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ABSTRACT 

 

     The reactions of the hydroxyl radical (OH) with molecular chlorine (Reaction 1), methane  

 

(Reaction 2), and propane (Reaction 3) have been studied experimentally using a pulsed laser  

 

photolysis/pulsed-laser-induced fluorescence technique over wide ranges of temperatures (297- 

 

826, 298-1009, and 296-908 K, respectively) and at pressures between 6.68 and 24.15 kPascals.   

 

The rate coefficients for these reactions exhibit no dependence on pressure and exhibit positive  

 

temperature dependences that can be represented with modified three-parameter Arrhenius  

 

expressions within their corresponding temperature ranges: k1 = 3.59 x 10
-16

T
1.35

exp(- 

 

745K/T)cm
3
molecule

-1
sec

-1
, k2 = 3.82 x 10

-19
T

2.38 
exp(-1136K/T)cm

3
molecule

-1
sec

-1
, and k3 =  

 

6.64 x 10
-16

T
1.46 

exp(-271K/T)cm
3
molecule

-1
sec

-1
.  For the OH + Cl2 reaction, the potential  

 

energy surface has been studied using quantum chemical methods which suggests OH + Cl2   

 

HOCl + Cl as the main channel of this reaction.   

 

     Density Functional Theory (DFT) along with Quadratic Configuration Interaction  

 

(QCISD(T)//DFT) calculations, with single, double, and triple electronic excitations, for the 

 

energetics of formation, stability, and reactivity of ortho-semiquinone, para-semiquinone,  

 

and the chloro-phenoxyl radicals have been performed using the 6-31G(d,p) basis set.  Formation  

 

of these radicals from potential molecular precursors catechol, hydroquinone, and the chloro- 

 

phenols is readily achieved under combustion conditions through unimolecular scission of the 

 

phenoxyl-hydrogen bond or abstraction of the phenoxyl hydrogen by a hydrogen atom or  

 

hydroxyl radical.  The resulting radicals are resonance stabilized and resist decomposition and 

 

oxidation.  The calculations strongly suggest that combustion-generated semiquinone and  

 

chloro-phenoxyl radicals are sufficiently stable and resistant to oxidation to be considered  

 

persistent in the atmospheric environment. 

 

 

v 



     Semiquinone radicals (ortho- and para-hydroxy substituted phenoxyl radicals and  

 

various derivatives) are suspected to be biologically active and may lead to DNA  

 

damage, pulmonary disease, cardiovascular disease, and liver dysfunction.  These  

 

radicals thought to be highly stable with low reactivity due to resonance stabilization  

 

including both carbon-centered and oxygen-centered radical resonance structures and 

 

been reported in cigarette tar.  Chloro-phenoxyl radicals, on the other hand, are  

 

implicated in polychlorinated-dibenzodioxin and -dibenzofuran formation mechanisms,  

 

EPA pollutants, in the low temperature sections of hazardous waste combustion.   
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CHAPTER 1.  INTRODUCTION 

 

     The large variety of physical and chemical properties in hazardous waste makes finding a  

universal hazardous waste remediation method difficult.  Incineration approaches a universal 

method when it takes advantage of the fact that all molecules may absorb infrared (thermal 

energy) radiation and decompose.  EPA, under the guidance of RCRA (Resource Conservation 

and Recovery Act), began to regulate incinerator operations in 1981 such that each component of 

hazardous waste was destroyed/removed with an efficiency of 99.99%, that particulate emissions 

do not exceed 180 ng/dry standard m
3
, and gaseous hydrochloride acid does not exceed 1.8 

kg/hour, or that it is removed with an efficiency of not less than 99%.
1
 

     Presently, incinerators are initially success-tested by comparing results from a trial burn with 

RCRA standards.  Trial burns measure the destruction efficiency of only a limited number of 

POHCs (principal organic hazardous constituents) under optimum incinerator operating 

conditions and are treated as representative of the minimum performance of the incinerator for 

other hazardous compounds.  Observation of organic emissions from incinerators suggests that 

excursions from the optimum conditions are occurring, and the assumption trial burns are 

representative of daily operating conditions is not valid.  Small excursions, such as atomization, 

poor mixing, or gas quenching can drop destruction efficiencies from greater than 99.99% to 

99% or even less than 90% and are the controlling phenomena for incinerator efficiency.
2
 

     Unfortunately, incineration is producing hazardous waste which is more lethal than its 

feedstock.
3
  Highly chlorinated organic pollutants such as polychlorinated-dibenzodioxins  

(PCDDs) and polychlorinated-dibenzofurans (PCDFs).are amongst the most lethal incineration 

products of combustion
4
, and as a result, these congeners reside on the EPA list of hazardous 

pollutants.
5
  These compounds cause or may cause cancer or other serious health effects, such as  

1 



reproductive effects or birth defects, or adverse environmental and ecological effects.  While the 

EPA is required to control emissions of these compounds, increasing public concern over the 

benefits of incinerating waste versus the health risks from pollutants drives research to identify a 

quantitative model which can accurately predict pollutant formation.  A clearer picture of the 

mechanisms responsible for producing environmental pollutants can only emerge as knowledge 

of the elementary reaction steps become more detailed.   

     The goal of this research is to apply and extend kinetics and dynamics theories to elementary 

reactions of interest in different combustion environments, with attention given to gas-phase 

reactions.  Selected reactions containing reactive gas-phase species such as the hydroxyl radical, 

molecular oxygen, hydrogen atoms, and substituted and non-substituted aromatic radicals and 

precursors were chosen as these species are known to be present in combustion environment.
6-10

   

Free radical-molecule and unimolecular decomposition reactions are implicated in the production 

of pollutants during high temperature incineration; hence this work focuses on elementary 

reactions of this form. 

     The hydroxyl radical (OH�) and molecular chlorine (Cl2) each play a key role in the  

 

chemistry of combustion and atmospheric processes.  Numerical simulations of  

 

complicated pollutant-forming mechanisms require each step contain accurately  

 

determined rate coefficients in a wide range of temperature and pressure.  Despite the  

 

importance of Reaction 1, it has not been studied at high temperature.  As a result,  

 

Chapter 3 is devoted to the experimental and theoretical temperature and pressure- 

 

dependent kinetic investigation of the gas-phase reaction of the hydroxyl radical with  

 

molecular chlorine over a wider temperature range. 

 

 

OH�   +   Cl2       products      (Reaction 1) 
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     Reaction 1 has been previously studied at low temperatures (231-354 K)
11-15

 and the results  

of these studies are in agreement with each other within reported experimental errors.  The 

importance of this reaction for atmospheric chemistry is described in the work of Gilles et al.
11

  

The current work represents the first experimental study of Reaction 1 carried out at high 

temperature in the range from 297 K (to compare with the earlier studies) to 826 K, which is 

relevant to combustion and thermal processes. 

     Reaction 1 plays a significant role in the formation of the hazardous emissions from  

combustion of chlorine-containing compounds
16-18

 as, for example, it may be important in the 

control of the HCl to Cl2 ratio.  While molecular chlorine is an effective chlorinating agent and a 

powerful oxidant, the larger bond dissociation energy in HCl can result in significant 

sequestration of chlorine.  In addition, Cl2 is difficult to scrub from flue gas due to its relatively 

low water solubility.  Therefore, emissions of Cl2 should be controlled and minimized during the 

combustion process.
17

 

     The hydroxyl radical (OH�) is an important reactant in combustion chemistry.  Using diode-

laser absorption spectroscopy, Tamaru et al.
19

 report hydroxyl radicals are present in a post-

flame region (T=800-1400 K) lying between 2 premixed propane/air flames (fuel-in-air ratio = 

0.65-1.0).  The measured OH� concentrations in the post-flame did not vary significantly which 

suggests the post-flame region contents are close to chemical equilibrium for OH�. 

     In the late stages of chloro-hydrocarbon (CHC) combustion as well as post-combustion zones  

 

molecular chlorine (T < 900K) and the hydroxyl radical (T=800-1400 K) are favored at low  

 

temperatures.  Cl2 has also been linked to the homogeneous and catalytic formation of  

 

chlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in the low temperature section  

 

of combusters and incinerators.
20, 21
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     A conservative estimate suggests 45 million tons of molecular chlorine (Cl2) are produced 

globally each year making chlorine the most important industrial chemical.
22

  PVC (polyvinyl 

chloride) plastic represents approximately 33% of the Cl2 product array and is projected to rise to 

50-55% due to the influence of construction.  While there is a decline in demand for chlorine in 

some applications, such as the pulp and paper industry, global demand for molecular chlorine is 

expected to increase 2.8% per year.
23

 

     Given both the hydroxyl radical and molecular chlorine are present in post-flame regions of 

incinerators, one of the objectives of this work is to more accurately determine the  experimental 

rate constant for Reaction 1. 

     To accurately determine the rate coefficients of hydroxyl radical reactions, experiments must 

be performed with sufficiently low initial concentrations of hydroxyl radicals, thus ensuring the 

absence of any complications due to possible fast secondary reactions.  For this purpose, we have 

constructed a pulsed laser photolysis/pulsed-laser-induced fluorescence (PLP-PLIF) apparatus 

combined with a heatable, slow-flow reactor. This technique has excellent sensitivity to hydroxyl 

radicals, which allows one to perform OH� reaction rate measurements with the necessary low 

initial OH� concentrations.
24

  Two reactions whose rate coefficients are relatively well-

established, Reactions 2 and 3, were also studied in order to validate the experimental apparatus 

used here for the first time after its construction.  (Numbers in parentheses indicate the 

experimental temperature ranges of the current study). 

 

OH�   +   CH4        products (298-1009 K)               (Reaction 2) 

 

OH�   +   C3H8       products (296-908 K)               (Reaction 3) 
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    In addition, the potential energy surface of Reaction 1 has been studied using two quantum 

chemical approaches, namely hybrid density functional theory (DFT) (B3LYP/6-31G(d,p) and  

BHandHLYP/6-31G(d,p)) and quadratic configuration interaction theory (QCISD(T)/6-

31G(d,p)).  Hybrid DFT is a common computational procedure which involves mixing of various 

amounts of the Hartree-Fock nonlocal exchange operator with DFT exchange-correlation 

functionals.  Despite known deficiencies with DFT
25, 26

, the BHandHLYP level of theory has 

risen in popularity due to its cost efficiency and its ability to order experimental values well.
27-29

  

The QCISD(T) method
30

 involves a wavefunction expansion such that single, double, and triple 

electronic orbital excitations are included in its variational energy minimization treatment.  

QCISD(T) will be discussed in greater detail in Chapter 2. 

     In Chapter 4, DFT and QCISD(T) calculations of the energetics of formation, stability,  

 

and reactivity of o-semiquinone, p-semiquinone, and phenoxyl radicals have been performed.   

 

There is increasing experimental evidence that these radicals are environmentally persistent,  

 

present in airborne fine particulate matter (PM2.5), and whose principal source is combustion- 

 

generated particles.
31-33

  These radicals are biologically active and may lead to DNA damage,  

 

pulmonary disease, cardiovascular disease, and liver dysfunction.
31,34

  It is suspected that they  

 

are semiquinone-type radicals (ortho- and para-hydroxy substituted phenoxyl radicals and 

various derivatives) that have been reported in cigarette tar.
35-37

  These radicals are strong 

enough reducing agents in aqueous solution at physiological pH’s to reduce dissolved oxygen to 

form superoxide and other biologically-active, reactive oxygen species (ROS).
31, 38

  However, the 

nature of the radicals in PM2.5 and combustion-generated particulate matter has not been 

conclusively demonstrated.  Furthermore, recent experimental studies suggest that simple 

 

5 



phenoxyl-type radicals may be as persistent as semiquinone radicals and be more ubiquitous in 

the environment.
39

 

     For radicals to have environmentally significant concentrations, they require: 

 

1. A molecular precursor and favorable route of formation; 

 

2. Stability, i.e. being resistant to decomposition; and 

 

3. Non-reactivity, i.e. being resistant to reaction with other molecular or radical species. 

 

Formation of these radicals from potential molecular precursors catechol (1,2-dihydroxyl  

 

benzene), hydroquinone (1,4-dihydroxyl benzene), and phenol is readily achieved under  

 

combustion conditions through unimolecular scission of the phenoxyl-hydrogen bond
40

  

 

or abstraction of the phenoxyl hydrogen by a hydrogen atom or hydroxyl radical.
41-44

   

 

The resulting radicals are resonance stabilized and resist decomposition and oxidation.   

 

These calculations strongly suggest that combustion-generated semiquinone and  

 

phenoxyl radicals are sufficiently stable and resistant to oxidation to be persistent in the  

 

atmospheric environment.   

 

 
 

Figure 1: Resonance structures of p-semiquinone radical existing as both carbon-centered and 

oxygen-centered radicals.  Similar schemes can be drawn for o-semiquinone and phenoxyl 

radicals. 
 

     Semiquinone radicals are thought to be highly stable with low reactivity due to resonance 

stabilization including both carbon-centered and oxygen-centered radical resonance structures  

(Figure 1).  Consequently, they have been considered the most likely candidates for the observed 

6 



free radicals in combustion and atmospheric PM2.5.
35

  Moreover, phenoxyl radicals may have 

similar chemical properties and exist in higher concentrations.  Despite these radicals’ resonance 

stabilization and the implication they are formed through the thermal degradation of precursors 

such as hydroquinone, catechol and phenol, there is no reported characterization of these 

radicals’ formation from thermal degradation of these precursors in the gas phase.
39

 

     The thermal decomposition of the phenoxyl radical along with its and mono-hydroxylated 

substituted derivatives are representative of the types of steps thought to be of importance in 

pollutant formation.  Using a mechanism proposed by Liu et al.
45

 for the thermal decomposition 

of the phenoxyl radical, an ab initio study of the thermal decomposition of phenoxyl (for 

calibration), mono-hydroxylated phenoxyl radicals (Chapter 4), and poly-chlorinated phenoxyl 

radicals (Chapter 5) was undertaken.  Transition state energies along with reaction energies have 

been calculated for each of these decomposition reactions where carbon monoxide and a 

substituted cyclopentadienyl radical are produced.   

     Bimolecular reaction radical-molecular oxygen reactions were included as it is the highest 

concentration reactive species in the atmosphere and the known principal route of consumption 

of most organic radicals under oxidative conditions.
46-55

  Activation energies for the addition of 

molecular oxygen to the most reactive carbon atom (in all cases, the para position) range from 

19.6 to 21.3 kcal mol
-1

 (BHandHLYP/6-31G(d,p)).  Free energies for oxidation of semiquinone 

and phenoxyl radicals at 298K are positive and therefore thermodynamically unfeasible at this 

temperature. 

     In Chapter 4, calculations concerning the formation, stability, and reactivity of phenoxyl, o-

semiquinone, and p-semiquinone radicals under combustion and atmospheric conditions are 

presented. 

7 



     With regard to Chapter 5, chlorinated phenols (CPs) and various derivatives have been 

manufactured for various purposes including disinfection and vegetation control. Several highly 

CPs are considered hazardous waste
5
, thus their disposal is subject to regulation by the EPA, 

controlled high-temperature incineration being the most common method.  Unfortunately, CPs 

are precursors to the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans 

(PCDD/F) upon heating or burning.  Both gas-phase condensation reactions and transition metal 

surface-mediated reactions can convert some congeners of CPs to PCDD/F under the appropriate 

conditions.
56-63

  Furthermore, CPs and PCDD/F can be formed as “products of incomplete 

combustion (PICS)” from combustion/thermal reaction in basically any process that contains a 

source of carbon, chlorine, and a catalytic transition metal.  Because most combustion devices 

contain trace levels of transition metals and chlorine, CPs are nearly ubiquitous in the 

environment.   

     While a previous computational gas-phase study of phenol and para-substituted phenols 

states B3LYP underestimates the change in OH bond dissociation energies (after making 

comparisons with experimental values only performed in solution)
64

, other DFT studies have 

reproduced experimental changes in OH bond dissociation energies satisfactorily when 

compared to experiment
65-71

 using larger basis sets. These studies have undertaken only mono- or 

dichloro-substituent effects on the OH bond dissociation energy of phenol.  In addition, while 

another study has undertaken the stabilities and geometries of the 19 congeners of chlorophenol 

using B3LYP/6-311+G(d,p)
72

, this is the first study to undertake all the 19 congeners of  

chlorophenols’ reactivities with DFT in terms of (i) unimolecular decomposition producing a 

hydrogen atom and a chlorinated phenoxyl radical, (ii) reaction with a hydrogen atom which 

abstracts hydrogen forming a chlorinated phenoxyl radical, (iii) reaction with a hydrogen atom  

8 



which displaces the hydroxyl radical forming a chlorinated benzene, and (iv) reaction with a 

hydroxyl radical which abstracts hydrogen producing water and a chlorinated phenoxyl radical.  

In some cases, QCISD(T)/6-31G(d,p)// BHandHLYP/6-31G(d,p) model chemistries are 

employed to validate the BHandHLYP/6-31G(d,p) ordering of results. 

     Amongst the mono-chlorinated phenols, it has been established OH bond dissociation 

energies are lowered by an electron-donating para-chloro substituent and increase in the 

presence of ortho- and meta-chloro substituents
65-67, 69-71

 as these structures are stabilized by the 

presence of an internal hydrogen bond .   As it happens with mono-chloro phenols, ortho-chloro 

phenol is the most stable.
72

  The OH bond dissociation energies calculated herein with 

BHandHLYP/6-31G(d,p) are consistent with these previous findings.  Augmenting this model 

chemistry with the 6-311++G(d,p) basis set did not change the relative ordering of bond 

dissociation energies and exaggerated the differences.  As a result, the 6-31G(d,p) basis set was 

used most often as we are concerned with the relative bond dissociation energies. 

     Han et al.
72

 also report the OH bond in phenol is lengthened (or destabilized) with an 

increasing degree of chlorine substitutions, and stabilized (amongst each homologue pattern) in 

cases where an internal hydrogen bond may be established.  The DFT results in this work are 

congruent with these findings in terms of stabilities and geometries. 

     Earlier ab initio calculations have confirmed the phenoxyl radical
45

 thermally decomposes 

after proceeding through a rate-determining bicyclic intermediate followed by alpha-CC bond 

cleavage to produce CO and a cyclopentadienyl radical.  We report amongst the 19 congeners of 

chloro-phenoxyl radicals the activation energies inside each homologue pattern for concerted 

elimination of CO and a chlorinated cyclopentadienyl radical is lowered (relative to phenoxyl, 

Eact=62.9 kcal mol
-1

 (BHandHLYP/6-31G(d,p))) provided one ortho-hydrogen atom moiety is  

9 



adjacent to the carbon-carbon bond rupture.  Furthermore, the results here show bond rupture is 

thermodynamically favored in the C-C bond adjacent to the hydrogen atom, as opposed to an 

adjacent chlorine atom, regardless of the congener.  The results in Chapter 5 suggest the higher 

chlorinated congeners of the phenoxyl radical are more likely to decompose into CO and a 

chlorinated cyclopentadienyl radical, relative to the analogous reaction for phenoxyl, provided 

one ortho-hydrogen atom moiety is adjacent to the carbon-carbon bond rupture.  The remaining 

chlorinated radicals then become more important in PCDD/F formation reactions which have 

been proposed to take place via radical-radical or radical-molecule addition pathways
59, 61, 73-78

 

due to their relative resistance to decomposition. 

