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1.4 Inverses;
Rules of Matrix Arithmetic



Properties of Matrix Operations

= For real numbers a and b ,we always have ab=Dba,
which is called the commutative law for
multiplication. For matrices, however, AB and BA
need not be equal.
= Equality can fail to hold for three reasons:
= The product AB is defined but BA is undefined.
= AB and BA are both defined but have different sizes.

= It Iis possible to have AB=BA even if both AB and BA
are defined and have the same size.



Examplel
i AB and BA Need Not Be Equal

—1 0 | 2
Iljl ] |: 2 q}h B ] |:.‘~ }
2o 3 0

(Consider the matrices

Multiplying gives

Thus. AB £ BA.



Theorem 1.4.1
Properties of Matrix Arithmetic

m  Assuming that the sizes of the matrices are such that the
Indicated operations can be performed, the following
rules of matrix arithmetic are valid:

(a) A+B=B+A (Commutative law for addition)

(hy A+ (B+C)=(A+ B)+ C (Associative law for addition)

(¢c) A(BC)=(AB)C (Associative law for multiplication)

(d) A(B+C)=AB+ AC (Left distributive law)

(¢) (B+C)A=BA+CA (Right distributive law)

(f) A(B—C)=AB - AC (j) (@a+b)C =aC+bC

(g) (B — )A =BA—-CA (k) (a—=0b)C =aC —bC

(h) a(B+C)=aB +aC () a(bC) = (ab)C

(i) a(B—C)=aB —aC (m) a(BC)=(aB)C = B(a(C)



Example2
Associativity of Matrix Multiplication

As an illustration of the associative law for matrix multiplication. consider

]
Then
b2 4 3 s > 4 3 1 O 10 9
AB =13 4 =120 13 and BC = ) =
2 1 2 1 2 3 4 3
0 1 2 1
Thus.
8 ) L 0o 18 15
(ABYC = | 200 13 [ﬁ ﬁ}: 46 39
2 1| 4 3
and
| 15 15
. 10 9
ABCYy= 1|3 4 4 3|= 46 39
0 1 . 4 3

so (ABY = A(LC), as guaranteed by Theorem 1.4, 1c.



i Zero Matrices

IV
(VA o0 0 o ()
_ o0 0]. , _ U
(b 10 o0 0 U () [ ]

A matrix, all of whose entries are zero, such as

—

— — 1

/I V
— = 1

N

Is called a zero matrix .

A zero matrix will be denoted by O ;if it is important to
emphasize the size, we shall write 0., for the mxn zero
matrix. Moreover, in keeping with our convention of
using boldface symbols for matrices with one column,
we will denote a zero matrix with one column by O .



Example3
The Cancellation Law Does Not Hold

Consider the matrices

jl{}1 B 11 CES Di‘a?
T lo 2| BREEEYA 13 4 — 1o 0

You should verify that

. 304 (0 0
AB = AC = |: } and AD = |: }
6B (0 10

B Although A+ 0 it is /ncorrect to cancel the A from both sides of
the equation AB=AC and write B=C .

B Also, AD=0,yet A*0and D+ 0.

B Thus, the cancellation law is not valid for matrix multiplication,
and it is possible for a product of matrices to be zero without
either factor being zero.

B Recall the arithmetic of real numbers :

¢ [fab =acand a # 0, then b = ¢. (This is called the cancellation law.)

e [fad = 0. then at least one of the factors on the left 1s 0.



Theorem 1.4.2
i Properties of Zero Matrices

s Assuming that the sizes of the matrices are
such that the indicated operations can be
performed ,the following rules of matrix
arithmetic are valld.

d) A+00=0+A=A
h)y A—A =1
E']' ”—,—1 — —fil

{
{
{
(dy All=10: (A =1



ldentity Matrices

= Of special interest are square matrices with 1's on the
main diagonal and 0’s off the main diagonal, such as

_ _ 1 0 0 0O
1 0 0

| g 1 0 0
0 . 0 1 0/, : and so on.

1
0 0 1
= - 0 0 0 1

= A matrix of this form is called an identity matrix and is
denoted by I .If it is important to emphasize the size, we
shall write |, for the nxn identity matrix.

