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0. Introduction

Transition systems are a simple and powerful formalism for explaining
the operational behaviour of models of concurrency. They provide a common
framework for investigating the interrelationships between different
approaches to the study of distributed systems. Hence an important question to
be answered is: which subclass of transition systems corresponds to a
particular model of distributed systems? In this paper we provide an answer to
this question for elementary net systems. Within net theory, which is one
well-established theory of distributed systems, elementary net systems
constitute a basic systems model. Using this model, fundamental concepts such
as causality, concurrency, conflict and confusion can be clearly defined and
separated from each other (see [T]). Much is known about the behavioural
aspects of elementary net systems in terms of trace theory, nonsequential
processes and event structures as shown in [NRT]. Trace theory was initiated
by Mazurkiewicz [Maz]; (see also [AR]). The theory of nonsequential processes
originates from the work of Petri [P2]; (see also [BF]. Event structures arose
out of the work of Nielsen, Plotkin and Winskel [NPW] and they now possess a
rich theory mainly due to the efforts of Winskel [W3]. Elementary net systems
also have a strong relationship to transition systems. More precisely, there
is a natural way of associating a transition system with each elementary net
system in order to explain the operational behaviour of elementary net systems
in purely sequential terms. Hence the question arises as to which transition
systems correspond to elementary net systems.

A complete answer to this question was provided by Ehrenfeucht and
Rozenberg [ER] by identifying - what seems to be - a basic notion called
regions for transition systems in general. The class of transition systems
that were identified through this work will be called elementary transition
systems here. The main aim of this paper is to show that this link established
between elementary transition systems and elementary net systems can be lifted
to respect appropriately chosen behaviour preserving transformations between
elementary transition systems on the one hand and between elementary net
systems on the other hand. More precisely, we shall show that the notion of a
G-morphism between a pair of e1ementary‘transition systems corresponds in a
standard fashion to the notion of an N-morphism between the associated pair of
elementary net systems. G-morphisms were identified in [ER] where they were
referred to as uniform morphisms. At the level of transition systems, these
morphisms were also identified by Winskel [W2]. N-morphisms are a modified
form of the morphisms between net systems defined and studied by Winskel [W3].
As a consequence of our main result one can go back and forth between a
category of elementary transition systems and a category of elementary net



systems.

In the process of working out the main result we run into a number of
interesting observations. In particular, it turns out that elementary net
systems admit canonical representations. These canonical representations are
in some sense "maximal" objects in terms of the N-morphisms that are
supported by an elementary net system.

Finally, based on the work reported here, we can now look forward to
defining operations on elementary net systems based on their transition
systems representations. This is rather important because by taking this route
one is defining operations on the behaviour of net systems whereas operations
on net systems themselves invariably boil down to "cutting and pasting" the
underlying nets and rearranging the initial markings where necessary; one is
still left with the task of computing the behaviour of the resulting object in
terms of the behaviour of its constituents.

In the next section we introduce the category EJ¥ whose sbjects are
elementary transition systems and whose arrows are G-morphisms. In Section 3
we introduce the category €4 whose objects are elementary net systems and
whose arrows are N-morphisms. We then construct in the subsequent two sections
a functor H going from ENf to EJS and a functor J going from EJ¥ to ENP. The
main result of this paper, namely, J and H constitute an adjunction (in fact,
a coreflection) with J as a left adjoint and H as a right adjoint is proved in
Section 5. In the concluding section we tie-up some loose ends. We also
discuss briefly two other kinds of net morphisms in the Titerature due to
Petri [P1] and Meseguer and Montanari [MM].



1. Elementary Transition Systems

A transition system is a quadruple TS = (S’E’T’Sin) where
« S is a non-empty set of states
E is a set of events
« T<SxExS is the transition relation

°

© Sin € S is the 7nitial state

Usually transition systems are based on actions which may be viewed as
labelled events. Here we are mainly interested in relating transition systems
to (unlabelled) net systems and hence the minor departure from conventional
practice. If (s,e,s’) € T then the idea is TS can go from s to s’ as a result
of the event e occurring at s.

