ELEMENTARY SOLUTIONS FOR CERTAIN PARA-
BOLIC PARTIAL DIFFERENTIAL EQUATIONS()

BY
HENRY P. McKEAN, ]JR.

1. Introduction. Let S be an open interval(?) (s, s2), not necessarily
bounded above or below; let ¢(x) be continuous on S and =<0; let m(dx) be a
Borel measure, strictly positive on open subsets of S; and let D(B) be those
continuous functions #(x) on S to the real numbers R such that the one-sided
derivatives,

wt(x) = lim e Y(u(x + ¢ — u(x))
el 0

and
wt(dx)/m(dx) = lim m(x, x + | ut(x + ¢ — wt(x)),
el 0

exist, the second being continuous on .S, so that the operator,
(1.1) B:u €& D(B) — ut{dx)/m(dx) + c(x)u(x),

is linear on the domain D(%B) to continuous functions. Such operators have
been characterised by W. Feller [1] and are important for the description of
certain random processes: see W. Feller [2]. The classical second order
operator,

(1.2) B = a(x)d?/dx* + b(x)d/dx + c(x),

is a special case, provided @, b, and ¢ are continuous on S, a(x)>0, and
c(x) £0: see [1, p. 95].

The purpose of this paper is to construct (1) the spectral representation
of the operator (1.1), acting in a suitable Hilbert space, and (2) the ele-
mentary solution for the parabolic partial differential equation,

(1.3) (2, x) = Bu(t, x), t>0,

subject to certain (classical) side conditions, to be described in §2.
Concerning (1): since (1.1) is a generalized Sturm-Liouville operator, it is
not surprising that it can be represented by an eigendifferential expansion
like those introduced by H. Weyl [3] in his studies of the classical Sturm-
Liouville operator and perfected by M. H. Stone [4], E. C. Titchmarsh [5],
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and K. Kodaira [6]. These writers place no restriction on the behaviour of ¢
save that it be continuous. Here, we take it <0, which makes the appropriate
contractions of B negative semi-definite and permits a simple, completely real
construction for the eigendifferential expansions.

Concerning (2): let C(S) be the space of bounded continuous functions
u(x) on S to R, provided with the customary norm, Hu“u,=sup ]u(x)l, let
C(B) be those & D(B)NC(S) such that Buc C(S) once more, and let B
be a classical side condition, that is, the collection of those # & C(8) which
satisfy a pair of classical boundary conditions,

(1/3)u(s1) + (2/3)ut(s)) = 0 and u(sy) = 0,

or the like. Given such a side condition, we shall construct the elementary
solution p(t, x, s)(t>0,xES, sES) to (1.3) and show that it has the properties
listed below:

E1. p(¢, -, -) is positive and symmetric on SX.S for each ¢>0.

E2. The derivatives 8%/d¢"p(¢, -, s) belong to the side condition B and

arjotrp(t, -, s) = Brp(t, -, s), t1>0,s&S, =0
E3. [sp(t, x, s)m(ds) =1, t>0, xES.
E4. The Chapman-Kolmogorov identity,

P(tl + by, «, S) = f P(llr X, E)p(tZy Ey s)m(di),
8

is satisfied.
E5. The operators,

Siiu & C(S) —>f (¢, x, s)u(s)m(ds), t> 0,
s

constitute a semi-group, mapping C(S) into C(S), and one has
ar/ot(Sm) (x) = B(Sww)(x), ¢ > 0,4 & C(S),n> 0.
E6. Given v&C(S) such that Bv is continuous near x &S, one has
(S)(x) = v(x) -+ 4Br)(x) + 0()), ¢l 0.

REMARK 1.1. Elementary solutions for the classical operator (1.2), sub-
ject to a variety of classical side conditions, have been constructed by J.
Elliott [7] and E. Hille [8]. Also, W. Feller [9] has constructed the ele-
mentary solution for (1.2) with time dependent coefficients, subject to the
uniqueness condition,

J

xz

a(t, x)~Y4dx = f a(t, x)"V%dx = + «, t> 0.
<0 >0
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Our plan of attack is this: let B be a classical side condition, let p(¢, x, s)
be the corresponding elementary solution, and choose v& C(S). Keeping E4
and ES5 in mind, it is clear that the transform,

w = f +°°e—"‘(.S','v)(ac)dt
(1.4) ° .
= f f et p(l, x, s)dtv(s)m(ds), x>0,
svo

should belong to B and that we should have (u—8)w=v, or, what is just
about the same, that the kernel,

+w
(1.5) Glus %, s) = f ewtp(l, x, 5)di, §>0,
0

should be the Green function for the problem,
(1.6) (r — B)w =, w E B, v € C(S),

and this shows that, to construct the elementary solution, it is a good bet to
construct the Green function for (1.6) and to invert (1.5).

§2 contains the precise description of the classical side conditions, the
construction of the Green function, and various properties of the Green
operators,

{a.mn v € C(S) —)f G(x, s, p)v(s)m(ds), u>0,
s

which we shall need in §§3 and 4.

§3 contains the eigendifferential expansions for the Green operators, the
Green function, and the operator 8, viewed in the appropriate Hilbert space.
These are constructed by approximating the proper Green operators by
suitable compact Green operators. Similar approximations have been made
by N. Levinson [10; 11] and K. Yosida [12; 13].

§4 begins with the remark that the eigendifferential expansion for the
Green function suggests a simple way to compute the inverse transform,

et+i0

(1.8) p(t, x, 5) = (21ri)—1f e*G(x, s, w)du, t, e > 0,
and it is shown that p(¢, x, s) is the elementary solution to (1.3), subject to
the going side condition and enjoying the properties listed in E1, E2, - - -,
E6 above.

REMARK 1.2. S. Karlin and J. McGregor [14] and W. Ledermann and G.
Reuter [15] have constructed the elementary solutions for certain parabolic
equations, #,=Bu, in which B is a difference operator, and have obtained the
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appropriate eigendifferential expansions. Karlin and McGregor have an-
nounced similar results for certain differential operators which will be pub-
lished soon(®).

Acknowledgement. It is my pleasure to thank William Feller who sug-
gested the subject of this paper and to whom [ owe a number of substantial
improvements. Also, I would like to thank D. Ray for spotting a variety of
errors.