= If Ais an mxn matrix, then
Al, = A and | A=A

= Recall : the number 1 plays in the numerical relationships
a-1=1-a=a.



Example4
Multiplication by an Identity Matrix

ap  dp dp
A=
ayy dx a4

Consider the matrix

Then
L Oflay ap apn dapp  dp  an
IJ: .-4. — - ) = - ) ] .-4.
0 1) {ay a»n an dy|  d» Ny
and ) _
| 0 0
a dyy A (! (12 3
AL =" T Ty o =T T TR 2 g
dy dy dm (21 d2 an
0 0 1

Recall : AIn = A and m A=A, as Ais an mxn matrix



i Theorem 1.4.3

s /T R /s the reduced row-echelon
form of an nxn matrix A, then
either R has a row of zeros orR /s
the identity matrix 1, .



i Definition

= If Ais a square matrix, and if a matrix B of
the same size can be found such that
AB=BA=I , then A is said to be /nvertible
and B is called an /nverse of A . If no such

matrix B can be found, then A Is said to be
singular .

Notation:
B=A"



Example5
i Verifying the Inverse requirements

The matrix
3 5] . + 2 =5
b = - 1S an mnverse of A =

SInce

and



Example6
A Matrix with no Inverse

The matrix

1s singular. To see why. let

by1 b3x  bis

be any 3 x< 3 matrix. The third column ot BA is

f)[] EZ']‘J Jf?[', O 0
f)‘r] f?g_‘r f?g, O = 0
b3 b b33 O 0
Thus,
1 0o O
BA=I=1]0 1 0
0o 0 1



i Properties of Inverses

m [t /s reasonable to ask whether an
invertible matrix can have more than one
/nverse. The next theorem shows that the
answer IS no — an /nvertible matrix has

exactly one inverse .
= Theorem 1.4.4

Theorem 1.4.5

Theorem 1.4.6



i Theorem 1.4.4

n /fB and C are both inverses
of the matrix A, then B=C .



Theorem 1.4.5

The matrix

A a b
e d

is invertible if ad — be # 0, in which case the inverse is given by the formula
B d b 7]

| [ d —bi| B ad — bc ad — bc

ATl =

ad — bc | —c¢ a C a

L ad — bc ad — bc



Theorem 1.4.6

m /TA and B are invertible matrices
of the same size ,then AB /s
nvertible and

(AB)' =B'A"

s The result can be extended :

A product of any number of invertible matrices is invertible, and the inverse of the
product is the product of the inverses in the reverse order.



Example7
Inverse of a Product

Consider the matrices

| g
,4:[ } B:[
| 3 J

Applying the formula in Theorem 1.4.5, we obtain

3 ) | _]

L . Bt = (AR
[—1 1} {—1 i} (28)
ek B I [ |

-1 |- —5

Therefore, (AB)~' = B~ A~! as guaranteed by Theorem 1.4.6.

Also,

0 N
b b
L
:L;h-
v
I
1
N =]



i Definition

[t A 15 a square matrix, then we define the nonnegative imteger powers of A to be

A'=1 A"=AA--A (>0

\—-Y.-l_-"
i factors

Moreover, 1f A 1s mverfible, then we define the negative mteger powers fo be

A" = (A—l)n — A—IA—I '“A_l

i factors



Theorem 1.4.7
i Laws of Exponents

s /ITA s asquare matrix and
r and's are integers ,then

ATAS — Ar+s, (Ar )S _ A’



Theorem 1.4.8
Laws of Exponents

m /T A Is an invertible matrix , then :

(a) A~Vis invertible and (A~")~! = A.
(b) A" is invertible and (A")™' = (A=) forn =0,1,2,....
(¢) For any nonzero scalar k, the matrix kA is invertible and (kA)™' = EA_I.



Example8
Powers of a Matrix

Let A and A~! be as in Example 7, that is,

| 2 . :
A= and A =
| 3 —

Then

A=

A—3 — (A—l)?’ —




Polynomial Expressions Involving

i Matrices

= If Alis a square matrix, say mxm, and Iif
p(x)=a, +a,x+---+a x" (1)
IS any polynomial, then w define
p(A)=a,l +a,A+---+a A"
where | is the mxm identity matrix.

