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\S 1. Introduction. Like the canonical languages of Post [2], [3], elemen-
tary formal systems (as they are to be defined) provide a direct characteriza-
tion of recursive enumerability for sets (and relations) of formal $\exp\dot{r}essions$ ,

without recourse to G\"odel numbering.3) In this paper we develop just enough
of the theory of these systems to construct a “ universal “ system and to prove
its recursive unsolvability. This proof is of $unlJsual$ brevity; no number theory
is employed, and the Post normal form theorem for canonical systems is circum-
vented.

\S 2. Elementary formal systems. For any finite alphabet $K$ we define an
elementary formal system (E) over $K$ as a collection of the following items: (i)

the alphabet $K$ ; (ii) A new alphabet of symbols called variables; (iii) another
alphabet of symbols called predicates, each of which is assigned a unique posi-
tive integer called itsdegree; (iv) two more $symbols\rightarrow and$ , ; (v) A finite set
$A_{1},$

$\cdots,$
$A_{z}$ of expressions which are (well formed) formulas, according to the

definition given below; these strings are called the axioms of the system (E).

By a term of (E) we mean any string composed of symbols of $K$ and vari-
ables (or either one alone). By an atomic formula of (E) we mean an expres-
sion of the form $Pt_{1},$

$\cdots,$
$t_{n}$ , where $t_{1},$

$\cdots,$
$t_{n}$ are terms and $P$ is a predicate of

degree $n$ . By a (well formed) formula of (E) we mean either an atomic formula

1) This research was supported in part by a National Science Foundation grant-in-aid
in Knot Theory and Metamathematics, Mathematics Department, Princeton Universiry.
The author wishes to thank Robert Ritchie for reading this manuscript and for sug-
gesting several improvements.

2) This paper is a condensation of Chapter 1 of the author’s forthcoming monograpb-
[1]. We are publishing it separately, since it forms a completely self contained $uni_{L}^{\sim}$ ,

designed to give the general reader a quick insight into the essential nature of unde-
cidability arguments.

3) Our systems offer certain technical advantages over those of Post, in that thei $r$

structure is simpler to describe and their techniques are particularly simple to apply.
[cf. [1] for a complete development of recursive function theory from the viewpoint of
elementary formal systems.] The ‘ productions ” of Post (whose definition involves a
cumbersome metamathematical notation) are replaced by substitution and modus
ponens, as sole rules of inference. Thus these 2 familiar logistic rules suffice for the
construction of all formal mathematical systems.
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$F_{1}$ or an expression of the form $F_{1}\rightarrow F_{2}\rightarrow\cdots\rightarrow F_{n}$ , where each $F_{i}$ is atomic; in
such an expression, $F_{n}$ is called the conclusion and $F_{1},$

$\cdots,$
$F_{n-1}$ are called the

premisses. [In the intended interpretation, the symbol $‘‘\rightarrow’’$ stands for implica-
tion with association to the right ; e. g. $F_{1}\rightarrow F_{2}\rightarrow F_{3}$ is to be read “

$F_{1}$ and $F_{2}$

together imply $F_{3}$
’ or “

$F_{1}$ implies that $F_{2}$ implies $F_{3}’$ ].

A (well formed) formula $X$ of (E) is said to be provable in (E) or a theorem
of (E) iff $X$ is either an axiom of (E) or else is obtainable from the axioms of
(E) by finitely many applications of the 2 rules: (i) to substitute any (non-

empty) string in $K$ for (all occurrences of) any variable; (ii) to infer $X_{2}$ from
$X_{1}$ and $X_{1}\rightarrow X_{2}$ , providing $X_{1}$ is atomic. [The reason for this proviso is that
implication is associated to the right; a formula $X_{1}\rightarrow X_{2}$ can be read “

$X_{1}$ im-
plies $X_{2}$

’ only if $X_{1}$ is atomic].