2. Side conditions and Green functions. Let 8 be the operator (1.1),
acting on the domain D(8B), let m(dx) be the measure involved in B, let
n(dx) be the measure (1 —c(x))m(dx), set

Ji = (—)‘fo“n(o, x)dx and K; = (—)‘fouxn(dx) G=1,2),

and, imitating W. Feller [16, p. 487], let us make the
BouNDARY CLASSIFICATION. Given =1 or 2, the boundary s; is said to be

regular if J;<+4+ o and K; < 4+ «;
exit if Ji;<4 o but K;= 4 «;
entrance if Ji=+4+ o but K:< 4+ o;
natural if Ji=+4+ o and K;= + «(*).

ReEMARK. H. Weyl's Grenzpunkt-Grenzkreis boundary classification
[3, pp. 223-228] can be made, but will not be necessary below. The regular
boundaries correspond to the Grenzkreisfalle always, but the exit, entrance,
and natural boundaries can exhibit both kinds of behaviour: see J. Elliott
[7, pp. 408-409].

Keeping the Boundary Classification in mind, choose numbers p; and
p.E€[0, 1], take i=1 or 2, and let B; be those v&D(B) such that(®)

(1 = p)o(s) + (=) ipavt(ss) = 0, s; regular,
o(s;) = 0, s; exit,

vH(s;) = 0, s; entrance,

v(s) is bounded near s;, s; natural,

These manifolds are the classical boundary conditions, and the intersections,
B = Blf\ C(%) f'\ Bz,
are the classical side conditions. We find it convenient to distinguish the

(® [Private communication. ]

() This neat description of the boundary classification was suggested to me by K. Ité
[private communication ).

(%) Here and below, the numbers, v(s;) and v*(s;), are the boundary values, lims—.; v(s)
and lims—,; v1(s)(i=1, 2).
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minimal boundary conditions, B? and B}, which correspond to p;=0 and
p:=0.

The next step is to choose a side condition B and to construct the Green
function for (1.6). Given an operator (1.2), this is classical, and, since the
calculations necessary here differ so little from the classical ones, we shall be
content to have a sketch: compare W. Feller [16, pp. 482-493] and E. Hille
[8, pp. 104-124].

Given u€R, the homogeneous equation,

2.1) By = v, vE D(B),n > 0,

is equivalent to the integral equation,

2(x) — v(0) — xvt(0) = fz dsf (s — c)vm(dt) (x>0

(2.2) °0 -
Y - d < 0),
j;sﬁmw Jvmd) (&< 0)

and the classical iterative procedure shows that (2.2) has (1) two independent
solutions and (2) one and only one solution v with prescribed »(0) and »*+(0).
We find it convenient to distinguish the two independent solutions, ei(-, u)
and e(-, u), specified by the conditions,

a0, ) =1, (0,8 =0 0w =0 a0 =1,

and to remark that e;(x, -) and e:(x, -) are continuous on R(x&ES).

Given u >0, (2.1) has a positive strictly increasing solution #,(-, u) EBy,a
positive strictly decreasing solution u.(-, u) EBs, these solutions are inde-
pendent, and no solution belonging to By is independent of #;(-, u), no solu-
tion belonging to B, is independent of #(-, u). Moreover, the Wronskian,
uf us—wuug, is constant(®) and positive on S, and we can suppose that it
is=1. The behaviour of these solutions near the boundary s; is exhibited in
Table 1. We note that to describe the behaviour of (-, u) and us(-, p) near
the boundary s;, we have merely to interchange the subscripts 1 and 2 and
to substitute

—u*t and f0(~)m(dx) for 4t and fcg(-)m(dx).

To continue, set the contraction 8/B =@ and make up the Green func-
tion, according to the classical prescription,

G(x, s, u) = w(x, p)us(s, p) =59

(2.3)
= (s, wua(x, p) (x > 3).

(® This fact is due to W. Feller {1, p. 105].
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TaBLE 1
Regular Exit Entrance Natural
w1(s2, ) <+ <+ =+w» =+w
=0 p2=0
2(s2, ) >0 >0 =0 >0 =0
ur(shl-‘) <+ =+w <4 =+
<0 <1
i s, 1) S0 ey <0 =0 =0
f l’ulm(dx) <4 =4
[
f ’uzm(dx) <+ <+w <+ <4
0
Then the Green operator,
(2.4) G0 € C(S) —>f G(x, s, wu(s)m(ds), k>0,
]

maps C(S) onto B and satisfies (u—B)®,=1, being, in short, inverse to the
operator (u—@),

(2.5) WGl = 1, w>0,
the resolvent equation,
(2.6) Gy — G+ (v — NGOG\ =0, kA >0,

is satisfied, and, combining (2.5) and (2.6) and making a short computation,
one obtains

(2.7) & Jdu"®, = (=)@, now> 0,

the derivatives being taken in the normed C(S) operator topology: compare
E. Hille [17, pp. 99 and 110]. Notice that (2.7) is equivalent to the classical
Green function identity,

" /durG(x, 5, ) = (—)"n!f G(x, &1, WG(&, &, 1)

8SX 2+ X8
ttt G(Em S, u)m(dsl)m(d&) c e m(df,.), n, u > 0.

(2.8)

We shall need to know that the side condition B is not inconveniently
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small. The necessary information is contained in the

APPROXIMATION THEOREM. Let Co(S) be those v& C(S) vanishing near the
boundaries and let Co(B) be the intersection C(BYMCo(S). Given €>0 and a
positive v Cy(S), there is a positive veE Co(B), vanishing outside the support
of v and such that

“v - v.“‘.° <e

Proof. The construction is straightforward and will not be reproduced.
One more remark and this will be convenient below:

2.9) (BT (x) = f at/0xG(x, s, p)v(s)m(ds)("), 2 E C(S), u> 0.
8

3. Eigendifferential expansions. Let L.(S) be the space of m-measurable

functions v on S to R such that ||9]|s= (fsv(x)%n(dx))V?< + «, modulo the

ideal of null functions, let (#, v) = [su(x)v(x)m(dx) be the inner product, and
consider the new Green operators,

(3.1) G € In(S) = [ Gl 5, wuls)m(as), >0,
S

These have a sense because ||G(x, -, p)|j: <+ = (xES, u>0), and, keeping
the norm condition (2.5) in mind, we have

|G = [ maz (f Gl G, () m(ds))

gﬁﬂmm@mwﬁcmamw%w)

A

—2 2
71 g >0, uE Ly(S),
so that

(3.2) 4l = 1, g > 0.