     After one observes the modeled mechanistic work by Ryu et al.
77

, which begins with 

unimolecular decomposition, for the 19 congeners of chlorophenol and the experimental system 

used to represent the 19 congeners of chlorophenol (an equimolar mixture phenol, 4-

chlorophenol, and 2.4 dichlorophenol in benzene) one may note the expected resulting radicals in 

this system are phenoxyl, 4-chlorophenoxyl and 2,4 dichlorophenoxyl, with 4-chlorophenoxyl as 

the most abundant.  The dichlorinated product radical meets the condition for lowering its 

decomposition energy (i.e., one ortho-H atom moiety is present), relative to the balance, making 

the phenoxyl and 4 chlorophenoxyl radicals most resistant to decomposition in this work.  Non-

chlorinated dibenzofuran was consistently produced in the largest amounts
77

 suggesting 

nonsubstituted phenoxyl radical coupling, followed by enolizaton and condensation, was 

energetically favored over the alternatives.  Wiater et al.
75

 have shown using slow combustion 

(500-600 C) the phenoxyl radical prefers to dimerize at its para-sites, a site unavailable in the 4-

chlorophenoxyl case due to steric hindering by the chlorine atom.  While the decomposition 

energies for phenoxyl and para-chlorophenoxyl are 62.9 and 63.6 kcal-mol
-1

, these calculations  

10 



along with experimental works demonstrate the phenoxyl radical would be most likely to 

dimerize considering the absence of steric hinderance (higher Arrhenius factor in dibenzofuran 

rate) at its para-carbon and its high decomposition energy. 

     Reference 77 is congruent with Wiater et al. when it also reports PCDF formation is favored 

radicals with chlorine substitutions at meta-positions 3 and 5, as opposed to at ortho-positions 2 

and 4.  This observation has also been explained by the preference phenoxyl radical dimerization  

has for its ortho and para sites
75

, sites available for addition in 3,5 dichlorophenoxyl due to the 

absence of steric hinderance from chlorine atoms at these locations.  With respect to the 

dichlorophenoxyl homologue pattern radical decomposition results, 3,5-dichlorophenoxy radical 

is least likely to decompose (into CO and a dichlorocyclopentadienyl radical), with one 

exception, giving it a greater lifetime in the gas-phase and greater probability for involvement in 

PCDF formation.  It is not surprising that the 3,5 dichloro-isomer also has ortho-hydrogen 

moieties available for the condensation step.  The exception (2,6 dichlorophenoxy) does not have 

an ortho-H atom available for the condensation step. 

     After separating those chlorinated radicals whose decomposition is facilitated by the presence 

of one ortho-H atom from this work, one may observe degree of chlorination correlates with the 

destabilization of the alpha-C-C bond in the balance of chlorinated phenoxyl radicals.  

Additionally, amongst each homologue pattern, it should be noted the presence of two ortho-

arranged chlorine atoms makes these radicals the least likely candidates for decomposition. 

     Chlorinated phenoxyl radicals are also resonance stabilized and may behave similarly to 

phenoxyl radicals in oxidative environments.
79, 80

  To address this issue, bimolecular reaction 

calculations between 2-, 3-, and 4-monochlorophenoxyl radicals and molecular oxygen were 

undertaken.  High activation energies and positive free energies of reaction are similar to their  

11 



non-reactive phenoxyl analogue suggesting chlorinated phenoxyl radicals are virtually 

unoxidizable as well. 
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CHAPTER 2.  QUANTUM CHEMICAL THEORY 

     All ab initio calculations were performed with the Gaussian 98/03 system of programs
81

  

using both SuperMike (a 1024 cpu supercomputer, mike.cct.lsu.edu) and SuperHelix (a 256 cpu  

supercomputer, helix.bcvc.lsu.edu) which are both located in the Louisiana State University  

(LSU) Center for Computational Technology (www.cct.lsu.edu).  Casper (casper.lsu.edu), a 14  

node system (8 cpu/node), provided another resource and is located inside the LSU Department  

of Information Technology Services (www.lsu.edu/ocs). 

2.1 The 6-31G(d,p) and 6-31++G(d,p) Basis Sets 

     Basis sets are pre-defined approximations and allow for the expression of molecular  

orbitals as linear combinations of one electron functions (or basis functions).  An  

 

individual molecular orbital is defined as
30

 

 

 

Фi  =  Σ cji Xj 

 

 

where cji are the molecular orbital expansion coefficients and Xj are the basis functions.   

 

     Gaussian (G03) uses gaussian-type atomic functions (primitive gaussians) as basis  

 

functions
82

 which have the following form 

 

 

X(α,r)  =  cx
n
y

m
z

l
 exp(-αr

2
) 

 

 

G03 sums the primitive gaussians to approximate Slater-type orbitals (STOs) (Figure2).  The  

 

sum of primitive Gaussians is termed a contracted gaussian function.  This manipulation is done  

 

to circumvent the difficulty with integrating the two electron integral composed of STOs and  

 

increase computational speed.  Speed takes place because the two electron integral of 2  

 

contracted gaussian functions is another contracted gaussian function (Figure 3).
30
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    The 6-31G(d,p) basis set
30

 is described by a contraction of 6 primitive Gaussians for non-

valence molecular orbitals (inner) and 2 types of functions for valence orbitals (outer).  The best 

orbital exponents are commonly slightly greater than and lower than the optimal exponent of a 

minimal basis function (STO-3G)
30

, and 2 functions for valence orbitals allow for greater 

flexibility (more orbital exponents and coefficients) in larger systems.  Double Zeta polarization 

functions allow for adjustment of the valence orbitals’ exponents (inner and outer) in a basis set 

by 2 scale factors (ζ’ and ζ”, respectively).  Unfortunately, ammonia is planar when its 

polarization functions are only described in this manner.  Polarization functions must also 

include virtual (higher angular quantum number) orbitals.  The (d,p) term in both basis’ used in 

this work indicates polarization functions (or d functions) have been added for first row elements 

(Li through Ne), and p orbitals have been added to hydrogen atoms.  The “plus” sign term in the 

6-31++G(d,p) basis indicates diffuse functions have been added into the expansion.  Diffuse 

functions use smaller exponential coefficients and thus decay more slowly than a standard 

function.  The double ++ term indicates diffuse functions have been added to heavy atoms as 

well as hydrogen atoms. 

2.2 Hartree Fock Theory 

 

     Separation of variables may be employed for a 2 electron problem when the particles  

 

are non-interacting or independent.  Initially, electron-electron coulombic repulsions are  

 

dismissed in Hartree Fock (HF) theory in order to arrive at a zeroth-order wave function.   

 

The Schrodinger equation for 2 independent electrons is
83

 

 

 

(H1 + H2)ψ(x1,y1,z1,*,x2,y2,z2,*)  =  (E1 + E2) ψ(x1,y1,z1,*,x2,y2,z2,*) 

 

* = α (↑) or β (↓) spin function 
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a sum of individual Hamiltonian operators and energies.  Each Hamiltonian in this sum  

 

includes electronic repulsions via its potential energy term thus allowing each electron  

 

 
 

Figure 2: Comparison of the quality of the least-squares fit of a 1s Slater function (δ=1.0) 

obtained at the STO-1G, STO-2G, and STO-3G levels. 

 

 

 
Figure 3: The product of two 1s Gaussians is a third 1s Gaussian. 
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to interact with the balance of n-1 electrons’ positions.  As a result, the repulsive portion  

 

of the potential energy (V) for each electron becomes a sum of n-1 terms, where n is the  

 

number of electrons.  For example, the electron-electron interaction expansion for  

 

electron one becomes 

 

V1(r1,θ1,Ø1) = V1,2 + V1,3 + … + V1,n-1  

 

 

Assuming the wave function ψ(x1,y1,z1,*,x2,y2,z2,*) is separable results in a total wave  

 

function (the Hartree product) which is a product of individual wave functions (zeroth- 

 

order). 

 

Ψ = A (g1(r1,θ1,Ø1) g2(r2,θ2,Ø2)… gN(rN,θN,ØN )) 

 

 

 
 

 

     The HF method begins with a trial wave function not limited to a hydrogen-like  

 

function and searches for functions g1, g2, … which minimize the variational integral
30

 

 

 

∫ Ψ* Ĥ Ψ dv 

∫ Ψ* Ψ dv 

 

Better approximate wavefunctions (g) are obtained by varying their parameters  

 

(coefficients and orbital exponents) until the electronic energy is minimized.  The  

 

functions g  

 

g(r, θ,Ø,α)  =  R(r) Yl
m

(θ,Ø) α 

 

 

are a product of a radial function R(r), a spherical harmonic Yl
m

(θ,Ø), and a spin orbital  

 

(α or β) and are antisymmetric under interchange.  That is, when 2 rows (or 2 electrons)  
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of Ψ are swapped, the sign of its determinant changes, in accordance with the Pauli  

 

principle.
30

  Additionally, the determinant will vanish for the case of 2 swapped electrons  

 

(rows) which have the same set of quantum numbers. 

 

     The variational integral can be solved in space spanned by a set of orthonormal,  

 

normalized basis functions, its solution depends on the initial guess for these orbitals as  

 

this guess is refined iteratively (i.e., the self-consistent field approach), and its solution will 

 

converge to an energy greater than or equal to the ground state energy of the system.  Using the  

 

Born Oppenheimer approximation (neglecting nuclear motion)
30

, the electronic Hamiltonian (Ĥ)  

 

becomes a sum of a one electron operator, Ĥ(i), and a two electron operator, v(i,j). 

 

 

 

Ĥ(i) = -½ grad(i)
2
 – Σ ZA 

           
A
  ri,A 

 

v(i,j) = 1/ri,j 

 

     The one electron operator is composed of a kinetic term and an electron-nuclear attractive  

 

term, respectively.  The two electron operator is composed of two parts: 1) a coulombic operator  

 

gives the interaction of eectron one with the average charge distribution of the other electrons  

 

and is referred to as “Hartree Fock mean field theory”, and 2) an exchange operator which arises  

 

from the antisymmetric requirement of the wavefunction and resembles the coulombic term,  

 

except it switches or exchanges the spin orbitals.  The exchange operator does not have a  

 

classical analog.
30

   

 

2.3 Density Functional Theory 

 

     Density functional theory (DFT) also uses a variational treatment to arrive at the ground state  

 

energy of a system using the electronic density (ρ(r)) as the variable function, g.   
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ρ(r)  =  ∫ ψ(r)*ψ(r)dr 

N  =  ∫ ρ(r)dr 

 

This simplification reduces 3N coordinates (spatial) to N density terms (ρ(r)) where N is  

 

the number of electrons.
30

  As a result, the computational cost for DFT calculations is  

 

lowered significantly due to its increased speed.
84

 

 

     In 1964, Hohenberg and Kohn
85

 showed for an N electron system the external  

 

potential (V(r)) is unique and completely fixes the Hamiltonian, thus N and V(r)  

 

determine all the molecular properties of the ground state.   

 

 

V(r) = ∫ ψ(r)* V(r) ψ(r) dr 

 

 

The variational integral then becomes a functional of a variation function (the density). 

 

 

Ev[ρ(r)]  =  ∫ V(r) ρ(r) dr  +  F[ρ(r)] 
 

 

It follows the independent kinetic (T) and interaction terms (Uee), in the Hamiltonian, F[ρ(r)],  
 

are calculated in a straightforward fashion from the wave function, a functional of the density.
85

 

 

 

T  =  -½ ∫ grad ψ(r)* grad ψ(r) dr 

 

Uee  =  ½ ∫  ψ(r)* ψ(r’)* (1/│r-r’│) ψ(r’) ψ(r) dr 

 

 

In addition, V(r) is termed the external potential since it is produced by charges external to the  

 

system of electrons.  DFT treats the nuclear coordinates as fixed causing V(r) to depend only on  

 

the electronic coordinates (x,y,z).  

 

     In DFT, HF exchange is replaced by a more general expression composed of 2 parts, the  

 

exchange-correlation functional.  The electron-electron interaction term (U) now includes  
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correlation.  The correlation energy (Ecorr) is defined as Ecorr  =  EHF – Eexact.   The goal in DFT is  

 

to mix various amounts of HF exchange (along with other approximations for exchange) with  

 

terms dealing with correlation such that the difference between EHF and Ecorr is exactly the  

 

energy of the system (Eexact).  Specifically, B3LYP theory involves a three-parameter hybrid  

 

exchange functional containing Slater exchange, 20% HF exchange, and Becke’s 1988 gradient  

 

corrections (i.e. B3).
86

  The LYP portion of this theory indicates the gradient-corrected  

 

functionals of Lee, Yang, and Parr are included to adjust for correlation.
87

  The half-and-half  

 

functional, or BHandHLYP theory, also designed by Becke, includes 50% Slater exchange along  

 

with 50% HF exchange.  Since BHandHLYP gives more accurate barrier heights and since  

 

B3LYP is more accurate for deriving energies of reaction
26

, we included both B3LYP and  

 

BHandHLYP in this work. 

 

2.4 Moeller-Plesset Perturbation Theory 

 

     Møller-Plesset theory (MP2), or Many Body Perturbation Theory
30

, is a post-Hartree Fock 

treatment that corrects the HF energy with a second-order correction term.  The unperturbed HF  

Hamiltonian (Ĥo) is extended by adding a small perturbation (V) where λ is an arbitrary 

parameter and controls the size of the perturbation.  This perturbation represents the difference 

between the true molecular electronic Hamiltonian and the HF Hamiltonian. 

 

Ĥ  =  Ĥo  +  λV 

 

If the perturbation is sufficiently small both the wave function and the energy can be  

 

expressed as a power series in λ 
                              n 

Ψ  =  lim Σ λi
 Ψi

 
                     n 2 
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         n 

E  =  lim Σ λi 
E

i
 

                      n 2 

 

Substitution of these series into the time-independent Schrodinger equation gives
83

 

 

             2  2      2 

(Ĥo + λV)( Σ λi
 Ψi 

)  =  ( Σ λi 
E

i 
)( Σ λi

 Ψi 
)   

              i   i       i 

 

     After equating like coefficients in λ, the solution of this equation to zeroth order (in λ) gives 

an energy which is the sum of the orbital energies (E
o 
for an unperturbed wave function).  This 

solution to first order gives the HF energy (E
o 
+ E

1
) and a first-order perturbed wave function 

(Ψ1
).  This solution to second order is the MP2 energy and corrects the HF energy with one term 

(E
2
) 

E
2

 = 〈 Ψn
o*⏐V⏐Ψn

1
 〉 

 

 

using the complex conjugate of the unperturbed HF wave function, the perturbation, and  

 

the first-order HF perturbed wave function.
83

   

 

     The second order energy correction term becomes more familiar after one finds an expression  

 

for the first order corrected wavefunction, Ψn
1
, and substitutes it into the above equation.  The  

 

first order corrected wave function is derived from (i) a first order perturbation expansion of the  

 

wave function Ψn (and eigenvalues) followed by (ii) equating terms in λ1
.  

 

(Ho-En
o
) Ψn

1 
  =  (En

1
-V) Ψn

o 

 

 

Multiplication by Ψm
o 

(a complex conjugate) and substitution for the conjugate transpose  

 

of a Hermitian matrix (Ho) gives 

 

 

(Em
o
En

o
) 〈Ψm

o⏐Ψn
1〉  =  En

1
 〈Ψm

o⏐Ψn
1
 〉  -  〈 Ψm

o⏐V⏐Ψn
o〉 
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The first order correction to the energy, En
1
, may be obtained

83
 (which is also the HF  

 

energy) when m=n. 

 

 

En
1
 δmn =  =〈Ψm

o│V│Ψn
o〉 

 

 

For the other case of m≠n,  

 

 

Em
o
 –En

o
 〈Ψm

o│Ψn
1〉  =  - 〈Ψm

o│V│Ψn
o〉 

 

 

one needs an expression for the first order corrected wavefunction.  A first order  

 

corrected wave function Ψn
1
 may be expressed as a linear combination of coefficients  

 

and unperturbed wave functions. 

 

Ψn
1  =  Σ amΨm

o     

 m 

 

and whose molecular orbital coefficients are 

 

am=〈Ψm
o│Ψn

1〉 
 

(Em
o
 –En

o
) am  =  - 〈Ψm

o│V│Ψn
o〉 

 

 

am  =   〈Ψm
o│V│Ψn

o〉 
     En

o
 –Em

o
 

 

gives a first order corrected wave function which can be substituted into the E
2 
expression,  

 

defined earlier.
 

 

Ψn
1  =  Σ amΨm

o  =  Σ 〈Ψm
o│V│Ψn

o〉 Ψm
o  

 
            m                           m

       En
o
 –Em

o
 

 

Since an  is undefined in the former expression, an =  〈Ψn
o│Ψn

1〉 = 0 is set to zero using a  

 

condition called intermediate normalization. 
83

  Intermediate normalization requires one assume  
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the unperturbed wave function is normalized (〈Ψn
o│Ψn

o〉=1) and the perturbed wavefunction is  

 

not normalized (〈Ψn
o│Ψn〉=1) such that the sum of their product is 1. 

 

 

〈Ψn
o│Ψn〉  =  〈Ψn

o│Ψn
o〉  +  λ1〈Ψn

o│Ψn
1〉  +   =  1 

 

 

     The previous normalization condition for the unperturbed wave function is repeated  

 

when the correction terms 〈Ψn
o│Ψn

1〉 = 0 are orthogonal.  Substitution of Ψn
1
 into the  

 

second order energy correction term (E
2
)  

 

 

E
2 
 =  Σ〈Ψm

o│V│Ψn
o〉 〈Ψn

o│V│Ψm
o〉  m≠n 

                   m        
En

o
 –Em

o
 

 

 

and using the Hermitian nature of the perturbation V, 

 

 

E
2
 =  Σ │〈Ψn

o│V│Ψm
o〉│2

 
                                        m           

En
o
 –Em

o
 

 

the second order energy correction term becomes more familiar in terms of unperturbed  

wave functions and their energies.
83

 

2.5 Configuration Interaction Theory 

     Configuration Interaction (QCISD(T)) is also a post-HF treatment.
30

  Recalling when the first  

2 electron system (helium) is expanded in terms of a zeroth-order wavefunction and in the  

absence of correlation in the Hamiltonian, the energy of this system is in error by 38%, relative  

to the sum of its 2 ionization energies.
83

  After helium’s zeroth-order energy is corrected to first  

order by considering correlation containing one excitation, the energy of this system is in error 

 by only 5.3%.  This means when excitations are included in the wave function the energy of a  
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system will begin to converge to its exact value.  Practically, a wave function cannot contain an  

infinite number of terms, however, CI addresses this issue by expanding the wave function in  

terms of 2 or more parameters such that mixing from other excited electronic configurations  

occurs and accounts for the correlation energy.  For example, a wave function of 2 variables may  

expanded by holding one variable fixed (x2) where the expansion coefficients (ai) are functions  

of x2 . 

