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1.4 Inverses; 
Rules of Matrix Arithmetic



Properties of Matrix Operations

For real numbers a and b ,we always have ab=ba, 
which is called the commutative law for 
multiplication. For matrices, however, AB and BA 
need not be equal.
Equality can fail to hold for three reasons:

The product AB is defined but BA is undefined.
AB and BA are both defined but have different sizes.
it is possible to have AB=BA even if both AB and BA 
are defined and have the same size.



Example1
AB and BA Need Not Be Equal



Theorem 1.4.1
Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the 
indicated operations can be performed, the following 
rules of matrix arithmetic are valid:



Example2
Associativity of Matrix Multiplication



Zero Matrices
A matrix, all of whose entries are zero, such as 

is called a zero matrix . 
A zero matrix will be denoted by 0 ;if it is important to 
emphasize the size, we shall write        for the m×n zero 
matrix. Moreover, in keeping with our convention of 
using boldface symbols for matrices with one column, 
we will denote a zero matrix with one column by 0 .

nm×0



Example3
The Cancellation Law Does Not Hold

Although A≠0 ,it is incorrect to cancel the A from both sides of
the equation AB=AC and write B=C . 
Also, AD=0 ,yet A≠0 and D≠0 . 
Thus, the cancellation law is not valid for matrix multiplication,
and it is possible for a product of matrices to be zero without
either factor being zero.

Recall the arithmetic of real numbers :



Theorem 1.4.2
Properties of Zero Matrices

Assuming that the sizes of the matrices are 
such that the indicated operations can be 
performed ,the following rules of matrix 
arithmetic are valid.



Identity Matrices
Of special interest are square matrices with 1’s on the 
main diagonal and 0’s off the main diagonal, such as

A matrix of this form is called an identity matrix and is 
denoted by I .If it is important to emphasize the size, we 
shall write        for the n×n identity matrix.
If A is an m×n matrix, then
A     =  A    and          A = A

Recall : the number 1 plays in the numerical relationships 
a・1 = 1 ・a = a .

nI mI

nI



Example4
Multiplication by an Identity Matrix

mIRecall :  A     =  A    and          A = A , as A is an m×n matrixnI



Theorem 1.4.3

If  R is the reduced row-echelon 
form of an n×n matrix A, then 
either R has a row of zeros or R is 
the identity matrix     .nI



Definition
If A is a square matrix, and if a matrix B of 
the same size can be found such that 
AB=BA=I , then A is said to be invertible 
and B is called an inverse of A . If no such 
matrix B can be found, then A is said to be 
singular .

Notation:
1−= AB



Example5
Verifying the Inverse requirements



Example6
A Matrix with no Inverse



Properties of Inverses
It is reasonable to ask whether an 
invertible matrix can have more than one 
inverse. The next theorem shows that the 
answer is no  an invertible matrix has 
exactly one inverse .
Theorem 1.4.4
Theorem 1.4.5
Theorem 1.4.6



Theorem 1.4.4

If B and C are both inverses 
of the matrix A, then B=C .



Theorem 1.4.5



Theorem 1.4.6

If A and B are invertible matrices 
of the same size ,then AB is 
invertible and

The result can be extended :

( ) 111 −−− = ABAB



Example7
Inverse of a Product



Definition



Theorem 1.4.7
Laws of Exponents

If A is a square matrix and 
r and s are integers ,then

( ) rssrsrsr AAAAA == +     ,



Theorem 1.4.8
Laws of Exponents

If A is an invertible matrix ,then :



Example8
Powers of a Matrix



Polynomial Expressions Involving 
Matrices

If A is a square matrix, say m×m, and if 

is any polynomial, then w define

where I is the m×m identity matrix. 

In words, p(A) is the m×m matrix that 
results when A is substituted for x in (1) and

is replaced by        .