Also, it is clear that these operators are solutions to (2.6), and, as such,
have a common range Q and a common null-space N. Choose #&N. Since
G(-, -, p) is symmetric on .S XS, the operator §, is symmetric,

(Cux, v) = (4, Ouv) = 0, v € Co(S),

and, noticing that such ®,v are dense in L:(S) by the Approximation Theorem
of §2, we see that =0, that N is trivial, and that our new Green operators
are one-one. But more than this: since (2.7) is a consequence of (2.6), we
have

(") Here, 8%/ax stands for the obvious one-sided partial derivative.
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e 2
(3.3) (G, u) = f [|Gyad]| 20, >0, u E Ly(S),

which together with the remark just above, shows that our new Green opera-
tors are, in addition, positive definite.

To continue, choose u>0 and let € be the operator p— @, acting on the
common range Q. Simple computations, based on (2.6), show that € is inde-
pendent of u and satisfies

(3.4) (—GC. =1, u >0,

and it is clear that € is maximal symmetric and negative semi-definite,
mapping Q onto Ly(S).

The subject of this section is the spectral structure of the operator €
and the new Green operators (3.1).

REMARK 3.1. The precise description of the domain Q will not be neces-
sary below, but we shall sketch it here. Let D(Q) be those m-measurable %
on which the operator,

Q:u— Qu = wt(dx)/m(dx) + c(x)u(x),

makes sense, the derivatives being taken in the appropriate sense, and let
Ly(Q) be those # €D (Q)NLy(S) such that Qu belongs to L:(.S) once more.
Given ¢=1 or 2, let I be the interval (min (0, s;), max (0, s;)), and let Q; be
those #€D(LQ) such that

u e Lz(I)) m(I) = + ©,
ut(s) =0, m(l) <+ o,
and u&B; otherwise.

Then, the domain Q is the intersection, Qi Ly ()MQs, and the operator €
is the contraction Q/Q.
Getting to work, let us begin with a special case.

si natural,

THEOREM 3.1. When no natural boundaries are present, the Green operators

(3.1) are compact, and there exist numbers 0Zu >p2> - - - l —  and a basis
(v5: 2> 0) 2n Ly(S) such that
G = Z (o — o) 0: @ v, p>0,
>0

the operators v;®v; being the projections, v;®v;: uC Ly(S)—vi(u, v). The num-
bers u; are the common eigenvalues and the functions v; the common eigenfunc-
tions of the operators & and G, that is, v,EBNQ and Gvi=pw;=Cv; for each
>0. Moreover, the Green function is represented by the eigenfunction expansion,

Gz, 5, 1) = 2 (1 — p) 'vi(x)vi(s), u>0,
>0
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the sum converging uniformly on compact squares in SX.S.

Proof. This has been proved for the classical operator (1.2), subject to the
condition that ¢(x) be continuous on the closed interval [sy, sz}, by J. Elliott
[7, pp. 412-417], and the calculations necessary here are much the same.
Actually, she shows that the traces,

(3.9) tr (€,) =f G(s, s, Wm(ds) = D (u — p)?

s >0
are <-4 «, which is stronger than the compactness statement, but this will
not be necessary below.

Dropping the condition that no natural boundaries be present, the Green
operators are not necessarily compact, and the eigenfunction expansion for
the Green function may not have a sense, but it has a counterpart, namely
the eigendifferential expansion advertised in §1, to which we now turn.

THEOREM 3.2. There is a Borel measure §(-) on (— o, 0] to 2X2, sym-
metric, positive semi-definite matrices, such that, if e(-, u) 1s the 2-vector whose
entries are the solutions, e;(-, u) and es(-, p), to (2.1) and of the measure e(x, s, du)
s the inner product e(x, u)f(du)e(s, u) of the vectors e(x, u) and f(du)e(s, p), then

o+
G sN = [ 0= wyiee s, du), >0,

the integral converging uniformly on compact squares in SX.S.

Proof. Let S1CS;C - - - be open intervals in S such that U,s0S,=.S, each
containing 0, coinciding with S near the regular, exit, and entrance bound-
aries, and falling strictly short of the natural boundaries, and set
S»=(S1n, 524). Let B, be the operator B cut down to S,, let C(B,) be those
u G C(S,)ND(B,) such that B,u belongs to C(S,) once more, let B;, be the
minimal boundary condition D(8.,)(v: v(s:») =0) when s, is a natural bound-
ary and let B;, express the boundary condition expressed in B; when s; is not
a natural boundary, let B, be the side condition B1,N\C(B,)\B:,, and let
Ga(+y -, -), wi(-, +), and we(-, -) be the corresponding Green function and
positive solutions to (2.1).

Take #>0. Then S, has no natural boundaries, and, invoking Theorem

3.1, we can represent the Green function G,(-, -, -) by the eigenfunction ex-

pansion,

(3.6) Ga(x, 5, N) = 2 (A — p) 0:(x)0:(s), A> 0,
>0

the numbers u; and the functions v; being the appropriate eigenvalues and
eigenfunctions. Since B,v;=pw; and since the entries of e(-, u;) are inde-
pendent solutions of this equation, there exist 2 X2 matrices f(r;) such that
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v,(x)vi(s) = e(x, u)f(us)e(s, ui) = e(z, s, i), i>0.
Choose a Borel set M in (— o, 0] and set

f(M) = 2 f(us).
mEM

Then the entries of f(M) are
fu(M) = Z 7,(0)2 2 0,

wiEM
mmﬁ=éﬁmw@=ﬁmm
fao(M) = 2, v#H(0)* 20,

wEM

the inequality,
3.7 f12(M)2 = fa(M)? < fu(M)f22(M),
is satisfied, and f(-) is a Borel measure on (— , 0] to 2X2, symmetric,

positive semi-definite matrices.
The expansion (3.6) can now be written

o+
(3.9) Gulr s = [ = et s, du), x>0,
We wish to construct the same sort of expansion for the Green function
G(-, -, *), but this requires some estimates, namely,
o+
3.9) {700 =t 539600, 0, %,
0+ 0+
G10) [ o=@ | = [ o= e | =3
and
o+
(3.11) f (N — W)Yfu(d) < N1Ga(0, 0, M.
The estimate (3.9) is the simplest to come by. We have
0+
[0 wsu@) = Z o = w0,
—o0 >0
and, observing that
(3. 12) (X - ﬂi)—lvi(x) = Gn(x, S, )‘)vi(s)m(ds)’ 1: > O)

Sn
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we see that this is

= Z( G.(0, s, )\)'u.~(s)m(ds))2 = G.(0, s, N\)*m(ds)
>0 Sn Sa
< G0, 0, V) | G0, 5, Nm(ds) < N1GA(0, 0, N).