A predicate $P$ of degree $n$ is said to represent the set of all n-tuples $(X_{1},$ $\cdots$ ,
$X_{n})$ (of strings in $K$ ) such that $PX_{1},$ $\cdots,$

$X_{n}$ is provable in (E). A set, or rela-
tion, $W$ of strings in $K$ is called formally representable over $K$ iff there exists
an elementary formal system (E) over $K$ in which $W$ is represented by some
predicate.4) A mathematical system (M) in an alphabet $K$ can now be called
$fo?mal$ or finitary iff its set of theorems is formally representable over $K^{6)}$ .

\S 3. Recursive enumerability. Just as any non-negative integer is uniquely
expressible as a polynomial in powers of 2 with coefficients $0$ and 1, so is any
positive integer uniquely expressible as a polynomial in powers of 2 with coef-
ficients 1 and 2. We let $D$ be the 2-sign alphabet {1, 2}; these 2 symbols we
call dyadic digits; any string $a_{n}a_{n-1}\cdots a_{1}a_{0}$ of dyadic digits is called a dyadic
numeral. This numeral is identified with the positive integer $ a_{0}+2a_{1}+4a_{2}+\cdots$

$+2^{n}a_{n}^{6)}$ Any set (or relation) $A$ of positive integers shall be identified with
the corresponding set (or relation) of dyadic numerals. We call A recur-
sively enumerable (abbreviated $r$ . $e.$ ) iff $A$ is formally representable over $D^{7)}$

4) Formal representability of $W$ is eauivalent to representability in a Post canonical
system, which in turn is equivalent th recursive enumerability (under any of the stan-
dard Godel numberings). The equivalence of formal representability to Post’s canonical
representability is substantiated in [1]. The following interesting question arises: If
$K$ is a sub-alphabet of $L$ and if $W$ is a set (or relation) of strings in $K$ and if $W$ is
formally representable over $L$ , is $W$ necessarily formally representable over $K$ ? We
answer this question affirmatively in [1].

5) Other characterizations of formal systems, also basically along the lines of Post,
have been provided by Markov [4] and Lorenzen [5].

6) Our choice of 1 and 2, rather than $0$ and 1, is made for certain technical reasons.
Our program could (with minor modifications) also be carried out using $0$ and 1 (cf.
[7]).

7) Our choice of 2 as a base is one of convenience rather than necessity. Post’s
definition of recursive enumerability used 1 as a base. In [1] we show that our defi-
nition of recursive enumerability is invariant under change of base.
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And $A$ is called recursive iff both $A$ and its complement $\tilde{A}$ are $r$ . $e$ . [If $A$ is a
relation of degree $n$ , then $\tilde{A}$ is understood to be the complement of $A$ relative
to the set of all n-tuples of numbers (positive integers).]

\S 4. A universal system. We now wish to construct a so-called universal
system $U$ in which we can, so to speak, express all propositions of the form
that such and such a number is in such and such a recursively enumerable set.

Preparatory to the construction of $U$, we need a device for “ transcribing “

all elementary formal systems over $D$ into one finite alphabet. We take 3
symbols: $v,$ $’,p$ . By a transcribed variable we mean any of the strings $v^{\prime},$

$v^{\prime\prime}$ ,
$v^{\prime\prime\prime}$ , etc. ; by a transcribed predicate we mean a string of $p’ s$ followed by a
string of accents; the number of $p’ s$ is to indicate the degree of the predicate.
We now define a transcribed system to be a system like an elementary formal
system over $D$ , except that we use transcribed variables and transcribed pre-
dicates in place of individual symbols for variables and predicates. It is obvious
that representability in a transcribed system is equivalent to representability
in a system which is not transcribed. We use the terms “ transcribed term “,
“ transcribed (well formed) formula ” in their obvious contexts. For any tran-
scribed formulas $X_{1},$ $X_{2},$

$\cdots,$
$X_{n},$ $Y$, we say that $Y$ is derivable from $X_{1},$ $\cdots$ , $X_{n}$

iff $Y$ is provable in that transcribed system whose axioms are $X_{1},$
$\cdots,$