We will often pictorially represent a transition system as a rooted
edge-labelled directed graph. An example of a transition system is shown in
Figure 1 where the initial state is decorated as indicated. We will follow

this convention through the rest of the paper:

Let TS = (S,E,T,sin) be a transition system. When TS is clear from the context
we will often write s -5 s’ instead of {s,e,s’) € T. We say that the event e
is enabled at the state s - denoted s -&5 - if there exists a state s’ such
that s —=» s’. Given our aims it is necessary to restrict ourselves to
transition systems which fulfill some additional requirements.

From now on, unless stated otherwise, every transition system
IR (S’E’T’Sin) that we encounter will be assumed to (or will be proved to!)

satisfy the following axioms:

(Al) Y(s,e,s’) e T. s # s’.
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(A2) V(s,el,sl), (S’e2’52) eT. [s1 Sp v ey = 92].

(A3) Ve € E. 3I(s,e,s’) € T.

(A4) Vs € S_(Sin} Eeo,el,...,en_1 € E and

'331,52,...,sn € S such that Sp = S = s and

. 3 S
S- e. S. E I ’()l 0 i “.
( 1’ 1’ 1 I) <... <

(A1) forbids self-loops and (A2) forbids multiple arcs between a pair of
states. (A3) demands that every event should have an occurrence and (A4)
demands that every state should be reachable from the initial state through a
finite sequence of event occurrences. The relative importance of these axioms
will become clear at appropriate places in the rest of the paper. We also have
some additional remarks concerning these restrictions in the concluding
section.

The notion of a region will play a central role in this paper.

Definition 1.1. Let TS = (S’E’T’Sin) be a transition system. Then r ¢ S
is a region of TS iff the following two conditions are satisfied:
(i) (s,e,s') e TAsSeEerAs ¢r = V(sl,e,si) eT. [s1 ETr A si ¢ r]
(i) (s,e,s’) eTAs¢grans e€rs= V(sl,e,si) e T. [sl ¢ r A si er]. o

Thus a region is a subset of states with which al] occurrences of an
event has the same "crossing" relationship. Regions were first identified in
[ER] where they were used - among other things - to characterize the
transition systems that "correspond" to elementary net systems. A region is
supposed to model a "local” state where each (global) state consists of a set
of Tocal states. This will become clear in Section 3. For the transition
system shown in Figure 1, {31?32}, {32,54} and {31,52,33,54} are regions.

r = (51,34} is not a region because we have S &1, Sy with s;er and Sp &7
, e , ;o .
while we also have S3 = S, with Sg &r and SpEevr. T {31,32,34} is net a

region because we have S &2, S3 with S] € r’ and S3 € r’ while we also have
e 2 7 4
S, =2 Sy with S, € and spEer.

It will be convenient to adopt some notations concerning regions. These
notations will be extensively used in the sequel.

Let TS = (S’E’T’Sin) be a transition system. Then it is easy to see that
both S and @ are regions. They will be called the trivial regions. RTS will
denote the set of non-trivial regions of TS. For each s € S we let RS denote
the set of non-trivial regions containing s. More precisely,



def
Vs € S. RS = {r]|sere RTS}'
The set of pre-regions and post-regions of an event will also play an
important role.

Ve € E. %e CEf {r]re RTs A I(s,e,s’) eT. [serans’ ¢r]}
(The pre-regions of e)

o def

e {r]re RTS A d(s,e,s’) eT. [ser aAs’ er]}.

(The post-regions of e)

For the transition system shown in Figure 1,
Rsl = { {51,52}, {51353} }7 el = { {31753} }:

ey = { (s3:55) ) and ey = { {5,,5,), (55,54} ).
Here are some useful properties of regions.

Propostition 1.2. Let TS
(i) r < S is a region iff r °

= (S,E,T,sin) be a transition system.

&S - r is a region.

(i1) Suppose e € E. Then e° = {r | r € “e}.

(iii) Suppose s —=s s’. Then R, - R/ = e and R, - Ry = e®. Consequently

o

e ¢ RS and e n RS = ¢ and Rs’ = (R - e)ue.

S

Proof. (i) follows at once from the definition of a region.

