Elementary formal systems'

By Raymond M. Smullyan ${ }^{2)}$

(Received April 18, 1960)
§ 1. Introduction. Like the canonical languages of Post [2], [3], elementary formal systems (as they are to be defined) provide a direct characterization of recursive enumerability for sets (and relations) of formal expressions, without recourse to Gödel numbering. ${ }^{3)}$ In this paper we develop just enough of the theory of these systems to construct a "universal" system and to prove its recursive unsolvability. This proof is of unusual brevity; no number theory is employed, and the Post normal form theorem for canonical systems is circumvented.
§ 2. Elementary formal systems. For any finite alphabet K we define an elementary formal system (E) over K as a collection of the following items: (i) the alphabet K; (ii) A new alphabet of symbols called variables; (iii) another alphabet of symbols called predicates, each of which is assigned a unique positive integer called itsdegree; (iv) two more symbols \rightarrow and ,; (v) A finite set A_{1}, \cdots, A_{z} of expressions which are (well formed) formulas, according to the definition given below; these strings are called the axioms of the system (E).

By a term of (E) we mean any string composed of symbols of K and variables (or either one alone). By an atomic formula of (E) we mean an expression of the form $P t_{1}, \cdots, t_{n}$, where t_{1}, \cdots, t_{n} are terms and P is a predicate of degree n. By a (well formed) formula of (E) we mean either an atomic formula

[^0]F_{1} or an expression of the form $F_{1} \rightarrow F_{2} \rightarrow \cdots \rightarrow F_{n}$, where each F_{i} is atomic; in such an expression, F_{n} is called the conclusion and F_{1}, \cdots, F_{n-1} are called the premisses. [In the intended interpretation, the symbol " \rightarrow " stands for implication with association to the right; e. g. $F_{1} \rightarrow F_{2} \rightarrow F_{3}$ is to be read " F_{1} and F_{2} together imply F_{3} " or " F_{1} implies that F_{2} implies F_{3} "].

A (well formed) formula X of (E) is said to be provable in (E) or a theorem of (E) iff X is either an axiom of (E) or else is obtainable from the axioms of (E) by finitely many applications of the 2 rules: (i) to substitute any (nonempty) string in K for (all occurrences of) any variable; (ii) to infer X_{2} from X_{1} and $X_{1} \rightarrow X_{2}$, providing X_{1} is atomic. [The reason for this proviso is that implication is associated to the right; a formula $X_{1} \rightarrow X_{2}$ can be read " X_{1} implies $X_{2}^{\prime \prime}$ only if X_{1} is atomic].

A predicate P of degree n is said to represent the set of all n-tuples (X_{1}, \cdots, X_{n}) (of strings in K) such that $P X_{1}, \cdots, X_{n}$ is provable in (E). A set, or relation, W of strings in K is called formally representable over K iff there exists an elementary formal system (E) over K in which W is represented by some predicate. ${ }^{4)}$ A mathematical system (M) in an alphabet K can now be called formal or finitary iff its set of theorems is formally representable over K^{5}.
§ 3. Recursive enumerability. Just as any non-negative integer is uniquely expressible as a polynomial in powers of 2 with coefficients 0 and 1 , so is any positive integer uniquely expressible as a polynomial in powers of 2 with coefficients 1 and 2 . We let D be the 2 -sign alphabet $\{1,2\}$; these 2 symbols we call dyadic digits; any string $a_{n} a_{n-1} \cdots a_{1} a_{0}$ of dyadic digits is called a dyadic numeral. This numeral is identified with the positive integer $a_{0}+2 a_{1}+4 a_{2}+\cdots$ $+2^{n} a_{n}$. ${ }^{6}$) Any set (or relation) A of positive integers shall be identified with the corresponding set (or relation) of dyadic numerals. We call A recursively enumerable (abbreviated r.e.) iff A is formally representable over $D .{ }^{\text {T }}$

[^1]And A is called recursive iff both A and its complement \tilde{A} are r. e. [If A is a relation of degree n, then \tilde{A} is understood to be the complement of A relative to the set of all n-tuples of numbers (positive integers).]
§4. A universal system. We now wish to construct a so-called universal system U in which we can, so to speak, express all propositions of the form that such and such a number is in such and such a recursively enumerable set.

