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Introduction

The first part of this work considers the coaction of two photons in an elementary process. With the help
of Dirac’s dispersion theory1, the probability of a process analogous to the Raman effect, namely the si-
multaneous emission of two photons, is calculated. It appears that a nonzero probability exists that an
excited atom divides its excitation energy into two photons, whose energies in sum prove to be the excita-
tion energy but are otherwise arbitrary. When light falls upon the atom with a frequency smaller than the
corresponding atomic eigenfrequency, another stimulated double emission occurs during which the atom
divides its energy into one incident and one frequency-difference photon. Kramers and Heisenberg2 have
calculated the probability of this last process according to the correspondence principle.

Additionally, the reversal of this process is considered, namely, where two photons whose frequency-
sum equals the excitation frequency of the atom co-act to excite the atom.

Furthermore the behavior of an atom toward scattering particles when it simultaneously has the op-
portunity to spontaneously emit light is examined. Experimentally, Oldenberg3 finds a broadening of the
resonance line of mercury when he lets the excited atoms collide repeatedly with slow particles. He inter-
prets this through the assumption that a positive or negative part of the excitation energy can be transferred
as kinetic energy to the colliding particle, and that the frequency-difference photon is emitted. For this
process, a formula analogous to the Raman effect and the double-emission, respectively, is derived here.

Finally, in connection with Franck’s work4, an attempt is made to explain the excitation-intensity’s
behavior of spectral lines through collisions with fast electrons via such a double-process.

Franck discusses the behavior of the excitation function of a spectral line, i.e., the intensity as a function
of the velocity of the incident electrons. This function is zero for small velocities, until the kinetic energy
of the electrons becomes equal to the excitation energy of the respective initial state of the line. It then
increases strongly, reaches a maximum at a velocity corresponding to just a few volts above this critical
voltage, and then decreases again to zero. This part of the curve has repeatedly been calculated with the
ordinary collision theory. One obtains a curve which represents the phenomena well, especially the sudden
onset of the function at the critical voltage. For large velocities, the theoretical curve yields a monotonic
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decrease towards zero. Investigations with fast electrons have shown, however, that the intensity later in-
creases again; it seems to have a flat maximum at an electron-velocity corresponding to about 100 volts for
all lines. This maximum corresponds to kinetic energies capable of quite strong ionization; for these ener-
gies the theoretical value of the direct collision excitation as well as the extrapolation of the experimental
excitation function is already practically zero. The relative intensities of the individual lines are strongly
shifted compared to the behavior at small velocities, so that a completely different process appears to un-
derlie the excitation. Franck explains that this phenomenon bears many characteristics of recombination
radiation.

However, Franck also shows that this process cannot be actual recombination, primarily since most of
the experiment is conducted in such high fields that the released secondary electrons very quickly achieve
too high a velocity to become recaptured. Thus Franck interprets this phenomenon via a recombination of
the atom with its own electron, a process which can be represented in Bohr’s theory as follows: An atomic
electron obtains energy from the colliding particle and is thrown into a hyperbolic orbit, i.e., in an orbit
with energy higher than the ionization energy. But before it has escaped from a certain impact zone of the
atom, it decays via emission of light back into some elliptic orbit, so that the atom now is in an excited
state.

Here the question of how such a process can be described according to the principles of quantum me-
chanics will be discussed. Obviously, then, one can no longer say that the atom recombines before the
secondary electron has escaped from a certain impact zone of the atom. But it seems reasonable to attempt
an explanation of this phenomenon through a process whereby, simultaneously, in one elementary action,
the atom absorbs energy from the colliding electron and emits light, so that it then remains in a state of
discrete energy and now is able to emit a spectral line of the discrete spectrum in a second, independent
process. Such an interpretation contains strong analogies to the Raman effect, which can also be regarded
as the coincidence of two processes in one elementary process. Because such a single process occurs the
moment the collision affects the atom, it would explain all phenomena which cannot be interpreted through
a recombination radiation.

The calculation yields a non-zero probability for such a process, the character of which will be dis-
cussed.

1 The coaction of two light quanta in an elementary process

The following calculation closely relates to P. A. M. Dirac’s work on emission, absorption, and dispersion.
The interaction of an atom with a radiation field is considered. In order to make the degrees of freedom

countable, let the radiation be enclosed in a cubic box of volume V , which imposes the condition that the
light waves are periodically continued outside the box. Later the box is assumed to be infinitely large.