= In words, p(A) is the mxm matrix that
results when A is substituted for x in (1) and

a, is replaced by & .



Example9
i Matrix Polynomial

[f
, -1 2
p(x)=2x"-3x+4 and A= { 0 ,,}
J

then

) =241 34441 =2| T _4[ P
WA) =LA — A/ = — B
: ’ 03] Lo 3o

28 —36'+40_92
1018 0 9] [0 4] [0 13




Theorem 1.4.9
i Properties of the Transpose

n /T the sizes of the matrices are such that
the stated operations can be
performed ,then

(@) (A)HT =A4

(hy (A+B) = A" + B" and (A — B)! = A" — B!
(¢) (kA = kAT, where k is any scalar

(d) (AB)! = B'A!

= Part (d) of this theorem can be extended :

The transpose of a product of any number of matrices is equal to the product of their
transposes in the reverse order.



Theorem 1.4.10
i Invertibility of a Transpose

as ITA /s an invertible matrix ,then A'
/S also invertible and

(a1 = ()



Example 10
i Verifying Theorem 1.4.10

Consider the matrices

Applying Theorem 1.4.5 yields

|3 | -2
A‘=[2 J. (A‘JT=L J. (A" =

As guaranteed by Theorem 1.4.10, these matrices satisfy (4).



!'_ 1.5 Elementary Matrices and

a Method for Finding A~



i Definition

= An nxn matrix is called an
elementary matrix if it can be
obtained from the nxn identity
matrix | by performing a single
elementary row operation.



Examplel
Elementary Matrices and Row Operations

Listed below are four elementary matrices and the operations that produce them.

00 0] - S - .
1 0 3 1 0 0
0 0
01 0|l |01 0
0 |
00 1| |0 0 |
1 0

i
0 |
0 0

_0 O_

T T T T

Multiply the [nterchange the Add 3 times Multiply the
second row of second and fourth the third row of first row of
I, by —3. rows of 1 . I5 to the first row. I; by 1.



Theorem 1.5.1
Row Operations by Matrix Multiplication

w /T the elementary matrix £ results from
performing a certain row operation on | .
and if A is an mxn matrix ,then the
proaduct EA Is the matrix that results
when this same row operation Is
performed on A .

= When a matrix A is multiplied on the left by
an elementary matrix E ,the effect is to
performan elementary row operation on A .



Example?2
Using Elementary Matrices

Consider the matrix

l 0 2 3
A=1|2 -1 3 6
l 4 4 0

and consider the elementary matrix
1 0 0
E=|0 1 0
30 1
which results from adding 3 times the first row of 5 to the third row. The product £A is

[0 23
FA=1[2 -1 3 6
4 4 0 9

which is precisely the same matrix that results when we add 3 times the first row of A to
the third row. ¢



Inverse Operations

= If an elementary row operation is applied to an
iIdentity matrix | to produce an elementary matrix
E ,then there is a second row operation that,
when applied to E, produces | back again.

= Table 1.The operations on the right side of this
table are called the inverse operations of the
corresponding operations on the left.

TABLE 1
Row Operation on / Row Operation on E
That Produces E That Reproduces /
Multiply row i by ¢ # 0 Multiply row i by 1/c¢
Interchange rows i and j Interchange rows i and j
Add ¢ times row i to row j | Add —c times row i to row j




Example3

Row Operations and Inverse Row

Operation

The 2 x2
iIdentity matrix
to obtain an
elementary
matrix E ,then
E is restored to
the identity
matrix by
applying the
Inverse row
operation.

|

|

E

l

l
0

|
0

= b
|

Multiply the second
row by 7.

= [
T

Interchange the first
and second rows.

] — Lo
1

Add 5 times the
second row to []'ll.'.‘
first.

)= Lo
|

Multiply the second
row by Ly

f

Interchange the first
and second rows.

=L
1

Add —5 times the
second row to the
frst.

i

0
1

]



i Theorem 1.5.2

m EVery elementary matrix Is
invertible ,and the inverse Is
also an elemenitary matrix.