Preparatory to the construction of U, we need a device for "transcribing" all elementary formal systems over D into one finite alphabet. We take 3 symbols: $v,{ }^{\prime}, p$. By a transcribed variable we mean any of the strings $v^{\prime}, v^{\prime \prime}$, $v^{\prime \prime \prime}$, etc.; by a transcribed predicate we mean a string of p 's followed by a string of accents; the number of p 's is to indicate the degree of the predicate. We now define a transcribed system to be a system like an elementary formal system over D, except that we use transcribed variables and transcribed predicates in place of individual symbols for variables and predicates. It is obvious that representability in a transcribed system is equivalent to representability in a system which is not transcribed. We use the terms "transcribed term", " transcribed (well formed) formula" in their obvious contexts. For any transcribed formulas $X_{1}, X_{2}, \cdots, X_{n}, Y$, we say that Y is derivable from X_{1}, \cdots, X_{n} iff Y is provable in that transcribed system whose axioms are X_{1}, \cdots, X_{n}.

We now construct the system $U .{ }^{8)}$ The alphabet K_{9} of U shall consist of the nine symbols: $12 \cdot v^{\prime} p, \rightarrow^{*} \vdash$. We refer to these signs as the 1 st, $2 \mathrm{nd}, \cdots$, 9th symbols of U respectively. [The first seven are used for constructing all transcribed systems.] The sentences of U shall be all expressions of the form $X_{1}^{*} X_{2}^{*} \ldots * X_{n} \vdash Y$, where $X_{1}, X_{2}, \cdots, X_{n}, Y$ are transcribed well formed formulas. [For $n=1$ the expression is of the form $X_{1} \vdash Y$.] Such a sentence shall be called true in U iff Y is derivable from X_{1}, \cdots, X_{n}. We let T be the set of all true sentences. By a predicate H of U (not to be confused with a transcribed predicate) we mean an expression of the form $X_{1}{ }^{*} \ldots * X_{n} \vdash P$, where X_{1}, \cdots, X_{n} are transcribed formulas and P is a transcribed predicate; the degree n of H is, by definition, that of P. This predicate H is said to represent (in U) the set of all n-tuples (a_{1}, \cdots, a_{n}) of numbers such that $P a_{1}, a_{2}, \cdots, a_{n}$ is derivable from X_{1}, \cdots, X_{n}-alternatively H represents in U the relation (or set) represented by P in that transcribed systems whose axioms are X_{1}, \cdots, X_{n}. Thus the number sets (and relations) representable in U are precisely those which are recursively enumerable- it is in this sense that U is called a "universal" system for all r.e. sets and relations.
§ 5. The recursive unsolvability of \boldsymbol{U}. As we have remarked, we are

[^2]identifying the positive integers with their corresponding dyadic numerals. We let $g_{1}, g_{2}, \cdots, g_{9}$ be the respective numbers (numerals) $12,122, \cdots, 1222222222$. For any string X in the alphabet K_{s}, we define its Gödel number X_{0} to be the number (numeral) obtained from X by substituting $g_{1}, g_{2}, \cdots, g_{9}$ respectively for the $1 \mathrm{st}, 2 \mathrm{nd}, \cdots, 9$ th symbols of U. [E. g. the Gödel number of $v^{\prime} 2$ is 122212222122.] Our Gödel numbering has the technical advantage of being an isomorphism with respect to concatenation-i. e. for any strings X, Y in K_{9}, the Gödel number ($X Y$) of $X Y$ is simply $X_{0} Y_{0}$ (i. e. X_{0} followed by Y_{0}). For any set W of strings in K_{9} we let W_{0} be the corresponding set of Gödel numbers. Thus, e. g., T_{0} is the set of Gödel numbers of all true sentences of U.

The set T is formally representable over K_{9} and the set T_{0} is r . e. (we prove this in the appendix). We now wish to show that the system U is recursively unsolvable, in the sense that T_{0} is not a recursive set. To show that the complement \widetilde{T}_{0} of T_{0} is not recursively enumerable, we employ the following modification of Gödel's well known diagonalization agreement.

For any string X in K_{9} we define its norm to be the string $X X_{0}-$ i. e. X followed by its own Gödel number (numeral). [We might note that if X is a predicate of U of degree 1 , then the norm of X is a sentence which is true in U iff the Gödel number of X lies in the set represented by $X.]^{9)}$ Every number n (looked at as a dyadic numeral) itself has a Gödel number n_{0} (e.g. the Gödel number of 121 is 1212212), and hence also a norm $n n_{0}$. For any number set A we define A^{*} to be the set of all numbers whose norm is in A. Thus $n \in A^{*}$ iff $n n_{0} \in A$.

Lemma. If A is r. e., so is A^{*}.
Proof. Let (E) be an elementary formal system over D in which the predicate P represents A. We add a new unary predicate Q and a new binary predicate G and the new axioms:

$$
\begin{aligned}
& G 1,12 \\
& G 2,122 \\
& G x, y \rightarrow G z, w \rightarrow G x z, y w \\
& G x, y \rightarrow P x y \rightarrow Q x
\end{aligned}
$$

[x, y, z, w are variables]
Then G represents the set of all ordered pairs (x, y) such that $x_{0}=y$, and Q represents A^{*}.