To prove (ii), consider r € °e. Then there exists a transition s BLIOPY
such that s € r and s’ ¢ r. This implies that r € e° which in turn implies
that {r | r € e} ¢ e°. To show containement in the other direction is equally
easy.

To prove (iii), consider r € “e. Then there exists a transition S -, si
such that sy Eer and si ¢ r. Since r is a region and s &, s’, we must have
serand s’ ¢ r. Clearly r is a non-trivial region. Hence r € RS and it is
also clear that r ¢ Rs’ : Hence e ¢ RS - Rs" Now consider r € RS - Rs"
Since ser and s’ ¢ r and s -5 s’ we get r € %e. Hence RS - Rs’ c e. By a
symmetric argument we can show that Rs’ - RS = e°. The rest of (iii) follows

now immediately. o
We can now identify the class of elementary transition systems.
Definition 1.3. The transition system TS = (S,E,T,sin) is said to be

elementary if it satisfies (in addition to (Al) - (A4)) the two regional
axioms:



(A5) ¥s,s” € S. [R, = R, » s = s’']. (separation property)

(A6) ¥s € S Ve € E. [%e ¢ R = s £, o

The transition system shown in Figure 1 is elementary. The two transition
systems shown in Figure 2 are not elementary.

fa) {b)

Figure 2

The system shown in Figure Za is not elementary because

RS = RS = { (51,52,53} } thus violating {A5}. The system shown in Figure 2b
1 2

is not elementary because °e1 = { {siysg} } and hence gel c Rs . But e is not
3
enabled at S3 and this viotates (A6).

We can now define "behaviour-preserving” morphims between transition systems.
Definition 1.4. Let TSi = (Si’gi’Ti’S;n} for i = 1,2 be a pair of
transition systems. A G-morphism from TS} to ?Sz is a function f : Sl — S2
which satisfies:
. 1, .2
(i) f(sin) =S4
(ii) Y(s,e,s’) € T1 [f(s) = f(s’) or there exists e, € E2 such that
(f(s),ey,f(s")) € Tyl
(ii1) If (s,e,s’) € T1 and (F(s),ez,f(s’)) € T2 then (f(sl),ez,f(si)) € T2 for
every (sl,e,si) € Tl' o

The idea is that TS2 is capable of "partially simulating" TS1 as
specified by f. If (s,e,s’) € Tl and f(s) = f(s’) then under f this occurrence



of e is "internal" to TS1 and will not be "seen" by TSZ’ The motivations
underlying the first two requirements should now be obvious. In [ER] maps
which satisfy just these two conditions are called morphisms. The third
condition demands that all the occurrences of an event should be simulated in
a uniform manner. For transition systems that model distributed computations
this is a crucial requirement. In TSl, an event e (in some context) might
occur concurrently with a number of other events. This will be reflected in
TS1 by a number of transitions all labelled with e. Clearly the choice of
which event in T52 simulates e should not depend on a particular transition
involving e. In [ER] a fourth condition is added to capture the fact that
"internal" occurrences are also handled in a uniform fashion. Such morphisms
are then called uniform morphisms. We first show that the three conditions
imposed in Definition 1.4 suffice to guarantee that internal transitions will
also be handled in a uniform way.

Proposition 1.5. Let f : TS1 — TSZ be a G-morphism from ?Sl to T52
where TSi = (Si,Ei,Ti,s}n) for i = 1,2. Suppose (s,e,s’) € T1 and
f(s) = f(s’). Then f(sl) = f(si) for every (sl,e,si) € Tl'

Proof. Suppose (sl,e,si) € TI' If f(sl) # f(si} then by part (ii) of
Definition 1.4, there exists e, € E2 such that (F{ﬁi},ez,f(si)) € T2. But then
by part (iii) of Definition 1.4, this leads to (f{s},ez,f(s’)) € TZ‘ Since
f(s) = f(s’) by hypothesis, we now have the contradiction that T32 violates
the axiom (Al). O

Two examples of G-morphisms shown in Figure 3.

Figure 3

It follows that each G-morphism f : TS1 — TS2 uniquely determines a



partial function Ne E1 —y E2 defined by

. e, if (f(s),ez,f(s’)) € T2 for some (s,el,s’) € T1
nf(e )

undefined, otherwise.