$X_{n}$ .
We now construct the system $U^{8)}$ The alphabet $K_{9}$ of $U$ shall consist of

the nine symbols: 1 $2v^{\prime}p$
$,$

$\rightarrow*|-$ We refer to these signs as the 1st, $2nd,$ $\cdots$ ,
9th symbols of $U$ respectively. [The first seven are used for constructing all
transcribed systems.] The sentences of $U$ shall be all expressions of the form
$X_{1^{*}}X_{2^{*\ldots*}}X_{n^{1}}-Y$, where $X_{1},$ $X_{2},$ $\cdots$ , $X_{n},$ $Y$ are transcribed well formed formulas.
[For $n=1$ the expression is of the form $X_{1}-Y.$] Such a sentence shall be
called true in $U$ iff $Y$ is derivable from $X_{1}$ , $\cdot$ .. , $X_{n}$ . We let $T$ be the set of all
true sentences. By a predicate $H$ of $U$ (not to be $confus\Leftrightarrow.d$ with a transcribed
predicate) we mean an expression of the form $x_{1}*\ldots*x_{n}-P$, where $X_{1},$

$\cdots,$
$X_{n}$

are transcribed formulas and $P$ is a transcribed predicate; the degree $n$ of $H$

is, by definition, that of $P$. This predicate $H$ is said to represent (in $U$ ) the
set of all n-tuples $(a_{1}, \cdots, a_{n})$ of numbers such that $Pa_{1},$ $a_{2},$ $\cdots,$ $a_{n}$ is derivable
from $X_{1},$ $\cdots$ , $X_{n}$ –alternatively $H$ represents in $U$ the relation (or set) repre-
sented by $P$ in that transcribed systems whose axioms are $X_{1},$ $\cdots X_{n}$ . Thus
the number sets (and relations) representable in $U$ are precisely those which
are recursively enumerable–it is in this sense that $U$ is called a “ universal “

system for all $r$ . $e$ . sets and relations.

\S 5. The recursive unsolvability of $U$. As we have remarked, we are

8) The details of this construction differ a bit from those in [1]. We believe the
present version to be a slight improvement.
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identifying the positive integers with their corresponding dyadic numerals.
We let $g_{1},$ $g_{2},$ $\cdots,$ $g_{9}$ be the respective numbers (numerals) 12, 122, $\cdots$ , 1222222222.
For any string $X$ in the alphabet $K_{J}$ , we define its Godel number $X_{0}$ to be the num-
ber (numeral) obtained from $X$ by substituting $g_{1},$ $g_{2},$ $\cdots,$ $g_{9}$ respectively for the
1st, $2nd,$ $\cdots$ , 9th symbols of U. [E. $g$ . the G\"odel number of $v^{\prime}2$ is 122212222122.]

Our G\"odel numbering has the technical advantage of being an isomorphism
with respect to concatenation–i. $e$ . for any strings $X,$ $Y$ in $K_{J}$ , the G\"odel num-
ber $(XY)$ of $XY$ is simply $X_{0}Y_{0}$ (i. e. $X_{0}$ followed by $Y_{0}$). For any set $W$ of
strings in $K_{9}$ we let $7V_{0}$ be the corresponding set of Godel numbers. Thus,
$e$ . $g.,$ $T_{0}$ is the set of G\"odel numbers of all true sentences of $U$.

The set $T$ is formally representable over $K_{9}$ and the set $T_{0}$ is $r$ . $e$ . (we prove
this in the appendix). We now wish to show that the system $U$ is recursively
unsolvable, in the sense that $T_{0}$ is not a recursive set. To show that the com-
plement $\tilde{T}_{0}$ of $T_{0}$ is not recursively enumerable, we employ the following modi-
fication of Godel’s well known diagonalization agreement.