Proposition 1. For every r.e. set A there is a sentenre X such that X is true (in U) iff its Godel number X_{0} is in A. (and hence also: $X_{0} \in T_{0} \leftrightarrow X_{0} \in A$).

Proof. Let A be r.e. Then so is A^{*} by the above lemma. Then A^{*} is represented in U by some predicate H. Then for every number n,

[^3]\[

$$
\begin{aligned}
& H n \text { is true } \leftrightarrow n \in A^{*} \\
& \leftrightarrow n n_{0} \in A .
\end{aligned}
$$
\]

Setting $n=h$, where h is the Gödel number of H, we have:
$H h$ is true $\leftrightarrow h h_{0} \in A$.
However $h h_{0}$ is the Gödel number of the sentence $H h$. Therefore $H h$ is true iff its own Gödel number is in A.

Proposition 1 says, in effect, that every r.e. set A either contains some element of T_{0} or lacks some element outside T_{0}. Since the complement \tilde{T}_{0} of T_{0} cannot possibly have this property, it immediately follows that \tilde{T}_{0} is not r.e. We hence have

Theorem 1. [After Post's form of Church's theorem]. The system U is not recursively solvable.

Remarks. Theorem 1 means (intuitively) that there exists no " mechanical" procedure to determine which numbers are in which recursively enumerable sets. Given any stronger system (S)-i.e., one in which it is possible to "effectively " translate all sentences of U into sentences of (S) in such a manner as to preserve both truth and falsity-it can be shown that (S) in turn must be " undecidable". This approach has been utilized (for other formulations of U) to establish Gödel's incompleteness theorem.

The sentence $H h$ constructed in our proof of Proposition 1 is a highly simplified variant of Gödel's famous sentence which "refers" to its own Gödel number; it can be thought of as expressing the proposition that its own Gödel number is in the set A. It was our purpose to capture the crucial ideal behind Gödel's construction utilizing a bare minimum of formal machinery.

Appendix

Formal representability of T and T_{0}

In this appendix we prove that the set T of true sentences of U is formally representable over K_{9} and that T_{0} is r.e. We shall represent T in an elementary formal system (E) over K_{9}. We first note that the implication sign of (E) is to be distinct from the implication sign of transcribed systems. We could continue to use " \rightarrow " for the latter; we prefer however to use " \rightarrow " to denote the implication sign of (E) (since it will occur so frequently), and we shall now denote the implication sign of transcribed systems by "imp". Similarly we shall now use the ordinary comma for our punctuation sign of (E), and "com" for the punctuation sign of transcribed systems. Variables of (E) (not to be confused with transcribed variables) will be denoted by " x ", " y ", " $z ", " w "$, with or without subscripts. Predicates of (E) (not to be confused
either with predicates of U or transcribed predicates) will be introduced as needed.

We now introduce the axioms of (E) in groups, first explaining what each newly introduced predicate of (E) is to represent.
N represents the set of numbers (dyadic numerals).
N1
N2
$N x \rightarrow N y \rightarrow N x y$
Acc represents the set of strings of accents
$A c c^{\prime}$
$A c c x \rightarrow A c c x^{\prime}$
V represents the set of transcribed variables.
$A c c x \rightarrow V v x$
P represents the set of transcribed predicates.
Accx $\rightarrow P p x$
$P x \rightarrow P p x$
t represents the set of trancribed terms.
$N x \rightarrow t x$
$V x \rightarrow t x$
$t x \rightarrow t y \rightarrow t x y$
F_{0} represents the set of transcribed atomic formulas.
Accx $\rightarrow t y \rightarrow F_{0} p x y$
$F_{0} x \rightarrow t y \rightarrow F_{0} p x \operatorname{com} y$
F represents the set of transcribed formulas.

$$
\begin{aligned}
& F_{0} x \rightarrow F x \\
& F_{0} x \rightarrow F y \rightarrow F x \operatorname{imp} y
\end{aligned}
$$

$d v$ represents the relation " x and y are distinct transcribed variables".
$v x \rightarrow A c c y \rightarrow d v x, x y$
$d v x, y \rightarrow d v y, x$
$d v x, y \rightarrow d v y, x$
S represents the set of all quadruples (x, y, z, w) such that x is any string (well formed or not) which is compounded from numerals, transcribed variables, transcribed predicates, com, imp; y is a transcribed variable, z is a numeral, and w is the result of substituting z for all occurrences of y in x (that is, all occurrences which are not immediately followed by more accents).

