. For an EFS
S = (X, I,T) and A € B(S), CWA infers —A if A is not a logical consequence of I'[11].
When we use the refutation procedure to show that A is a logical consequence of I', CWA
infers —A if A & SS(S). When we treat the refutation as a procedure to accept languages,
CWA is very natural because w ¢ L(S, p) if p(w) & SS(S5).

However, since the complement of a recursively enumerable set is not always recursively
enumerable, there is no general procedure of CWA by Theorem 1. Moreover, w ¢ L(S, p)
does not always imply p(w) € FF(S) even if L(S, p) is recursive, as shown in the following
example.

Example 7. Let S = ({a,b},{p},I") with

_J pla) =,
b= { p(b) — p(b) }
Then SS(S) = {p(a)}, L(S,p) = {e} and b € L(S,p), but FF(S)=GGF(S) = ¢.

In the following, we give two procedures of CWA and introduce some subclasses of EFS’s.



6.1. Termination property of EFS

First we give some conditions for variable-bounded EFS’s so that CWA is equivalent to NF,
that is, SS(S) = B(S) — FF(S). By Theorem 4 and the definition of GF(S) it suffices to
show that there are no infinite derivations from «— A for every A € B(S). Noting that every
derivation from « A is ground, we treat only ground goals. From now on we identify every
ground goal « A, ... A with a sequence of ground atoms A, ... Ax. Then we consider the
partial order > of B(S)*.

Definition. Let D be a set with a partial order >p. Then >p is well-founded if there is no
infinite sequence dq, ds,d3 ... in D such that

di>pdy>=pds>p---.

Proposition 1. Let S = (E,IL,T) be a variable bounded EFS. Then there is no infinite
derivation from «— A for every A € B(S) if there is a well-founded partial order > of B(S)*
which satisfies the following two conditions:

(6.1) For every two sequences Ay,..., Ay and B;,..., B, such that ¢ > 0,k > 0,

A, > By,...,B,
= Ai)"'aAk b Al:"')Am-—laBl7'-'7Bq7Am+17"’;Ak'

(6.2) For every ground instanceA « By,..., 5, of an axiom in T,

A = By,..., B,

Proof. Let Gy and G; be two goals. Suppose G is a resolvent of Gy and the selected atom
is A,,. Then there is a ground instance A,, «— Bi,..., B, of an axiom. By the condition

6.2), Ay = Bi,..., B, and thus G; > (G5 by the condition (6.1).
q

Now we show two examples of the order >. In the first example we use the method
introduced into traditional logic programming by Lloyd [8]. We write pred(p(my,..., 7)) =p
for every atom p(my,...,m,).

Definition. An EFS § = (5,11, T') is hierarchical if there is a mapping ¢ from I to a set of
natural numbers such that ¢(pred(A)) > ¢(pred(B;)) for every axiom A « B,..., B, and
1=1,...,n.

Proposition 2. If a variable-bounded EFS S is hierarchical, then
B(S) — FF(8) = 55(5).

Proof. By Proposition 1, it is sufficient to show that there is a well-founded partial order
> of B(S)*. Let ¢ be a mapping given in the definition of hierarchical EFS. Then we define
> as follows:

Ay, A, = By,...,B;
A =4
there is an atom A,, and a sequence Ch,...,C), of atoms such that

10



Bla'-'yBk:Aly-'-aAm—-laCla---,anAm+1,---7An

and
p(pred(Ay)) > ¢(pred(C;))

for every:i =1,...,q.

It is easily shown that this order satisfies the conditions (6.1) and (6.2). Moreover the
order is well-founded because it is subsumed by the multiset-ordering, which was shown to
be well-founded by Dershowitz and Manna [4].

Example 8. An EFS S = ({q,b},{p,q},T) with
r— { p(z) — g(abz,zab) }

q(y,y) —

is hierarchical and it defines a language L(S,p) = {{(ab)",|n > 1}.

We define an important class of EFS to give the second example of > making use of the
length of atoms.