For any string $X$ in $K_{9}$ we define its norm to be the string $XX_{0}-i$ . $e$ . $X$

followed by its own Godel number (numeral). [We might note that if $X$ is a
predicate of $U$ of degree 1, then the norm of $X$ is a sentence which is true
in $U$ iff the Godel number of $X1i$es in the set represented by $X.]^{9)}$ Every
number $n$ (looked at as a dyadic numeral) itself has a Godel number $n_{0}(e$ . $g$ .
the G\"odel number of 121 is 1212212), and hence also a norm $nn_{0}$ . For any
number set $A$ we define $A^{*}$ to be the set of all numbers whose norm is in $A$ .
Thus $n\in A^{*}$ iff $m\iota_{0}\in A$ .

LEMMA. If $A$ is $r$. $e.$ , so is $A^{*}$ .
PROOF. Let (E) be an elementary formal system over $D$ in which the pre-

dicate $P$ represents $A$ . We add a new unary predicate $Q$ and a new binary
predicate $G$ and the new axioms:

$G1,12$

$G2,122$

$Gx,$ $y\rightarrow Gz,$ $w\rightarrow Gxz,$ $yw$

$Gx,y\rightarrow Pxy\rightarrow Qx$

[ $x,$ $y,$ $z,$ $\iota v$ are variables]

Then $G$ represents the set of all ordered pairs $(x, y)$ such that $x_{0}=y$ . and
$Q$ represents $A^{*}$ .

PROPOSITION 1. For every $r$. $e$ . set $A$ there is a sentenn$eX$ such that $X$ is
true (in $U$) iff its Godel number $X_{0}$ is in A. (and hence also: $X_{0}\in T_{0}\leftrightarrow X_{0}\in A$).

PROOF. Let $A$ be r. e. Then so is $A^{*}$ by the above lemma. Then $A^{*}$ is
represented in $U$ by some predicate $H_{1}$ Then for every number $n$ ,

9) This notion of “ norm “ plays here a role quite analogous to that in [4].
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$Hn$ is $true\leftrightarrow n\in A^{*}$

$\leftrightarrow nn_{0}\in A$ .
Sstting $n=h$ , where $h$ is the Godel number of $H$, we have:

$ H/\iota$ is $true\leftrightarrow hh_{0}\in A$ .
However $hh_{0}$ is the Godel number of the sentence $Hh$ . Therefore $Hh$ is true
iff its own Godel number is in $A$ .

Proposition 1 says, in effect, that every $r$ . $e$ . set $A$ either contains some
element of $T_{0}$ or lacks some element outside $T_{0}$ . Since the complement $\tilde{T}_{0}$ of
$T_{0}$ cannot possibly have this property, it immediately follows that $\tilde{T}_{0}$ is not
$r$ . $e$ . We hence have

THEOREM 1. [After Post’s form of Church’s theorem]. The system $U$ is
not recursively solvable.

REMARKS. Theorem 1 means (intuitively) that there exists no “ mechanical”
procedure to determine which numbers are in which recursively enumerable
$se^{+_{c}}s$ . Given any stronger system $(S)-i$ . $e.$ , one in which it is possible to “ effec-
tively “ translate all sentences of $U$ into sentences of (S) in such a manner as
to preserve both truth and falsity–it can be shown that (S) in turn must be
“ undecidable “. This approach has been utilized (for other formulations of $ U\rangle$

to establish G\"odel’s incompleteness theorem.
The sentence $Hh$ constructed in our proof of Proposition 1 is a highly

simplified variant of G\"odel’s famous sentence which ‘ refers” to its own G\"odel

number; it can be thought of as expressing the proposition that its own G\"odel

number is in the set $A$ . It was our purpose to capture the crucial ideal behind
G\"odel’s construction utilizing a bare minimum of formal machinery.