Ф(x1,x2)  =  Σai(x2)Xi(x1) 

 

 

Next, the expansion coefficients are expanded, 

 

 

ai(x2)  =  Σ bij Xj (x2) 

 

 

and substituted into the original expression. 

 

 

Ф(x1,x2)  =  Σ bij Xi (x1) Xj(x2) 

 

 

a process which can be extended for an N electron system 

 

 

Ф(x1,x2, …, xN).=  Σ  bij…NXi (x1)Xj(x2)… XN(xN) 

             
 ij…N

 

 

where x1,…,xN represent the spin and spatial coordinates of each electron and X1,…,XN  

 

represent the spin orbitals.   

 

     The Configuration Interaction (QCISD(T)) method writes the N electron basis functions, Ф,  
 
as substitutions or “excitations” from the Hartree-Fock “reference” determinant

30
,  

 

 

│Ψ〉 = co│Фo〉 + Σca
r│Фa

r〉 + Σcab
rs│Фab

rs〉 + Σcabc
rst│Фabc

rst〉 
                    

 ra                      a<b,r<s                       a<b<c,r<s<t 
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i.e. where │Фa
r〉 represents the Slater determinant formed by replacing the occupied spin orbital  

 

a in │Фo〉 with a virtual (or unoccupied) spin orbital r.  The Configuration Interaction space in  

 

this work has been truncated at a triples’ excitation level as to make these calculations tractable.   

 

Every N electron Slater determinant may be described by a set of N spin orbitals from which it is  

 

formed, and this set of orbital occupancies is termed a “configuration”.  The great strength of the  

 

Configuration Interaction method lies in its ability to include excited states in its application and  

 

thus give rise to energetics of open-shell systems displaced somewhat from their equilibrium  

 

geometries.
 

 

2.6 Potential Energy Surfaces 

 

     A plot of energy versus one or more reaction coordinates (degrees of freedom) for a  

 

molecule creates a potential energy surface (PES).   

 

     A minimum structure is located in the bottom of a valley on a PES, and from such a  

point motion in any direction leads to a higher energy.  The first derivative of the energy (the 

gradient) for a minimum structure will be zero in all directions, and its force constants (or the 

second derivatives, k) as a result will each be greater than zero such that the curvature of the PES 

in all directions from this point are concave up.
82

 

     A transition structure (TS) is also a stationary point on a potential energy surface described by  

 

a zero gradient and a force constant matrix (the Hessian) which contains one negative value.   

 

These two considerations define a simple saddle point or TS.  This means a TS is a local  

 

maximum along one and only one vector while being a local minimum in all other orthogonal  

 

directions.  The vector associated with the direction which contains the maxima is termed the  

 

transition vector and is the eigenvector associated with the negative eigenvalue (ν).82
 

 

ν  = (1/2π)(k/μ)
½ 
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     An activation energy (Eact) is defined as the minimum energy necessary for a reaction  

 

to occur and is mathematically expressed as 

 

Eact  =  ETS  –  Ereactant 

 

     In this work the energy of a transition state (ETS) was found using several techniques.  For 

unimolecular decomposition reactions, coarse relaxed PES scanning was employed which 

involves stretching one degree of freedom in a structure while plotting the energy.  For the 

bimolecular reactions, van der Waals’ reactant and product minima
88

 were located prior to 

performing a coarse two-dimensional scan thus reducing the amount of computations needed to 

locate the TS.  Once a maxima was located coarse scanning became complete, and a more 

refined scanning approach was undertaken. 

     The Synchronous Transit-Guided Quasi-Newton (STQN) method
82

, integrated into the 

Gaussian suite of programs by Schlegel et al
89

 is a transition state seeking procedure and requires 

input structures which lie near the quadratic, maximum region of a PES.  Two input structures 

(reactant and product geometries) are required for the QST2 form of this method; three (reactant, 

product, and TS structures) are required for its QST3 form. 

2.7 Choosing a Framework Model Chemistry 

      Initially, a synthesis reaction where 2 chlorophenoxy radicals combine to yield a dichloro- 

diketodimer was studied using 3 quantum chemical methods: Hartree-Fock (HF), Density  

 

Functional Theory (B3LYP), and Many-Body Perturbation Theory (MP2) and 2 basis sets (6- 

 

31G(d,p) and 6-31++G(d,p)).  Table 1 contains the non-zero point corrected energetics (∆Erxn)  

 

for the above reaction in terms of theory versus basis set.  Energies are given in kcal-mol
-1

.  The  

 

U- and R- prefixes refer to unrestricted or restricted wave functions
30

, respectively. 
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Figure 4: Two chlorophenoxyl radicals combine to form a dichlorodiketodimer. 

 

 

Table 1: Reaction energies for the above synthesis reaction as a function of theory versus basis 

set. 

Theory/Basis Set 6-31G(d,p) 6-31++G(d,p) 

ROHF/RHF -22.45 -20.58 

B3LYP -10.32 -7.87 

UMP2 -78.29 -80.54 

ROMP2 -28.56 NA 

 

     Given the Hartree Fock method does not contain any electron correlation (HF wave  

functions only satisfy the antisymmetry requirement of the Pauli principle when the wave  

function vanishes for 2 electrons with the same spin and spatial coordinates) and given  

previous DFT theoretical studies’ results qualitatively order experiment values well, the  

less computationally expensive and faster DFT methods (relative to MP2 methods), were  

employed in the following calculations.  The smaller 6-31G(d,p) basis set was chosen as  

the addition of diffuse basis functions (via 6-31++G(d,p)) was not necessary to  

qualitatively order the results. 

    Møller-Plesset theory (UMP2) was also dismissed due to its spin contamination, i.e.  

second-order corrected energetics are typically erroneous for systems with an unpaired  

electron.
90

  Evidence of UMP2 spin contamination is observed for the doublet ortho- 

26 



chlorophenoxyl radical when one compares its expectation value for Ŝ2
 with the other methods 

(Table 2).  The Restricted Open-Shell MP2 (ROMP2) calculation maintains a fixed spin state for 

the chlorophenoxyl radical (Ŝ2
 = S(S+1) = 0.75). 

Table 2:  Ŝ2 
results for the 2-chlorophenoxyl radical as a function of theory and basis set. 

Theory/Basis Set 6-31G(d,p) 6-31++G(d,p) 

Hartree-Fock 0.75 0.75 

B3LYP 0.79 0.79 

UMP2 1.30 1.29 

ROMP2 0.75 0.75 
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CHAPTER 3.  GAS-PHASE REACTION OF HYDROXYL RADICAL AND 

MOLECULAR CHLORINE* 

 

3.1 Reaction Rate Measurements 

 

     All rate constant determinations for Reactions 1-3: 

 

 

OH�  +   Cl2       Products   (Reaction 1) 

 

OH�  +  CH4      Products   (Reaction 2) 

 

OH�  +  C3H8     Products   (Reaction 3) 

 

 

were studied using Pulsed Laser Photolysis-Pulsed Laser Induced Fluorescence (PLP-PLIF) and  

 

pseudo-first order conditions
88

 ([Cl2], [CH4], [C3H8] >> [OH�]).   Previous investigations of the  

 

rate coefficient for Reaction 1 have not exceeded 354 K
11-15

  As a result the uncertainty in the  

 

temperature dependent portion (Eact/R) of the rate constant is relatively large.
11

  We have 

 

undertaken this study over an extended temperature range (231 to 826 K) in order to improve on  

 

the accuracy of previously determined rate coefficients for this reaction. 

 

     To firmly establish the rate coefficient for Reactions 1-3, experiments must be conducted with 

very low initial concentrations of OH� such that secondary reactions are minimized.  Initial OH� 

radical concentrations in the detection zone were in the range of 1.0x10
10

 – 3.0x10
11

 

molecules/cm
3
, at least two orders of magnitude smaller than the lowest molecular substrate 

concentration.  Initial OH� concentrations were estimated using the UV absorption coefficient of 

N2O (ε)91
, our experimental evaluation of the absorption cross-section of N2O (at 193 nm and 

different temperatures), the stoichiometry given in the photolysis mechanism of N2O, and the  
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laser intensities (I) before and after filling the reactor with N2O.  Io is obtained under conditions 

when [N2O] = 0; I is obtained when [N2O] is non-zero.  We used the Beer-Lambert law
88

 

 

ln(I/Io) = -εnl 

 

which becomes 

 

(Io – I) = Io (εnl) 

 

 

when εnl << 1.  The energy absorbed by N2O after filling the reactor with N2O is (Io – I)  

 

or ∆Eabs.  The number of photons absorbed by N2O then is 

 

 

∆Eabs   =   Io (εnl) = number of absorbed photons by N2O 

  hυ        hυ 

 

 

     The number of absorbed photons is assumed equal to the number of N2O molecules which 

have been excited.  Each excited N2O molecule produces 2 OH� radicals according to the 

photolysis mechanism. 

N2O  +  hυ (193 nm)   O (
1
D) + N2 

 

O (
1
D)  + H2O   2 OH� 

 

 

     As a result, the initial concentration of OH� radicals is somewhat overestimated and must be 

understood as an upper limit for [OH�]o.  The PLP-PLIF technique has excellent sensitivity to 

OH� (detection limit < 10
11

 molecules/cm
3
), allowing one to make rate measurements with the 

necessary low initial concentrations.
24

 

     The temporal profile of OH� in the reactor was monitored by measuring its LIF signal, SOH, as 

a function of reaction time t.  The LIF signal followed the first order differential equation: 
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-d[OH�]/dt = ( kbi[X][OH�]  +  kd[OH�])  =  k’[OH�] 

 

 

d[OH�]/[OH�] = -k’dt 

 

 

ln [OH]t/[OH]o = -k’t  

 

 

ln [OH]t = -k’t  +  ln[OH]o 

 

 

k’ = kbi[X] + kd 

 

 

where X is the molecular substrate, kbi is the bimolecular rate coefficient, k’ is the effective first 

order rate coefficient (k’ = kbi[X]+kd), and kd is the first order rate coefficient for loss of OH� in 

the absence of X due to reaction with impurities in the bath gas (He) and diffusion out of the 

detection zone.  Slow-flow conditions were employed in order to minimize kd.  The effective 

first order rate coefficient, k’, for Reaction 1 was found by plotting ln SOH vs time (sec) (Graph 

1). 

     Graph 2 displays isothermal least squares lines through data where the concentration   

 

of Cl2 is constant.  The bimolecular rate constant, kbi, was determined from the slope of  

 

the least squares lines drawn through the k’ versus [X], including the point (0, kd).   

 

     The first order rate coefficient, kd, for loss of OH� due to secondary reactions and diffusion  

 

out of the detection zone was derived from an OH� temporal profile in the absence of the  

 

molecular substrate.  For each set of experiments the difference between the value of kd  

 

measured in the absence of the molecular substrate (see line1 in Graph 1) and kd found from the  

 

intercept of the least squares line in ([X], k’) coordinates (see Graph 2) was small when  

 

compared to the experimental uncertainty in kd.  A typical initial reaction time of not less than 

 

0.2 ms followed each photolysis pulse and was assumed sufficient for allowing complete 
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Graph 1:  Examples of relative OH� temporal profiles obtained under the following conditions: 

He buffer gas, total pressure P=20.10 kPa (150.8 torr), temperature T=365K, [N2O]=3.8x10
13

 

cm
-3

, [H2O]=1.59x10
15

, [X]=[Cl2]= 0.0, 5.11x10
14

, 9.09x10
14

, 1.54x10
15

, 1.76x10
15

, 2.38x10
15

, 

2.52x10
15

, 3.42x10
15

, 3.75x10
15

cm
-3

 for profiles 1-9, respectively. 

 

 
 

Graph 2: Examples of experimentally obtained k’ vs [Cl2] dependences. 
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vibrational and rotational relaxation of excited OH� radicals into a Boltzmann type distribution
92

  

 

while minimizing the time for OH� radicals to diffuse outside the detection zone. 

 

 

    nj  =  e
-∆E/kT

   where  ∆E = Ej–Ei 

    ni 

 

 

nj  =    e
-∆Ej/kT

  

     nt            Σj e
-∆Ei/kT

 

 

 

Previous studies
93-97

 have determined the rate coefficient for the following reaction 

 

 

                 OH�  +  CH4       Products    (Reaction 2) 

 

 

using PLP-PLIF and similar experimental conditions with experimental temperature regions that  

overlap.  We also studied Reaction 2 in order to validate our experimental technique.  We find 

excellent agreement between our results and determinations of other researchers.  In addition, 

Tully and Ravishankara
97

, Tully and Dunlop
96

, and Vovelle et al.
95

 use a three-parameter 

expression
98

 to fit their measured rate coefficients well.  Graph 3a displays curves for Reaction 2 

(k’ versus [CH4]) prepared in the same manner as for Reaction 1. 

     We studied Reaction 3 in order to validate our experimental technique as well. 

 

 

OH�  +  C3H8       Products    (Reaction 3) 

 

 

Reaction 3 was chosen due to its relatively fast reaction rate, as compared to Reaction 2.   

 

Previous studies
99-101

 have determined the rate coefficient for Reaction 3, and our measurements 

 

of k’ versus [C3H8] are given in Graph 3b.  We observe excellent agreement between our results  

 

and the determinations of other researchers with respect to Reaction 2 and 3. 
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Graph 3:  Examples of experimentally obtained k’ vs [CH4] (part a) and k’ vs [C3H8] (part b) 

dependences. 

 

3.2 Experimental 

 

     A schematic of the experimental apparatus and the optical test cell (reactor) are depicted in 

 

 Figures 5a and b, respectively.  This experimental system is similar to the one described in  
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reference 102.  The PLP-PLIF system contains a dual laser system for generating and probing 

 

OH� radicals, an electronic time delay system between the lasers, a heating system for the  

 

reactor, a gas delivery system, and a photo-multiplier tube (PMT) for signal detection.  The dual  

 

laser system consisted of an ArF excimer laser (Lambda Physik: Compex 102) and a Nd:YAG 

 

(Quanta Ray: DR-2a) pumped, frequency-doubled, tunable pulsed dye laser (Quanta Ray: PDL-

3) which were employed to generate the pump and probe beams, respectively. 

     Pulsed, unfocused 193 nm radiation (10Hz pump frequency) from the excimer laser was  

 

passed through two iris diaphragms (D1 and D2), through a fluorescence-free UV fused silica 

window (W1), and into a quartz tubular six-way cross where photolysis takes place.  The pump 

(photolysis) beam was responsible for creation of the hydroxyl radicals. 

Hydroxyl radicals were produced by photolyzing N2O/ H2O.
103

  The photolysis  

 

mechanism can be described as 

 

 

N2O  +  hυ (193 nm)    O (
1
D) + N2 

 

O (
1
D)  + H2O    2 OH� 

 

 

where hυ is the photonic energy for laser photolysis to break the bond between N2O.   

 

Excited O(
1
D) atoms result and rapidly react with water producing OH�.       

 

      In the presence of CH4 or C3H8, OH� radicals may also be formed by reaction of  

 

O(
1
D) with these substrates.  In selected high temperature (T>750K) experiments the  

 

initial OH� concentration was produced from the direct photolysis of water only 

 

 

H2O  +  hυ (193 nm)    OH�  +  H� 
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to avoid possible effects from the thermal decomposition of N2O at high temperatures.   

 

The OH� concentrations were found to be independent of the method of OH� generation.   

 

It should be added however exact knowledge of the initial OH� concentration is not  

 

needed for rate coefficient determination, due to pseudo-first order conditions and the  

 

experimental technique. 

 

     After the pulse of the excimer laser, the pulse of the probe laser causes excitation of  

 

the hydroxyl radicals.  OH� was excited at approximately 282 nm via the A
2∑+

  X
2∏  

 

(1 0) transition followed by observation of fluorescence from the (1-1) and (0-0) bands  

 

at 308-316 nm, respectively.  Fluorescent radiation was monitored using a photomultiplier tube  

 

(Electron Tubes Limited: P10N-01W) and a UV bandpass filter (308 nm peak transmission) to  

 

reduce scattered light.  The signal from the PMT was amplified (Electron Tubes Limited:  

 

Transimpedance Amplifier A1) and recorded by an oscilloscope (Textronic TDS 714L Digitizing  

 

Oscilloscope).  The oscilloscope was triggered when the probe beam signal was received by  

 

photodiode, Ph1.  The oscilloscope allows one to obtain an averaged integrated voltage across  

 

for a desired number of laser pulses (typically 150) in one time delay.  The signal, S(t), received  

 

from the voltage signal is the sum of two components: the fluorescence of excited OH� radicals,  

 

SOH, and the scattered light, SSC.  The averaged integrated voltage for Ssc was measured directly  

 

in the absence of OH�.  For this measurement the pump laser was not triggered during the  

 

accumulation of scattered light.  Kinetic information (OH� temporal profiles) was obtained by  

 

varying the time delay between pulses of the pump and the probe lasers in the desired time  

 

interval.  We used a pulse generator (Stanford Research Systems DG535 Digital Delay/Pulse  

 

Generator) to trigger the excimer laser and the Nd:YAG laser with different time delays.   

 

Photodiodes (Ph1, Ph2) were used to measure and calibrate the time delay between pulses.   
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The typical limits of integration (for the best signal-to-noise ratio, SOH/SSC) were 180 and 860 ns  

 

after the probe laser pulse.   

 

     Pulsed, unfocused radiation (10 Hz probe pump frequency) from the probe laser was directed 

using two flat laser (UV enhanced, aluminum coated) mirrors (M1 and M2), passed through two 

iris diaphragms (D3 and D4), and passed through a fluorescence-free UV fused silica window, 

(W2) which was placed at a Brewster angle into the detection zone of the optical test cell. 

     A program was written using Visual Basic 6.0 for gathering the OH� temporal profile  

automatically.  Kinetic data S(t) values with corresponding reaction time delays t were collected 

in the computer for subsequent data processing.  Ssc was found not to vary from experiment to 

experiment (at 100 ms) and was subtracted from S(t) at all reaction time delays and one fixed 

concentration of molecular substrate in order to obtain a relative OH� concentration temporal 

profile.  