( ) (1)               10
n

nxaxaaxp +++= L

( ) n
n AaAaIaAp +++= L10

0a Ia0



Example9
Matrix Polynomial



Theorem 1.4.9
Properties of the Transpose
If the sizes of the matrices are such that 
the stated operations can be 
performed ,then

Part (d) of this theorem can be extended :



Theorem 1.4.10
Invertibility of a Transpose

If A is an invertible matrix ,then 
is also invertible and

( ) ( )TT AA 11 −−
=

TA



Example 10
Verifying Theorem 1.4.10



1.5 Elementary Matrices and
a Method for Finding A 

-1



Definition
An n×n matrix is called an 
elementary matrix if it can be 
obtained from the n×n identity 
matrix        by performing a single 
elementary row operation.

nI



Example1
Elementary Matrices and Row Operations



Theorem 1.5.1
Row Operations by Matrix Multiplication

If the elementary matrix E results from 
performing a certain row operation on 
and if A is an m×n matrix ,then the 
product EA is the matrix that results 
when this same row operation is 
performed on A .

When a matrix A is multiplied on the left by 
an elementary matrix E ,the effect is to 
performan elementary row operation on A .

mI



Example2
Using Elementary Matrices



Inverse Operations
If an elementary row operation is applied to an 
identity matrix I to produce an elementary matrix 
E ,then there is a second row operation that, 
when applied to E, produces I back again.
Table 1.The operations on the right side of this 
table are called the inverse operations of the 
corresponding operations on the left.



Example3
Row Operations and Inverse Row 
Operation

The 2 ×2 
identity matrix 
to obtain an 
elementary 
matrix E ,then 
E is restored to 
the identity 
matrix by 
applying the 
inverse row 
operation.



Theorem 1.5.2

Every elementary matrix is 
invertible ,and the inverse is 
also an elementary matrix.



Theorem 1.5.3
Equivalent Statements

If A is an n×n matrix ,then the 
following statements are 
equivalent ,that is ,all true or all false.



Row Equivalence

Matrices that can be obtained from one 
another by a finite sequence of elementary 
row operations are said to be row equivalent .
With this terminology it follows from parts 
(a )and (c ) of Theorem 1.5.3 that an n×n
matrix A is invertible if and only if it is
row equivalent to the n×n identity 
matrix.



A method for Inverting Matrices



Example4
Using Row Operations to Find      (1/3)  1−A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

801
352
321

A

[ ]1   −AI

Find the inverse of

Solution:
To accomplish this we shall adjoin the identity
matrix to the right side of A ,thereby producing a
matrix of the form

we shall apply row operations to this matrix until
the left side is reduced to I ;these operations will
convert the right side to      ,so that the final matrix
will have the form 

[ ]IA    

1−A



Example4
Using Row Operations to Find      (2/3)   1−A



Example4
Using Row Operations to Find      (3/3)   1−A



Example5
Showing That a Matrix Is Not Invertible



Example6
A Consequence of Invertibility



1.6 Further Results on Systems
of Equations and Invertibility



Theorem 1.6.1

Every system of linear equations 
has either no solutions ,exactly 
one solution ,or in finitely many 
solutions.

Recall Section 1.1 (based on 
Figure1.1.1 )



Theorem 1.6.2

If A is an invertible n×n
matrix ,then for each n×1 
matrix b ,the system of 
equations  A x =b has 
exactly one solution ,namely ,
x =       b .1−A



Example1
Solution of a Linear System Using 1−A



Linear systems with a 
Common Coefficient Matrix

one is concerned with solving a sequence of systems

Each of which has the same square coefficient matrix A .If 
A is invertible, then the solutions

A more efficient method is to form the matrix

By reducing(1)to reduced row-echelon form we can solve 
all k systems at once by Gauss-Jordan elimination. 
This method has the added advantage that it applies even 
when A is not invertible.

kbAxbAxbAxbAx ==== ,,,, 321 L

kk bAxbAxbAxbAx 1
3

1
32

1
21

1
1 ,,,, −−−− ==== L

[ ]kbbbA L21



Example2
Solving Two Linear Systems at Once

Solve the systems

Solution



Theorem 1.6.3

Up to now, to show that an n×n matrix A is invertible, it has 
been necessary to find an n×n matrix B such that 
AB=I and BA=I
We produce an n×n matrix B satisfying either condition,
then the other condition holds automatically.



