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The usual formalism of second quantization is generalized to include the case in which 
liquid helium contains atoms in electronic excited states. The formalism is applied to sccatter
ing of the photon, where the dipolar coupling between excited and normal atoms is included 
as perturbation. The resulting cross sections for Brillouin and Raman scattering agree with 
those obtained by the semi-phenomenological theory of Stephen. 

The relation with the recent theory of Iwamoto is also discussed in terms of Green 
functions. 

§ l. Introduction 

With use of the laser, it is now experimentally possible to observe scattering 

of light in a liquid of small polarizability. Both liquid He 4 and liquid He3 are 

of particular interest as one can apply a simple quasiparticle picture to each 

of them at low temperature. As was emphasized by Halley,ll scattering of 

light will provide new information about elementary excitations in these liquids. 

When a single excitation is created by scattering, its momentum and therefore 

its energy should be small (Brillouin scattering), since the wave-length of light 

is much longer than the interatomic distance. As Halley pointed out, however, 

two excitations of almost equal but opposite momenta can also be created, so 

that their energies need not be small in comparison with the characteristic energy 

of the atomic motion in the liquid. In the case of superfluid He\ this means 

the creation of two rotons of almost equal but opposite momenta. Raman scat

tering of this type has been observed indeed by Greytak and Yan.2l 

A theoretical scheme to deal with Raman scattering in liquids has been given 

by Stephen,3l who has extended ideas of the Lorentz-Lorenz theory of dispersion 

to include scattering from the density fluctuation. The relation between the 

electric field in the medium and the field of incident light is a nonlinear function 

of the density. When expanded in powers of the density fluctuation, the linear 
term gives rise to Brillouin scattering, whereas the quadratic term corresponds 
to scattering from a pair of excitations. 

In the present paper, scattering of light in liquid helium will be formulated 
as quantum. mechanical scattering processes. We ignore the multiple scattering 

of photons and concentrate ourselves on simple processes in which one photon 
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354 S. Nakajima 

is absorbed and another photon is emitted. When absorption and emission are 

assumed to occur on a single atom, we obtain Brillouin scattering which cor

responds to the linear term in Stephen's expansion in powers of the density 

fluctuation. In order to have terms of higher order, we need to take into ac

count the possibility of excitonic motion of the Frenkel type. The excited state 

can move from one atom to another through the dipolar interaction as is well 

known in the theory of Frenkel excitons in crystals.4
) The dipolar interaction 

is tensorial, so that it can change the direction of polarization in accordance 

with the depolarization effect of Raman scattering observed by Greytak and Yan. 

Stephen's expansion corresponds to the perturbational expansion with respect to 

the dipolar interaction. 

In dealing with quantum liquids, it is convenient as usual to make use of 

the second quantization method. The method is of course familiar when applied 

to liquid helium consisting of atoms all in the lowest electronic state. In the 

present paper, we shall first generalize the method to include the liquid containing 

excited atoms. 

§ 2. Second quantization of a liquid containing excited atoms 

It is almost trivial to generalize the usual method of second quantization to 

include liquid helium containing atoms in excited electronic states. ·. Since no 

explicit derivation is given in standard books, we shall briefly describe it here. 

We start from the description in configuration space. Suppose that the liquid 

contains N atoms and 2N electrons. Let R1, · · ·, R 1v be nuclear coordinates in

cluding nuclear spin coordinates in the case of He3
• Let ~1 1/1. · · ·, ~ N 1/N be 

electronic coordinates including spm coordinates. We write the time-dependent 

Schrodinger equation as 

(1) 

Here Kn and Ke are nuclear and electronic kinetic energies, respectively, and U 
is the whole interaction potential. We have taken h = 1. We are going to in

tegrate Eq. (1) over electronic coordinates by introducing the orthonormalized 

set of eigenfunctions '/.J of the Hamiltonian Ke + U for the system with fixed 

nuclei. 