Sn

Coming to (3.11), we invoke (2.9) and (3.12) and obtain

o+
[ o= ) = T 0 = w0y

>0

= Z(fs 3t/3xG,(0, s, )x)vi(s)m(ds))2

>0 n

= (81/3xG.(0, s, N))2m(ds)
Sn

= ws(0, )\)2f w?m(ds)
(31,01

+ wi(0, \)? f wym(ds)

(0.,805)

< Wronskian (w, ws).

|:'wz(0, Pyt wim(ds) + wi(0, \)? wgm(ds)] < N1GL(0, 0, M),
(212.0] (0,80

and now to prove (3.10), we have only to remember (3.7), (3.9), and (3.11),

and to notice that, by Schwarz’s inequality,

[ a—w e = [ o= ot |

—00 —c0

= ( f_f o= i) (7o DY) S

—0

The next step is to make # T 4 «. To avoid confusion, set f(-) =f,(-) and
e(-, -, -)=ea(-, -, -). A simple calculation shows that the Green functions
Ga(-, -, N) converge to the original Green function G(-, -, \)(n T + «) uni-
formly on compact squares in SX.S for each A >0, and, combining this with
the estimates (3.9), (3.10), and (3.11) and the weak-star compactness of
measures, it is clear that we can choose a Borel measure f(-) on (—, 0] to
2X2, symmetric, positive semi-definite matrices, compact intervals R;CR.
C - - - such that Unso R.=(— =, 0], and open intervals $;CS.C - - - CS,
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like those described above, such that [rp(u)fs(du)—[rpW)f(du) (n T+ »)
for each j>0 and each v& C(R;).

Let us make these choices. Then, keeping the positive semi-definite charac-
ter of f(-) in mind and setting e(x, u)f(du)e(s, u) =e(x, s, du), we have

lim lim (N — ) lea(x, x, du)
it+e nt+e Jp;

< lim Gu(x, x, N)
nl+o

Gz, 2, \) < + =, A>0xE S,

o+
f ()‘ - “)—le(xn X, dﬂ')

and, by Schwarz's inequality,

1/2
f@ '()\ — ")_ll e(x, s, du) | = <L@R O\ — p)te(x, x, dp)) G(s, s, )12

HELR; 5

=o(1) G T + =), A>0%s5sCES,

the o(1) being uniform in s on compacts. Consequently, the integral,

o+
(3.13) Gulor 5, = [ O = wte(a, s, d),
converges and is continuous in s for each A>0 and x&E.S. This kernel should
coincide with the Green function G(-, -, -) but, to prove this, it is necessary
to estimate the tail of the integral, [2L (N —u)~te.(x, s, du).

Choose & Co(B) and n>0 so large that S, contains the support of u.
Then ©«&B, and

‘f s L@R,O‘ — w7l s, dl‘)u(S)m(ds){

= 2 (= w) Mu(@)v(s)u(s) m(ds)

8 pi€ Rj
=1 2 (= u) i) uvim(ds)
B Rj Sn

= O — w) w(@ui | uBavim(ds)

wikCR; Sn
=/ 2 (A= ) v (s Bauvim(ds)
ui€ER; 8
1/2
< sup | wil2Ga(s =, w( f <%u)2m<ds))
nikE By 8
=o(1) (G T + =), A>0,zES,
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by Schwarz's inequality, the o(1) being uniform in n provided = is so large
that S, supports «.
Therefore, keeping the same %, we have

f G(x, s, Nu(s)m(ds) lim Gn(x, s, Nu(s)m(ds)
s

nl+wo s
o+
= lim f f (N — wlea(x, s, du)u(s)m(ds)
nl+w SV —»

lim f A — wleu(x, s, dp)u(s)ym(ds) + o(1),
nl+e S R;

where the 0(1)>0 (j T + «) and is uniform in # in the sense just described,

= [ [ o= et s, dwumas) + ot
sY R;

—>f Go(x, s, Nu(s)m(ds) G T+ =)
3
by bounded convergence, that is,
f (Go(x, 5, N) — G(x, s, \)u(s)m(ds) = 0, u & Co(B).
s

But, Co(B) being dense in Co(S) by the Approximation Theorem of §2 and
G.(x, -, \) —G(x, -, N\) being continuous on S for each A>0 and x&S, it is
clear that

o+
Gl 5N = Gulmy s = [ O = w)ela, 5, dw)

everywhere, and, in particular, that
(3.1 [ o= wete 5 aw) 1662 G 1T+ .
Ry

To complete the proof, we have merely to show that the integral in (3.13)
converges uniformly on compact squares in SX.S, but, by virtue of (3.14)
and the fact that G(x, x, A) is continuous on .S, this can be done just as in
Mercer’s theorem: see [18, pp. 117-118].

COROLLARY. The measure f(-) is unique.

Proof. This is an immediate consequence of the uniqueness theorem for
Stieltjes transforms: see D. V. Widder [19, p. 337].
To continue, remembering that € is maximal symmetric and negative
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semi-definite, it is a simple matter to show that there is a spectral measure
p(:) on (— », 0] to projections, such that

o+ o+
(3.15) ¢ =f wp(dy) and G, = f A\ — wp(dp), A>0.

The projections p(-) will now be calculated.

THuEOREM 3.3. Let M be a bounded Borel set in (— «, 0] and let e(x, s, M)
be the kernel [we(x, s, du). Then

He(x) ‘s M)Hz = e(xr X, M)l/Z, x E S;

and the projection p(M) is the Carleman operator,
p(M):u € Ly(S) —>f e(x, s, M)u(s)m(ds).
s

Proof. Choose 7; and 9. & Co(.S) and a bounded Borel set M in (— =, 0].
Then

(Grvy, v2) = f ) va(x)m(dx) fs G(x, s, Nu(s)m(ds)
o+
= [ wwm@ [ [0 - woetw s, ddaEm@)

o+
= — )t o y d 1 ) ds),
f(xn>vamnmumvamwmms

the integral being absolutely convergent,

= (fH (N — wtp(du)oy, va)
-

= [ 70— i, ), x>0,

and so

Onmw = [ [ et wm@ian [ e wmas),

by the uniqueness theorem for Stieltjes transforms [19, p. 336]. Since, in
addition, Co(S) is dense in Ly(S), we have

p(M)v = fs e(x, s, M)v(s)m(ds), v & Co(S),
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and now we shall be content to prove
(3.16) lleCx, -, M)|]s < e(x, x, M)M2, z & S,

leaving the second (obvious) statement to the reader.
Set

o+
e(x, s, v) = f v(u)e(x, s, du), v & Co(— o, 0].