SOH = S(t) – Ssc. 

 

 

     The systematic uncertainty in the experimentally obtained SOH values (deviation from  

 

linearity) was defined using characteristics of the accuracy stated by the manufacturers for the  

 

photomultiplier, amplifier, and oscilloscope.  The maximum of the systematic deviation of the  

 

OH� concentration detection system from linearity has been estimated as 3.0%. 

 

     The program controlled both pulse generation (the pulse generator) and data collection 

(the oscilloscope) through a GPIB port (National Instruments).  The program prompts the user 

for data input such as 1) the number of points, 2) averaging for each point, 3) time steps between 

points, and 4) number of repetitions of the kinetic curve obtained for each concentration of  

 

molecular substrate.  Kinetic data was collected in a computer for subsequent data analysis.  SSC  
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was subtracted from S(t) measured at different reaction time delays and one fixed concentration  

 

of molecular substrate in order to extract the signal, SOH(t).  The detection sensitivity of OH� 

 

radicals ranged from 1x10
8
 – 5x10

8
 molecules/cm

3
 depending on averaging, pressure, 

temperature of the detection zone, and concentration of the molecular substrate. 

     Helium (He) was used as the carrier gas in this work.  Four separate gas flow metering 

devices were used to prepare the reaction gas mixtures (He, N2O/He, H2O/He, X).  The flow of  

N2O/He ranged from 1:200 - 1:1000; the flow of H2O/He was prepared by bubbling He through 

water vapor at a pressure and temperature controlled with a thermo-stabilized saturator 

(maintained at a temperature of ~2K below ambient temperature). Three calibrated mass-flow 

controllers (Sierra Instruments, Inc. Model 810C) with appropriate flow ranges provided stable 

gas flows.  We checked each gas flow by measuring the rate of pressure increase in a calibrated 

volume located immediately before the optical test cell (reactor).  The pressure measurements 

were performed with capacitance manometers (MKS Instruments Model 626A13TAE, range 

1000 torr or Model 622A12TAD, range 100 torr.installed with a Type 660B Power 

Supply/Digital Readout; precision of the readings is 0.01 torr).  The detected instability in the 

sum of the gas flows did not exceed 2%.  The flow of molecular substrate, X, was regulated with 

a metering valve (Swagelok Type SS-SS4).  The flow of X was also determined after measuring 

the rate of pressure increase in a calibrated volume before and after each OH� temporal profile 

was obtained.  The difference in these measurements did not exceed 3% for each OH� temporal 

profile.  An arithmetic average of these two measurements (before and after) was taken in order 

to calculate the molecular substrate concentration in the reaction zone.  The independence of the 

measured flows on the surface-to-volume ratio of the calibrated volume was verified to ensure 

the absence of interference from heterogeneous absorption and desorption processes on the walls  
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Figure 5a: Schematic drawing of the experimental apparatus.  5b.  Two-dimensional schematic 

drawing of the optical test cell (reactor).  The probe beam is perpendicular to the plane of the 

figure and intersects the pump (photolysis) laser beam in the center of the reactor. 
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of this volume.  All flows were pre-mixed prior to flow through the reactor.  The total flow  

 

ranged from 5.0 to 25 cm
3
/sec at standard temperature and pressure.  The value of the total flow  

 

was adjusted depending on the total pressure and temperature in the reaction zone in order to  

 

ensure slow-flow conditions, i.e. each photolysis pulse initiated reaction within a locally fresh  

 

gas mixture eliminating potential complications that might result from accumulation of  

 

photolysis or reaction products.  The composite flow conditioned the reactor for several minutes  

 

prior to data collection, thereby minimizing any effects due to reactant adsorption on the reactor 

walls and stabilizing the established experimental conditions.  The maximum systematic 

uncertainty in the ratio of the measured flow of X/total flow has been evaluated at 1.5% of this 

value. 

     Pressure in the reactor was monitored with capacitance manometers described earlier.  A 

pressure measurement inlet (see Figure 1b) was located on the main axis, ~15 mm downstream 

from the photolysis zone in the quartz tubular six-way cross.  The pressure difference between 

the pressure measurement inlet and the static pressure in the detection zone was negligible.  We 

installed a large deviation pressure control system downstream of the reactor to keep the total gas 

pressure constant in the detection zone.  This pressure controlling system consisted of a manually 

regulated needle valve (Swagelok SS-1KS8) along with an electrical servo-valve (Edwards 

DM20) controlled by pressure (Edwards 1501C).  This system allows one to maintain a stable 

pressure in the detection zone.  

     The reactor was resistively heated.  A heater, a thermo-insulator, 2 temperature controllers 

(series CN77000), and two Chromel-Alumel thermocouples were supplied by Omega 

Engineering, Inc.  The first 0.813 mm diameter thermocouple was fixed on the  

main axis, ~5 mm downstream from the photolysis zone (see Figure 1b).  The temperature field  
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inside the heated zone with the desired temperature in the detection zone was measured 

(calibrated) with the second movable 0.508 mm diameter thermocouple and referenced to the 

readout of the first.  The uniformity of the temperature field in the reactor did not vary more than 

+2 Kelvin.  The maximum total uncertainty in the measurements of the reaction temperatures did 

not exceed 0.5% and was considered a systematic source of error based on the +2K variations 

revealed during calibration and experiment. 

     The concentration of each reactant in the reaction zone was calculated by multiplying  

 

three values:  1) the total concentration of all molecules in the reaction zone (derived  

 

from measured pressure and temperature using the ideal gas law), 2) the partial  

 

concentration of reactant in the flow, and 3) the ratio of the flow carrying the reactant to  

 

the total gas flow.  The concentration of water in the flow was found using the vapor  

 

pressure of water (as a function of temperature and pressure) and an assumption that He  

 

had been completely saturated with water while passing through the bubbler. 

 

Typical reaction mixtures were (in molecules/cm
3
): 

 

 

N2O (3.6x10
12

 – 1.5x10
14

) or 0.0 

H2O 4.0x10
14

 – 2.1x10
15

 

He 5.06x10
17

 – 3.99x10
18

 

Cl2 0.0 – 5.07 x10
15

 

CH4 0.0 – 3.89 x10
16

 

C3H8 0.0 – 3.49 x10
15

 

 

 

The chemicals used in this study had the following minimum stated purities (and were  

 

supplied by): (1) He, 99.999% (BOC Gases), (2) Cl2, 99.999% (Matheson), (3) CH4,  

 

99.999% (Matheson), (4) C3H8, 99.993% (Matheson), (5) N2O, 9.98% mixture of 99.99%  

 

purity in 99.999% He (BOC Gases), (6) H2O, ACS Reagent Grade (Aldrich).  Helium  

 

was further purified by passing it through liquid N2 cooled traps.  Analyses of Cl2, CH4,  
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and C3H8 samples detected only trace levels of impurities, and these small concentrations  

 

had a negligible effect on the observed OH� decay rates. 

 

3.3 Results 

 

     The kinetic study of OH� radicals with Cl2, CH4, and C3H8 was performed in the  

 

following temperature and pressure ranges: 

 

   

            Temperature(K)           Pressure(kPa) 

Reaction 1:  OH�  +  Cl2   297-826  6.70-21.46 

 

Reaction 2:  OH�  +  CH4   298-1009  6.71-24.15 

 

Reaction 3:  OH�  +  C3H8   296-908  6.68-24.13 

 

 

     The initial concentration of OH� varied as a result of varying the photolyzing excimer  

 

laser intensity and the concentration of the photolyte, N2O.  Experimental conditions and  

 

results for Reactions 1-3 along with calculated rate coefficients are given in Tables 3  

 

and 4. 

     The rate coefficients demonstrate independence with respect to pressure and the initial  

OH� concentration.  This pressure independence was expected as the mechanism of  

Reactions 1-3 involves atom abstraction, i.e. the number of molecules in the reaction  

mixture remains constant over time.  The rate coefficient independence with respect to  

the initial OH� concentration indicates the absence of any influential secondary reactions,  

as can be expected by the low values of [OH�]o (1.0x10
10

-3.0x10
11

 molecules/cm
3
).   

Similarly, the observed absence of any correlation between the measured rate coefficients  

and the photolysis laser intensity indicates the potential effects of reactions between OH�  

and photolysis products (from the substrates) are negligible.  At the highest temperatures  
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used in this study (in Reaction 1), the absence of effects from the potential decomposition  

of Cl2 was verified by measuring the rate coefficient at different pressures and bulk flow  

velocities. 

     Temperature dependences of the rate coefficients for Reactions 1-3 are presented in  

Arrhenius coordinates (1000/T, log k) in Graphs 4 and 5.  Due to the curvature in each  

Table 3: Conditions and Results of Experiments to Measure Rate Coefficients of the Reaction of 

OH� with Molecular Chlorine (Reaction 1). 

 

OH� + Cl2  Products 
No.a T/K P/kPa [Cl2]  range/ 

1014 

molecule 

cm-3 

Ib/mJ pulse-1 

cm-2 

[OH]o/1010 

molecule 

cm-3 

k1
c/10-14 

molecule-1 

cm3 s-1 

1 297 13.41 4.84-50.7 13 30 6.25±0.31 

2 297 13.40 4.05-48.3 2.6 6.0 6.38±0.21 

3 330 6.70 4.58-41.7 12 19 9.25±0.67 

4 330 6.72 4.63-33.1 2.8 4.4 9.28±0.26 

5 365 20.10 5.11-37.5 11 9.6 13.72±0.44

6 404 13.41 3.05-49.1 11 17 19.72±0.33

7 404 13.40 3.11-19.1 2.6 4.0 19.00±0.38

8 447 13.41 5.94-20.6 11 12 26.32±0.96

9 447 13.41 5.93-20.7 2.6 2.8 25.2±1.3 

10 501 13.41 3.71-43.5 11 7.0 35.7±1.7 

11 501 13.42 3.21-20.2 11 7.3 36.9±2.3 

12 562 6.70 3.76-16.5 12 4.3 49.7±3.0 

13 562 6.70 3.79-16.3 12 4.3 50.7±4.0 

14 620 13.40 2.78-17.6 4.3 5.9 60.3±2.6 

15 620 13.39 3.18-16.8 12 16 59.0±3.6 

16 719 13.42 1.44-10.1 13 19 87.1±4.0 

17 719 13.42 1.43-10.7 2.6 3.8 87.7±5.0 

18 810 10.74 2.4-11.2 10 16 125.8±2.5 

19 810 10.74 2.39-11.1 2.1 3.4 124.7±7.4 

20* 825 10.73 1.19-5.68 13 3.8 131.0±7.9 

21* 825 21.46 3.79-10.9 13 7.6 121.5±4.1 

22* 826 13.39 0.71-6.3 12 4.4 131.3±6.9 

a
 Experiment number. [N2O] = 0 was in experiments marked with *.

b
 Photolysis laser intensity.

c
 

Error limits represent 2  statistical uncertainties only. Maximum estimated systematic 

uncertainty is 5% of the rate coefficient value. 
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Table 4: Conditions and Results of Experiments to Measure Rate Coefficients of the Reactions of 

OH� with Methane (Reaction 2) and Propane (Reaction 3). 

OH + CH4  Products (Reaction 2) 

No.a T/K P/kPa [CH4]  

range/ 1015 

molecule 

cm-3 

Ib/mJ pulse-1 

cm-2 

[OH]o/1010 

molecule 

cm-3 

k2
c/10-15 

molecule-1 

cm3 s-1 

1 298 13.46 3.41-20.5 11 6.1 6.48±0.19 

2 298 13.43 3.51-20.7 3.6 2.0 6.29±0.34 

3 299 13.43 5.04-29.5 11 27 6.75±0.12 

4 299 13.43 5.11-29.9 4.1 10 6.78±0.14 

5 341 6.71 5.86-18.7 10 8.5 15.19±0.57

6 341 6.71 6.05-19.1 2.6 2.2 15.22±0.62

7 408 13.43 3.02-38.9 10 7.7 36.7±1.2 

8 408 13.43 3.00-38.1 4.3 3.3 37.1±1.3 

9 507 13.43 2.55-21.6 12 7.3 108.5±3.7 

10 507 13.43 2.56-21.7 3.3 2.0 106.9±3.6 

11* 606 24.15 2.05-12.5 13 2.5 243.7±8.7 

12 706 13.41 0.422-6.47 13 11 482±12 

13 706 13.41 0.427-6.41 3.3 2.9 481.9±7.5 

14* 807 13.43 0.121-4.00 14 3.2 803±19 

15* 908 13.41 0.271-2.70  11 16 1246±42 

16* 908 13.41 0.271-2.70 2.6 3.8 1232±43 

17* 961 6.71 0.333-1.26 13 6.3 1421±43 

18* 1009 21.46 0.230-1.33 11 12 1687±72 

19* 1009 21.46 0.236-1.33 3.6 3.8 1670±62 

          (table continued) 
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OH + C3H8  Products (Reaction 3) 

No.a T/K P/kPa [C3H8]  range/ 1014 

molecule cm-3 

Ib/mJ pulse-1 

cm-2 

[OH]o/1010 

molecule 

cm-3 

k3
c/10-12 

molecule-1 cm3 

s-1 

1* 296 12.07 3.78-20.3 8.6 1.0 1.083±0.055

2 296 12.01 1.73-32.7 13 3.7 1.081±0.024

3 339 12.09 3.28-33.5 13 6.7 1.487±0.034

4 339 12.09 3.25-39.4 4.1 2.1 1.453±0.044

5 407 6.71 1.86-18.0 12 2.1 2.156±0.092

6 495 12.05 1.34-11.9 8.9 2.7 3.37±0.15 

7 605 6.71 1.17-4.69 4.8 2.4 4.91±0.22 

8 705 12.05 0.460-2.88 13 3.0 6.65±0.20 

9 765 6.68 0.453-4.39 14 7.7 7.41±0.30 

10 765 6.68 0.482-3.83 4.8 2.6 7.37±0.38 

11 805 24.13 0.498-3.65 13 2.7 8.37±0.20 

12* 908 12.05 0.429-4.00 12 15 10.23±0.31 

13* 908 12.05 0.408-4.12 2.9 3.6 10.36±0.19 

a
 Experiment number. [N2O] = 0 was in experiments marked with *.

b
 Photolysis laser intensity.

c
 

Error limits represent 2  statistical uncertainties only. Maximum estimated systematic 

uncertainty is 5% of the rate coefficient value.     

Arrhenius plot, the temperature dependence of the rate constant was modeled using the  

generalized three-parameter expression.
98

  Deviation from linearity occurs in a two-parameter 

k(T) = A T
α
 exp

(-Eact/RT) 

Arrhenius expression when activation energy is a function of temperature. 

k = A exp (-Eact/RT) 

y = ln k = ln A – Eact/RT = ln A – Eact(x)/R       where x = 1/T 

y’ = dy/dx = d ln k/d(1/T) = -Eact/R  

Eact = -R (dy/dx) = -R d ln k/d(1/T) 

 

y” = d
2
 ln k/d(1/T)

2
 = (-1/R)(dEact/d(1/T)) = T

2
dEact/RdT = δT2  

where δ = dEact/RdT 

 

If Eact increases with temperature (dEact/dT>0) the plot of ln k versus 1/T will appear  

 

concave up.  If Eact decreases with temperature (dEact/dT<0) the plot of ln k versus 1/T  
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will appear convex down.  As a consequence, one can see the curvature (or sign of the  

 

second derivative, y”) in a 2-parameter Arrhenius expression is a function of the first  

 

derivative of activation energy with respect to temperature and whose magnitude is also  

 

controlled by the T
2
/R term. 

 

     The three parameter expression, k(T) = AT
α
exp

(-Eact/RT)
, follows from statistical  

 

mechanical approach.
92

  Using a canonical ensemble, the total internal energy for a linear  

 

or non-linear system can be expressed in two equivalent forms 

 

 

〈E〉  =  ΣEj(V,N)exp(-βEj(V,N))/Q  where Q = Σexp(-βEj(V,N))  

 

 

and it follows 

 

〈E〉  =  kT
2
(∂lnQ/∂T)N,V  =  NkT

2
(∂lnq/∂T)V   

 

 

after all the independent, indistinquishable particles’ contributions q (translational,  

 

rotational, vibrational, and electronic) in the system partition function Q are included,  

 

operated upon, and summed in the above expression.  N is the number of particles  

 

(N=moles Na).  Once these operations are complete, one may arrive at the total internal  

 

energy of 1 mole (N/Na=1) system (R=Nak). 

 

 

〈E〉  =  3RT + 3RT + [Rθv +        Rθv      ]  -  NaDe 

               2         2           2      (exp(θv/T)-1) 

 

Beginning from the left, 〈E〉 represents the average internal energy for a system, 3RT/2  

represents the average translation energy, 3RT/2 represents the average rotational energy  

(for a non-linear system), the third term represents the zero-point vibrational energy  

where θv is the vibrational temperature (hv/k), and the fourth term is the electronic energy  
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relative to zero (2 separated atoms resting at their ground states).  Taking the first  

derivative of the above expression with respect to temperature for the transition state (≠),  

the 2 reactants (A and B), and substituting these 3 equations into the first derivative (let  

x= θv/T) gives 

 

dEact = [3R/2 + 3R/2 + RΣ[x≠2expx≠]] - [3R/2+R+RΣ[x2AexpxA]] - [3R/2 + R+RΣ[x2BexpxB]] 

          dT    (exp
x≠

-1)
2  

               (exp
xA

-1)
2  

                     (exp
xB

-1)
2 

 

             3(4)-6               3(2)-5                  3(2)-5 

dEact/dT  =  -2R + RΣ[x≠2
exp

x≠]- RΣ[x2A
exp

xA]- RΣ[x2B
exp

xB] 
               (exp

x≠
-1)

2      
(exp

xA
-1)

2 
     (exp

xB
-1)

2 

 

 

when a non-linear transition state and diatomic reactants are used, as is the case for  

 

Reaction 1 (OH·+ Cl2 ) 

 

     For the case of low temperature and high frequencies, the vibrational terms each  

 

approach zero (exp
x
>>1), and 

 

dEact/dT  =  -2R < 0,   convex down 

 

 

Alternatively, for the case of high temperature and low frequencies, the vibrational terms  

 

each approach one, and 

 

 

dEact/dT  =  -2R + R(6-1-1) = 2R > 0,   concave up 

 

 

     The positive curvature seen in Graphs 4 and 5 reveals Reactions 1-3 are described by  

 

activation energies which are increasing with temperature.   