Such a radiation field is equivalent to a system of uncoupled harmonic oscillators, since it is possible to
expand the radiation in plane, linearly polarized waves. If A is the vector potential, one has

A =
∑
α

qαAα =
∑
α

qαeαe2πiνα(sαxx+sαy y+sαz z) ,

where the components of the vectors ναsα are determined as usual by integral relations with respect to the
size of the box; for each possible vector ναsα there are two unit vectors eα, orthogonal to each other as
well as to sα.

For large cavities the asymptotic number of eigenmodes, whose frequency lies between ν and ν + ∆ν,
is

Z(ν)∆ν =
8πν2V

c3
∆ν . (1)
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Maxwell’s equations yield the harmonic oscillator differential equation for each quantity qα. Subjecting
them to quantization, the Hamiltonian of radiation becomes

∑
Hα =

∑
α

hνα

(
nα +

1
2

)
.

A state s of the radiation field is described by noting the states of all oscillators s = (n1. . .nα. . .), and
the energy difference of two cavity states is

hνss′ =
∑
α

hνα(nα − n′α) .

The matrix elements of qα are

qαss′ =

√
hc2

2πναV
(nα + 1) for n′α = nα + 1, n′β = nβ ;

=

√
hc2

2πναV
nα for n′α = nα − 1, n′β = nβ ;

= 0 otherwise.

(2)

Let an atom with nucleus fixed in space, with Hamiltonian HA, with stationary states n and eigenfre-
quencies νnn′ , interact with the radiation field. Then the Hamiltonian of the total system is

H =
∑
α

Hα +HA +H ′ .

The interaction energy H ′ is obtained from the Hamiltonian of the electron

Hel =
p2

2m
+ V (q) +

e

mc
(p A) +

e2

2mc2
A2 .

p and q are the momentum and coordinate vectors, respectively, of an atomic electron; V is the potential
energy of the electron in the atom, and A is the vector potential of the radiation field at the location of the
electron. The two-term interaction energy

H ′ =
e

mc
(p A) +

e2

2mc2
A2

is easily transformed into a simpler form. Namely, we consider the action function belonging to Hel

L = q̇p−Hel

and express it as a function of q and q̇ using q̇ = ∂Hel
∂p ,

L(q̇, q) =
m

2
q̇2 − V (q)− e

c
(q̇ A) ,

it is equivalent to another action function

L̄(q̇, q) =
m

2
q̇2 − V (q) +

e

c

(
q
dA

dt

)
,

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Berlin) 18, No. 7 – 8 (2009) 469

which emerged out of the first through addition of the total time-differential d
dt (q A). With this we construct

the corresponding Hamiltonian H̄el, and we obtain

H̄el =
p̄2

2m
+ V (q)− e

c

(
q
dA

dt

)
.

If the wavelength of the light is large compared to the atomic dimension, the spatial variation of A inside
the atom can be neglected, so that dA

dt = ∂A
∂t = Ȧ. For the interaction energy, when introducing the electric

dipole moment P =
∑
r eqr (the sum ranges over all atomic electrons), one obtains

H ′ = −c−1(P Ȧ),

where the value of Ȧ at the position x0, y0, z0 of the atomic center can be used. Because Ȧ/c is equal to
the electric field strength E of the radiation, the interaction energy reduces, under the above assumption, to
the potential energy of the electric dipole moment P against the light field.
H ′ is interpreted as the perturbation energy, and the eigenfunction of the total system is expanded in

terms of the eigenfunctions of the unperturbed system,

ψ =
∑

ansψns .

Assuming that the unperturbed system at time t = 0 is in the state n0, s0, for times that are small
compared to the average dwell time, perturbation theory yields for the probability amplitudes ans in first
order

a(1)
ns = H ′ns,n0s0

1− e2πi(ν
nnn0+ν

ssn0)t

h(νnn0 + νss0)
,

and in second order
a

(2)
ns =

∑
n′s′

H ′nn′ss′H
′
n′n0s′s0

h(νn′n0 + νs′s0)

·

[
1− e2πi(νnn′+νss′ )t

h(νnn′ + νss′)
− 1− e2πi(ν

nnn0+ν
ssn0)t

h(νnn0 + νss0)

]
.

(3)

The first of these well-known equations yields absorption and emission; the second, besides the Raman
effect and dispersion, also yields the effects of simultaneous emission and simultaneous absorption of two
photons, which will be investigated here in detail.

In order to first calculate the double emission, let the atom at time t = 0 be in the excited state n0, and
allow only one strongly excited eigenmode in the cavity

Aα = e e2πiνα(sαxx+sαy y+sαz z) ,

whose frequency να does not correspond to an eigenfrequency of the atom, i.e.,

n0
α � 1; n0

β = 0 for β 6= α; να 6= νnn′ .