In the sequel we will often appeal to this partial function - denoted Ne -
determined by the G-morphism f. It turns out that for deterministic transition
systems, this associated partial function also determines the G-morphism
uniquely.

The transition system TS = (S’E’T’Sin) is said to be deterministic if
V(s,el,sl), (s,ez,sz) eT. [e1 =e,> 5 = 52].

Note that in case TS is elementary then TS is deterministic. This follows from
the fact that if (s,el,sl), (s,el,sz) € T then by Proposition 1.2,

RSl = (Ry - Te;) ue = RSZ and hence by (A5), s; = s,.

Proposition 1.6. Let TS1 and TS be two deterministic transition systems
and f and g two G-morphisms from TS1 to TS such that Ne = v . Then f = g.

Proof. We prove that f(s) = g(s) for every s e S1 by induction on the

number of event occurrences it takes to reach s from sln (recall axiom (A4)).
Clearly f(s ) = S?n = ( ) by definition of a G-morphisms. Assume
f(s) = g(s) for s € S1 and that (s e,s’') e T If f(s) = f(s’} then nf(e) is
undefined and hence ng(e) is undefined. But this implies that g(s) = g(s’).
Thus f(s’) = g(s’).
If f(s) # f(s’) then (f(s),ez,f(s')) € 72 for some e, € Ez. This implies
that nf(e) = e, SO that ng(e) = e,. Since g is a G-morphism, from
(s,e,s’) € T1 we can now infer that (g(s),ez,g(s’)) € TZ. Since f(s) = g{s) by
the induction hypothesis, we have f(s’) = g{(s’) from the fact that TS2 is

deterministic. 0

A basic property of G-morphisms is that they preserve regions in the

following sense.

Proposition 1.7 Let f : TS1 —> TS2 be a G-morphism where
i - . o
TSi = (Si’Ei’Ti’Sin) for i = 1,2. Suppose r ¢ S2 is a region in TSZ. Then
f"l(r) is a region in TS,. Furthermore for every e, € E,, f'l(r) € °e1(e;) iff
ne(e;) is defined and r e °nf(e1) (nf(el)o).

-1

Proof. Set f "(r) = r’. Suppose that (sl,e,sz),(s3,e,s4) € T1 such that



S € r’ and Sy & r’. We must show that S3 € r’ and Sq ¢ r’'. Since S) € r’ and
2). This

implies that nf(e) is defined and (f(sl),e’,f(sz)) € T2 where nf(e) = e’. By
the definition of a G-morphism this implies that (f(s3),e’,f(s4)) eT

S, ¢ r’, we must have f(sl) € r and f(sz) ¢ r. Hence f(sl) # f(s

o Since
r is a region and f(sl) € r and f(sz) ¢ r we can conclude f(s3) € r and
f(s4) ¢ r. Hence S3 € r’ and Sq ¢ r’.

Similar arguments apply in case of events entering r’ and hence r’ is
indeed a region. Furthermore it follows immediately from the above argument
that for e, € El’ f'l(r) € °el implies that nf(el) is defined and r € Onf(el).
On the other hand, assume that nf(el) is defined and that r € °e2 where
nf(el) = e,. Take any (s,el,s') € Tl (There must be at least one by
axiom (A3)). We know that (f(s),ez,f(s’)) € Tz. From r € oe2 we know that
f(s) e r and f(s’) ¢ r. Hence s € v’ and s’ ¢ r’. This shows that r’ € °e1.

Symmetric arguments apply to post-regions. O

It follows easily that elementary transition systems with G-morphisms
form a category with normal functional composition as composition and the
identity function as identity. Let us denote this category as &7¢. Our aim now
is to form an appropriate category of elementary net systems and relate it to
ETS.



2. Elementary Net Systems

Elementary net systems are a basic system model of net theory. Here we
shall give only a brief introduction to this model. For more details and
background material the reader is referred to [R], [T] and [NRT].

In net theory, models of distributed systems are based on objects called
nets which specify the local states and Tocal transition and the fixed
neighbourhood relationships between them.