(2) 

As usual, we apply the Born-Oppenheimer approximation and omit those terms 

in which Kn operates on XJ· Then we obtain from (1) 

(3) 
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Elementary Quantum Theory of Light Scattering in Liquid Helium 355 

UJJ' (R) = f d~diJx;* (Ke+ U) XJ'. (4) 

The diagonal element UJJ(R) is the so-called adiabatic potential. 
In the case of liquid helium, electrons are well localized on each atom, so 

that we may assume the Heitler-London wave functions 

N 

XJ= Jl II ajn (~n- Rn, 1/n- Rn). (5) 
n=l 

Here a1 (~, IJ) is the wave function to describe the electronic state of an isolated 
atom, i = 0 refers to the lowest s state and I=f=.O to excited states, and Jl means 
antisymmetrizing and normalizing the wave function with respect to electronic 
coordinates. We ignore overlap integrals between the a1 belonging to different 
atoms. 

Let P be any permutation of 1 2 · · · N. We designate it as PR when oper
ating on R1, · · ·, RN and as PJ when operating on ih ···,iN· Clearly the operator 
PRPJ operating oil (5) is equivalent to the inverse of P operating on electronic 
coordinates, so that PRPJX = x. On the other hand, 7JI on the left of (2) is either 
symmetric (He4

) or antisymmetric (He3
) against PR. Hence 

so that 

(6) 

Thus, in addition to nuclear coordinates Rh · · ·, RN, we have extra coordinates 
ib · · ·, iN which describe the internal electronic state of each atom. The wave 
function ([J (Rt}1, · · ·, RN iN) in (3) should be either symmetric (He4

) or antisym
metric (He3

) under the permutation of atomic coordinates including i· It is then 
straightforward to transcribe the Hamiltonian in (3) into the second quantization 
scheme. 

In what follows, we shall be concerned with the case of liquid He4 unless 
explicitly stated otherwise. Liquid He4 is described in terms of operators ¢1 (R), 
and their hermitean conjugates ¢/ (R), each of which is defined for each point 
R in space and for each value of the quantum number j. They satisfy the com
mutation rules 

[¢1 (R), ¢~* (R')] = o1dJ (R- R'), 

[¢1 (R), ¢~ (R')] = [¢~* (R), ¢/ (R')] = 0. (7) 

The operator ¢1 (R) annihilates the atom in the i-th electronic state at point R 
in space and ¢/ (R) is the corresponding creation operator. In the case of liquid 
He3

, we should assume the anticommutation rules in place of the commutation 
rules, 
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The Hamiltonian 111 (3) can be expressed 111 terms of ¢-operators. For in

stance, 

K = ~·sdR_l__ o¢/ (R) . o¢,(~_ 
n -'f 2M oR oR ' 

(8) 

where M is the atomic mass. When all atoms are in the lowest electronic state, 

the diagonal element U00 in (3) gives the exchange repulsion between atoms. 

Let v be the potential of the usual interatomic force which is the sum of the 

exchange repulsion and the van der Waals attraction. Then 

HL= sdR2~ o:i -~~ 
+ ~ s s dR1dR2v (R12) ¢o* (R1) ¢o* (R2) ¢o (R2) ¢o (R1) (9) 

Is the usual Hamiltonian of the liquid when there is no excited atom. Here 

R12=R1- R 2• When a number of atoms are excited, we need first to include 

the excitation energy 

(10) 

where E, are electronic excitation energies of an isolated atom. 

As is well known in the theory of the Frenkel exciton in solids, the excited 

state can move from one atom to another through the dipolar interaction. Hereafter, 

for the sake of simplicity, we take into consideration only first p excited states and 

denote their excitation energy by w0• We choose p state wave functions which 

have the same rotational symmetry as space coordinates 11 = x, y, z, so that the 

matrix elements of the electric dipole moment /3,. of an atom are real. 