Definition. A clause A « By, ..., B, is reducing if
|A8] > | B;0|

for any substitution § and s =1,...,n. An EFS S = (X,1I,T) is reducing if axioms in T are
all reducing.

The following lemma, which is a modification of a lemma in [2], is useful to characterize
the concepts we are introducing.

Lemma 3. Let A, By,..., B, be atoms. Then
|A6] > [Bi8] + -+ +[Ba0]  (|A0] 2 |Bi0] + - +|B.0))
for any substitution 8 if and only if
Al > |Bi|+---+ 1Bl (1Al Z|Bi|+ -+ +|Bal)

and

o{z,A) > o(z, By) + -+ - + o(z, B,)

for any variable z.
For example the concept of reducing is characterized as follows:

Proposition 3. A clause A — By,..., B, is reducing if and only if

]A! > !Bila
olz,A) > o{z,B;)

for any variable x and 1 =1,...,n.

11



The EFS in Example 4 is reducing.

Theorem 5. For every reducing EFS S,
B(S) - FF(8)=S85(5).

Proof. The order > defined in the same way as Proposition 2 satisfies the conditions (6.1)
and (6.2).

Theorem 6. Every context-free language L C X7 is definable by a reducing EFS.

Proof. Let G be a context-free grammar in Chomsky’s normal form representing L. Then
we can construct a reducing EFS S by using every non-terminal symbol of G as a predicate
symbol of S, and by transforming the rule in G of the form A — B, into a clause

A(zy) « B(z),C(y)

and the rule of the form A — « into

Ala) .
The following example shows that the converse of Theorem 6 does not hold.
Example 9. An EFS S = ({a,b,¢}, {p,q},T) with

pla,bb, cc) «—,

r— | plaz,by,cz) — ple,y,2),
g(abe) «,
q(azyz) « p(z,y,2)

is reducing and defines a language L(S,¢) = {a"b"c¢" |n > 1}, which is not context-free.

6.2. Bounding the length of derivations

We give a class of EFS’s where we give another procedure of CWA. Roughly speaking,
the procedure we are introducing is to bound the length of derivations even if SS(S) #

B(S) — FF(S).
Definition. A clause A «— By, ..., B, is weakly reducing if
|A0] > |B.0|

for any substitution § and 2 = 1,...,n. An EFS § = (£,11,T) is weakly reducing if axioms
in I' are all weakly reducing.

The concept of weakly reducing is also characterized by Lemma 3.

Proposition 4. A clause A — By,..., B, is weakly reducing if and only if

o(z,A) 2 o(z,B;)

for any variable x and t = 1,...,n.

12



For every subset U of B(S), we put U|, = {A € U||A| < n}. Note that U], is a finite
set for every U.
The following is the main theorem to get the procedure.

Theorem 7. Let S = (X,II,T) be a weakly reducing EFS. Then
AcTsto &  AeTsTHBS)).

Proof. It suffices to prove the = part. First we show

(6.3) Ts((Ts T B)lw)ln = (Ts TR+ Dla (k= 0).

The C part is proved directly from the definition. Thus we prove the D part. Let B € (Ts 1
k+ 1})|,. Then there is a ground instance B « By,..., B, of an axiom. Since S is weakly
reducing,

{Blv - ':Bq} C (TS T k)lny
and thus
B € Ts((Ts T k)ln)ln-

By (6.3) and the monotonicity of T,
(6.4) TsThln CTs Tk+1l  (£20).
Moreover, if (Ts T K)|, = (Ts T K + 1}|,, for some K then
(TS T I{Nn = (TS T k)ln (k > I()'

Since (Ts T k)|. C B(S)|s and B{S)|, is finite,

(6.5) (Ts TB)la = (Ts THB(S) Dl (B2 HB(S)]n))-
From (6.4) and (6.5) we get
(6.6) (Ts TRl C (Ts THB(S) ) (k20

Now let A € Ts T w. Then A € Ts T k for some k. By (6.6) we get
A€ (Ts T R)ar € (Ts THBSadla € Ts THB(S)a))-

We define lob{A «— By,...,B,) = m for a definite clause A « By,..., B,,. lob means
the length of the body. The following lemma gives the upper-bound of the length of the
shortest refutation from < A such that A € Ts T n.