Because of the characteristics of the oscillator matrices qα (2) in

H ′nn′ss′ =
∑
α

q̇αss′(Pnn′Aα)

H ′nn′,ss′ H
′
n′n0s′s0 can only then be different from zero if s emerges out of s0 either through absorption

of one photon να of the absorbed frequency and emission of one other arbitrary photon νβ – this provides
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the Raman effect and dispersion – or through emission of two photons. Thus it appears in every case that
at fixed να, only emission of a specific frequency is possible by conservation of total energy. In order to be
able to calculate further for both cases jointly, in the following formulas, whenever there is a double sign,
let the upper correspond to the Raman effect and dispersion, and the lower to double emission, respectively.
In which case

a
(2)
ns =

q̇αn0
α±1,n0

α
q̇β1,0

c2

∑
n′

[
(Pnn′Aα)(Pn′n0Aβ)

h(νn′n0 + νβ)

·

{
1− e2πi(νnn′∓να)t

h(νnn′ ∓ να)
− 1− e2πi(ν

nnn0+νβ∓να)t

h(νnn0 + νβ ∓ να)

}

+
(Pnn′Aβ)(Pn′n0Aα)

h(νn′n0 ∓ να)

·

{
1− e2πi(νnn′+νβ)t

h(νnn′ + νβ)
− 1− e2πi(ν

nnn0+νβ∓να)t

h(νnn0 + νβ ∓ να)

}]
.

(4)

a
(2)
ns is only then significantly different from zero when νβ lies in the vicinity of a zero of one of the three

denominators

νn′n0 + νβ , νnn′ + νβ , νnn0 + νβ ∓ να .

The proximities of the zeros of the first two denominators yield non-zero probabilities for processes in
which energy is not conserved, namely for transitions of the atom from n0 to n under absorption or emis-
sion of a photon of the incident frequency να and emission of an eigenfrequency of the atom.

However, these transitions are not consistent with real processes. They arise from a peculiarity of the
variation of constants method used here, namely it is assumed that the perturbation energy H’ starts to
operate at time zero while in reality it operates continuously. The switching-on process is the reason for
the appearance of the anomalous transitions.

Significant, however, is the proximity of the zero of the third denominator which represents the change
in total energy in the processes. For such frequencies νβ in the vicinity of ν′ = νn0n ± να the additive
higher-order terms

1− e2πi(νnn′∓να)t

h(νnn′ ∓ να)
,

1− e2πi(νnn′+νβ)t

h(νnn′ + νβ)

can be neglected, and by also inserting for the matrix elements of the q’s their values according to (2), one
obtains 

∣∣∣a(2)
ns

∣∣∣2 =
4π2h2

V 2

(
n0
α +

(
0
1

))
·

∣∣∣∣∣∑
n′

(
(Pnn′eα)(Pn′n0eβ)
h(νn′n0 + νβ)

+
(Pnn′eβ)(Pn′n0eα)
h(νn′n0 ∓ να)

)∣∣∣∣∣
2

· 4 sin2 π(νnn0 + νβ ∓ να)t
h2(νnn0 + νβ ∓ να)2

.

(5)

(The symbol
(

0
1

)
means that for dispersion and Raman effect it is set to 0, for double emission to 1.) The

probability of the process is obtained through summation of
∣∣∣a(2)
ns

∣∣∣2 over all β for which the νβ lie in the
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proximity of ν′. Using as usual, for a large cavity, the transformation from
∑
β over the number of all

eigenmodes, Aβ , to an integral over
∫
Z(νβ)dνβ , (1), one obtains, because of the sharp maximum of the

integrand at the resonance frequency∑
β

∣∣∣a(2)
ns

∣∣∣2 =
8π2h2

V 2
· 1

3

(
n0
α +

(
0
1

))

·

∣∣∣∣∣∑
n′

(
(Pnn′eα)Pn′n0

h(νn′n0 + νβ)
+

Pnn′(Pn′n0eα)
h(νn′n0 ∓ να)

)∣∣∣∣∣
2

·
∫
Z(νβ)

2 sin2 π(νnn0 + νβ ∓ να)t
h2(νnn0 + νβ ∓ να)2

dνβ ,

∑
β

∣∣∣a(2)
ns

∣∣∣2 =
64π4ν′3

3hc3
·

2πhνα
(
n0
α +

(
0
1

))
V

·

∣∣∣∣∣∑
n′

(
(Pnn′eα)Pn′n0

h(νn′n ± να)
+

Pnn′(Pn′n0eα)
h(νn′n0 ∓ να)

)∣∣∣∣∣
2

t .

This formula only makes sense if ν′ > 0. Thus double emission is only possible if νn0n > 0, and if
να < νn0n for the incident frequency.