Theorem 1.5.3
i Equivalent Statements

s [TA /s annxn matrix ,then the
following statements are
equivalent ,that is ,all true or all 1alse.

(a) A is invertible.

(b) AX = 0 has only the trivial solution.

(¢) The reduced row-echelon form of A is I,,.

(d) A is expressible as a product of elementary matrices.



i Row Equivalence

= Matrices that can be obtained from one
another by a finite sequence of elementary
row operations are said to be row equivalent .

= With this terminology it follows from parts
(a)and (¢ ) of Theorem 1.5.3 that an nxn
matrix A is invertible if and only if it is
row equivalent to the nxn identity
matrix.



A method for Inverting Matrices

To find the inverse of an invertible matrix A, we must find a sequence of elementary
row operations that reduces A to the identity and then perform this same sequence of
operations on 1, to obtain Al



Example4d
Using Row Operations to Find A~ (1/3)

B Find the inverse of (1 2 3]
A=|2 5 3
10 8
B Solution:

® To accomplish this we shall adjoin the identity
matrix to the right side of A ,thereby producing a
matrix of the form [A i ]

® we shall apply row operations to this matrix until
the left side is reduced to | ;these operations will
convert the right side to A™',so that the final matrix
will have the form [, ‘ A‘l]



Example4d
sing Row Operations to Find A~ (2/3)

The computations are as follows:

| 2 3 | 0 0
2 5 3 0 | 0
| 0 3 0 0 |
| 2 3 | 0 0
0 | -3 —B | 0 We added —2 times the first
_ row to the second and —1 times
0o -2 J —1 0 | the first row to the third.
| 2 3 | 0 0
0 | —3 -2 | 0 ...(_ We added 2 times the
_ second row to the third.
0 0 -1 —5 2 |



Example4d
sing Row Operations to Find A~ (3/3)

l 2 3 1 0 0
0 ] -3 -2 | 0 We multiplied the
0 0 ] _ 5 | third row by —1.
5 — —
l 2 0] —14 6 3
0 ] 0 13 —5 =3 —~agf—— We added 3 times the third
_ row to the second and —3 times
0 0 | 5 =2 -1 the third row to the first.
l 0 0] —-40 16 9
0 ] 0 13 —5 =3 —uff—— We added —2 times the
0 0 | _ 5 | second row to the first.
5 = —
Thus,
—40 16 9
A7'=1] 13 -5 -3

5 -2 -1



Exampleb
Showing That a Matrix Is Not Invertible

Consider the matrix

| 6 4
A= 2 4 —1
—1 2 5

Applying the procedure of Example 4 vields

1 6 4 1 0
2 4 —1 0 0
—1 2 5 0 1

0

0 .(_ We added —2 times the first
row to the second and added

] the first row to the third.

second row to
the third.

0

1

0

1 6 4 ] 0
§ 1

0

0

1

1

0
0 —ff—— We added the
0 0 01 —1 1

Since we have obtained a row ot zeros on the lett side, A is not invertible.



Example6
A Consequence of Invertibility

In Example 4 we showed that

2
A=12 5
0

(o oINS B '8

is an invertible matrix. From Theorem 1.5.3 it follows that the homogeneous system

X1+ 2x+3x3=0
2.’(] + S.X'g + 3.’(3 =0
X1 + 8.&'3 =0

has only the trivial solution.



!'_ 1.6 Further Results on Systems

of Equations and Invertibility



i Theorem 1.6.1

m EVery system of linear equations
has either no solutions ,exactly
one solution ,or in finitely many
solutions.

= Recall Section 1.1 (based on
Figurel.1.1)



i Theorem 1.6.2

s /TA /s an invertible nxn
matrix ,then for each nx1
matrix b ,the system of
equations A X =b has
exactly one solution ,namely

x=A"'D.