$$
\begin{aligned}
& N x \rightarrow V y \rightarrow N z \rightarrow S x, y, z, x \\
& V x \rightarrow N z \rightarrow S x, x, z, z \\
& d v x, y \rightarrow N z \rightarrow S x, y, z, x \\
& P x \rightarrow V y \rightarrow N z \rightarrow S x, y, z, x \\
& V y \rightarrow N z \rightarrow S \text { com, } y, z, \text { com } \\
& V y \rightarrow N z \rightarrow S \operatorname{imp}, y, z, \text { imp } \\
& S x, y, z, w \rightarrow S x_{1}, y, z, w_{1} \rightarrow S x x_{1}, y, z, w w_{1}
\end{aligned}
$$

T represents the set of true sentences of U

$$
\begin{aligned}
& F x \rightarrow T x \vdash x \\
& T x \vdash y \rightarrow F z \rightarrow T x^{*} z \vdash y \\
& T x \vdash y \rightarrow F z \rightarrow T z^{*} x \vdash y \\
& T x \vdash y \rightarrow S y, z_{1}, z_{2}, w \rightarrow t x \vdash w \\
& T x \vdash y \rightarrow T x \vdash y \operatorname{imp} z \rightarrow F_{0} y \rightarrow T x \vdash z
\end{aligned}
$$

This completes the construction of the system (E) in which T is represented. To represent T_{0} over $\{1,2\}$, just take all the above axioms and replace each symbol of K_{9} by its Gödel number.

Princeton University

References

[1] Smullyan, R. M., Theory of formal systems, Doctoral Dissertation, Princeton, May 1959 - also issued as M. I. T. Lincoln Laboratory group report 54-5, April 1959. Accepted for pubication by the Princeton University Press as an Annals of Mathematics Study.
[2] Post, E., Formal reductions of the general combinatorial decision problem, Amer. J. Math., 65 (1943), 192-215.
[3] Rosenboom, P.C., The elements of mathematical logic, Dover Publ. Inc., 1950, Chapter IV.
[4] Markov, A. A., Teoriya algorifmov, (Theory of algorithms.) Trudy Mat. Inst. Steklov, No. 42. Moscow, 1954.
[5] Lorenzen, P., Einführung in die operative Logik und Mathematik, Berlin-Göt-tingen-Heidelberg, 1955.
[6] Smullyan, R. M., Languages in which self-reference is possible, J. Symbolic Logic, 22, 55-67.
[7] Smullyan, R. M., Recursive logics, J. Symbolic Logic 21, 122.

[^0]: 1) This research was supported in part by a National Science Foundation grant-in-aid in Knot Theory and Metamathematics, Mathematics Department, Princeton University. The author wishes to thank Robert Ritchie for reading this manuscript and for suggesting several improvements.
 2) This paper is a condensation of Chapter 1 of the author's forthcoming monograph [1]. We are publishing it separately, since it forms a completely self contained unit, designed to give the general reader a quick insight into the essential nature of undecidability arguments.
 3) Our systems offer certain technical advantages over those of Post, in that their structure is simpler to describe and their techniques are particularly simple to apply. [cf. [1] for a complete development of recursive function theory from the viewpoint of elementary formal systems.] The "productions" of Post (whose definition involves a cumbersome metamathematical notation) are replaced by substitution and modus ponens, as sole rules of inference. Thus these 2 familiar logistic rules suffice for the construction of all formal mathematical systems.
[^1]: 4) Formal representability of W is equivalent to representability in a Post canonical system, which in turn is equivalent tocursive enumerability (under any of the standard Gödel numberings). The equivalence of formal representability to Post's canonical representability is substantiated in [1]. The following interesting question arises: If K is a sub-alphabet of L and if W is a set (or relation) of strings in K and if W is formally representable over L, is W necessarily formally representable over K ? We answer this question affirmatively in [1].
 5) Other characterizations of formal systems, also basically along the lines of Post, have been provided by Markov [4] and Lorenzen [5].
 6) Our choice of 1 and 2, rather than 0 and 1, is made for certain technical reasons. Our program could (with minor modifications) also be carried out using 0 and 1 (cf. [7]).
 7) Our choice of 2 as a base is one of convenience rather than necessity. Post's definition of recursive enumerability used 1 as a base. In [1] we show that our definition of recursive enumerability is invariant under change of base.
[^2]: 8) The details of this construction differ a bit from those in [1]. We believe the present version to be a slight improvement.
[^3]: 9) This notion of "norm" plays here a role quite analogous to that in [4].