Theorem 1.6.4 
Equivalent Statements



Theorem 1.6.5

Let A and B be square matrices of 
the same size. If  AB is 
invertible ,then A and B must also 
be invertible.



Example3
Determining Consistency by 
Elimination (1/2)



Example3
Determining Consistency by 
Elimination (2/2)



Example4
Determining Consistency by 
Elimination(1/2)



Example4
Determining Consistency by 
Elimination(2/2)



1.7 Diagonal, Triangular, 
and Symmetric Matrices



Diagonal Matrices (1/3)
A square matrix in which all the entries off the 
main diagonal are zero is called a diagonal matrix . 
Here are some examples.

A general n×n diagonal matrix D can be written as



Diagonal Matrices (2/3)
A diagonal matrix is invertible if and only if all of its 
diagonal entries are nonzero; 

Powers of diagonal matrices are easy to compute; 
we leave it for the reader to verify that if D is the 
diagonal matrix (1) and k 
is a positive integer, then:



Diagonal Matrices (3/3)
Matrix products that involve diagonal factors are 
especially easy to compute. For example,

To multiply a matrix A on the left by a diagonal matrix D, 
one can multiply successive rows of A by the successive 
diagonal entries of D, and to multiply A on the right by 
D one can multiply successive columns of A by the 
successive diagonal entries of D .



Example1
Inverses and Powers of Diagonal 
Matrices



Triangular Matrices

A square matrix in which all the entries above 
the main diagonal are zero is called lower 
triangular .
A square matrix in which all the entries below the 
main diagonal are zero is called upper triangular .
A matrix that is either upper triangular or low r 
triangular is called triangular .



Example2
Upper and Lower Triangular Matrices



Theorem 1.7.1



Example3
Upper Triangular Matrices



Symmetric Matrices

A square matrix A is called symmetric if 
A=    .
The entries on the main diagonal may b 
arbitrary, but “mirror images” of entries 
across the main diagonal must be equal.

a matrix             is symmetric if and only if       
for all values of i and j .

TA

[ ]ijaA =

jiij aa =



Example4
Symmetric Matrices



Theorem 1.7.2

Recall :
Since AB and BA are not usually equal, it follows that AB will
not usually be symmetric. 
However, in the special case where AB=BA ,the product AB will
be symmetric. If A and B are matrices such that AB=BA ,then
we say that A and B commute .
In summary:

The product of two symmetric matrices is symmetric if and 
only if the matrices commute .

( ) BAABAB TTT ==



Example5
Products of Symmetric Matrices

The first of the following equations shows a 
product of symmetric matrices that is not 
symmetric, and the second shows a product 
of symmetric matrices that is symmetric.
We conclude that the factors in the first 
equation do not commute, but those in the 
second equation do. 



Theorem 1.7.3

If A is an invertible symmetric
matrix ,then is symmetric.

In general, a symmetric matrix need 
not be invertible.

1−A



Products 

TT AAAA   and  
AAT

The products                        are both square matrices. 
---- the matrix             has size m×m and the matrix   

has size n×n .
Such products are always symmetric since

T

TT AAAA   and  

AA



Example6
The Product of a Matrix and Its 
Transpose Is Symmetric



Theorem 1.7.4

A is square matrix. If A is 
an invertible matrix ,then 
and         are also invertible.

TAA
AAT



Reference

http://vision.ee.ccu.edu.tw/modules/tinyd2
/content/93_LA/Chapter1(1.4~1.7).ppt
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