Examplel
Solution of a Linear System Using A’

Consider the system of linear equations

X1 —+ 2-3{2 -+ 3-3{3 = 5
2-’{] + 5-3{2 -+ 3-3{3 = B
X1 -+ 8-3{3 =17

In matrix form this system can be written as Ax = b, where

PO Fd I bl A
L1 o s8] Lo |17

In Example 4 of the preceding section we showed that A is invertible and

[—40 16 9"‘
A7'=] 13 -5 =3
—1

5 B2 J
(
i

4 Lh
S

By Theorem 1.6.2 the solution of the system is

[—40 16 9"‘
x=A'b= 13 —5 —3J

5 -2 -1

b Lh

|11
1]

l B

~]

orx; =1,x, =—1, x3 = 2.



Linear systems with a
i Common Coefficient Matrix

= oOne Is concerned with solving a sequence of systems
Ax=Db,Ax=Db,, Ax=Db,,---, AX=D,

= Each of which has the same square coefficient matrix A .If
A Is invertible, then the solutions
X =A"'b,x,=A"b,,x,=A"b,,---,x. = A"'b,
= A more efficient method is to form the matrix
[Alo, b, - [b, ]
= By reducing(1)to reduced row-echelon form we can solve
all k systems at once by Gauss-Jordan elimination.

= This method has the added advantage that it applies even
when A is not invertible.



Example2
Solving Two Linear Systems at Once

= Solve the systems

(a) x; +2x +3x3=4 (by x; 4+ 2x> + 33 = |
2x1 + 5x» + 3x3 =35 2x1 + 5 +3x35 = 6
X + 8x3 =9 X + 8x3 = —6

= Solution
The two systems have the same coefficient matrix. If we augment this coefficient matrix
with the columns of constants on the right sides of these systems, we obtain

l 2 3 4 l
2 5 3 5 6

l 0 8 | 9 —6
Reducing this matrix to reduced row-echelon form yield_s (verify)
10 o 1] 2]
0 l 010 l

0 0 I 1 | —1

[t follows from the last two columns that the solution of system (a)isx; = 1, x, =0
x3 = landof system (b)isx; =2, xo = 1, x5 = —1. ¢



i Theorem 1.6.3

Let A be a square matrix.

(a) If B is a square matrix satisfving BA =1, then B = A™".
(b) If B is a square matrix satisfving AB = I, then B = A~".

B Up to now, to show that an nxn matrix A is invertible, it has
been necessary to find an nxn matrix B such that
AB=I and BA=I

B We produce an nxn matrix B satisfying e/ther condition,
then the other condition holds automatically.



Theorem 1.6.4
i Equivalent Statements

If Ais ann x n matrix, then the following are equivalent.

a) A isinvertible.

by AX = 0 has only the trivial solution.

¢) The reduced row-echelon form of A is I,.

d) A is expressible as a product of elementary matrices.
e) AX = b is consistent for every n x | matrix b.

(@)
(D)
()
(d)
(e)
(

1) AX = b has exactly one solution for every n x 1 matrix b.



i Theorem 1.6.5

s LetA and B be square matrices of
the same size. If AB /s
invertible ,then A and B must also
be invertible.



Example3
Determining Consistency by
Elimination (1/2)

A Fundamental Problem. Let A be a fixed m x n matrix. Find all m x 1 matrices b
such that the system of equations AX = b 1s consistent.

What conditions must 1y, b2, and b satisty in order for the system of equations
X1 4+ x2 4+ 2xy = by
X + x3 = b
2x) + x2 4+ 3xy = by

to be consistent?

Salution.

The augmented matrix 1s

| | & f:l'|
| 0 | flg
21 3 by




Example3
Determining Consistency by
Elimination (2/2)

which can be reduced to row-echelon form as follows.

1 1 2 b
0O —1 —1 b2 — bl —~agff—— — 1 times the first row was added
to the second and —2 times the
0 —1 —1 by — 2b, first row was added to the third.
1 1 2 b
0 1 1 b, — b> —aff—— The second row was
- multiplied by —1.
o —1 -1 b3 — 2b,
1 1 2 b
0 1 1 by — b> —esff—— The second row was added
- to the third.
0 0 0 53'3 — bg — [3']

It i1s now evident from the third row in the matrix that the system has a solution if and
only if by, b>, and b5 satisty the condition

by — b — by =0 or by = b, + b>

To express this condition another way, Ax = b is consistent if and only if' b is a matrix

of the form
b
b = |7 b> —‘
Lbl o .i_')gJ

where b and b> are arbitrary. ¢



Example4
Determining Consistency by
Elimination(1/2)

What conditions must by, b>, and b5 satisty in order for the system of equations
X1 + 2x> + 3x3 = by
2xX1 + Sx2 + 3x3 = b»
X + 8x3 = b3

to be consistent?