 

 

δ = dEact/RdT > 0 

 

If δ is considered to be independent of temperature, then integration of 
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d
2
 ln k/d(1/T)

2
 = δT2

 = δ/(1/T)
2
 

 

 

yields a three parameter expression for k(T).
98

  

 

 

ln k(T) = -Eact/T + a – δ ln (1/T) 

 

- δ ln (1/T) = ln T
δ
 

k(T) = A T
δ
 exp

(-Eact/T) 

 

As a result, points (1000/T, ln k) in Graphs 4 and 5 were fit to the previous expression 

 

y = ln k(T) = ln A + δ ln T – Eact/T 

y = ln k(T) = ln A1 + A2 ln(1000/x) – A3 (x/1000) 

 

 

with a non-linear curve fitting algorithm
104

 using three free parameters where A1 is the  

Arrhenius parameter (A), A2 is the temperature exponent (δ), and A3 is the energy of  

activation (Eact) divided by R.  The rate coefficients with their corresponding temperature  

ranges for Reactions 1-3 then become  

 

Reaction 1: k = 3.59 x 10
-16

 T 
1.35 

exp
(-745K/T) 

cm
3
 molecule

-1
 sec

-1
 (I) 

Reaction 2: k = 3.82 x 10
-19

 T 
2.38 

exp
(-1136K/T)

 cm
3
 molecule

-1
 sec

-1 
(II) 

Reaction 3: k = 6.64 x 10
-16

 T 
1.46 

exp
(-271K/T)

 cm
3
 molecule

-1
 sec

-1
 (III) 

 

     The maximum deviation of the individual experimental rate coefficients from their  

complementary curve-fitted expressions was 7.0% (Reaction 1), 4.8% (Reaction 2), and  

2.5% (Reaction 3). 
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Graph 4: Temperature dependence of the rate coefficient for Reaction 1 displayed in Arrhenius 

coordinates.  Closed circles represent the current experimental data; open squares represent 

reference 12; open triangle up represents reference 15; open diamonds represent reference 14; 

open hexagons represents reference 13; open circles represents reference 11.  The solid line 

represents the modified Arrhenius fit of equation I; the dashed line represents equation VI found 

in reference 105. 
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Graph 5:  Temperature dependences of the rate coefficients for Reactions 2 and 3 displayed in 

Arrhenius coordinates.  Reaction 2 (OH·+CH4 ):  Closed squares represent the current 

experimental data; open triangles up represent reference 93; open squares represent reference 96; 

open triangles down represent reference 94; open hexagons represent reference 95; the solid line 

represents the result of the fit of the current experimental data only (equation II).  Reaction 3 

(OH·+C3H8 ):  closed circles represent the current experimental data; open circles represent 

reference 99; closed triangles up represent reference 100; open diamonds represent reference 

101.  The dashed line represents the result of the fit of the current experimental data only 

(equation III). 
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     Sources of error in the measured experimental parameters such as error in the total flow rate,  

 

the flow rate of the molecular substrate, ratios of the calibrated volumes, pressure, temperature,  

 

reaction time, and signal values were separated into statistical and systematic sources of error  

 

using experimental observations.  The evaluation of potential systematic error was based on the  

 

finite accuracies given with each calibrated, certified piece of equipment.  The uncertainties for  

 

the measured experimental parameters were propagated to the final value of the uncertainty in  

 

k(T) using the following generic expression for propagation of error.
106

 

 

 

Q = f (q1, q2, …, qn) 

 

dQ = (∂f /∂q1 )∆q1  +  (∂f /∂q2 )∆q2  +  …  +  (∂f /∂qn )∆qn 

 

 

     Assuming the partial derivatives are independent of one another, fractional percent (dQ/Q)  

 

systematic uncertainty was approximated by summing the squared contributions, taking the  

 

square root of the sum, and dividing by Q.   The systematic uncertainty reaches a maximum of  

 

5% of the rate coefficient values.  The error limits of the experimentally obtained rate  

 

coefficients reported in Tables 1 and 2 were found with a 95% level of confidence and represent  

 

two standard deviations (random) of uncertainty only. 

 

3.4 Thermodynamics and Potential Energy Surface Study 

 

�  Thermodynamics 

 

     Reaction 1 has the potential for exhibiting diverse behavior through a multiplicity of  

 

product channels.  They are: 

 

 

 OH�  +   Cl2     HCl  +  OCl�  (Reaction 1a) 

 OH�  +   Cl2     HOCl  +  Cl�   (Reaction 1b) 

 OH�  +   Cl2     H�  +  OCl2      (Reaction 1c) 
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Table 5 provides non-zero point corrected reaction energies (ΔErxn) and enthalpies  

 

(ΔHrxn) for Reactions 1a-1c calculated with B3LYP/6-31G(d,p).  Energetic units are  

 

given in kcal mol
-1

. 

 

Table 5: Energies and Enthalpies of Reaction for Reactions 1a-1c using B3LYP/6-31G(d,p).  

Energetic quantities in parentheses were derived using the NIST Computational Chemistry 

Comparison and Benchmark Database and an identical model chemistry.
107

  Enthalpies of 

reaction in brackets were derived using experimentally determined gas phase thermodynamic 

data from the NIST Chemistry WebBook database.
108

 

 

Reaction ΔErxn ΔHrxn 

1a -9.19 (-9.19) -9.89 [-7.19] 

1b -4.19 (-4.19) -2.34 [1.87] 

1c 62.58 (62.58) 58.84 [63.78] 

 

 

The potential energy surface (PES) of Reaction 1a was chosen for study initially given  

 

this reaction is thermodynamically favored. 

 

�  Potential Energy Surface Study 

 

     An attempt was made to locate a transition state (a PES saddle point) for the reaction channel  

 

which leads directly to HCl + OCl� (products) from OH� + Cl2 (reactants).  In these calculations  

 

a two-dimensional PES scan (Cl-Cl and O-H, starting from the reactant van der Waals minima)  

 

and a three-dimensional scan (Cl-Cl, O-H, and O-Cl, starting from the reactant van der Waals  

 

minima) at the BHandHLYP/6-31G(d,p) level were performed.  The searched-for transition state  

 

could not be found.  These scans both produced a ridge without a saddle point separating the  

 

reactant and the product van der Waals minimums. 

 

     Given the earlier mentioned PES scan revealed a transition state does not lie between the 

 

reactant and product van der Waals minimums with respect to Reaction 1a, a different approach  

 

using BHandHLYP/6-31G(d,p) and QCISD(T)/6-31G(d,p) was undertaken.  Two dimensional  

 

scanning with respect to Reaction 1b located an energy barrier (TS1) and two shallow van der  
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Waals minima on both the reactant (VDW1) and the product (VDW2) sides of the barrier (-3.4  

 

kcal relative to the reactants and -2.5 kcal relative to the products).   
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Figure 6: Potential energy surface for Reaction 1b using BHandHLYP/6-31G(d,p).  Energies for 

each structure are given in hartrees. 

 

     The energy barrier height (7.6 kcal mol
-1

 above the reactants) is overestimated with 

BHandHLYP/6-31G(d,p) as can be seen by comparing this value with the 2.8 kcal mol
-1

 

experimental activation energy obtained when the experimental k(T) dependence is fit with a 

two-parameter Arrhenius expression.  The use of the higher level QCISD(T)/6-31G(d,p) model 

chemistry reduces the barrier height to more realistic value of 5.4  kcal mol
-1

. 

 

Table 6: Activation and reaction energies (kcal mol
-1

)
a 
 for Reaction 1b using BHandHLYP/6-

31G(d,p) and QCISD(T)/6-31G(d,p). 

 

Model Chemistry Transition State, TS1 HOCl + Cl� 

BHandHLYP/6-31G(d,p) 7.6 -1.8 

QCISD(T)/6-31G(d,p) 5.4 -7.2 
a
Energies (non zero-point corrected) are relative to the reactants, OH� + Cl2. 
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A reaction path leading from the product van der Waals minima (VDW2 in Figure 6)  

to HCl + OCl� was found using BHandHLYP/6-31G(d,p).  This path (in Figure 7) leads from 

VDW2, through products HOCl + Cl�, through a transition state (TS2), and through another van 

derWaals complex (VDW3) which resembles HCl + OCl� .   
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Figure 7: Potential energy surface for the pathway leading from HOCl + Cl� to HCl + OCl� using 

BHandHLYP/6-31G(d,p).  Energies for each structure are given in hartrees. 

 

     The TS1 structure, in Figure 6, represents a tight transition state (∆S
≠
<0)

109
 or a dynamic 

bottleneck for Reaction 1b.  Further, chemical transformation of the van der Waals complex 

(VDW2) is expected to favor dissociation into HOCl and Cl� via  consideration of its very large, 

loose nature and a positive ∆S for this step.  In addition, the energy of tight transition state (TS2) 

in Figure 7 leading to HCl + OCl� is higher than that of the HOCl + Cl�  products by 12.0 kcal 

mol
-1

 indicating the potential formation of the HCl + OCl� products can be neglected in the OH� 

+ Cl2 reaction. 
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CHAPTER 4. AB-INITIO STUDY OF THE FORMATION AND DEGRADATION 

REACTIONS OF SEMIQUINONE AND PHENOXYL RADICALS 

 

4.1 Computational Procedures   

     Density Functional Theory (DFT) is a common computational procedure despite known 

deficiencies.
25, 26

   DFT calculations have been previously used to study radical reactions
110-113

 

and have shown phenoxyl radical decomposition thermodynamics and activation barriers are in 

good agreement with experiment.
45

   A variety of studies have demonstrated that DFT 

calculations can accurately reproduce the  relative differences in bond dissociation energies 

between similar compounds.  Studies of transition state properties have shown that the 

BHandHLYP
26, 114

 level of theory is reasonably accurate.  Therefore, calculations herein have 

used the B3LYP, BHandHLYP, and as a check on the quality of the DFT energies, 

QCISD(T)//BHandHLYP model chemistries.  All calculations in this chapter were performed 

with the 6-31G(d,p) basis set.   In this work, we are interested in the relative activation energies 

and reaction energies of a series of similar molecules and therefore have used different DFT 

model chemistries to assess the accuracy of our calculations.  For a group of closely related 

compounds (e.g. substituted phenols) reliable differences in BDEs (∆BDEs) can be carried out 

using calculated absolute E values due to the cancellation of error.
66

   We compared B3LYP/6-

31G(d,p), BHandHLYP/6-31G(d,p), and QCISD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p) for 

selected reactions (see Figure 8) and found that all 3 methods gave the same relative ordering of 

activation energies and reaction thermodynamics. 

     Stationary points were characterized as either a local minimum structure (no imaginary 

frequency) or a transition state (one imaginary frequency) by analytical evaluation of the 

Hessians.  The energies used in the calculations are unscaled and zero-point corrected.  The 

absolute enthalpies and free energies (as well as reaction enthalpies and free energies) are 
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       (figure continued) 

 

 

Figure 8:  Reactions of phenol, hydroquinone, catechol, phenoxyl radical, p-semiquinone radical, 

and o-semiquinone radical.  The schemes on the left-hand side are the reactions of the parent 

molecular species, some of which form the radical.  The schemes on the right-hand side include 

the decomposition and reaction with molecular oxygen of the  

resulting radical.   
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calculated at 298 K and 1 atmosphere of pressure and included both thermal effects and the 

effects of changes in molecularity.  When more than one isomer for particular species existed, 

the most stable isomer was used in these calculations.  Reaction energies (∆Erxn) were computed 

using the first law of thermodynamics
115

 

 

∆Erxn  =  ΣnE products  -  ΣmE reactants 

 

 

where n and m are the coefficients in the balanced chemical equation. 

 

     Using BHandHLYP, the search for transition states for Channels 1A-3A, which form two  

radicals, were studied using unrestricted open-shell methods, using the GUESS=ALTER option 

in Gaussian 03 to create the proper open-shell singlet state; no transition states could be found.   

Since we constrained the system to a singlet spin-state, our results are for adiabatic (fixed spin  
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state) reactions only (similarly for reactions 4B-6B and the reaction of the phenyl radical with 

triplet oxygen discussed below).  A search for a triplet transition state for reactions 1A-3A 

yielded activation energies greater than the change in energy for the reaction and thus non-

adiabatic reactions are unlikely to contribute significantly to the kinetics of these reactions.   

     The transition states for Channels 1D-3D were found by performing a two-dimensional scan 

of these reactions’ surfaces.  In each case, a van der Waals minimum was found on both the 

product and reactant sides of the transition state, and each transition state energy was very close, 

relatively speaking, to its van der Waals reactant minimum.  IRC (Intrinsic Reaction 

Coordinate)
116

 calculations were performed for each of these 3 transition states in the forward 

and reverse directions, and each IRC calculation confirms the transition state as valid.  Below, 

Figure 9 depicts a two-dimensional contour plot for Channel 1D where the upper left and lower 

right corners are the van der Waals reactant and product minimums, respectively.  Figure 10 

depicts the absolute energies for each structure involved in determining the activation and 

reaction energies for this channel, and Figure 11 depicts the IRC calculated energies used for the 

confirmation of the Channel 1D transition state. 

     In all 3 cases (Channels 1D-3D), the energy difference between the transition state and its 

respective van der Waals reactant minima was less than or equal to 6.3 kcal/mol 

(BHandHLYP/6-31G(d,p) meaning the transition states for these reactions are more reactant-like 

than product-like (∆Erxn = -26.6 kcal/mole). 

     Transition states for Channels 4A-6A used a previous computational work
45

 for phenoxyl 

radical decomposition as a model for the location of the rate-limiting transition state structure.  In 

the first step of phenoxyl radical decomposition, its planar C2v ground state (a global minimum) 
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Figure 9: BHandHLYP contour plot for Channel 1D.  The upper left and lower right corners 

represent the van der Waals reactant and product minimums, respectively.   

Absolute energies are given in hartrees. 
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Figure 10: Channel 1D BHandHLYP PES which depicts the absolute energies in hartrees (left to 

right) for the reactants (phenol and the hydroxyl radical), the reactant van der Waals minimum, 

the transition state, the van der Waals product minimum, and the products (water and the 

phenoxyl radical). 
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Figure 11: Channel 1D BHandHLYP/6-31G(d,p) IRC calculation results in hartrees versus 

reaction coordinate. 
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isomerizes into a Cs symmetry after proceeding through a vertical excitation and a transition state  

 

which is not rate-limiting.  The Cs symmetry phenoxyl structure is a local minimum (no  

 

imaginary frequency) and is depicted in Figure 12. 
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Figure 12: Channel 4A PES which depicts the absolute energies in hartrees (left to right) for the 

reactant (the phenoxyl radical in its ground state, C2v), a local minimum (Cs), the rate-limiting 

transition state, and the products (carbon monoxide and a cyclopentadienyl radical). 

 

     After Channel 4A passes through its rate-limiting transition state another local minima is 

found prior to decomposition to the products, CO and the cyclopentadienyl radical.
45

  This 

minimum structure has been confirmed in this work using a BHandHLYP/6-31G(d,p) model 

chemistry whose absolute energy is -306.59037 hartrees.  With this information in mind, one 

would not expect the IRC forward (to products) and reverse (to reactants) calculations to precede 

through -306.59037 or -306.57389 hartrees, respectively. 
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     IRC calculations confirm the rate-limiting structures for the decomposition of phenoxyl, p-

semiquinone, and o-semiquinone radicals (Channels 4A-6A) are valid.  Figure 13 depicts the 

IRC calculated energies for the confirmation of the Channel 4A transition state. 
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Figure 13: Channel 4A BHandHLYP IRC calculation results, hartrees versus reaction coordinate.   

 

     The six transition states for oxidative Channels 4B-6B were found by performing one-

dimensional scans of the carbon-oxygen bond distances (Angstroms), i.e. extending the carbon-

oxygen bond (of each adduct or product) while plotting the absolute energy as a function of this 

distance.  Figures 14 and 15 depict this one-dimensional scan and the reactants’, transition state, 

and product structures for the ortho-case of Channel 4B, respectively.  These oxidative reactions 

(radical and 
3
O2) were studied in the doublet state based on a previous study of the reaction 

between phenyl and 
3
O2.

46
 

     IRC calculations for each oxidative channel have confirmed these transition states are 

valid.  For the ortho-case of Channel 4B, IRC calculated results are given in Figure 16. 

     The transition states for the loss of the hydroxyl hydrogen atom from the ortho- and para-

semiquinone radicals (Channels 5C-6C) were found by first performing a one-dimensional scan  
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Figure 14: BHandHLYP/6-31G(d,p) scan of carbon-oxygen bond in the o- O2-phenoxyl product 

given in hartrees versus Angstroms.   

 

 

 

o

+  3O2

-456.90278

-456.86720

o

1.828

1.248
-456.88814

o

1.091

1.203

o

o

o
o

1.215
h

1.077

vi = -811.6 cm-1

h
o

1.438

-456.90403

o

h

o

1.077

3.402

1.248

-456.88826

o

1.093

1.202
o

h
o

1.428

 
 

 

Figure 15: Channel 4B PES (the ortho-case) which depicts the BHandHLYP/6-31G(d,p) absolute 

energies in hartrees (left to right) for the reactants (phenoxyl and 
3
O2), a local minima, the 

transition state, and 2 isomers of the product. 
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Figure 16: Channel 4B (ortho-addition) BHandHLYP IRC calculation results, hartrees versus 

reaction coordinate. 

 

of each of these radicals’ hydroxyl bond.  For example, the one-dimensional scan for p-

semiquinone appears in Figure 17. 
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Figure 17: One-dimensional BHandHLYP/6-31G(d,p) scan of hydroxyl bond in p-semiquinone 

given in hartrees versus Angstroms.  

 

63 



     The one-dimensional scans were followed by implementation of the STQN method integrated 

into the suite of programs inside Gaussian 03.  Figure 18 depicts the reactant, the transition state, 

and products’ structures for Channel 5C.  IRC calculated results appear in Figure 19 and confirm 

the transition in Figure 18 as valid. 
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Figure 18: Channel 5C PES which depicts the BHandHLYP/6-31G(d,p) energies in hartrees (left 

to right) for the reactant (p-semiquinone), the rate-limiting transition state, and the products 

(hydrogen atom and p-benzoquinone). 
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Figure 19: Channel 5C BHandHLYP IRC calculation results, hartrees versus reaction coordinate.  
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4.2 Results 

 

     The reaction internal energies (ΔE), reaction enthalpies (ΔH), and reaction Gibbs free 

energies (ΔG) for each reaction in Figure 8 are given in Table 7.  Activation energies were 

calculated for the key unimolecular radical decomposition (Channels 4A-6A and 5C-6C), 

bimolecular radical - 
3
O2 consumption reactions (Channels 4B-6B) as well as hydroxyl radical 

abstraction reactions with the molecular precursors (Channels 1D-3D). 