Then, by bounded convergence and Fatou’s lemma, it suffices to show that
“e(xv Ty 1))”2 = e(x, x, 7"2)”27 x E Sy v E CO(_ ®©, 0]1

and to prove this, we have merely to observe that, by Fatou's lemma, in the
notation of Theorem 3.2,

IMn»wM=ijwU@Maa@Q%ws

—0

< lim inf ) (f:: o(u)eq(x, s, d,u))zm(ds)

nl+w

= lim inf < > v(m)v;(x)v.-(s)>2m(ds)
8n

nl+e >0
= lim inf D v(u)%0:(x)?
al4+e 50
0+
= lim v(u)%ea(x, %, du)
nl+oo —®
= ¢(x, x, 12), xES.

Combining (3.15) and Theorem 3.3, we have the eigendifferential ex-
pansions,

o+
(3.17) Cu € L) > [ ulela, -, ), 0
and
o+
(3' 18) Criu = LZ(S) __)f ()‘ - #)—l(e(x; Ty dﬂ)r u)r A> 0,

advertised above: compare M. H. Stone [4, pp. 448-530].

REMARK 3.2. Splitting the positive measure Ju-+fe into pure jump and
continuous parts, the point spectrum of € is the support of the pure jump
part and has uniform multiplicity 1, the continuous spectrum is the support
of the continuous part and has multiplicity 1 or 2.
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4. Elementary solutions. Remembering that the Green function has the
representation,

0+
4.1) 65N = [ 0= wrtete s, dw), A> 0,

-0

and that (1.5) is supposed to be true, it is natural to hope that the kernel,
0+
(4.2) 2@, %, 5) = f et*e(x, s, du), t> 0,

will be the elementary solution to (1.3), subject to the side condition B, and
will enjoy the properties listed in E1, E2, - - -, and E6 in §1.

Starting from scratch, take compact intervals RiCR.C - - - such that
Uj>o Rj=(—, 0]. Then each

f et“e(x: Sy d“); .7 >0,
R

is continuous on (0, 4+ ©) X SX.S, and, choosing ¢>0 at pleasure, we have,
by Theorem 3.2,

fEE e"‘l e(x, s, du) ‘ =< f e"‘l e(x, s, dp) |

s R S =7

IIA

constantf 1- y.)"ll e(x, s, du) |
s R

3

o(1) G T+ =), i 2 e

the o(1) being uniform on compact squares in SX.S. This shows that (4.2)
exists and is continuous on (0, 4 ) XSXS.
To continue,

+0
4.3) G@&m=f w1, %, 5)d, >0,
0

by a classical theorem for the Stieltjes transform [17, p. 334]. Since, in addi-
tion,

(_)”a"/al""G(xr 3, I‘) >0, n=0,

by the Green function identity (2.8), G(x, s, -) is completely monotonic, and,
combining this with S. Bernstein’s theorem [18, pp. 160-162], we see that
p(t, %, s) is positive, and now to check E1, we have merely to notice that
p(t, -, -) is symmetric on SXS, e(-, -, du) being symmetric there.
REMARK 4.1. One can show that p(¢, x, s) is actually strictly positive.
To show that p(¢, x, s) satisfies E2, it is necessary to construct certain
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auxiliary functions ¢(-, -, -) whose purpose is to connect the behaviour of
p(t, -, 5s) near the boundaries to the behaviour of p(-, x, s) near £=0. This is
carried out in

THEOREM 4.1. Given x and s&S, there exists a right continuous increasing
function ¢(x, s, -) on [0, 4+ ) to R, vanishing at 0 and such that

(1) f :Lwe““‘dd)(x, s, 1) = wmx, pua(s, Bt (<9 a0,
= wa(x, pua(s, Byt (x> 5)

(2) #(x, 5, + ©) =1,

() ¢(-, s, 1) is convex and increasing on (s1, s), convex and decreasing on (s, $2)»

and

4 o(x, 5,8 = o(t®) ¢l o), n>0x7=s.

Proof. Choose sE€S, =1 or 2, let I be the open interval (min (s, s;),
max (s, s;)), let B° be the operator B cut down to I, let B® be the side condi-
tion corresponding to the going boundary condition at s; and to the minimal
boundary condition at s, let (®2: u>0) be the corresponding Green opera-
tors, and let

v(x, u) = ui(x, Wuils, p)™, s Lu>0.
Choose €>0 and set Av=y(-, p+e€) —v(-, u). Then Av= —e®%(-, p+e)
because AvEB® and (u—B%Av=—e(-, u-te), ||Av”.,,§e;.¢‘1 because
lo(-, u+€)lo =1, and, making €} 0 in the equation,
Ay = — @:v(~. ke,
we have
(4.4) 3/0uv = — @:v,

the derivative being taken in the strong C(I) topology.
Now choose #>0 and suppose

(4.5) a/umn = (=) n)(®,)",

the derivative being taken in the same sense. Then (2.7) and (4.4) show that
there exists one more strong derivative,

0 ntl

3" /o™ = (=)™ (n + DUEY™,
and, by induction, we see that (4.5) is true for each n>0. Thus,
(=)a"/oumv(x, u) 2 0, n20,xE&1,
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that is, v(x, -) is completely monotonic (x&I), and so, by S. Bernstein’s
theorem [19, pp. 160~162], there is a right continuous increasing function
¢(x, s,t) on [0, + ®) to R, vanishing at 0 and such that

+o0
f e#dp(x, s, 1) = v(x, w), x&EI,u>0,

which proves (1)(8).
Statement (2) is obvious, v being bounded by 1, and so we turn to (3).
Choose x; and x, &I and a number pE [0, 1], let A be the difference operator,

Atu— pu(x) + (1 — plu(x) — u(par + (1 — p)x),
let
= v+ G+ 1O, nz0,
and consider the transform,

+oo
(4.6) prite(,w) = [ e, s, D
0.

Keeping (4.5) in mind and differentiating both sides of (4.6) » times, we
obtain

4.7 a"/umu Ay = (—)"nlp— DAy, n = 0.
Since v} (dx) /m(dx) =u™t1(®5)" —cv, is positive on I, the one-sided derivative

v} increases on I, v, is convex on I, Aw, is positive, and, coming back to
(4.7), we see that

(—)ron/oump—'Av(-, 1) 2 O, nz0,z€l.

Consequently, by S. Bernstein’s theorem [19, pp. 160-162],
&
ogf Ad(-, s, D)dt, >8>0,
4

and, varying # and &, it is clear that A@(-, s, £) is positive and that ¢(-, s, ¢)
is convex on I, x1, x2, and p having been chosen at pleasure.