Definition 2.1. A net is a triple N = (S,T,F) where:
(i) S is a set of S-elements
(i1) T is a set of T-elements
(i11) SNnT =g
(iv) Fe (SxT)u (T xS) is the flow relation
(V) W xe SUT. I3ye SUT. [(x,y) e Fv (y,x) e F]. o

The Tast condition states that we do not permit isolated elements in our
nets. In this paper the local S-elements will be used to denote lpcal states
called conditions and the T-elements will be used local transitiocns called
events. Following usual practice such nets of conditions and events will be
represented by triples of the form N = (B,E,F).

Let N = (B,E,F) be a net and x € B U E.
" {y | (y,x) € F) (The pre-elements of x)
{y | (x,y) € F} (The post-elements of x).
In case e € E, “e will be called the set of pre-conditions and e will be

%

def

o |

X

called the set of post-conditions of e. In this paper elementary net systems
will be based on a subclass of nets called simple nets.

The net N = (B,E,F) is said to be simple iff
Vx,y e BUE. ['x="yax =y sx-=y].

Definition 2.2. An elementary net system is a quadruple N = (B,E,F,cin)
where
(i) (B,E,F) is a simple net called the underlying net of N (and denoted in the
sequel as NN).
(i) Cip € B is the initial case. O

In diagrams the conditions will be drawn as circles, the events as boxes
and members of the flow relations as directed arcs. The initial case will be
indicated by marking (with small darkened dots) the members of the initial
case. An example of an elementary net system is shown in Figure 4.
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Figure 4

From now on we will often refer to elementary net systems as just net
systems. The dynamics of a net system are straightforward. The states of a net
system are called cases. A case consists of a set of conditions that hold
concurrently. The system can go from a case to a case through the occurrence
of an event. An event can occur at a case iff all its pre-conditions hold and
none of its post-conditions hold at the case. When an event occurs, all its
pre-conditions cease to hold and all its post-conditions begin to hold. It
will be convenient to formalize these ideas as follows.

Let N = (B,E,F) be a net. Then —\ € 28 x E x 2B
relation of N and is given by : —y = {(c,e,c’) | ¢ - ¢’ = ‘eAC -c=2").

is the transition

Definition 2.3, Let N = (B,E,F,cin) be a net system.
(1) CN is the state space of N (also called the set of reachable cases of N)
and it is the least subset of 2B containing Cin which satisfies:

(c,e,c’) e ——eNN ACE CN s> ¢ € CN. (recall that NN = (B,E,F)).

(ii) —y is the transition relation of N and it is ——aNN restricted to
CNxExCN.

(ii1) EN is the set of active events of N and it is the subset of E given by:

EN = {e | I(c,e,c’) € —~»N}. i

The state space of the net system shown in Figure 4 is
{ {bl’bZ}’ {bl,b4}, (b3,b2}, {b3,b4} }. Note that, in general, the set of
active events of a net system is a proper subset of the set of events of the
underlying net. We can now associate a transition system (often called the

11



case graph and sometimes the sequential case graph) with a net system to
explain its operational behaviour.

Definition 2.4. Let N = (B’E’F’Cin) be a net system. Then the structure
TSN dgf (CN,EN,——»N,cin) is called the transition system associated with N. O

Normally one uses E instead of EN to specify TSN. Here we have tightened
up the definition of TSN because of the axioms imposed on transition systems
in the previous section and the anticipated results of a later section.

It is easy to check that TSN as specified in Definition 2.4 is indeed a
transition system. In fact we will prove this and more in the next section. It
is also easy to check that the transition system associated with the net
system of Figure 4 is the transition system shown in Figure 1 (provided of
course the obvious identifications of cases with states is made).

We can now point out that TSN captures the informal explanation of the
dynamics of the net system N stated previously.

Proposition 2.5, Let N = (B,E,F,cin} and TSN the transition system
associated with N.
(i) Ve e Cy. Ve € E. [c Eieeccne nc =gl
(11) V(c,e,c’) &€ —p. [c/ = (c-"e) ue']
(ii1) V(cl,e,cz), (cg,e,c4) € —y- [c1 T €y =0y m CpAC, - Cp=Cy - c3]
(iv) (c,e,cl), (c,e,cz) € =y > Cp = Cy.