If one assumes that a spectral line of finite width is incident – rather than that only a single eigenfunction
of the cavity is strongly excited at the beginning – and if in the case of the double emission one considers
the probability of the emission of να not exactly into the one eigenmode Aα, but instead in a narrow
frequency range ∆ν, the above formula must also be summed over all eigenmodes Aα with frequency
between ν and ν + ∆ν. Using the function %(ν) of the mean monochromatic radiation density, defined via

V %(ν)∆v =
∑

ν<να<ν+∆ν

hναn
0
α , (6)

one obtains
w
de

nn0 =
64π4ν′3

3hc3
2π
(
%(ν) +

8πν3h

c3

)
∆ν

· 1
3

∣∣∣∣∣∑
n′

(
Pnn′Pn′n0

h(νn′n − ν)
+

Pnn′Pn′n0

h(νn′n0 + ν)

)∣∣∣∣∣
2 (7)

for the probability of the double emission per unit time. Thus it appears that in vacant cavities a finite prob-
ability exists for spontaneous, simultaneous emission of two photons, and indeed all frequency divisions
are possible. If the incident light has the frequency ν, then the ratio of the induced emission at frequency
ν′ – with respect to its intensity – behaves as if a virtual oscillator with the moment

Pα
nn0 =

√
2π%(ν)pαnn0

where

pαnn0 =
∑
n′

(
(Pnn′e)Pn′n0

h(νn′n − ν)
+

Pnn′(Pn′n0e)
h(νn′n0 + ν)

)
(8)
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spontaneously emits the frequency ν′. The magnitude of the induced double emission for normal radiation
densities is considerably smaller than the corresponding spontaneous double emission. (The ratio is the
same as between ordinary induced and spontaneous emission.) This formula (8) is fully analogous to the
one for the Raman effect, in which the relevant moment is

prnn0 =
∑
n′

(
(Pnn′e)Pn′n0

h(νn′n + ν)
+

Pnn′(Pn′n0e)
h(νn′n0 − ν)

)
.

Since the observed intensity additionally depends on the number of the atoms in the initial state, which
in this case is an excited state, the phenomenon will be hardly observable because of the strong sponta-
neous emission. Perhaps, however, the effect could be found for meta-stable states where the spontaneous
emission probability, |Pnn0 |2, is small.

In contrast, the inverse process of the double absorption is proportional to the number of the atoms in
the ground state. Essentially the calculations in this case proceed analogously. Only this time let the initial
state n0 of the atom be, say, the ground state, and before the switching-on of the perturbation in the cavity
let it contain only light of two narrow frequency ranges: of the mean frequencies ν and ν′, respectively,
whose average frequency sum is equal to an eigenfrequency of the atom, ν+ν′ = νnn0 . The eigenfunctions
of each frequency range shall have equal directions of propagation s and s′, and equal polarization e and
e′, respectively.

Based on the same considerations as above, the amplitude of the probability of the transition from n0 to
n, a2

ns, (3) is then only significantly different from zero when the cavity state s emerges out of s0 through
absorption of a photon να out of the frequency range ν and another one νβ out of the frequency range ν′.
For such transitions, neglecting the corresponding higher order terms as in (5),

a(2)
ns = c−2q̇αn0

α−1,n0
α
q̇β
n0
β−1,n0

β

·
∑[

(Pnn′eβ)(Pn′n0eα)
h(νn′n0 − να)

+
(Pnn′eα)(Pn′n0eβ)
h(νn′n0 − νβ)

]
1− e2πi(ν

nnn0−να−νβ)t

h(νnn0 − να − νβ)

=
2πh
V

√
n0
αναn

0
βνβ

·
∑
n′

[
(Pnn′e′)(Pn′n0e)
h(νn′n0 − να)

+
(Pnn′e)(Pn′n0e′)
h(νn′n0 − νβ)

]
1− e2πi(ν

nnn0−να−νβ)t

h(νnn0 − να − νβ)
.