/3 = S d~dr;a,. * /31,a0 • 

Then the polarizability of a single atom is given by 

With use of this expression, the dipolar coupling can be wt:itten as 

Ha = _(};r_(l_ f f dR1dR2 I: J,.v (R12) [2¢,. * (R1) ¢o (R1) ¢o * (R2) ¢v (R2) 

(11) 

+ ¢,. * (R1) ¢o (Rt) ¢v * (R2) ¢o (R2) + ¢o * (R1) ¢,. (R1) ¢o * (R2) ¢v (R2)]. (12) 

Here 

J (R) =-}--[o - -3
-R R ]· 

pv R3 pv R2 I" v 
(13) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/45/2/353/1873729 by guest on 20 August 2022



Elementary Quantum Theory of Light Scattering in Liquid Helium 357 

The dipolar approximation breaks down at short distances, where we need to 
deal with the full Coulomb interaction quantum mechanically. Instead of going 
into the detail, however, we take account of the short range correlation simply 
by cutting off (13) as Jp,v (R) = 0 for R-;:;2a, where a is the size of the atom. 

As is well known, the virtual excitation caused by the second and third 
terms in the square bracket of (12) results in the van der Waals attraction be

tween atoms.4
) As we shall see later on, it is essential to retain these terms in 

order to obtain the right expression for Raman scattering. 

§ 3. Interaction with radiation and Brillouin scattering 

The Hamiltonian of the interaction between atoms and radiation consists of 
two parts: one is linear and the other is quadratic with respect to the electro
magnetic vector potential. 

( 3) 1/2 s H1 = :E rc;~o (bk>o + b>!..k;.) dR eik·R i (cfh * (R) </Jo (R) -h. c.), (14) 

(15) 

Here Vis the normalization volume, bk),, b%;. are destruction and creation operators 

of photons, and c is the velocity of light. We have taken the dipole approxi

mation since the wave-length of light is much longer than the atomic size a. 

It should be noted that the number of electrons per atom which appears m the 

usual expression for H 2 has been expressed in terms of matrix elements of the 

dipole moment by the use of the so-called f-sum rule. 5
) In (15), 

Pq = s dR e-iq·R p (R) (16) 

Is the Fourier transform of the total density of atoms. Since we assume that 
the number of excited atoms is small, we replace the total density approximately 

by the density of normal atoms. 

p (R) ~</Jo* (R) </Jo (R). (17) 

For the same reason, we shall ignore the interaction between excited atoms. 
Thus the total Hamiltonian of our system has the form 

H=Ho+H', 

Ho = 1--IL + J[A +f-IR, (18) 

Here HR = ~ ckb%';.bk>o is the Hamiltonian of free photons. Strictly speaking, we 
should add the kinetic energy of excited atoms, but this is so small in comparison 
with HA that we have ignored it. 

We now regard the atomic polarizability a as a small parameter and introduce 
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the perturbational expansion with respect to H'. More precisely, the dimensionless 
expansion parameter will be na, where n is the density of atoms in the liquid. 
Since we have already included the van der Waals interaction in HL, we should 
subtract this interaction from H'. This is equivalent, however, to ignoring the 
van der Waals interaction which arises from second order perturbation of Ha. 

In the interaction representation defined by the unperturbed Hamiltonian H 0, 

cjJ '"' bk"!.. are proportional to exp (- iw0t), exp (- ickt) respectively. As for the 
operator cjJ 0 (Rt) = exp (iHLt) cp 0 (R) exp (- iHLt), we cannot give an explicit ex
pression unless we solve the many-body problem of liquid helium by a certain 
approximate method. 

Hereafter we are concerned with scattering processes in which the incident 
photon of momentum k and polarization A is absorbed and the photon of momentum 
k' and polarization A' is emitted. For simplicity, we take the liquid at zero 
temperature, so that at the remote past t = - oo the liquid is in the eigenstate 
([J 0 which belongs to the lowest eigenvalue Eo of HL. We seek for the transition 
probability of finding the liquid at t = + oo in the eigenstate ([J1 which belongs 
to a certain eigenvalue E1 of HL. 

The simplest is the first order process caused by H 2• The so-called s.cat
tering matrix can be obtained by inserting (15) into the S-matrix 

The resulting scattering matrix is 

(19) 

We obtain a similar term from the second order processes 111 

The resulting scattering matrix has the form 

i (~-(};-)·. ~s_ __ sdRldR ei<k·Rt-l•'·R2l 

Vc (kk'Y12 2 

x <([Jf!r/Jo* (R2) </h, (R2) H 
1 

k E ¢").. * CR1) r/Jo (R1) 
Wo + L- C - o 

The two terms may be represented by the graphs in Fig. 1, in which the dotted 
line represents the photon and the full line the excited atom. 