To show that ¢(-, s, ¢) increases on I (¢=1), choose x and x+e¢&I (¢>0),
notice that

o(x, s, 8) = dop(x, x + ¢, )p(x + ¢ 5, t — a),
10,21

by the convolution rule [19, p. 91], and use (2). Similarly, ¢(-, s, ¢) decreases
on I (i=2), and this completes the proof of (3).

(®) The construction is due to W. Feller [private communication].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1956] PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 537

To prove (4), take =1 once more, choose x& I, and consider the trans-
form

“+oo
(4.8) f ertde(x, 5, t) = m(x, wu(s, u)7t, u>0.
0

We have

wi(s, u) = wm(x, w) + (s — )uit(x, p) + fa daf (u — )mm(di)
z (z.0)

> w(x, u) (1 + pfza m(x, a)da),

a simple iteration shows that
(4.9) wi(s, 1) > wm(x, p)(1 + aw + aw? + - - - ),

the numbers (a;: 2>0) being >0, and, putting (4.9) back into (4.8), we see
that

40
f erdp(x, 5, 0) < L+ apwtap?+ - )'=0@™) (T + =)
0

for each #>0, which, combined with the standard Tauberian theorem
[19, p. 192], shows that ¢(x, s, ) =o(t*)(¢ ] 0)(n=0). The same ideas work
when ¢=2.

Coming to the connection between ¢(:, , -) and p(-, -, -), we state the
simple

LEMMA 4.1. Let h(t) have two continuous derivatives (¢>0), let h(t) =o(t")
(¢l 0) for each n>0, and let B (t) =O0(t%) (¢t | 0) for some, not necessarily posi-
tive, k. Then h'(t) =o0(t")(t | 0) for each n>0.

We then prove
TraEOREM 4.2. (1) The derivatives,
o+
an/arp(t, %, s) = f ure'e(x, s, du), n>0,

exist and are continuous on (0, + ) XSXS,

(2 an/arp(t, x,5) = o(1) (¢ 1 0), n=0,x5s,
and
3 ar/otp(t, x, 5) = f ‘ do(x, &, 0)on/3t"p(t — 0, §,5), t> 0,2 2 0,
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provided £ is strictly between x and s.

Proof. Statement (1) should be obvious. To prove (2), the crude estimate,
(4.10) mHgn ot %, s) = o(1) (¢ | 0), nz0,
will be convenient. To see that this is true, take # =0, remark that

o+ o+
(trHion/arp(t, x, 5)) = t”"*’f uiretre(x, x, du)f e*e(s, s, du),

—o0

by Schwarz’s inequality, and e~*#/? being > (tu/2)2*(2n!)~! on (— «, 0],
observe that this expression is

o+ o+
< constant tf e /% (x, x, du)tf e e(s, s, du)

— —

constant (¢/2)p(t/2, %, ©)tp(t, s, 5)
¢/2 ¢
< constant f #(a, z, x)do f (e, s, s)do
] 0

=o(1), (10,

which is precisely (4.10).
To continue, take x and s&S and choose some convenient § strictly be-
tween the two. Then the convolution,

¢w=j?wwaaﬁ”)maom

is continuous in ¢,

+0
f eridy(t) = Gz, s, »)
0

+c0
= f e (1, x, s)dt,
0

by the convolution rule [19, p. 91], and we have
¢

(4.1 [ 4o 2, 980 = 40 5 802 8,9 = o) ¢l 0
0

for each #>0, which, combined with Lemma 4.1 and (4.10) proves (2),
and now it is a trivial exercise to differentiate the first two entries in
(4.11)(n+1) times, proving (3).

Quite a number of interesting facts about p(-, -, -) can now be obtained
at little cost, and, in particular, E2 can be checked. The necessary informa-
tion is contained in
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THEOREM 4.3. Given n=0, we have

o+ .
(1) o*axanfonp(l 2, ) = [ wrenet(a, iCdm)els, ),

—00

(2) a*/oxat/dsan/orp(t, x, 5) = f " wretet(x, p)f(du)et(s, u)

= 9t/dsdt/dxd"/at"p(4, x, 5),
(3) a"/at”p(tv Ty S) S Br
(4) 6"/6t"p(t, Ty S) = @np(t, ) S),

identically in the free variables, the integrals in (1) and (2) converging uniformly
on compact squares in SXS.

Proof. Choose >0, x and x+€eE.S (¢>0), and compact intervals RiCR;
C - - - such that U;5¢ R;=(— =, 0]. Then, making j T + «, we have

"/t p(t, x + €, 5) — 37/ p(i, %, 5)

=o(1) + | wrev[e(x + ¢ w) — e(x, w) [f(d)e(s, w)

R;

zte
= o(1) + ijew[eeﬂx, W) + f do f( L n)fn(dé):l F(du)e(s, )

= o) + e [ wrenet(a, witdn)ets,
R

)

zt+e
+ f de f( @ [ et = 0t 5 )

the interchanges being justified by Fubini's theorem. Since, in addition, the
integral,

0+
f /‘”e‘“(l‘ - c)e(E, S, d#)r

—00

converges uniformly on compact squares in SX.S, we see that

j;ﬁedgf(z,o)m(ds) j;j#netu(” — Qelt, 5, dy)

zte o+
— do d reti(y — , s, d ] 0
/ f(mm< O [ wrertu — et s, au G1+w)

—00

zte
_ f do f (0/0t — S)on/armp(t, &, 5)m(dE),
z (z,0)
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that the integral,

o+
f wrene (x, W(du)e(s, ),

converges uniformly on compact squares in SX .5, that

am/orrp(t, x + ¢ 5) — I/t p(t, x, )

04
= [ e, wi@ (s, v

—00

z+e
+ f do f (/31 — &)an/arp(t, & Im(d),

and this proves not only (1) but also

(4.12) an/atmp(s, -, s) € D(B)
and )
(4.13) (8/3t — B)a~/atrp(t, -, s) = 0, t>0,5s ES.

To prove (2), we have merely to substitute
0+ o+
f uret#0t/dxe(x, s, du) for f uretre(x, s, du)
and to copy the steps, and, to complete the proof, it is sufficient to show that

(4.14) /otp(t, -, %) EBiN\ B,y n20,t>02zES.