One obtains the probability of the process by summation of
∣∣∣a(2)
ns

∣∣∣2 over s, i.e., in a large cavity by integra-
tion over να and νβ . Using again the function %(ν) defined in (6), i.e., the monochromatic radiation density
per unit volume, and because of the sharp resonance for να + νβ = νn0n, one obtains using standard
methods ∑

s

∣∣∣a(2)
ns

∣∣∣2 = 4π2 ·

∣∣∣∣∣∑
n′

(
(Pnn′e′)(Pn′n0e)
h(νn′n0 − ν)

+
(Pnn′e)(Pn′n0e′)
h(νn′n0 − ν′)

)∣∣∣∣∣
2

·
∫
%(να)%(νβ)

4 sin2 π(νnn0 − να − νβ)t
h2(νnn0 − να − νβ)2

dναdνβ .

wdαnn0
=

16π4

h2

∫
%(νnn0 − ν)%(ν)dν

∣∣pαe′
∣∣2 , (9)

where pα means the vector defined in (8). The integral ranges over the width of one of the incident spectral
lines. It appears, however, that the probability of simultaneous absorption is smaller than that of simultane-
ous emission at normal intensities. The ratio of the probabilities of double emission to double absorption
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is the same as in normal emission and absorption. Therefore the processes will not perturb the radiation
equilibrium.

The frequency of this process of simultaneous absorption is increased by the fact that it is proportional
to the number of atoms in the ground state. But then again the quadratic dependency on the light density
acts unfavorably, so that for observation certainly large light intensities are necessary.

It should be mentioned that, similar to the Ramen effect, both processes discussed above behave as if
two events, each of which does not satisfy energy conservation, happen in one process: The atom jumps
under emission or absorption of a frequency ν from state n0 to an intermediate state n′ and from there
under emission or absorption of a frequency ν′ into the final state n.

All processes are schematically compared again here, for the sake of simplicity, in such a way that all
transitions are shown between two states n and m, for which νmn > 0. n′ is the arbitrary intermediate
state. Figs. 1 and 2 represent the Stokes and the anti-Stokes case of the Raman effect, respectively, Fig. 3
the double absorption and Fig. 4 the double emission.

Fig. 1–4 The dashed lines represent the behavior of the atom; upward arrows mean absorbed, downward
arrows mean emitted photons.

2 The coaction of light and collision in an elementary process

The coaction of light and incident particles – such as electrons – on an atom is considered here.
The electron waves are enclosed in a cubic box of volume V , which imposes the same conditions on

them as for the radiation, namely they are periodically continued outside the box.
Without any interaction, the energy of the electrons is just the kinetic energy T , and the eigenfunctions

are plane waves

ψκ =
1√
V

e
2πi
h (pκ

x x+pκ
y y+pκ

z z) ,

where the components of pκ are specified as usual by integral relations to the size of the box; the number
of eigenmodes, whose energy Eκ lies between E and E+ ∆E and whose momentum vector pκ lies in the
solid angle ∆ωp, is

N(E)∆E∆ωp =
m

h3
V
√

2mE∆E∆ωp . (10)

The interaction of such a field of free electrons and a radiation field with an atom will be investigated.
The Hamiltonian of the total system is

H = HA +
∑
α

Hα + T +H ′ ,

where the interaction energy H ′ decomposes into two parts,

H ′ = V + U ,

where the first one, V , means the interaction energy between atom and radiation,

V = −c−1(P Ȧ)
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and the second one, U , means the interaction between atom and electron, which can be taken, for example,
as the Coulomb field. The interaction between radiation and electron is neglected here.

The probability amplitudes anκs are examined in the same way as before, namely only such processes
are studied for which at the beginning there is no radiation in the cavity, i.e., which are pure emission

processes. Let there be only one electron with the energy E0 =
p2

κ0

2m in the box, and at the beginning the
atom is assumed to be in either the excited or the unexcited state n0.

Since V does not depend on the coordinate of the electron and U does not depend on the radiation, a
matrix element of H ′ becomes

H ′nκs;n′κ′s′ = Vns;n′s′δκκ′ + Unκ;n′κ′δss′ ,

and thus in first order the transition probability additively separates into the effect of light only and colli-
sions only. The coaction of both can first be obtained in second order.

Because of the characteristics of the perturbation potentials the probability amplitude in second order is
then 

a
(2)
nκs = a(2)

nκδss0 + a(2)
ns δκκ0

+
∑
n′

[
Unn′κκ0Vn′n0ss0

h(νn′n0 + νss0)

·

(
1− e

2πi
h (hνnn′+Eκ−E0)t

hνnn′ + Eκ − E0
− 1− e

2πi
h (hν

nnn0+hν
ssn0+Eκ−E0)t

h(νnn0 + να) + Eκ − E0

)
+

Vnn′ss0Un′n0κκ0

hνn′n0 + Eκ − E0

·

(
1− e2πi(νnn′+νssn0)t

h(νnn′ + νss0)
− 1− e

2πi
h (hν

nnn0+hν
ssn0+Eκ−E0)t

h(νnn0 + νss0) + Eκ − E0

)]
.