Proof. Follows easily from the definitions. o

(i) says that an event is enabled to occur at a case iff all its
pre-conditions hold and none of its post-conditions hold at the case.
(i1) says that when an event occurs all its pre-conditions cease to hold and
all its post-conditions begin to hold.
(ii1) guarantees that an event produces the same change whenever it occurs.
(iv) says that the transition system associated with a (unlabelled!} net
system is deterministic.

Fundamental concepts concerning distributed systems such as causality,
concurrency, conflict and confusion can be easily defined and separated from
each other with the help of net systems. A variety of behavioural tools also
exist to study the non-sequential behaviour of net systems. The interested
reader is referred to [T] and [NRT] for more details.

Here we shall make use of a primitive behavioural tool called firing
sequences. Let N = (B,E,F,cin) be a net system. Then FSN c E*, the set of

12




firing sequences of N is the least subset of E* (the free monoid generated by
E) defined inductively as follows. In doing so, it will be convenient to
simultaneously build up the relation [> ¢ {Cin} X E* X CN’ We use A to denote
the empty sequence.
(i) A € FSN and Cin[A>Cin
(ii) Suppose p € FSN and cin[p>c and (c,e,c’) € —y- Then pe € FSN and
cin[pe>c’.

For the net system shown in Figure 4, €1€,84,8,8,€,,85€, are some of its
firing sequences. With Cip = {bl,bz} and ¢ = {bz,b3} we have cin[e2e1e4e1>c
and Cin[el>c‘

Before introducing morphims between net systems it will be convenient to
adopt some notations concerning binary relations and partial functions. If
B1 and 82 are sets and 8 ¢ B1 X 82 then ﬂ—l is the binary relation
-1 def
B 2" ((by,b)) | (by,b,) € BY.

For B.< By, A(B) “2" (b, | 3b; € B (by,b,) € B).
If ﬁl c B1 X 82 and BZ c 82 X 83 the composition of 31 and ﬁz is denoted as

(g]

ﬂzoﬂl and it is the subset of B1 X 83 given by

8,08, def ((bysbg) | 3bye(by,by) € B and (by,Ls) € B,).
A partial function n from set E1 to the set E2 will be indicated by
n E1 — EZ' (We have already followed this convention in the previous
section). If U E1 e E2 and My * E2 — 53 are two partial functions
then the composition of M and My is denoted as N50M4 and it is the partial
function from E1 to E3 given by:

. - - o % =
Vel . El, n20n1(81) _ {e3, if 3@2 € E2. ﬂl(el) e, and qzieg, e,

undefined, otherwise.
Definition 2.6. Let Ni = (Bi’Ei’Fi’c;n)’ i=1,2 be a pair of net
systems. Then an N-morphism from Nl to N2 is an ordered pair (B8,n) where

B < B1 X B2 is a binary relation and n : E1 — E2 is a partial function such
that:

(i) B'l is a partial function from 82 to Bl‘

- 1 2
(i1) V(bl’bz) € B. [b1 € Cip © b2 € Cin]‘ . ‘
(1i1) Ve1 € E1 if n(el) is undefined, then B( el) =g = B(el),
(iv) Ve, € E; if n(e)) = e, then B('el) = 'ez and B(ei) = eé. w

An example of an N-morphism (from N1 to Nz) is shown in Figure 5.
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N-morphisms are a modified form of net morphisms advocated by Winskel
[W3]. For convenience we shall refer to Winskel’s net morphisms as
W-morphisms. An N-morphism differs from a W-morphism in three respects.
Firstly we require B'l to be (globally) a partial function. In the case of a

W-morphism, ﬁ'l is required to be a total function when restricted to
2
in n
defined. In fact Winskel [W1] also started with the notion of a morphism in

cS x c} and when restricted to {e) x "e and B(e”) x e’ whenever n(e) is

which ﬂ'l was required to be a (global} partial function. Later this
requirement was weakened in order to support the notion of unfoldings for net
systems. The second difference is that for a W-morphism, one demands

1 2
B(c

in) = Cip-

isolated elements in our nets. The third difference is that we do not require

We have weakened this assumption since we do not wish to permit

our net systems to be contact-free whereas W-morphisms (when specialized to
net systems) "work" in the sense of Proposition 2.7 to be proved soon, only
for contact-free net systems.