Figure 8 summarizes the reactions of phenol, catechol, hydroquinone, phenoxyl radical, o-

semiquinone radical, and p-semiquinone radical studied in this work.  These reactions can be 

characterized as follows: 

4.2.1 Radical Formation  

• Unimolecular decomposition of the parent species via phenoxyl-hydrogen bond rupture 

(Channels 1A, 2A, and 3A) 

 

• Bimolecular reaction of the parent species with a hydrogen atom 

 

o Abstraction of a phenoxyl hydrogen (Channels 1B, 2B, and 3B) 

o Displacement of a hydroxyl group (Channels 1C, 2C, and 3C) 

• Bimolecular reaction of the parent species with a hydroxyl radical 

o Abstraction of a phenoxyl hydrogen (Channels 1D, 2D, and 2C) 

     Unimolecular decomposition involving a phenoxyl-hydrogen bond with dissociation energies 

between 73 and 80 kcal mol
-1

 (BHandHLYP/6-31G(d,p)) is expected to contribute to radical 

formation under oxidative and pyrolytic conditions.
109

   Hydrogen atoms are the dominant 

reactive species under pyrolytic conditions and the hydroxyl radical is the dominant reactive 

species under oxidative conditions
57

 and these species should contribute strongly to radical 

formation under pyrolytic and oxidative conditions, respectively. 
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     The BHandHLYP calculations yield a 7.3 kcal mol
-1

 difference in the energies of reaction 

(activation energy) of the radical from the parent molecular species via unimolecular 

decomposition (Channels 1A, 2A, and 3A).  Despite using unrestricted, open-shell DFT with 

orbital transpositions, no transition states could be found for reactions 1A-3A.  The ΔE for 

formation of phenoxyl (Channel 1A) is consistent with previously reported hydroxyl bond 

dissociation energies for phenol
117-120

, hydroquinone, and catechol.
121-123

 

     The experimental rate constants (at 1000 K) for H� abstraction and OH� displacement  

 

by H� (Channels 1B-3B and 1C-3C)
124

 are similar with the rate constant for phenol  

 

decomposition.
125

.  Assuming an H� concentration
126

 of 10
13

 to 10
14

 atoms-cm
3
 and a  

 

temperature of 1000K results in a predicted rate (mole/L-sec) for these 2 reactions greater  

 

than the rate for unimolecular decomposition under pyrolytic conditions.  Further, the  

 

calculated ∆Erxn results (Table 7) for Channels 1B-3B and 1C-3C show that  

 

thermodynamics favors the formation of phenoxyl over the formation of benzene.   

 

Formation of molecular species by hydroxyl displacement (Channels 1C-3C) may  

 

compete with radical formation (Channels 1B-3B), but hydroxyl reactions (Channels 1D- 

 

3D) with phenol, catechol, and hydroquinone are all calculated to have low or negative  

 

activation energies, information which is consistent with analogous bimolecular hydroxyl  

 

reactions with aromatics.
73

 
113, 127-132

   Using rate constant information and these and these 

 

calculations the oxidative pathway, i.e. H� abstraction by OH� (Channels 1D-3D), are expected  

 

to be the dominant pathway, a radical forming pathway. 

 

     The kinetic and thermodynamic differences for the radical formation channels may be of little 

practical consequence in combustion systems as the reactions of the molecular precursors with 

hydrogen atoms and hydroxyl radicals (Channels 1B-3B, 1C-3C, and 1D-3D) are all exothermic  

66 



(∆Hrxn < -7.4 kcal-mol
-1

, BHand HLYP) and are expected to have very similar activation 

energies resulting in similar radical formation yields.  Our calculations show similar trends in 

∆Erxn for the formation of o- and p-semiquinone, and as a result, we expect similar trends in 

reaction rates for their precursors.  Under the conditions present in this experiment, these radical 

formation calculations demonstrate that unimolecular or bimolecular processes at combustion 

temperatures all readily form the radicals.  The radical consumption energetics are more 

revealing. 

4.2.2 Radical Consumption 

• Thermal Decomposition via concerted elimination of carbon monoxide (Channels 4A, 

5A, and 6A) 

 

• Bimolecular reaction with ground state molecular oxygen (
3
O2) (Channels 4B, 5B, and 

6B) 

 

• Unimolecular bond scission of the second hydroxyl hydrogen to form a quinone 

(Channels 5C and 6C) 

 

Unimolecular thermal decomposition via elimination of carbon monoxide with reaction 

enthalpies in the 27-33 kcal mol
-1

 (BHandHLYP/6-31G(d,p)) range may contribute to radical 

consumption under oxidative or pyrolytic conditions.
109

   Hydrogen atom reactions (Channels 

5C-6C) were included in analogy to the reactions of the molecular species in radical formation.  

Bimolecular reaction with 
3
O2  was included as it is the highest concentration reactive species in 

the atmosphere and the known principal route of consumption of most organic radicals under 

oxidative conditions. 

4.2.3 Radical Stability 

     Phenoxyl, p-semiquinone, and o-semiquinone radicals (Channels 4A, 5A, and 6A) are  

 

resistant to thermal decomposition by elimination of carbon monoxide to form  
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Table 7: BHandHLYP/6-31G(d,p), B3LYP/6-31G(d,p), and QCISD(T)/6-

31G(d,p)//BHandHLYP/6-31G(d,p) Results for Each Channel in Figure 8.  (B3LYP results 

precede QCISD(T)/6-31G(d,p) results in parentheses).  The QCISD(T)/6-31G(d,p) results are 

calculated at BHandHLYP/6-31G(d,p) optimized geometries.  Reaction enthalpies and free 

energy changes were calculated at 298 K and 1 atmosphere of pressure. 
 

Channel Eact ∆E ∆H ∆G 

1A N.A. 80.2(81.3, 89.4) 81.5(82.7) 73.2(74.3) 

2A N.A. 76.3(76.4, 85.0) 77.5(77.6) 69.4(69.5) 

3A N.A. 72.9(71.6, 80.7) 73.9(72.7) 66.1(64.8) 

     

1B  -23.1(-24.0,-16.4) -22.6(-23.5) -23.9(-24.8) 

2B  -27.0(-28.9,-20.9) -26.7(-28.6) -27.8(-29.7) 

3B  -30.4(-33.7,-25.2) -30.2(-33.5) -31.0(-34.3) 

     

1C  -7.7(-2.3, -6.2) -7.8(-2.4) -10.7(-5.3) 

2C  -9.5(-4.0, -7.8) -9.7(-4.3) -12.4(-7.0) 

3C  -7.3(-2.0, -5.4) -7.4(-2.2) -10.2(-4.9) 

     

1D 1.0 (  ,6.9) -26.6(-30.4,-26.5) -26.5(-30.2) -27.4(-31.2) 

2D -0.6(  ,6.0) -30.6(-35.3,-31.0) -30.6(-35.3) -31.2(-36.0) 

3D -1.0(        ) -34.0(-40.1,-35.3) -34.1(-40.2) -34.5(-40.6) 

     

4A 62.9(56.4,56.4) 29.0(29.6, 22.9) 30.6(31.3) 18.1(18.8) 

5A 65.1(59.9,59.3) 27.2(27.8, 20.5) 28.4(29.0) 16.6(17.3) 

6A 74.4(70.0,68.3) 32.8(34.6, 27.2) 34.2(36.0) 22.1(23.9) 

     

4B     
o-addition 23.5(13.7,14.6) 12.3(9.3, 1.8) 11.7(8.8) 22.1(19.1) 
p-addition 20.7(10.8,11.1) 8.4(6.2, -2.0) 7.8(5.7) 18.5(16.2) 

5B     
o-addition 22.4(13.1,13.1) 13.7(12.0, 3.2) 13.1(11.5) 23.3(21.7) 
p-addition 19.6(10.8, 9.3) 11.3(10.7,-0.5) 10.7(10.3) 21.5(20.6) 

6B     
o-addition 26.4(18.1,18.6) 16.4(15.4, 6.9) 15.9(15.0) 26.4(25.3) 
p-addition 21.3(12.5,7.6) 11.8(11.3, 2.6) 11.2(10.8) 21.9(21.2) 

     

5C 72.9(63.8,71.4) 60.9(57.8,54.7) 62.3(59.2) 54.5(51.4) 

6C 79.8(71.6,79.0)     74.3(71.6,68.2) 75.8(73.2) 67.6(64.9) 

 

 

cyclopentadienyl (from phenoxyl) and hydroxycyclopentadienyl (from catechol and  

 

hydroquinone) radicals with activation energies (BHandHLYP/6-31G(d,p)) ranging from  

 

62.9 kcal mol
-1

 for phenoxyl to 74.4 for o-semiquinone.  Qualitatively, our calculations  

 

do indicate that o-semiquinone is more resistant to decomposition than phenoxyl or p- 

 

semiquinone, which may be significant.  o- and p-semiquinone (Channels 5C and 6C)  
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may also decompose by the loss of the second phenoxyl hydrogen which is not possible  

 

in phenoxyl.  These reactions are highly endothermic with calculated activation energies  

 

of 72.9 and 79.8 kcal mol
-1

 (BHandHLYP/6-31G(d,p)) for p- and o-semiquinone,  

 

respectively.  In fact, the calculated activation energy for the loss of the second hydroxyl  

 

hydrogen is actually 6.9 kcal mol
-1

 greater than the activation energy for the loss of the first 

 

hydrogen in the o-semiquinone/catechol system.  The large activation energies for loss of the 

 

second hydrogens are again indicative of the stabilities of the radicals.  Since the activation  

 

energies for reaction of the radicals with molecular oxygen were so similar and the semiquinone  

 

radicals have a decomposition channel that phenoxyl radical does not have, our results suggest  

 

that phenoxyl may be slightly more stable than the o- and p-semiquinone radicals. 

 

4.2.4 Radical Reactivity 

 

     Calculations for reaction energies here indicate that the addition of molecular oxygen to the 

oxygen atom of phenoxyl is highly endothermic (∆Hrxn = +72.8 kcal mol
-1

, UHF/6-31G(d,p)) 

making production of an ozonide (ROOO�) unlikely (Figure 21).  Additionally, no transition 

state could be located for reaction at an oxygen center and this reaction is believed to be 

infeasible. 

     Attempts to optimize the UHF ozonide structure with B3LYP and BHandHLYP were  

o

+      3O2

o
o o1.2538 1.3822

1.4022

1.2731

. .
Hrxn = 72.8 kcal

 
Figure 21: Addition of molecular oxygen and the phenoxyl radical producing an ozonide 

(ROOO�) via UHF/6-31(d,p). 
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unsuccessful and hence addition of molecular oxygen to the oxygen atom is not included in 

Table 7 and not a possibility further considered.  This ozonide product suggests addition of 

molecular oxygen with the oxygen-center of the semiquinones would be highly endothermic as 

well.  Our calculations also indicate 
3
O2 addition to the ortho-/para- carbon atoms of phenoxyl 

(Channel 4B) are unlikely with calculated activation energies are 23.5/20.7 and ∆Es of 12.3/8.4 

kcal mol
-1

 (BHandHLYP/6-31G(d,p)).  An important result is the lower activation energies of 

19.6-21.3 kcal-mol
-1

 (BHandHLYP/6-31G(d,p)) for reaction at the more reactive para-position 

of each radical with molecular oxygen .  Furthermore, equilibrium does not favor these reactions, 

i.e. ∆Grxn = 18.5-26.4 kcal-mol
-1

.  Based on these calculations, this reaction should not occur for 

any of these radicals.  This finding is consistent with the literature, i.e. these radicals are stable in 

oxidative environments allowing them to engage rather in radical-radical or radical-precursor 

combinations.
10, 20, 58-61, 63, 74-77, 133-138

  Addition of molecular oxygen was also considered at the 

radicals’ ortho-positions, but the activation energies are 2.8-5.1 kcal-mol
-1

 higher than at the 

para-position. 

     Because our calculations indicated semiquinone and phenoxyl radicals were exceptionally 

resistant to oxidation, for comparison, we also performed calculations on a phenyl radical that is 

known to be very reactive with 
3
O2 (Figure 22). 

46-52, 139
   For this reaction, an experimental 

activation energy of -0.32 kcal/mole has been previously measured
52

, and a ∆Grxn of -32.3 kcal 

mol
-1

 has been previously calculated using B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)).
46

   The 

experimental exothermicity for this reaction is -37 kcal-mol
-1

.
46

   A one-dimensional scan of the 

carbon-oxygen bond in the adduct is shown in Figure 23.  These calculations also indicate this 

reaction is barrierless with a ∆Hrxn and ∆Grxn (B3LYP/6-31G(d,p)) of -46.2 and -34.8  

kcal-mol
-1

, respectively. 
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Figure 22: The addition reaction of the phenyl radical with molecular oxygen which produces the 

phenylperoxy radical. 

 

-381.98

-381.97

-381.96

-381.95

-381.94

-381.93

-381.92

-381.91

-381.9

-381.89

-381.88

0.5 1.5 2.5 3.5 4.5 5.5 6.5

 
 

 

Figure 23: B3LYP/6-31G(d,p) one-dimensional scan of the phenylperoxy carbon-oxygen bond 

distance. 

 

     The reaction between the phenoxyl radical and 
3
O2 (Channel 4B) has also been 

experimentally studied, and it was found that the room temperature reaction rate was on the order 

of 10
-18

 to 10
-21 

cm
3
/molecule-sec.

79, 80
  This is very slow compared to the reaction of 

3
O2 with 

phenyl radical which is 10
-11

 to 10
-13

 cm
3
/molecule-sec

49, 50, 52
 and further supports the results of 

our calculations for o- and p-semiquinone radicals as well as phenoxyl.   

     An additional calculation that is useful for assessment of the reactivity of the radicals is the 

Bader Valence Electron Density.
140

  The results of these calculations, which assign the valence 
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electron density to individual atoms, can be used to determine the amount of valence electron 

density that is oxygen-centered and carbon-centered.  The results presented in Table 8 indicate 

that o-semiquinone and p-semiquinone are both 37 % oxygen-centered and phenoxyl is 22 % 

oxygen centered.  Since earlier UHF/6-31G(d,p) calculations (Figure 21) indicate molecular 

oxygen may not react at the oxygen center of phenoxyl to form an ozonide (ROOO�) but may 

react at a carbon-center to form a peroxide (ROO�) (BHandHLYP/6-31G(d,p)), the greater 

carbon electron density found in phenoxyl (25 % higher than the semiquinone radicals) becomes 

a factor.  This suggests that the pre-exponential factor for reaction of phenoxyl radical with 

molecular oxygen will be higher than for either of the semiquinone radicals.  This effect, to some 

extent, counters the effect of the high activation energy for the reaction of molecular oxygen with 

phenoxyl radical. 

Table 8: Bader Valence Electron Density Analysis using a BHandHLYP/6-31G(d,p)) 

model chemistry. 

 

Radical % Carbon % Hydrogen % Oxygen 

o-semiquinone 52.2 10.6 37.2 

p-semiquinone 49.8 13.4 36.8 

phenoxyl 63.6 14.8 21.6 

phenyl 82.2 17.8 na 
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CHAPTER 5.  AB-INITIO STUDY OF THE FORMATION AND DEGRADATION 

REACTIONS OF POLY-CHLORINATED PHENOXYL RADICALS 

 

5.1 Computational Procedures 

 

     All reaction and kinetic calculations in Chapter 5 have been performed using unscaled, zero-

point corrected energies and the following model chemistries:  B3LYP/6-31G(d,p),  

BHandHLYP/6-31G(d,p), and QCISD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p).  As a check on 

the relative ordering of the results, the monochlorophenols’ decomposition reaction energies 

have also been calculated with the BHandHLYP/6-311++G(d,p) model chemistry.  The 

transition states for the radical decomposition and oxidative channels have been IRC confirmed 

and are similar to those given in Chapter 4.   

5.2 Results 

 

5.2.1 Radical Formation 

 

5.2.1.1 Unimolecular Decomposition of the Chlorophenols 

 

     Despite the importance of the role of the 19 congeners of chlorophenol in gas-phase PCDD/F 

formation, this is the first study to focus undertake all of their OH bond dissociation energies 

(BDE) in computational fashion.  Previous experimental pyrolytic studies have been limited to 

the mono-, di-, or tri-chlorophenol precursors and their products with an aim for developing a 

PCDD/F formation mechanism
56-58, 73, 74, 77, 78, 134, 136-138

 and some have used the OH bond 

dissociation energy of phenol in their models.  Previous computational studies have also been 

limited to only the mono- or dichloro-phenols’ OH bond dissociation energies.
64-71

   

     In comparison to the non-substituted case, a mono-hydroxylated aromatic ring is more likely 

to undergo electrophilic (E+) substitution at its ortho and para carbon sites due to the electron-

donating properties of a hydroxyl substituent.
141

  Specifically, after an E+ adds (at an ortho or  
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para carbon atom) the positive charge can be delocalized into 3 locations, one of which is near 

the carbon-hydroxyl bond.  In this case, the hydroxyl group may stabilize the carbocation with its 

electron-donating character. 

     An experimental study, using EPR
142

 has shown the terminal group on passing from phenols 

(R-OH) to phenoxyl radicals (R-O�) changes its electronic properties from electron-donating to  

strongly withdrawing when an electron-donating chloro-substituent is in its para-position.  This  

is confirmed by the absolute energies here (Table 9), i.e. amongst the monochlorophenols, the 

para- isomer is highest in energy and amongst the monochloro-phenoxyl radicals, the para-

isomer is the lowest in energy.   

Table 9: BHandHLYP/6-311++G(d,p) zero-point corrected absolute energies (in hartrees) for the 

monochlorinated phenols and monochlorinated phenoxyl radicals. 

 

ortho-chlorophenol  -766.882553 

meta-chlorophenol  -766.881398 

para-chlorophenol  -766.880766 

 

ortho-chlorophenoxyl  -766.252099 

meta-chlorophenoxyl  -766.252752 

para-chlorophenoxyl  -766.254632 

 

ortho-chlorophenol was expected to be the most stable isomer of monochlorophenol due  

 

to its internal hydrogen bond. 

 

     Destabilization of the OH bond in para-chlorophenol is easily observed here with 

BHandHLYP/6-311++G(d,p) relative to phenol (Table 10) and is consistent with this 

experimental finding.
142

   ortho- and meta-chlorophenol were expected to exhibit higher OH 

bond dissociation energies, relative to phenol, a result of their internal hydrogen bonding, and 

their OH bond dissociation energies are also consistent with those reported in earlier 

computational works.
65, 67, 70, 71
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Table 10: BHandHLYP/6-311++G(d,p) reaction energies in kcal-mol
-1

. 