Appendix

Formal representability of $T$ and $T_{0}$

In this appendix we prove that the set $T$ of true sentences of $U$ is for-
mally representable over $K_{9}$ and that $T_{0}$ is $r$ . $e$ . We shall represent $T$ in an
elementary formal system (E) over $K_{9}$ . We first note that the implication sign

of (E) is to be distinct from the implication sign of transcribed systems. We
could continue to use $‘‘\rightarrow$ ‘’ for the latter; we prefer however to use $‘‘\rightarrow‘‘$ to
denote the implication sign of (E) (since it will occur so frequently), and we
shall now denote the implication sign of transcribed systems by “ imp”. Simi-
larly we shall now use the ordinary comma for our punctuation sign of (E),

and “ com” for the punctuation sign of transcribed systems. Variables of (E)

(not to be confused with transcribed variables) will be denoted by “ $x’$ , “
$y$ ,

“
$z$ “, “

$w$ , with or without subscripts. Predicates of (E) (not to be confused
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either with predicates of $U$ or transcribed predicates) will be introduced as
needed.

We now introduce the axioms of (E) in groups, first explaining what each
newly introduced predicate of (E) is to represent.

$N$ represents the set of numbers (dyadic numerals).
$N1$

$N2$

$Nx\rightarrow Ny\rightarrow Nxy$

$Acc$ represents the set of strings of accents
$Acc^{\prime}$

$Accx\rightarrow Accx^{\prime}$

$V$ represents the set of transcribed variables.
$Accx\rightarrow Vvx$

$P$ represents the set of transcribed predicates.
$Accx\rightarrow Ppx$

$Px\rightarrow Ppx$

$t$ represents the set of trancribed terms.
$Nx\rightarrow tx$

$Vx\rightarrow tx$

$tx\rightarrow ty\rightarrow txy$

$F_{0}$ represents the set of transcribed atomic formulas.
$Accx\rightarrow ty\rightarrow F_{0}pxy$

$F_{0}x\rightarrow ty\rightarrow F_{0}px$ com $y$

$F$ represents the set of transcribed formulas.
$F_{0}x\rightarrow Fx$

$F_{0}x\rightarrow Fy\rightarrow Fx$ imp $y$

$dv$ represents the relation “
$x$ and $y$ are distinct transcribed variables “.

$vx\rightarrow Accy\rightarrow dvx,$ $xy$

$dvx,y\rightarrow dvy,$ $x$

$S$ represents the set of all quadruples $(x, y, z, w)$ such that $x$ is any string (well

formed or not) which is compounded from numerals, transcribed variables,
transcribed predicates, com, imp; $y$ is a transcribed variable, $z$ is a numeral,
and $w$ is the result of substituting $z$ for all occurrences of $y$ in $x$ (that is, all
occurrences which are not immediately followed by more accents).

$Nx\rightarrow Vy\rightarrow Nz\rightarrow Sx,$ $y,$ $z,$ $x$

$Vx\rightarrow Nz\rightarrow Sx,$ $x,$ $z,$ $z$

$dvx,$ $y\rightarrow Nz\rightarrow Sx,$ $y,$ $z,$ $x$

$Px\rightarrow Vy\rightarrow Nz\rightarrow Sx,y,$ $z,$ $x$

$Vy\rightarrow Nz\rightarrow S$ com, $y,$ $z$ , com
$Vy\rightarrow Nz\rightarrow S$ imp, $y,$ $z$ , imp
$Sx,$ $y,$ $z,$ $w\rightarrow Sx_{1},y,$ $z,$ $w_{1}\rightarrow Sxx_{1},$ $y,$ $z,$ $uw_{1}$
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$T$ represents the set of true sentences of $U$

$Fx\rightarrow Tx-x$

$Tx-y\rightarrow Fz\rightarrow Tx^{*}z-y$

$Tx\leftarrow y\rightarrow Fz\rightarrow Tz^{*}x-y$

$Tx\mapsto y\rightarrow Sy,$
$z_{1},$ $z_{2},$ $w\rightarrow tx-w$

$Tx\mapsto y\rightarrow Tx\mapsto y$ imp $z\rightarrow F_{0}y\rightarrow Tx|-z$

This completes the construction of the system (E) in which $T$ is repre-
sented. To represent $T_{0}$ over {1, 2}, just take all the above axioms and replace
each symbol of $K_{9}$ by its G\"odel number.

Princeton University
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