The net system N = (B,E,F,cin) is said to be contact-free iff
Ve e Cy Ve € E. ‘eccoe nc =g

An example of a net system which has contact is shown in Figure 6.
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Figure 6

We will discuss in greater depth the differences between N-morphisms and
W-morphisms in Section 6. Turning now to the study of N-morphisms, we first
show that N-morphisms are "behaviour-preserving” in the following sense.

Proposition 2.7. Let (B,n) : N1 — N2 be an N-morphism where
_ i . . B, .
Ni = (Bi’Ei’Fi’Cin)’ i=1,2. Let FB : CNl-——a 2°¢ be given by VY c € CNl'
2 1
fﬁ(c) = B(c) u (Cin - ﬂ(cin))' Then

(i) Vce CNl’
(ii) Suppose (c,e,c’) € ——aNI. Then fﬁ(c) = fﬁ(c’) in case n(e) is undefined.
Otherwise, (fB(c),n(e),fﬁ(c’)) € m‘*Ng

Proof. Let c € CNl and p be a3 firing seguence of N1 such that cin[p>a, We
first prove (i) by induction on k = {g}.

2

k in’

. 1y
0. Then c = Cin and fﬁ(cin) = C

k >0. Let p=p'e and c%n[p’>c’ in N}. By the induction hypothesis,
fB(c’) € CNZ. Let fﬂ(c’) = ¢". We have (¢’,e,c) € Iy Hence

L] L] 1
c=(c'-e)ue.

Suppose n(e) is undefined. Then B(e) = & = B(e”). It is now easy to
ify that f,(c) = f,(c’). Hence f, (c) € C,, as required.
verity B( ) ﬂ( ) ﬁ( ) N, q

i}

Suppose n(e)
enabled at ¢’ and hence ‘e ¢ ¢

e,. We wish to argue that e, is enabled at c". Now e is

and e" nc’ =g. From "e ¢ ¢’ we get
B('e) = 'e2 ¢ B(c') ¢ fﬁ(c’). Now suppose eé N c" # @. Then there exists

15



° / 2 ® »
b2 € e, such that b2 e B(c’) or b2 S, ﬂ(c%n). But b2 € e, together with

] € e’ such that (by,by) € . If

B(e") = eé implies that there exists b
b2 € B(c’) then ﬁ'l being a partial function, we get bl € ¢’ which contradicts

e’ nc =g If b2 € C?n - B(C%n) then by the definition of an N-morphism we
get b1 € c%n. But this at once Teads to the contradiction that b2 € ﬂ(c}n).

e
.

Thus e, is enabled at c¢". Let ¢, = (c" - 'ez) U e,. Then from B('e) = 'ez and
B(e") = eé it is easy to verify that fB(c) = c,. Clearly c, € CNZ.

From the proof above, the second part of the proposition now follows
easily. o

It will be convenient to establish the "net version" of Proposition i.6.

Proposition 2.8. lLet (51’”1) and (Bz,nz) be a pair of N-morphisms from

N1 to N2 where Ni = (Bi,Ei,Fi,c}ﬂ), i = 1,2 are a pair of net systems. If
n =M then ﬂl = ﬂz.

Proof. Assume that Ny = 1y Suppose that (bl’bz) € ﬂl. Since we do not
permit isolated elements in our net, there exists e € 'bl U bl' in Nl' Assume

that e € 'bl. Then by the definition of an N-morphism, nl(el)is defined.
Moreover, Bl(el') = nl(el)” and hence b, € nl(el)°. But then n, = 1,

implies that b2 € nz(el)' as well. Hence Bbi € ei such that (b’,bz) € BZ and
e, € 'bi. We now claim that "bl = 'bi and bi = (bi)' in Ny which will then
lead to b
So suppose that e € 'bl(bi). Then (by,b,) e B, implies that n (e) is defined

1= bi due to the simplicity of the underlying net of Nl'

and moreover nl(e) € °b2(b§) in Nzu But then nl(e) = nz(e) and hence

7

n,(e) € 'bz(bé) as well. Since (bj,b,) € B, we now have bj € e’ ("e) and hence
e e 'bi((b))7). @