Given x &S, ¢(s, x, t) is positive, bounded by 1, and decreases as s ap-
proaches s;. Moreover, ¢(-, x, t) being convex near s,

(s + & %, ) — o5, x, 1)) | 0+/3se(s, x, 1) (el 0)

boundedly in ¢, and 3+/3s¢(s, x, t) is negative and increases as s approaches
$2.
Collecting these remarks, we have, by bounded convergence,

+
f et lim ¢(S, x, t)dt = I‘—lu2(52y F)u2(xv ”’)—11
0

sts,

+0
f et lim 0t/dse(s, x, £)dt = uluzt(sz, w)ua(x, w)™t,
0

sts,

and, consequently, ¢(-, x, ) & B, for almost all £>0. Similarly, ¢(-, x, t) EB;
for almost all >0, and so

(4.15) o(-, x,£) € BiMN B, x € S, almost all ¢ > 0.
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Now takei=1or 2, 220, t>0, xES, choose s near the boundary s;, and
pick an e such that s<x+e<x(i=1) and x<x+e<s(4=2). Then

t
arjotmp(t, s, x) = f do(s, x + ¢ 0)3%/0t"p(t — o, x + ¢, ),
0
and, integrating this once by parts, we see that
t
(4.16) a/atmp(t, s, x) =f o(s, x + ¢ )01/ p(t — o, x + ¢, x)do.
1)

Keeping in mind the properties of ¢ invoked above, we have, by bounded
convergence in (4.16),

t

(4.17) lim 07/at*p(¢, s, x) = f lim ¢(s, z + ¢, 0)a*+1/3"H1p(t — o, x + ¢, x)do
3—*3" 0 3—"3“

and

(4.18) lim 8*/9sar/otrp(t, s, x)

58,

¢
= f lim 9%/9s¢(s, x + €, )3 /0t"H1p(t — o, x + ¢ x)do,
0 )

Lamd

which, together with (4.15), prove (4.14).

COROLLARY 4.1.

[ v = |

~—00

1 at/dx
a*t/ds 9t/dxd*/ds

»(t, 0, 0), > 0.

Proof. Set x and s=0 in (4.2) and in statements (1) and (2) in Theorem
4.3.
REMARK 4.2. Simple computations show that

Regular Exit Entrance Natural
o s e [ e |
(—)"ligi a*/asp(t, s, x) :g :::i <0 =0 =0
but a real notion of the shape of p(-, -, -) is hard to come by. One appropriate

remark is this: suppose p(¢, x, -) has a local maximum at x for each ¢£>0 and
each x&S. Then s;= — », 5=+, ¢(x) is constant on S, and the operator
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8 —c is a constant multiple of the classical second derivative.
The auxiliary function ¢(-, -, -) is remarkably smooth, too. To support
this contention, we prove

THEOREM 4.4. Given s€S, t>0, and n>0, we have

(1) /ot p(-, 5, t) € By M\ By,

(2) nrjatrg(-, s, t) = Bp(-, s, 1) on (s1, 5) \J (s, s2),
and

3) ar/otrg(x, s, &) = o(1) @l o0), x # s,

the existence of the derivatives being part of the assertion.

Proof. Since no new ideas are involved here, we shall be content to have a
sketch, Choose s&S, 4=1 or 2, let 8° be the operator B cut down to the in-
terval I=(min (s, s;), max (s, s)), let p°(¢, x, £)(¢>0, x, E&1I) be the kernel
(4.2) corresponding to the going boundary condition at s; and to the minimal
boundary condition at s, let wy (-, -) and w.(-, -) be the corresponding positive
solutions of (2.1), and remark that w;(-, -) and »;(-, -) are proportional.

Observing that

1= ‘LUi"(S, u)'LU2(S, ”’) - wl(s’ I")w‘j(sy F')
— wi(s, pwit(s, 1) (=1
wl-.'-(sy ”’)wi’(sv l‘) (i = 2)’

we have

+o0

o0
f et lim 0%/0Ep(¢, x, £)dt = lim 9+/8¢ eHPO(t, x, E)dt
0 §—s t—s

]

= wi(x, pwit(s, p) = — wi(x, p)wi(s, p)* (i=1)
= 'w1+(s, ”’)w2(xr ”’) = w2(xv #)TD2(S, l‘)—l (1' =2)
= (=) fui(x, p)ui(s, p)™

$oo
= (_)‘f e""dd:(x, s, t)r x&l,p>0,

the necessary interchanges being justified by (3) in Theorem 4.2, and, taking
inverse transforms, it is clear that

t
4.19) o(x, s, 8) = (—)‘f lim 9+/8¢ p%(o, %, £)do, x€1,
[ ]
which can be combined with Theorems 4.2 and 4.3 to complete the proof.

COROLLARY 4.2. Given s&S, t>0, and xE (min (s, s;), max (s, si)), the flux
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tdentities,

v/t Hg(x, s, £) = (—)* lim a+/3E an/aempo(¢, %, £), n=0,
£

are satisfied (1=1, 2).

Proof. One has merely to differentiate (4.19) (n+1) times.

To come back to p(¢, x, s), we have still to show that E3, - - -, E6 are
satisfied.

Choose x &S, set

(4.20) o) = fs #(t, x, s)m(ds), t>0,

and, keeping (1.4), (2.5), and (2.7) in mind, observe that ¢ is lower semi-
continuous, that

+o0

4.21) [ emetra = @, >0,
[}

and that

(4.22) prtt| 9n/our(@,1)(2) | < !, n 0.

But (4.22) is precisely the condition that ¢(¢) be =1 almost everywhere (df)
[19, pp. 315-316], which, combined with the fact that ¢ is lower semi-con-
tinuous, proves E3.

Before we continue, it is convenient to prove

LEMMA 4.2. Given n 20, 8*/0t"p(t, x, -) is continuous in (t, x) on (0, + «)
XS in the strong(®) Li(S) topology.

Proof. Choose 20, a neighborhood N =(x1, x2) strictly interior to S,
€>0 so small that s;<x;—e and x:+e<se, pick £>4>0, and set I;=(s1,
xy—e] and I =[x;+¢, 52). Remembering (1.6), statements (1) and (3) in
Theorem 4.2, and statement (3) in Theorem 4.4 and setting

v(s) = sup | ™1/ 1 (xs, 2 + (~)ie, 1) |
<ty

f : (o, x: + (=)' s)do eI i=1,2),

= sup [ ar/otmp(t, x, s) | &LV,
(o) (a, 8) XN

we see that & L;(S), that

(®) L1(S) is the space of m-measurable functions v on S to R such that ”v”;= f s lv(x) ]m(dx)
< + =, modulo the ideal of null functions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



544 HENRY P. McKEAN, JR. [July

t
v(s) 2 sup f amt1/9tv Mg (xy, 2 + (=), £ — o) p(o, ;i + (=)', s)do
<2 0
= sup I ar/otrp(t, x, s)l
<2
t
2| [ dote mi ar/orptt = o, 79
0
= | 6"/6t"p(t, X, S) | s, =1,2, (tr x) S (tl’ t2) X N,
and that

o(s) = | a/atp(t, %, 5) | s LI I, (4, x) € (t, ) X N,

and hence, by dominated convergence, that d"/9t*p(¢, x, -) is continuous on
(t1, t2) X N, which completes the proof, #, £, and N having been chosen at
pleasure.