Example4
Determining Consistency by
Elimination(2/2)

The augmented matrix is

]

Solution.
1 3 b
2 5 3 b
I 0 8 by

Reducing this to reduced row-echelon form yields (verify)
I 0 0 —40b; + 16b> + 9b;s
0 1 0 [3by — 5by, — 3b;s (2)
0 0 | Sbl — 2[’)2 — bg

In this case there are no restrictions on by, b>, and bs; that is, the given system Ax = b
has the unique solution

X = —40b1 -+ 16[)2 -+ 9[)3, X2 = 13b| — sz — 3b3, X3y = 5[’)] — 2[)2 — b3 (3)
for all b. ¢



!'_ 1.7 Diagonal, Triangular,

and Symmetric Matrices



Diagonal Matrices (1/3)

= A square matrix in which all the entries off the
main diagonal are zero is called a diagonal matrix .
Here are some examples.

6 0 0 0
1 0 0
20 0 —4 0 0
| 0 1 0],
0 =5 0O 0 0 0
0 0 1 _
o 0 0 8
= A general nxn diagonal matrix D can be written as
d 0 - 0

0 d - 0




i Diagonal Matrices (2/3)

= A diagonal matrix is invertible if and only if all of its

diagonal entries are nonzero;

= Powers of diagonal matrices are easy to compute,
we leave it for the reader to verify that if D is the

diagonal matrix (1) and k
IS a positive integer, then:

D' =

D' =

C1/d,
0

0

diX
0

0
1/d,

0

0
d-*

0
0

1/d, |




i Diagonal Matrices (3/3)

= Matrix products that involve diagonal factors are
especially easy to compute. For example,

dl 0 0 eAN a1 3 g dI(JJ. 11 ().'[ (fh ) (.'f| (AR} (.'f] 14
0 (?.!3 0 (7 ary d23 (rg | = dj €7 ().’3 - dz 3 dz oy
0 0 s asz] d32 d33  dig dyasy  dyay»  dyasy  diazg

i a2 a1y - dI(JJ.” ().'2(“2 d'},(.'.’]g
di 0 0

> azn a2y d[(,'!.j] ().'3('.’32 d}dgg
0 d 0 | = J p ;

a3 (32 iy a1dig dadzr  didas
0 0 ds

4] (42 adyqy = d[ a4 dj adyn (.'f} 43

= To multiply a matrix A on the left by a diagonal matrix D,
one can multiply successive rows of A by the successive
diagonal entries of D, and to multiply A on the right by
D one can multiply successive columns of A by the
successive diagonal entries of D .



Examplel
Inverses and Powers of Diagonal

Matrices
If ] )
0 0
A=10 =3
- O —
then
10 0 [ | 0 0] 10 0
AT =10 -1 0], A=]0 =243 0|, A7=]|0 —55 0
0o o0 1 0 0 32 0 L




i Triangular Matrices

= A square matrix in which all the entries above
the main diagonal are zero is called lower
triangular .

= A square matrix in which all the entries below the
main diagonal are zero is called upper triangular .

= A matrix that is either upper triangular or low r
triangular is called triangular .



Example2
Upper and Lower Triangular Matrices

— —= — —

ay] dij» dijz  di4 app U U U
U (27 23 (24 a1 dx»x U U
0 ] (133 434 ay] ayx azy U
_'H' U U (44 | | d41  d42  a43  da4
f T
A peneral 4 x4 upper A peneral 4 s 4 lower
triangular matrix triangular matrix

® A square matrix A = [qa;;] 1s upper triangular if and only if the ith row starts with
at least i1 — 1 zeros.

® A square matrix A = [a;;] is lower triangular if and only if the jth column starts
with at least j — | zeros.

® A square matrix A = [a;;] 1s upper triangular if and only if ¢;; = 0 fori > J.