Lemma 4. Let S = (5,II,T) be an EFS, and m = maxcer(lob(C)). If A € Ts T n then
there is a refutation with length less than or equal to f(m) where

1 ifm=20
_ n—=1
f(m,n) = z m'  otherwise.

=0
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Proof. The result is clear in case m = 0. In case m > 0, we prove the result by induction
onn .

First suppose n = 1. Then there exists an axiom of the form A’ + in I'. Thus the results
holds because there is a refutation from « A with length 1.

Now we suppose the result holds for n and A € Ts T (n + 1). Then there is a ground
instance A « By, ..., By (k < m) of the axiom where {By,..., B} C Ts T n. By induction

n-1

hypothesis there is a refutation from each B; with length less than or equal to E m'. Then

=0
a refutation can be constructed by combining these refutations, and its length is less than

n—1 n
orequal to 1 +m Zmi = Emi.

=0 i=0
By combining Theorem 7 and Lemma 4 we get the following theorem.

Theorem 8. Let § = (X,II,T) be a weakly reducing EFS, and m = %1315(105(0)), IfA e
S5(8), then there is a refutation from «— A with length less than or equal to f(m, §(B(S)|a))).

Now we get a procedure of CWA. For a weakly reducing EFS S, we can conclude A ¢
SS5(S) if there is no refutation from « A with length less than or equal to f(m, §(B(S)]4}))-
Arimura [3] pointed out the same procedure for traditional logic programming by observing
derivation trees.

Example 10. Let S be the EFS in Example 7. There is no refutation from « p(4) with
1

length less than or equal to f(1,2) =Y 1 =1+ 1 = 2. Thus we can decide p(b) ¢ SS(S).
=0

Now we compare the class of weakly reducing EFS’s and Chomsky hierarchy. We use the
following class of EFS’s.

Definition. A variable-bounded EFS S = (X,1I,T') is length-bounded if
|Af] > |By8] +--- + | B0
for every axiom A «— By,...,B, (n>1)inT.

Clearly any length-bounded EFS is weakly reducing. The concept of length-boundness
is also characterized by Lemma 3 [2].

Every EFS S in Examples 2, 4, and 7 is length-bounded. The relation between EFS and
CSG is shown as follows in [2].

Theorem 9 {[2]).
(1) Any length-bounded EFS language is context-sensitive.

(2) For every context-sensitive language L C XF, there exist a superset Ty of £, a length-
bounded EFS S = (X0,II,T) and p € I such that L = L(S,p) N E+.
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7. Concluding Remarks

The main problem of derivation procedure for EFS is unification. We have got an algorithm
of unification because our aim is to get a procedure to accept languages and apply it to
MIEFS. The computational complexity of the algorithm is described in [2].

There are other formalizations of derivations for EFS. A famous one is CLP(X) [6].
CLP(Z*) could be got if we could give an algorithm to test the unifiability of two patterns.
Makanin [9] showed the existence of the algorithm.

Fitting [5] also formalized EFS as a logic programming language. In the formalization,
terms are elements of 1 U X, not (X U X)*, and the procedural semantics is out of consid-
eration.

The original theory of EFS given by Smullyan [13] uses the elements of (¥ U X )* as terms.
The derivation procedure and semantics as logic programming for the original EFS can be
given in the same way as that of this paper by putting

_ | cons{cons(z,y),z) = cons(z, cons(y, z)),

~ | cons(A,z) =cons{z,\) ==z ’
However, the results about CWA do not always hold because the empty word may be sub-
stituted for variables, and thus Lemma 3 does not hold.

The discussions on CWA can be applied to traditional logic programming (which is
based on first order terms), if we introduce a proper size function of first order terms so that

Lemma 3 holds [3].
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