(11)

Here the terms a(2)
ns δκκ0 and a(2)

nκδss0 are the contributions which are generated in second order through
collisions only or through radiation only, respectively. For processes to which in fact both light and collid-
ing particles contribute, i.e., processes for which k and s are changed, they are zero.

The probability of the emission of light, whose frequency ν is not equal to an eigenfrequency of the
atom, is investigated. For the same reasons as in the previous paragraph a(2)

nκs is only significantly different
from zero for such states κ, s for which energy is approximately conserved, i.e., for which hνnn0 +hνα +
Eκ − E0 is small; for such states the additive higher order terms

1− e
2πi
h (hνnn′+Eκ−E0)t

hνnn′ + Eκ − E
,

1− e2πi(νnn′+να)t

h(νnn′ + να)

can be neglected. Hence
a

(2)
nκs =

√
2πhνα
V

∑
n′

(Unn′κκ0(Pn′n0Aα)
h(νn′n0 + να)

+
(Pnn′Aα)Un′n0κκ0

hνn′n0 + Eκ − E0

) 1− e
2πi
h (hν

nnn0+hνα+Eκ−E0)t

hνnn0 + hνα + Eκ − E0
.

(12)

In order to obtain the probability of emission of light of the mean frequency ν in a narrow frequency range

∆ν in the atomic transition from the state n0 to the state n,
∣∣∣a(2)
nκs

∣∣∣2 is to be multiplied by the number
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of eigenfunctions in the range ∆ν, i.e., Z(ν)∆ν, and to be summed over all κ, which for a large cavity
transforms into an integral over N(E)dE [compare (10)].

Because of the sharp maximum of the integrand, one obtains as usual∑
s∆ν

∑
κ

∣∣∣a(2)
nκs

∣∣∣2 =
2πhν
V

Z(ν)

· 1
3

∫ ∣∣∣∣∣∑
n′

(
Unn′κκ0Pn′n0

h(νn′n0 + ν)
+

Pnn′Un′n0κκ0

hνn′n0 + Eκ − E0

)∣∣∣∣∣
2

dωpκ

∫
N(E)

2− 2 cos 2π(νnn0 + να + Eκ−E0
h )t

(hνnn0 + hνα + E − E0)2
dE

=
8π3

3V
νZ(ν)N(E0 − h(νnn0 + να)) ·∆ν · t

∫ ∣∣∣∣∣∑
n′

(
Pn′n0Unn′κκ0

h(νn′n0 + ν)
+

Pnn′Un′n0κκ0

h(νn′n − ν)

)∣∣∣∣∣
2

dωpκ .

This probability is normalized by a density 1/V of the incident electrons. Relating it instead to a current
of incident electrons with current density equal to one, the result is also to be multiplied by

V

v0
=

V√
2
mE0

.

Finally inserting the values for Z and N , one obtains for the probability of the sought coaction
wnn0 =

64π4

3
ν3m2

h3c3

√
1− h(νnn0 + να)

E0
V 2

∫ ∣∣∣∣∣∑
n′

(
Unn′κκ0Pn′n0

h(νn′n0 + ν)
+

Pnn′Un′n0κκ0

h(νn′n0 − ν)

)∣∣∣∣∣
2

dωpκ .

(13)

The result is independent of the box’s size V , since Un′n0κκ0 is inversely proportional to V .
In particular, let n0 be an excited and n a lower lying state of the atom, i.e., νn0n > 0. It then appears,

that in the transition from n0 to n, the atom can emit frequencies ν which are larger or smaller than the
excitation frequency νn0n. The probability appears to be greater when only small amounts of energy are
transferred to the incident particle, i.e., when the frequency ν lies near νn0n, because in the above equation
in the sum over n′ there are, among others, terms in which n′ = n0 or n′ = n. The corresponding terms
take the values

Pnn0Un0n0κκ0

h(νn0n − ν)
for n′ = n0,

Pnn0Unnκκ0

h(νnn0 + ν)
for n′ = n .

Both of these terms provide a resonance for ν = νn0n. When ν lies near νn0n, they will outweigh all
others by far. This resonance does not exist in the corresponding formula for the Raman effect and the
double emission, respectively. This result appears to agree with the experimental results by Oldenberg.

For the phenomenon of the excitation radiation mentioned in the introduction, the initial conditions
essentially are the same as before: at the start of the process let the atom be in an initial state n0, which
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for instance may be the ground state, but let the kinetic energy E0 =
p2κ0

2m of the incident electron now be
significantly greater than the ionization energy of the atom.

The probability of the transition of the atom to a state n in the discrete spectrum is considered, and it
will be shown that there is a possibility that the atom reaches this state via a detour through the continuous
spectrum.