∆E rxn 

phenol  H + phenoxyl radical       80.6 

ortho-chlorophenol  H + ortho-chlorophenoxyl radical    82.7 

meta-chlorophenol  H + meta-chlorophenoxyl radical    81.6 

para-chlorophenol  H + para-chlorophenoxyl radical    80.0 

 

     Another experimental study uses the 3 mono-chlorophenols and 4 dichlorophenols as 

precursors to understand chlorinated-dibenzofuran formation where the conditions were both  

pyrolytic and oxidative.
138

  For the 3 mono-chlorophenols and pyrolytic conditions, these authors 

report para-chlorophenol decomposes most readily while ortho-chlorophenol is most resistant to 

decomposition (based on unreacted precursor amounts in identical experiments).  This 

experimental finding is also consistent with OH bond dissociation energies reported in Tables 10 

and 11.   

     The dichlorophenols used in this experimental study were 2,3-, 2,4-, 2,5-, and 2,6-DCP.  

Expected tetrachlorinated furans, based on a previously reported mechanism
75

 which involves 

ortho-ortho radical dimerization, enolization, followed by condensation, were produced in the 

largest yield in each experiment.  The 2,6-DCP did not give rise to any furans, as expected, as the 

radical product of this precursor does not have an ortho-H atom moiety available for the final 

condensation step.  The oxidative experiments where [O2] = 8% did not change the product 

distributions or amounts indicating molecular oxygen is zeroth order with respect to the rate of 

formation of furans. 

     While Han et al.
72

 have computationally studied the 19 congeners of chlorophenol, their focus 

was only their relative energetics and geometries.  They observed that degree of chlorination can 

be correlated with an increasing OH bond distance, and as a result, they argue the acidity of the 

chlorophenols will increase with degree of chlorination.  While we observe degree of  
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chlorination  correlates with increasing OH bond distance (Table 12), we do not find a similar 

trend for the chlorophenols homolytic bond dissociation energies (BDE).  Rather, we observe the 

lowest energy congener in a homologue pattern has the greatest OH BDE (taking into account 

the substituent effects on the ground state and radical energies), with one exception.  Amongst 

the tetrachlorophenols, the lowest energy congener is its 2,3,5,6- isomer and the 2,3,4,5- isomer 

has the greatest OH BDE. 

Table 11: ∆Erxn for unimolecular decomposition of the chlorophenols producing a hydrogen atom 

and a chlorinated phenoxyl radical. 

 

 

    B3LYP BH&HLYP     QCISD(T)//BH&HLYP 

Phenol     81.3  80.2  89.4 

2-chlorophenol   83.1  82.5  91.1 

3-chlorophenol   82.4  81.4  90.6 

4-chlorophenol   80.7  80.1  89.0 

 

2,3 dichlorophenol   83.8  83.2 

2,4 dichlorophenol   82.3  82.1 

2,5 dichlorophenol   83.9  83.5 

2,6 dichlorophenol   81.9  81.8 

3,4 dichlorophenol   81.7  81.2 

3,5 dichlorophenol   83.5  82.6 

 

2,4,6 trichlorophenol   81.0  81.3 

2,3,4 trichlorophenol   82.9  82.9 

2,3,5 trichlorophenol   84.6  84.3 

2,3,6 trichlorophenol   82.3  82.4 

2,4,5 trichlorophenol   83.0  83.0 

3,4,5 trichlorophenol   82.6  82.2 

 

2,3,4,5 tetrachlorophenol    83.9 

2,3,5,6 tetrachlorophenol    82.9 

2,3,4,6 tetrachlorophenol    82.0 

 

pentachlorophenol     82.6 
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Table 12: Hydroxyl Bond Distance (BHandHLYP/6-31G(d,p)) in Angstroms as a function of 

increasing degree of chlorination for the 19 congeners of chlorophenol. 

 

R(O-H), Angstroms Homologue Mean R(O-H) 

o-chlorophenol  0.9564   0.9546 

m-chlorophenol  0.9538 

p-chlorophenol  0.9536 

 

2,3-dichlorophenol  0.9566   0.9557 

2,4-dichlorophenol  0.9565 

2,5-dichlorophenol  0.9567 

2,6-dichlorophenol  0.9568 

3,4-dichlorophenol  0.9539 

3,5-dichlorophenol  0.9540 

 

2,4,6-trichlorophenol  0.9567   0.9562 

2,3,4-trichlorophenol  0.9567 

2,3,5-trichlorophenol  0.9565 

2,3,6-trichlorophenol  0.9569 

2,4,5-trichlorophenol  0.9567 

3,4,5-trichlorophenol  0.9540 

 

2,3,4,5-tetrachlorophenol 0.9569   0.9570 

2,3,5,6-tetrachlorophenol 0.9571 

2,3,4,6-tetrachlorophenol 0.9570 

 

Pentachlorophenol  0.9571   0.9571 

 

     After performing a one-dimensional relaxed PES scan of the hydroxyl torsional angle in both 

 

the 2,3,5,6- and 2,3,4,5- tetrachlorophenols (Figure 24a-b), it appears this exception may be  

 

partially explained by the presence of 2 ortho chlorine atoms (in 2,3,5,6- ) which facilitate  

 

rotation for its hydroxyl H atom, relative to the alternative case of where there is only one ortho  

 

chlorine atom (in 2,3,4,5- ).  Specifically, the rotational barriers (BHandHLYP/6-31G(d,p)) for  

 

the hydroxyl H atom are 4.8 and 5.7 kcal-mol
-1

 for 2,3,5,6- and 2,3,4,5-, respectively. 

 

    After the hydroxyl rotational energies are subtracted from the calculated OH bond dissociation 

 

energies for 2,3,4,5- and 2,3,4,6-tetrachlorophenol, one may observe (in Table 13) the energy   

 

necessary for OH bond scission is virtually identical. 
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SCF (hartrees) versus HOCC torsional angle (degrees)
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Figure 24a : One-dimensional relaxed PES scan of the hydroxyl H torsional angle in 2,3,4,5-

tetrachlorophenol using BHandHLYP/6-31G(d,p). 
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Figure 24b: One-dimensional relaxed PES scan of the hydroxyl H torsional angle in 2,3,5,6-

tetrachlorophenol using BHandHLYP/6-31G(d,p). 
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Table 13: BHandHLYP/6-31G(d,p) OH bond dissociation energies (BDE) after rotational 

energies (kcal-mol
-1

) are subtracted, for 2,3,4,5- and 2,3,5,6-tetrachlorophenol. 

 

OH BDE 

2,3,4,5- tetrachlorophenol   H + 2,3,4,5-tetrachlorophenoxyl  78.2 

2,3,4,6- tetrachlorophenol   H + 2,3,4,6-tetrachlorophenoxyl  78.1 

 

     This observation may be extended to the other homologue groups.  In general, amongst each 

homologue pattern, those congeners which contain one internal H bond (with Cl) are described 

by higher OH bond dissociation energies than the balance.  Chlorophenols with  two ortho-

chlorine atoms facilitate hydroxyl H atom rotation making OH bond dissociation energies lower; 

in addition, these tetrachlorophenol precursors are not expected to give rise to a predicted 

furan.
75

  The 3 remaining chlorophenol congeners (3,4-DCP, 3,5-DCP, 3,4,5-TCP), i.e. those 

with 2 ortho-H atoms are, in general, most easily decomposed amongst the dichloro- and 

trichloro-homologue groups, respectively.  These 3 precursors are also important for their 

product radicals also meet the conditions for forming the predicted chloro-dibenzofurans, i.e. 

these radicals may ortho-ortho dimerize, enolize, and condense producing 2,3,7,8-tetra-, 1,3,7,9-

tetra-, and 1,2,3,7,8,9-hexa-chlorinated dibenzofurans.   

5.2.1.2 Bimolecular Reactions with Hydrogen Atoms 

 

     Neither experimental nor computational rate information for the abstraction of H (the  

 

hydroxyl H) by H from a chlorophenol is available.  Dehydroxylation by a H atom, on the  

 

other hand, was studied in the gas-phase by Manion and Louw.
143

  Theses authors report  

 

this reaction proceeds via an addition/ipso substitution method and experimentally find  

 

the dehydroxylation rate constants (by H) for the 3 mono-chlorophenols are similar in  

 

magnitude to the analogous reaction for phenol.  Specifically, these experimental rate  

 

constants’ ratios were 1.08, 0.75, and 0.88 for 2-, 3-, and 4-monochlorophenol after  

 

making the analog (phenol) unity.  Based on these similarities (analogous pyrolytic  
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dehydroxylation of the monochlorophenols by H) we use the experimental gas-phase rate  

 

constant for dehydroxylation of phenol by H
124

 along with a H atom concentration of 10
-13

 to  

 

10
-14

 atoms-cm
-3

 
126

 to arrive at a predicted rate for the analogous reactions with the array of  

 

chlorophenols.  Bimolecular reaction rates with H atoms are expected to be 2 orders of  

 

magnitude faster than the rate of unimolecular decomposition for the chlorophenols. 

 

     The reaction thermodynamics’ (∆Erxn) in Table 14a and 14b are similar to the results for the 

pyrolytic channels (Channels 1B-3B and 1C-3C) in Chapter 4 which also suggests the 

bimolecular reactions of chlorophenols with H atoms will also favor production of chloro-

phenoxyl radicals, as opposed to chlorobenzenes.   

Table 14a: ∆Erxn for bimolecular reaction with a hydrogen atom producing H2 and a chlorinated 

radical 

    B3LYP BH&HLYP      QCISD(T)//BH&HLYP  

 

Phenol    -24.0  -23.1  -16.4 

2-chlorophenol  -22.2  -20.8  -14.7 

3-chlorophenol  -22.9  -21.8  -15.2 

4-chlorophenol  -24.6  -23.2  -16.9 

 

2,3 dichlorophenol  -21.5  -20.0 

2,4 dichlorophenol  -23.0  -21.1 

2,5 dichlorophenol  -21.4  -19.8 

2,6 dichlorophenol  -23.4  -21.5 

3,4 dichlorophenol  -23.7  -22.1 

3,5 dichlorophenol  -21.8  -20.7 

 

2,4,6 trichlorophenol  -24.3  -22.0 

2,3,4 trichlorophenol  -22.4  -20.4 

2,3,5 trichlorophenol  -20.7  -19.0 

2,3,6 trichlorophenol  -23.0  -20.9 

2,4,5 trichlorophenol  -22.3  -20.3 

3,4,5 trichlorophenol  -22.7  -21.1 

 

2,3,4,5 tetrachlorophenol   -19.4 

2,3,5,6 tetrachlorophenol   -20.4 

2,3,4,6 tetrachlorophenol   -21.3 

     

pentachlorophenol    -20.7 
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Table 14b: ∆Erxn for bimolecular reaction with a hydrogen atom producing OH and 

chlorobenzene 

 

    B3LYP BH&HLYP      QCISD(T)//BH&HLYP  

 

Phenol    -2.3  -7.7  -6.2 

2-chlorophenol  -1.5  -7.0  -5.2 

3-chlorophenol  -2.5  -7.9  -6.3 

4-chlorophenol  -2.8  -8.2  -6.7 

 

2,3 dichlorophenol  -4.6  -7.0 

2,4 dichlorophenol  -1.9  -7.4 

2,5 dichlorophenol  -1.5  -7.1 

2,6 dichlorophenol  -3.5  -9.0 

3,4 dichlorophenol  -2.9  -8.2 

3,5 dichlorophenol  -2.7  -8.0 

 

2,4,6 trichlorophenol  -3.8  -9.4 

2,3,4 trichlorophenol  -1.8  -7.3 

2,3,5 trichlorophenol  -1.6  -7.1 

2,3,6 trichlorophenol  -3.4  -9.0 

2,4,5 trichlorophenol  -2.0  -7.5 

3,4,5 trichlorophenol  -3.0  -8.4 

 

2,3,4,5 tetrachlorophenol   -7.4 

2,3,5,6 tetrachlorophenol   -9.1 

2,3,4,6 tetrachlorophenol   -9.2 

 

pentachlorophenol    -9.4 

 

 

5.2.1.3 Bimolecular Reaction with the Hydroxyl Radical 

 

     While there are several studies for the reaction of chlorophenols with the hydroxyl radical, 

these studies have been limited to aqueous solution, a form of waste water treatment.  Gas-phase 

experimental rate constants are absent, i.e. for the bimolecular reactions between the chloro-

phenols’ hydroxyl site and a hydroxyl radical producing water and an appropriately chlorinated 

phenoxyl radical.  As a result, the analogous reactions with benzene and phenol are used to draw  

comparisons here.  With regard to the radical formation channels, oxidative conditions, and using  
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previous experimental and computational evidence for the analogues
113, 128, 129, 131

, the gas-phase 

reaction between the chlorophenols and the hydroxyl radical is expected to dominate the scene.  

     For example, in an effort to study the phenol-OH adduct reactions with NOx at temperatures 

266-364 K, Berndt et al.
128

 realized their hydroxyl generation mechanism was also a source of H 

atoms.  In order to clarify the influence of the reaction between phenol and a H atom, these 

authors have found this reaction does not compete with the reaction of phenol and a hydroxyl 

radical.   

     Knispel et al.
131

 have studied kinetically the bimolecular reactions of benzene, toluene, and 

 

phenol with OH (Figure 25) in terms of formation of their adducts (k1), decomposition of their  

 

adducts (k3), and abstraction of H by OH (k2) at temperatures 298-374 K.  For the reaction,  

 

phenol and OH, these authors find the addition channel dominates at 298 K, and the adduct  

 

decay channel dominates at 374 K.  Although the phenol and OH addition channel is 2 times  

 

faster than the abstraction channel at high temperature (374 K), the high probability the adduct  

 

will dissociate back to the reactants makes the abstraction channel an important radical- 

 

producing channel at combustion temperatures.  The reactions of benzene and toluene with OH  

 

were similar, i.e. addition dominated at low temperature and adduct decomposition dominated at  

 

high temperature; however, the abstraction rates for these reactions at high temperature remained  

 

small. 

 

     The addition reaction of benzene and OH is expected to dominate at 298 K based on the work  

 

of Knispel et al.
131

  Calvert et al.
129

 have compiled several researchers experimental works for  

 

this reaction and derive a rate coefficient of k∞ (benzene+OH) ~ 3.8 x 10
-12

 e
(-300 K/T)

 cm
3
- 

 

molecule
-1

-sec
-1

 for T=240-350 K.  The energy of activation in this expression, after conversion  

 

from K, is 0.6 kcal-mol
-1

.  A recent computational study has found the exothermicity (∆H298) for 
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Figure 25:  Bimolecular reaction of phenol and a hydroxyl radical.  Equilibrium adduct 

formation (k1), its unimolecular decay (k3), and H abstraction (k2). 

 

the addition channel is -2.5 kcal-mol
-1

, and the barrier for the abstraction channel is 4.8 kcal-mol
-

1
 
113

, using B3LYP/6-31G(d,p) optimized geometries and composited methods.  Please recall the 

k3 rate coefficient (the abstraction channel) for this reaction remains small at high temperature 

(or 374K).
131

 

     With regard to the reaction between phenol and OH, addition dominates at 298 K and  

 

abstraction effectively begins to dominate at 339 K
131

 due to the rapid decomposition of  

 

the adduct into reactants and the increase in the abstraction rate constant.  Calvert et al.
129

  

 

have also compiled consistent experimental works for this reaction and derive a rate coefficient 

of k∞ (phenol+OH) = 1.73 x 10
-12

 e
(840K/T)

 cm
3
-molecule

-1
-sec

-1
 for T=290-380 K.  The energy of 

activation in this expression, after conversion from K, is -1.7 kcal-mol
-1

.  Calculations here for 

this abstraction barrier are lower, as expected, 1.0 kcal-mol
-1

 using BHandHLYP/6-31G(d,p).  

Formation of the adduct (after OH addition to carbon) is expected to be exothermic (at 298 K) 

for this channel as well.
127-129, 131, 132

   

     Additionally, Olariu et al.
144

 have experimentally studied OH + phenol at 298 K in NOx.  

These authors find catechol (80.2%) is the produced in the largest yield followed by  
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p-benzoquinone (3.7%) and 2-nitrophenol (5.8%).  Catechol reflects addition of OH occurred at 

the ortho-site of phenol and nearby hydrogen atom was lost.  This experimental evidence is 

congruent with the work of Knispel et al.
131

 

     The DFT computational barriers for (i) benzene and OH, and (ii) phenol and OH are ordered  

with experimental findings, i.e. the abstraction channel for the latter begins to dominate at a 

lower temperature making the reaction of phenol and OH important in terms of its radical-

producing nature.  Due to the ordering of the computational energies of activation with the 

experimental work for these 2 analogues, benzene and phenol, we expect the abstraction reaction 

rates between 2-, 3-, and 4-chlorophenol (CP) and OH to take place in this order, 4-CP+OH > 3-

CP+OH > 2-CP+OH (Table 15).  In addition, the reaction thermodynamics in Table 15 for H 

atom abstraction from a chlorophenol by OH are similar as well to the analogous reaction with 

phenol. 

Table 15: ∆Erxn for bimolecular reaction with OH producing water and chlorinated radical 

 

    B3LYP BH&HLYP QCISD(T)//BH&HLYP 

    Erxn  Eact Erxn  Erxn 

Phenol    -30.4  1.0 -26.6  -26.5 

2-chlorophenol  -28.6  3.9 -24.4  -24.9 

3-chlorophenol  -29.3  1.7 -25.4  -25.4 

4-chlorophenol  -31.0  1.0 -26.8  -27.0 

 

2,3 dichlorophenol  -28.0   -23.6 

2,4 dichlorophenol  -29.4   -24.7 

2,5 dichlorophenol  -27.8   -23.3 

2,6 dichlorophenol  -29.9   -25.1 

3,4 dichlorophenol  -30.1   -25.7 

3,5 dichlorophenol  -28.2   -24.2 

 

2,4,6 trichlorophenol  -30.8   -25.5 

2,3,4 trichlorophenol  -28.8   -23.9 

2,3,5 trichlorophenol  -27.1   -22.6 

2,3,6 trichlorophenol  -29.4   -24.5 

2,4,5 trichlorophenol  -28.7   -23.8 

3,4,5 trichlorophenol  -29.2   -24.6 

        (table continued) 
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2,3,4,5 tetrachlorophenol    -23.0 

2,3,5,6 tetrachlorophenol    -23.9 

2,3,4,6 tetrachlorophenol    -24.9 

 

pentachlorophenol     -24.3 

 

5.2.2 Radical Consumption  

 

5.2.2.1 Radical Decomposition into Carbon Monoxide and a Chlorinated Cyclopentadienyl 

Radical 

 

     The zero-point corrected absolute energies for ortho-, meta-, and para-chlorophenoxyl (Table 

16) radicals are as expected as the para-isomer as most stable and the ortho-isomer is least 

stable. 

Table 16:  BHandHLYP/6-31G(d,p) zero-point corrected absolute energies (hartrees). 