Now HL- Eo in the denominator of (20) is the change to occur in the energy 
of the atomic motion in the liquid when one atom is electronically excited. Except 
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~----- Z
----

--- ---
Fig. 1. 

for the almost exact resonance (1) 0~ ck, it is so small compared with w0 that we may 

ignore it. Furthermore, since we have no excited atom in the state ({) 0 , 

(21) 

Finally, smce all atoms go back to the lowest electronic state after scattering, 

the shift (1) = ck- ck' in the photon energy should be equal to the energy change 

of the atomic motion in the liquid. Hence we may ignore (1) in comparison with 

ck itself. Thus (20) may be replaced approximately by 

where v = ck. Adding (19), we obtain the scattering matrix for Brillouin scat

tering as 

(22) 

where 

(23) 

is the atomic polarizability at the photon energy v. 
The differential cross section for the process, in which the photon with an 

energy between ck'- dw and ck' is scattered into the element of solid angle dQ, 
is given by 

In the case of (22), we have 

:~~~= ~A~A (~ra2 (v)S(q,w), 
where q = k- k' Is the momentum change of the photon and 

(24) 

(25) 

(26) 

(27) 

Our expression (25) agrees with the result obtained by Stephen when our a (v) 
is identified with his atomic polarizability a. 
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360 S. Nakajima 

§ 4.. Raman scattering of higher order 

In the case of Brillouin scattering (25), absorption and emission of photons 
occur on a single atom, so that the direction of polarization does not change. 
In order to obtain the depolarization effect as was observed by Greytak and Yan, 
we need to take into consideration the dipolar interaction (12). 

The lowest order contribution of Ha is contained in the S-matrix 

(- iY f_roCXJ dt S~w dt1 s~~ dt2 [ H1 (t) Hd (t1) H1 (t2) 

+ H1 (t) H1 (t2) Ha (t2) + Ha (t) H1 (t1) H1 (t2)]. (28) 

Each of the three terms gives two scattering processes as shown by graphs in 
Fig. 2, in which the wavy line represents the dipolar interaction aw0Jp,v· It is 

---~ - I-- ---~ --) 
~ -- --- )_ --- ----a b 

--~ 7 
~--- ~----
e f 

Fig. 2. 

c d 

straightforward as before to carry out the time integral to find the scattering 
matrix. For instance, the graph a leads to the following scattering matrix. 

We again ignore HL- Eo against ck in the denominator and make use of (21). 
Then the scattering matrix is simplified as 
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Similarly the graph b leads to the scattering matrix, which we obtain from (29) 
by replacing (!)0 - v in the denominator by (!)0 + ck'.-.....- (1)0 + v. 

On the other hand, the graphs c and d lead to the scattering matrix 

·(na2
) (!): 1 ( 1 1 ) 

z 2 Vc ~(kk'yii. 2(!)~ w~--=_ ck + (!)
0 
+ ck 

X s dRldR2eiU£·R2 -k'·Rr)J~,~ (R12) <a>J/P (R1)p (R2) /!l>o) · 

When we replace 2w0 in the denominator by 2w0 + c (k'- k) ::=::::2w0, we obtain the 
scattering matrix corresponding to graphs e and f. 

It is important that graphs c, d, e, f have the opposite sign and therefore 
tend to cancel graphs a, b. In fact, the sum of all these six graphs can be 
expressed in terms of (23) with no explicit dependence on w0 elsewhere. Thus 
the sum gives the scattering matrix 

(30) 

where we have introduced 

L~,~ (q) = s dRe-iq·RJ~,~ (R). (31) 

The sum over q m (30) contains the terms with q = k and q = k', which give 

This is the correction to the amplitude (22) of Brillouin scattering and may be 
ignored in the limit na<I. 

The genuine Raman amplitude of higher order is given by 

Here 

q=O' 

q=/=0. 