In order to calculate the probability of such a process, it is necessary to resort once more to formula (11).
By the sum over n′ the integral dE′ over the continuous spectrum is always implied. The approximation
which led from (11) to (12) is not legitimate here, since the denominator of some of the neglected terms
can now become zero, even when energy conservation is preserved. Nevertheless, as a result of the initial
conditions, some simplifications are possible.

Since n0 represents the ground state of the atom and s0 the vacant cavity, it follows that νn0n > 0, and
νs0s = να > 0. Hence the denominators νn′n0 + ν of the first sum in (11) will always be large, whereas
all three denominators can be zero simultaneously in the second sum. If we devote our attention to such
processes only, the last term will by far outweigh the first, and therefore alone represents the dominant
feature of the phenomenon.

Hence essentially

a(2)
nκs =

√
2πhνα
V

∑
n′

(Pnn′Aα)Un′n0κκ0

hνn′n0 + Eκ − E0

·

[
1− e2πi(νnn′+να)t

h(νnn′ + να)
− 1− e

2πi
h (hν

nnn0+hνα+Eκ−E0)t

h(νnn0 + να) + Eκ − E0

]
.

A formal transformation brings it to the form

a(2)
nκs =

√
2πhνα
V

· 1
h(νnn0 + να) + Eκ − E0

∑
n′

(Pnn′Aα)Un′n0κκ0

·

[
1− e

−2πi

„
ν
n′nn0+

Eκ−E0
h

«
t

hνn′n0 + Eκ − E0
· e

2πi

„
ν
nnn0+να+

Eκ−E0
h

«
t
− 1− e2πi(νnn′+να)t

h(νnn′ + να)

]
.

Here too, in the summation over n′ and integration over dE′, respectively, consideration should mainly be
given to those terms in which one of the denominators is small. If the resonance positions lie in the con-
tinuum, the integrand has strong maxima for νE′n0 = E0 − Eκ and νE′n = να, respectively, and is small
at greater distance. Because the product PnE′UE′n0κκ0 is slowly varying in the small, relevant frequency
range, one can replace it by its value at the resonance frequency and evaluate the integral approximately.
For the range of discrete eigenfunctions it is an error to interpolate the discrete values Pnn′ , Un′n0κκ0

in n′ via a continuous function of E′ and replace the summation by an integration. Later one sees, in the
special case of large velocities of the colliding particle considered here, that this error is marginal because
hνE′n0 , hνE′n energy changes occur mostly where the resonance frequencies really lie in the continuum.

Hence approximately

a(2)
nκs =

√
2πhνα
V

1
h(νnn0 + να) + Eκ − E0

[
(PnE1Aα)UE1n0κκ0

· e
2πi

„
ν
nnn0+να+

Eκ−E0
h

«
t
∫

1− e
−2πi

„
Eκ−E0

h +νE′n0

«
t

νE′n0 + Eκ−E0
h

dνE′n0

+(PnE2Aα)UE2n0κκ0

∫
1− e2πi(νnE′+να)t

νnE′ + να
dνnE′

]
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=

√
2πhνα
V

iπ
h(νnn0 + να) + Eκ − E0

[
(PnE1Aα)UE1n0κκ0

· e
2πi

„
ν
nnn0+να+

Eκ−E0
h

«
t

+ (PnE2Aα)UE2n0κκ0

]
.

Thereby the atomic states E1, E2 are the positions of the resonance, determined as functions of κ and s
so that

hνE1n0 + Eκ − E0 = 0, νnE2 + να = 0 . (14)

In order to obtain the probability of the atom’s transition from the state n0 to the state n,
∣∣∣a(2)
nsκ

∣∣∣2 is to be
summed over κ and s. First the summation over κ, which for large cavities transforms, as before, to an
integral over N(E)dEκdwκ [compare (10)], is carried out. Again, only the frequency range needs to be
considered for which the denominator, which represents the conservation of total energy for the process,
is small and because for this frequency the atomic states E1 and E2 are the same, E1 = E2 = E, one
obtains 

∑
κ

∣∣∣a(2)
nsκ

∣∣∣2 =
2π3hνα
V

N(E0 − hνEn0) |PnEAα|2

·
∫
|UEn0κκ0 |2 dωpκ ·

4π2

h
· t .

(15)

Thereby due to (14), the state E and the energy release of the incident electron, Eκ −E0, is determined as
a function of s, i.e., να, that

hνnn0 + hνα + Eκ − E0 = 0, E0 − Eκ = hνEn0 , να = νEn . (16)

Formula (15) is the probability that the atom decays into the state n, and in doing so emits a photon of
frequency να = νEn into the eigenmode Aα of the cavity. The formulae (16) show that this process behaves
as if two separate events, each satisfying energy conservation, occur in one process, namely ionization of
the atom through collision whereby the electron releases the energy hνEn0 , and subsequent recombination
under emission of the frequency να = νnE .