® A square matrix A = [a;;] 1s lower triangular if and only if ¢;; = 0 for/ < j.

The following theorem lists some of the basic properties of triangular matrices.



i Theorem 1.7.1

(a) Thetranspose of alower triangular matrix is upper triangular, and the transpose
of an upper triangular H*Iafm is lower triangular

(b) The product of lower triangular matrices is lower triangular, and the product
of upper triangular matrices Is upper triangular.

(¢) A triangular matrixisinvertible if and only if its diagonal entries are all nonzero.

(d) The inverse of an invertible lower triangular matrix is lower triangular, and the
inverse of an invertible upper triangular matrix is upper triangular,



Example3
Upper Triangular Matrices

Consider the upper triangular matrices

1 3 -1 3 =2 2
A=10 2 4 |. B=10 0 -1
0 0 5 0 0 1

The matrix A is invertible, since its diagonal entries are nonzero, but the matrix B is not.
We leave it for the reader to calculate the inverse of A by the method of Section 1.5 and
show that

TR
Al=lo 1 -2
o o 1

This inverse is upper triangular, as guaranteed by part (&) of Theorem 1.7.1. We also
leave it for the reader to check that the product AB is

3 -2 =2
AB= 10 0 2
0 0 5

This product is upper triangular, as guaranteed by part (») of Theorem 1.7.1. ¢



Symmetric Matrices

= A square matrix A is called symmetric if
A=A

= The entries on the main diagonal may b
arbitrary, but “mirror images” of entries
across the main diagonal must be equal.

= amatrix A= [aijJ IS symmetric if and only if
q;; = a;for all values of 1 and j .

=




Example4d
i Symmetric Matrices

The following matrices are symmetric, since each is equal to its own transpose (verify).

. d 0 0 0

7 =3 0O d& 0 0
-~ |° 4 =3

—3 5 ) 0O 0 ds O
5 0

0O 0 0 dy




Theorem 1.7.2

If A and B are symmetric matrices with the same size, and if k is any scalar, then:

(a) AT is symmerric.
(b) A+ B and A — B are symmetric.
(c) kA is symmetric.

B Recall: (AB)T =B'A" =BA

B Since AB and BA are not usually equal, it follows that AB will
not usually be symmetric.

B However, in the special case where AB=BA ,the product AB will
be symmetric. If A and B are matrices such that AB=BA ,then
we say that A and B commute .

B In summary:

W The product of two symmetric matrices Is symmetric if and
only If the matrices commute .



Example5
Products of Symmetric Matrices

1 27[-4 17 [-2 1

2 3L 1 o] T [-5 2
1 2 1[4 3] [2 1
2 3| 3 -1 [1 3

= The first of the following equations shows a
product of symmetric matrices that /s not
symmetric, and the second shows a product
of symmetric matrices that /s symmetric.

= We conclude that the factors in the first
equation do not commute, but those in the
second equation do.




i Theorem 1.7.3

s /fA /s an invertible symmetric
matrix ,then A~ s symmetric.

= In general, a symmetric matrix need
not be invertible.



i Products ATA and AAT

B The products ATA and AA'T are both square matrices.
---- the matrix  AA" has size mxm and the matrix AT A
has size nxn .
B Such products are always symmetric since

(AATY = (ATHYTAT = AAT and (ATA) = AT(ATH)! = ATA



Example6

The Product of a Matrix and Its

Transpose Is Symmetric

i+

Let A be the 2 x 3 matrix

| —B 4
A= )
3 0 -5
Then
| 3
| — 4
AlTA = | =2 0 | =
) 3 0 -5
4 -5
_ | 3
- ] -2 4
AA' = ] =2 0| =
3 0 -5 _
- 4 -5

Observe that A’A and AA’ are symmetric as expected.

10
—2

—11

C 21
17

—2
4
—8

—17
34

}

11
—8
41




i Theorem 1.7.4

s A /s square matrix. IfA Is ;
an invertible matrix ,then AA
and AT A are also invertible.



i Reference

= http://vision.ee.ccu.edu.tw/modules/tinyd2
/content/93_LA/Chapterl(1.4~1.7).ppt
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