 

ortho-chlorophenoxyl   -766.153455 

meta-chlorophenoxyl   -766.153767 

para-chlorophenoxyl   -766.155404 

 

     The resonance effect of chlorine in these monochlorinated phenoxyl radicals is weak as the 

carbon 2p orbitals of the aromatic ring do not overlap well with the high angular momentum 

valence orbitals of chlorine.
141

  On the other hand, the integration of resonance drawings and the 

inductive (electron-withdrawing) nature of chlorine explains the ordering in Table 16.  The lone 

radical electron cannot be delocalized (stabilizing) through the carbon-chlorine bond of meta-

chloro phenoxyl as its 4 resonance structures (Figure 26) reveal.  While with both ortho- and 

para-chlorophenoxyl radicals resonance drawings allow for better distribution of the radical 

effect, ortho-chlorophenoxyl is the least stable as a result of the local proximities of 2 electro- 

negative atoms, oxygen and chlorine (a repulsive interaction). 

Using a mechanism for phenoxyl decomposition and the rate-limiting transition state,  

developed by Liu et al.
45

, the activation barriers for the decomposition of the 19 congeners of the  

 

85 



Cl Cl Cl Cl

O O O.

. .
.

O

 

Figure 26: Resonance structures for meta-chlorophenoxyl radical. 

 

 

chlorophenoxyl radical are calculated (in Table 17).  Amongst the monochlorinated phenoxyl  

 

radicals, the decomposition energies correlate well with radical stability.  The decomposition  

 

energies for the balance of the chlorinated phenoxyl radicals must be understood in terms of their  

 

resonance drawings, the proximities of 3 or more electronegative atoms, stabilities, and the  

 

radical effect. 

 

Table 17:  Activation and Reaction energies for chlorophenoxyl radical decomposition to CO 

and a chlorinated cyclopentadienyl radical 

 

 

    B3LYP           BHandHLYP QCISD(T)//BHandHLYP 

    Eact Erxn Eact Erxn Eact Erxn 

 

phenoxyl   56.4 29.6 62.9 29.0 56.4 22.9 

2-chlorophenoxyl  52.5 26.4 60.2 25.7 54.1 19.5 

3-chlorophenoxyl   56.5 26.1 63.0 25.9 56.3 18.9 

4-chlorophenoxyl   57.6 27.4 63.6 26.9 57.4 20.2 

 

2,3 dichlorophenoxyl   24.3 59.0 23.5 

2,4 dichlorophenoxyl   24.7 61.1 24.0 

2,5 dichlorophenoxyl   23.6 59.8 23.1 

2,6 dichlorophenoxyl   26.6 64.0 25.4 

3,4 dichlorophenoxyl   25.0 62.0 24.4 

3,5 dichlorophenoxyl   22.8 62.4 22.9 

 

 

 

 

 

       (table continued) 
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2,3,4 trichlorophenoxyl  22.2 57.9 21.1 

2,3,5 trichlorophenoxyl  20.7 58.3 20.4 

2,3,6 trichlorophenoxyl  23.9 62.7 22.6 

2,4,5 trichlorophenoxyl  22.0 59.1 21.2 

2,4,6 trichlorophenoxyl  24.3 64.7 23.2 

3,4,5 trichlorophenoxyl  21.3 59.7 20.7 

 

2,3,4,5, tetrachlorophenoxyl   55.4 17.3 

2,3,5,6, tetrachlorophenoxyl   60.6 19.5 

2,3,4,6, tetrachlorophenoxyl   60.9 19.9 

 

pentachlorophenoxyl    57.1 16.3 

 

Amongst the monochlorinated phenoxyl radicals, the decomposition energies correlate well with  

 

radical stability.  The decomposition energies for the balance of the chlorinated phenoxyl  

 

radicals must be understood in terms of their resonance drawings, the proximities of 3 or more  

 

electronegative atoms, stabilites, and the radical effect. 

 

     Amongst each homologue pattern in Table 17, the presence of one ortho-H atom moiety in a 

chlorinated phenoxyl radical appears to facilitate radical decomposition.  Amongst the di-, tri-, 

and tetrachloro-phenoxyl homologue patterns, the presence of 2 ortho-chlorine atoms makes 

decomposition the least likely.  The balance of radicals, i.e. those with 2 ortho-H atoms (i.e. 

phenoxyl, 3-CP, 4-CP, 3,4-DCP, 3,5-DCP, and 3,4,5-TCP) are expected to have intermediate 

lifetimes in the gas phase, an environment where chlorinated dibenzofuran production is 

favored.
56, 57

 
63

  These isomers’, in most cases, ortho- and para-sites are available for radical-

radical dimerization (due to absence of steric hinderance by chlorine), they may enolize and 

condense water.  As a result, this work makes these isomers’ important candidates for predicted 

furan production. 

5.2.2.2 Bimolecular Reactions with Molecular Oxygen 

 

     Based on previous study which has shown reactivity occurs primarily at the ortho- and para-

sites of phenoxyl
75

, molecular oxygen (
3
O2) has been added to the ortho- and para-carbon atoms  
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of phenoxyl, 2-CP, 3-CP, and 4-CP in order to find each adduct.  The adducts’ carbon-oxygen 

bond distances were then scanned (extended), one-dimensionally, in order to find each transition 

state.  The activation energies here are slightly higher than the barrier for the analogue, phenoxyl, 

with the meta-chlorinated isomer being the exception. 

     In terms of electrophilic substitution, all meta-substituents are deactivating which means  

 

meta-carbons relative to a substituent are less attractive (less electron rich) to a positively  

 

charged electrophile.
141

  Molecular oxygen, on the other hand, has two electrons (a triplet) in 2 of  

 

its 2p antibonding orbitals making it relatively electron rich, or more attractive to an electron  

 

deficient meta-carbon atom.  As a result, the activation barriers were expected to be slightly  

 

lower for 
3
O2  addition to a meta-carbon atom, i.e. meta- relative to chlorine.  It is also observed  

 

steric hinderance increases the barrier heights, as expected.   

 

     Ryu et al.
77

 have used a radical formation-and-consumptive model along with experiment to 

study the distribution and amounts of chlorinated dibenzofuran congeners produced over a 

temperature range of 500-800 C.  The model did not include furan production dependence on the 

concentration of oxygen, and experimentally, the oxygen concentration ranged from 0-8 %.  

These authors find good agreement between their model and experiment (Figure 27), i.e. the 

furan congener distribution remained virtually constant while the yields increased at lower 

temperatures (600 C).  The agreement between this model and experiment indicates molecular 

oxygen is zeroth-order with regard to chlorinated dibenzofuran production rates. 

     In another study which aims to understand PCDD/F formation via a simulation
145

,  

 

effects of temperature and gas composition are evaluated using an assumption of  

 

homogenous gas-phase equilibrium and a free energy minimization technique (∆G=0 at  

 

equilibrium).  The gas phase included 19 isomers of PCDD/F and 60 gas phase species  
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Figure 27: Comparison of measured and predicted PCDF homologue patterns.

77
 

 

such as O2, H2, H2O, Cl2 and CxHyOz (where x=1-12, y=0-8, and z=0-4).  The effect of varying 

 

the O2 contribution from 0.0-0.6 moles was studied at 300 C (or 573 K) (Figure 28).  This study 

 

shows increasing O2 from 0.0-0.6 moles inhibits PCDD/F formation, i.e. equilibrium is shifted  

 

toward the reactants.  This finding is consistent with the high activation barriers and free energies  

 

of reaction calculated in this work (Table 18a-b).  

 
Figure 28:  Effect of O2 on the formation of PCDD/Fs.  Temperature is 300 C.  The 4- through 8- 

notation refers to the prefix for an isomer of dioxin or furan where 4 is tetra-, 5 is penta-, etc.  

The –D or –F notation refers to dioxin or furan, respectively. 
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Table 18a: Activation and Reaction energies for bimolecular radical-molecular oxygen (
3
O2) 

channels 

 

              B3LYP           BH&HLYP  QCISD(T)//BH&HLYP 

ortho addition    Eact Erxn Eact Erxn Eact Erxn 

 

phenoxy    13.7 9.3 23.5 12.3 14.6 1.8 

o-chlorophenoxy   14.9 11.5 24.3 13.6 15.5 3.0 

o-chlorophenoxy (chlorinated carbon)15.7 12.5 25.8 14.9 15.2 2.9 

m-chlorophenoxy   13.2 9.0 23.2 11.6 14.0 0.7 

m-chlorophenoxy (alpha to chlorine) 13.7 9.8 23.8 13.0 15.0 2.1 

p-chlorophenoxy   14.6 11.3 24.2 13.9 15.2 3.4 

 

para addition 

 

phenoxy    10.8 6.2 20.7 8.4 11.1 -2.0 

o-chlorophenoxy   13.8 7.9 23.1 9.8 15.8 -0.5 

m-chlorophenoxy   10.7 7.3 20.7 9.4 10.7 -1.9 

p-chlorophenoxy   14.2 9.7 24.6 12.1 14.1 -0.1 

 

Table 18b:  Free Energies of Reaction using BHandHLYP/6-31G(d,p) (calculated at 298 K and 1 

atmosphere of pressure) 

 

ortho addition     ∆Grxn 

 

phenoxy     22.1 

o-chlorophenoxy    23.6 

o-chlorophenoxy (chlorinated carbon) 25.3 

m-chlorophenoxy    21.6 

m-chlorophenoxy (alpha to chlorine)  22.7 

p-chlorophenoxy    23.7 

 

para addition 

 

phenoxy     18.5 

o-chlorophenoxy    19.9 

m-chlorophenoxy    19.6 

p-chlorophenoxy    22.4 
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CHAPTER 6. DISCUSSION 

 

     With regard to Chapter 1, Reactions 2 and 3 have been studied in the present work to  

 

validate the experimental apparatus employed for the first time after its construction.   

 

Hydrogen atom abstraction from hydrocarbons by hydroxyl radicals plays a fundamental  

 

role in the chemistry of the atmosphere and combustion processes; for this reason,  

 

Reactions 2 and 3 had been extensively studied previously.  These earlier results are in  

 

general agreement with each other.  Reviews of these data can be found in reference 

 

95 for Reaction 2 and reference 101 for Reaction 3, and they are not repeated here.  The  

 

rate coefficients obtained in the current study are in agreement with these earlier  

 

measurements (see Graph 5; data are exemplified by references 93-96 and 99-101 for  

 

Reactions 2 and 3, respectively.  For example, over common temperature ranges, the  

 

maximum deviations between our calculated rate coefficient values using modified three- 

 

parameter Arrhenius expression and those calculated with expressions recommended in  

 

references 96 and 94 for Reaction 2 and in references 99 and 100 for Reaction 3 are the  

 

following: 5.4% and 2.5% for Reaction 2 and 5.1% and 1.3% (of the average rate  

 

coefficient value) for Reaction 3.  Such good agreement with previously obtained data  

 

gives us confidence in the measurements performed with the experimental apparatus  

 

employed in this work. 

 

     All previous studies of the reaction of OH� + Cl2 (Reaction 1) have been performed at  

 

low temperature (Tmax = 354 K).  Data reported in references 12 and 14 were measured at  

 

room temperature only, and they are in agreement with our data obtained at room  

 

temperature within experimental errors.  Experimental temperature-dependent kinetic  

 

investigations of Reaction 1 were carried out in three works.
11, 13, 15

  Our data are in  
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agreement with these studies over the common temperature ranges, within reported  

 

experimental errors.   

 

     The PES of Reaction 1 obtained in quantum chemical calculations demonstrates good  

 

agreement with experimental results.  The QCISD(T)/6-31G(d,p) level energy calculations  

 

provide reasonable agreement with the experimental barrier height, a deviation of 2.6 kcal.  The  

 

BHandHLYP/6-31G(d,p) level calculations provide reasonable agreement with the experimental  

 

reaction enthalpy, a deviation of 4.8 kcal. 

 

     Theoretical model predictions suggest OH� + Cl2  HOCl + Cl� (Reaction 1b) is the main 

 

channel for Reaction 1, in agreement with the room temperature branching ratio for the OH�  

 

reaction with Cl2 found in the work of Loewenstein et al.
14

  The agreement between the  

 

experimental and computational results provides support for further use of the computational  

 

techniques applied here for the treatment of other reactions of similar types.  

 

     With regard to Chapter 4, the detection of persistent, biologically active free radicals  

 

in airborne and combustion-generated particles raises the questions of their origin and  

 

nature.  The EPR g-values for samples containing these radicals are typically greater than  

 

2.003 and have been observed to be greater than 2.005.
35

   These g-values are  

 

characteristic of oxygen-centered radicals or carbon-centered radicals with a nearby  

 

oxygen-containing functional group.  Because the EPR spectral characteristics are  

 

consistent with those of semiquinone radicals and these radicals have been previously  

 

reported in cigarette tar, it has been presumed that the observed radicals are of the  

 

semiquinone-type. 

 

     Phenoxyl radicals in complex media yield EPR spectra similar to those of  

 

semiquinones, a motivation for this work.  Our calculations indicate that the phenoxyl  
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radical is as stable and resistant to oxidation as o- and p-semiquinone.  This non- 

 

favorable reaction prediction is consistent with experimental oxidation evidence, i.e.  

 

radical concentrations have been observed to increase after exposure to air.
35

  

 

Although formation via unimolecular decomposition from a parent phenol is not as  

 

energetically favorable as that of a semiquinone from catechol or hydroquinone, phenol is  

 

likely to be present in higher concentrations
42

 than catechol or hydroquinone which  

 

suggests that phenoxyl may be the higher concentration radical in environmental samples. 

 

     The highly resonance stabilized o-semiquinone, p-semiquinone, and phenoxyl  

 

radical are all resistant to decomposition via the channels examined herein, which  

 

is not surprising.  It was anticipated that they would be resistant to oxidation, but  

 

the activation energies and free energies of this reaction are surprisingly high,  

 

suggesting that they are virtually un-oxidizable by molecular oxygen.  This result  

 

is actually consistent with available experimental evidence.  As previously mentioned,  

 

semiquinone radicals have been reported in aged cigarette tar, supporting their extreme  

 

persistence.  Recombination (dimerization) of phenoxyl radicals and their analogues  

 

have been proposed as a major pathway of formation of polychlorinated dibenzo-p- 

 

dioxins and dibenzofurans (PCDD/F) in combustion systems which indicates that these  

 

radicals survive in an oxidative environment at sufficiently high concentrations to  

 

undergo self-recombination.
59, 74, 75

 

 

     Elementary reaction kinetic data is not available for semiquinone radicals but has been  

 

obtained for phenoxyl radicals.  Reported rates for reaction of phenoxyl radical with  

 

molecular oxygen are k<2x10
-18

 and <5x10
-21

 cm
3
/molecule-sec.

79, 80
 
  
This is in  

 

contrast to reaction rates of common and typical organic radicals such as methyl, vinyl,  
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and phenyl which are 10
-12

, 10
-12

, and 10
-11 

to 10
-13 

cm
3
/molecule-sec, respectively, which  

 

are ~6-10 orders of magnitude faster than the phenoxyl radical.
49, 50, 52-55, 103

  We have  

 

calculated the ∆Erxn of oxidation (B3LYP/6-31G(d,p)) for para-addition to the phenoxyl  

 

radical as 6.2 kcal/mol (9.3 for addition to the ortho- site) as compared to a negative 45.3 

 

kcal mol
-1

 for the analogous reaction with phenyl.  Barckholtz et al.
46

 report a ∆Hrxn ( for  

 

phenyl + 
3
O2) using B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) is a negative 43.3  

 

kcal mol
-1

.  While addition of oxygen to common organic radicals such as methyl, vinyl,  

 

and phenyl is highly exothermic, it is highly endothermic for phenoxyl and semiquinone  

 

radicals.  These calculations indicate that scavenging of phenoxyl and semiquinone  

 

radicals is neither kinetically nor thermodynamically a favorable reaction. 

 

     Our calculations were unable to find any path for molecular oxygen to react with  

 

any of these radicals at an oxygen-center, as formation of the ozonide is highly  

 

unfavorable (Figure 21).  A metastable product could only be found if the reaction  

 

occurred at an ortho- or para-carbon.  The high activation energies for oxidation  

 

of semiquinone and phenoxyl radicals appears to ensure that both types of radicals are  

 

equally unreactive with molecular oxygen. 

 

     These calculations demonstrate the expected stability and lack of reactivity of  

 

semiquinone radicals, but also suggest that phenoxyl radical is just as stable and  

 

unreactive.  This in turn suggests that the phenoxyl radical must be considered as a  

 

candidate for the identity of the radicals observed to be associated with airborne fine  

 

particles and combustion-generated particles.
146, 147

 

 

     With regard to Chapter 5, experimental rate constant information for the analogous  

 

reactions with phenol have been used to draw conclusions due to the absence of  
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experimental rate information for chlorophenols’ radical-producing channels.  Based on  

 

the work of Knispel et al.
131

, Olariu et al.
144

, and the analogue, the OH + chlorophenol  

 

channels are expected to dominate at 298 K where  addition to carbon is favored.  It  

 

should be noted however, at combustion temperatures this adduct of addition is expected  

 

to decompose (back to reactants) making the abstraction of the hydroxyl H atom (by OH)  

 

the favored channel, a radical producing channel. 

 

     In terms of relative stabilities and hydroxyl bond dissociation energies, the agreement  

 

between experimental evidence and the computational results herein for the  

 

monochlorophenols
138, 142

 lends confidence to the computational results for chlorophenols  

 

for which there are no experimental studies.  Yang et al. also show, amongst the  

 

monochlorophenols, the pyrolytic burning of p-chlorophenol produces the largest amount  

 

dichlorodibenzofuran which is not surprising.  That is, p-chlorophenoxyl is the most stable (or 

 

lowest energy) isomer of monochloro-phenoxyl and is also characterized by the largest activation  

 

energy for decomposition into carbon monoxide and a chlorinated cyclopentadienyl radical. 

 

     The high activation energies, energies of reaction, and large, positive free energies of  

 

reaction for the oxidative channels given in Chapter 5 also indicate these channels are  

 

thermodynamically unfavored at atmospheric conditions.  This finding is consistent with  

 

the experimental works of Evans et al.
56, 57

 and Yang et al.
138

 which have shown  

 

dibenzofurans, relative to the pyrolytic case, are more produced more abundantly and at  

 

lower temperatures in an oxidative environment. 

 

     Recently, it has been realized monochlorinated phenoxyl radicals are isoelectronic with 

 

semiquinone radicals which are suspected to be responsible for much of the free radical damage  

 

incurred by cigarette smoke.  The results in Chapter 5 also demonstrate the expected stability and  
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lack of reactivity (with O2) of chlorophenoxyl radicals making them candidates for involvement  

 

in pollutant-forming mechanisms.
75

  This work shows the likelihood of chlorinated dibenzofuran  

 

production may be correlated with radical stability. 
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