Inserting (32) in (24), we obtain the differential cross section 

... ci_~q~ = (~~(v)) 
4

-)·_. ~ ~ L~,~ (p) L~,~ (q) 
dwdQ c V 2 p q 

Thus the cross section is proportional to the Fourier transform of a four-body 
correlation function. 
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A simple, familiar approximation is, as Stephen did, to replace the four-body 

correlation function by the product of two-body correlation functions. 

<<Pol.dPk-p (t) .dPp-k' (t) .dpk'-q (0) .dpq-k (0) I <Po) 

~ (o pq + Ok+k'p+q) <<Pol.dPk-p (t) .dPp-k (0) !<Po)<<Pol.dPp-1~' (t) Jpk'-p (0) I <Po) • 
(34) 

Furthermore, both k and k' are practically negligible compared with most of p. 
'Phus the cross section (33) is approximately written as 

This is essentially the same result as obtained by Stephen. 

tensorial character of (31), this must have the form 

where 

( 
d 2 1 d ) s e-iq·R g(q)= ---- dR. 
dq2 q dq R 5 

(35) 

Note that from the 

(36) 

(37) 

As Stephen has shown, (35) together with (36) can account for the depolariza-

tion effect observed by Greytak and Yan. 

§ 5. Two roton processes in liquid He4 

In the case of superfluid He\ the liquid may be regarded as a gas of quasi

particles. Let BP, Bp * be destruction and creation operators of the quasiparticle 
of momentum p. For small p, the quasiparticle is the phonon, so that 

(38) 

where JP is a positive constant. For larger p, where the quasiparticle is the 
roton, we need to add quadratic and higher order terms, which we shall Ignore 

for simplicity, however. The approximation is equivalent to Stephen's hydro
dynamic one. 

Now, since k, k' in (33) are negligible against most of p, q, we write this 
expression approximately as 

d
2
fJ (va (v)) 

4 

d{J)d~ = n2 ·-c- SA-'x (())). (39) 

Under the approximation (38), 

Sx'x (())) = :E :E fpLA-'.A- (p)fqLA-'7-. (q) 
p q 

(40) 
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where ( ) is the expectation value with respect to (]) 0• As is well known,6> 

the Fourier transform in (40) is equal to -rc-1 multiplied by the imaginary part 
of the retarded Green function. For co>O, the latter is given by 

where T means Wick's chronological ordering. 
When the interaction between rotons is ignored, the Green function ( 41) is 

given by 

Kpq(CD) = (IJpq+IJp-q)Dp(CD), (42) 

Dp(CD) = co-2E1 +iO+ ' (43) 
p 

where E;p 1s the energy required to create one free roton. Hence 

SA'A(co) =2 ~f;p2L~,;.(p)IJ(co-2Ep). (44) ;p 

The spectrum is determined in this case by the density of states of the free roton 
in accordance with the conclusion of Halley and Stephen. 

However, Iwamoto7
) has recently pointed out that the interaction between 

the two rotons created by light scattering plays an important role particularly 
when the group velocity of the roton vanishes. Following him, let us describe 
the interaction betw~en rotons by an effective Hamiltonian 

(45) 

The approximation introduced by Iwamoto in dealing with this interaction is 
equivalent to the so-called ladder approximation in the method of Green functions. 
Thus the Green function ( 41) is approximately given by the solution of the 
integral equation 

Kpq(CD) = (IJpq+IJp-q)Dp(CD) +~ ~ Dp(CD) W 0 (p,p')Kp'q(CD). (46) v 
Then (40) can be written as 

1 
SA'A(co) =- -Im ~ ~f:PLA'A·(p)fqLA'A(q)7f!pq(CD), (47) 

reV P q 

where 7JI pq (co) is the solution of the integral equation 

1 [ 1 . J 7f!pq(CD) = . VIJpq+- ~ W 0 (p,p')7Jip'q(CD) . 
CD- 2Ep + zo+ v p' 

(48) 

Iwamoto has already obtained a number of interesting results about the solution 
of (48). In particular, the spectrum (44) obtained in the zeroth order approxi
mation should be modified in a drastic way by the final state interaction between 
rotons. 
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