In order to obtain the total probability of the atom’s transition into the state n, (15) is to be summed over
all s corresponding to all α, which transforms, as in the first paragraph, to an integration over Z(να)dνα.
If the probability is again finally related to the current density of one electron per second through a cross
section perpendicular to the propagation direction of the electrons, rather than to the density 1/V of inci-
dent electrons, one has to multiply by Vm√

2mE0
; hence for the transition probability of the atom from n0 to

n one obtains

wnn0 =
8π5

3

√
m

2E0

∫
νEnZ(νEn) |PnE |2N(E0 − hνEn0)2

∫
|UEn0κκ0 |2 dωκdνEn

=
64π6m2

3h3c3
V 2

∫
ν3
En |PnE |

2

√
1− hνEn0

E0

∫
|UEn0κκ0 |2 dωκdνEn .

Moreover, expressing the matrix elements in this formula through the emission coefficient

AnE =
64π4ν3

En

3hc3
|PnE |2

www.ann-phys.org c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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and through the theoretical value of the collision ionization probability [see, e.g., Born5], which in this
notation reads

SEn0 =
4π2m2

h4

√
1− hνEn0

E0
V 2

∫
|UEn0κκ0 |2 dωpκ ,

one obtains the final formula

wnn0 =
h

4

∫
AnESEn0dE . (17)

It subsequently appears that the previous ansatz regarding the interpolation of the discrete matrix elements
through a continuous function of energy was justified because the probability of the collision excitation
in the discrete spectrum, at large velocities of the incident electrons, is small and is only significant for
transitions into the continuum – a conclusion which can be drawn, for example, from Born’s formulae. It
is therefore also sufficient in the final formula to extend the integral only over the continuum.

This process of collision ionization and simultaneous recombination is analogous to the process men-
tioned by Franck and discussed in the Introduction. That it really consists of a uniform process, and not of
two processes independent of each other, follows from the proportionality of the frequency with t. In con-
trast, the consecutive occurrence of two independent processes – perhaps the excitation through collision
and later light-emission after a dwell time of 10−8 sec – must for times which are small compared to 10−8,
and for these the calculation is valid, always be proportional to t2.

This formula represents the probability of the excitation of the state n through collision with a fast
electron. The atom can then emit the lines of the discrete spectrum in a second, independent process.
Formula (17) explains that the maximum of the intensities of these lines lies in the region where the total
ionization

∫
SEn0dE is large. Moreover, it clarifies the full displacement of the intensities compared to

the direct collision excitation, for which the excitation of the state n is proportional to a matrix element
|Unn0κκ0 |2, and hence qualitatively reproduces the phenomena mentioned in the Introduction.

Finally, an estimate of the order of magnitude of the probability of an excitation relative to the ionization
probability shall be given.

The total probability is

wI =
∫
SEn0dE ,

and thus

wnn0

wI
=
h

4

∫
AnESEn0dE∫
SEn0dE

.

Denoting by Ā an average of AnE , one has

wnn0 ' h

4
Ā

∫
SEn0dE ,

and

wnn0

wI
' h

4
Ā .

Now ∫
AnEdE ' Ā∆E

5 M. Born, Ztschr. f. Physik 38, 803 (1926); Nachrichten der Göttinger Ges. der Wissenschaften 1926, p. 146.
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is the emission coefficient for the entire continuum, of the same order of magnitude as the emission coeffi-
cient for a line of the discrete spectrum. And the latter represents the reciprocal of the average dwell time,
i.e., about 108 sec−1.

Hence

Ā ' 108

∆E

and

wnn0

wI
' h · 108

∆E
=

108

∆ν
.

Because the width of the continuous spectrum is about

∆ν = 1015 sec−1 ,

one finds

wnn0

wI
' 108

1015
' 10−7 .

This is a very rough estimate. A more accurate consideration of the behavior of this transition probability,
however, is only to be obtained through a numerical evaluation of the matrix elements PnE , UEn0 , for
instance, for hydrogen.

The fraction wnn0

wI
represents the number of atoms, which make transitions through a single-step double

process directly into the state n, relative to the number of ionized atoms. Experimentally measured is the
intensity of a line, for example, the resonance line νn1n0 . Because the atoms, which are brought into a
higher state n, can mostly also emit the resonance line νn1n0 , the observed intensity is not only propor-
tional to wn1n0 , but will also depend on the transition probability wnn0 into all higher states.
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