Coming to E4, remember that p(¢, -, -) is symmetric on SX.S, choose x
and s&S, set

8@ = [ 0= 0,5 050, & Im(ap), > 0> 0,
S

and, keeping Lemma 4.2 and the table in Remark 4.2 in mind, remark that

It

¢'(e) = o(1) + f " 8/30p(t — 0, %, &) p(o, £ Sym(dE)

Il

0(1) — Wronskian (p(t — o, %, ), (0, -, 5)) o
X1

0(1) (x1 l 51, X2 T Sz).
This shows that

p— !
0= ft2<a<zl+g2¢ (0)do (<o < t—+t)

- f Bt — (i + 1), 2 ) p(ts + foy & 5)m(dE)
S

_f P(t — by %, E)P(hy Ey s)m(d&) (t >t + 52)-
S

and, making ¢} #,+#, we obtain

Dot 2 ) = [ 9067 206, & D),
S

this being the Chapman-Kolmogorov identity, listed in E4.

License or copyright restrictions may apply to redistribution; see https:/www.ams.org/journal-terms-of-use



1956] PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 545

To continue, consider the operators
(4.23) S::0 € Lo(S) —»f 2(t, x, s)v(s)m(ds), > 0019,
s

and notice that E1, E3, E4, (4.3), and Lemma 4.2 have the

COROLLARY 4.3. S; maps L.(S) into C(S), ||S|l-=<1, S; is positivity-
preserving, (Si: t>0) is a semi-group, and

]

©0@ = [ 6@ s, wm@) = [ Tensa@a  w>o.
s 0
This covers the first statement in ES5, and, to check the second, we have
merely to remark that E2 and Lemma 4.2 have the

COROLLARY 4.4. Let D(B) be those uED(B) such that BuCD(B), Bu
ED(B), and so on, and let v be a member of L. (S). Then v(t, x) =(Sw)(x) be-
longs to D (B), the derivatives 0"/di™v(t, x) exist and are continuous on (0, + )
XS, and we have

an/atru(t, ) = Bru(t, ), L, n>0.

Branching out in another direction, consider the behavior of the operators
(4.23) near t=0, and let us prove

THEOREM 4.5. Given x©.S and a neighborhood N containing x, setting

a(s) = ﬁ )m(x, o)do (s >2)

=f m(a, x|de (s < 2),
(s,2)

and making t | 0, we have

€)) f ?(t, x, s)m(ds) = o(t"), n > 0,
(2) f (¢, x, sym(ds) = 1 + te(x) + o(t),

@) [ 0,5 96 ~ Dmias) = o0,

4) f (4, x, S)a(s)m(ds) = ¢t + o).

(*) Lo(S) is the space of m-measurable functions » on S to R such that ”v”.
=inf (8: m(x: |v(x) |>B) =0)< + «, modulo the ideal of null functions.
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Proof. Given xE€S, €>0, and keeping statement (4) in Theorem 4.1 and
statement (3) in Theorem 4.2 in mind, we have

f 2(t, x, s)m(ds) = f ‘ do(x, x — ¢, 0) p(t — o, x — ¢ s)m(ds)
{z—a]>2¢ 0

a<z—2e
+f do(x, x + ¢ 0) 2t — o, x + ¢ s)m(ds)
0 s=z+2¢
Sexr— ) +ox 2+ ¢ )
=o(ty (¢l0), n >0,

which proves (1).
Coming to (2), (3), and (4), pick w;E Co(S) (¢=1, 2, 3) such that

v; =fo<. d0f'<o w(o)m(do)

vanishes near the boundaries, and, on the neighborhood N, v; coincides with
1, v, with constant+ (s —x), and v; with constant-constant (s —x) +a(s) (1?).
Then v;& Co(B), and if we set u;=(u—&)v; and keep (1) in mind, we shall
have

f p(t, x, $)vi(s)m(ds) = (S:)(x) + o(f)

(S ®Guui)(x) + o(t)

= gkt f +u0(3"“’(S,,u,~)(x)d¢r + o(2)

+
vi(x) + (e#t — l)f e (S,us)(x)do

—_ f ‘ e+ (S,us) (x)de + o(t)

= (%) + Uwvi(x) — ui(x)) + o())
vi(x) + {(Bvi)(x) + o(?) ¢l o),

and, setting 1=1, 2, 3 (in this order) proves, successively, (2), (3), and (4).

REMARK 4.3. Estimates like these are important for the description of
random processes with continuous sample functions. The standard procedure
is to consider a smooth Markov transition density p(¢, x, s), to postulate such
conditions (1), (2), (3), and (4), and to show that p(-, -, s5) satisfies the
backward equation (1.3): see A. N. Kolmogorov [20], W. Feller [9], A. Khin-
chin [21], and, for the modern approach, W. Feller [2].

(1) The actual construction is straightforward and will not be reproduced here.
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This brings us to E6. Given v&EC(S) such that Bv is continuous near
xS, choose €>0 and notice that

2(x) + (s — D)vH(x) + a(s) [(Br)(a) — c(@)o(x) — €]
< o(s)
< o(x) + (s — )vH(x) + a(s) [(Br) (%) — c(®)v(x) + €]

on some neighborhood N containing x. Multiplying this by p(¢, x, 5), integrat-
ing over N, remembering statements (2), (3), and (4) in Theorem 4.5, and
making ¢} 0, we have

o(x) + t[(B)@) — el + o()) < fN 26, %, $)o(s)m(ds)
< o(x) + [(Bv)(2) + €] + (1),

and, combining this with statement (1) in Theorem 4.5, we see that
(Sw)(x) = v(x) + UBv)(x) + o(t) (¢ 10,

which is E6.
El, E2, - - -, and E6 have now been checked, and, in particular, we can
state

THEOREM 4.6. The kernel p(t, x, s) is the elementary solution to (1.3), subject
to the side condition B.
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