Let ENf denote the category whose objects are net systems and whose
arrows are N-morphisms. For each object ¥ = (B,E,F,cin) let lN = (1dB,idE) be
the identity morphism where 1dB : B— B and idE : E— E are the (total)
identity functions. For (ﬁl,nl) : N1 —_— N2 and (Bz,nz) : N2 — N3 define the
composition of these two N-morphisms (denoted (Bz,nz)o(ﬁl,nl)) as
(520ﬂ1,n20n1). It follows easily that EN¢ is indeed a category. We can now
begin to relate &J7¢ and ENS to each other.
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3. FROM BNy TO EJ¥
We wish to construct a functor from ENP to ETY.

Definition 3.1. Let H be a map which assigns to each object N in EN#, the
transition system TSN associated with N which we recall is (C
Furthermore, H assigns to each arrow (8,7) : Nl — N2
(with ¥, = (Bi,Ei,Fi,c}n), i =1,2) in E¥#, the function fy - Cy, — Oy

given by : Vc1 € CN1' fﬂ(cl) = B(cl) U (C]Z.n - ﬂ(C}n)). o

W e N Cin)-
2

Note that fﬂ as defined above is indeed a function from CNl to CN2° This
follows at once from Proposition 2.7. The main result of this section is that
H is a functor.

In what follows, given as a net system N = (B’E’F’Cin) and b € B we let
'y stand for the cases of ¥ in which b holds. More precisely,

" T e ce Cy Abech

Proposition 3.2. Let N = (B,E,F,cin) be a net system.
(i) H(N) is a transition system.
(ii) vb e B. 'y is a region of H(N).
(iii) H(N) is elementary.

Proof. Recall that H(N) = (CN,EN,mweN,cin). We will first verify that
H(N) satisfies the axioms (Al) through (A4).
Suppose (c,e,c’) € —y- Then by the definition of —y We have

c-c ="eandc’ -c=e" . If ¢c=c’ then this would imply that "e = & and

e’ = g so that "e u e’ = @. Buth this violates the definition of a net. Hence
H(N) satisfies (Al).

Suppose (c,el,cl) and (c,ez,cz) are both members of —y Then

c; = (c - 'el) U ei and ¢, = (c~°e2) U eé by Proposition 2.5. If c; = ¢, then
'el =c-c = 'ez and ei =c -c= eé. Since the underlying net of N is
simple we obtain e = e,.
Thus H(N) fulfills (A2).
The facts that H(N) satisfies (A3) and (A4) follow at once from the
definitions of EN and CN.
The second part of the result follows at once from the definitions.
Now consider €y € CN such that Cp # ¢y Without Toss of generality
assume that b e ¢ and b ¢ Cy- Then Cp e, and Cy & 1y Hence 'y € RC1 and
ry € RCZ. This verifies that H(N) satisfiis (A5). .
Suppose ¢ € CN and e € EN such that e c Rc' Consider any b € e in N.
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Since e € EN there exists (cl,e,cz) € —. Hence b € 9 and b ¢ Cy- Clearly

Cl €Ty and C) &1y Consequently ry € °e. From °e ¢ RC we then obtain

ry € RC which means that ¢ € L which in turn means b € c. We now have
established that "e ¢ c. By Proposition 1.2, e° n RC = ¢@g. Using a symmetric
version of the preceding argument we can show e” n ¢ = g. Hence by Proposition
2.5, e is enabled at c. Hence H(N) satisfies (A6). O

Next we wish to show that H maps N-morphisms to G-morphisms.

Lemma 3.3. Let Ni = (Bi,Ei,Fi,c}n), i =1,2 be a pair of net systems and
(B,n) an N-morphism from N1 to Nzo Then H((8,n)) = fﬁ is a G-morphism from
H(Nl) = TS1 to H(NZ) = TS2 , such that nfﬂ =n.

Proof. Recall that fﬁ(c) = B{c) u (c]?n - ﬁ(c%n)) for every c € C,. Set

1"
C?n - ﬁ(c}n) = Coy- First note that

1 1 1 2
Fleiy) = Blei,) v (cf, - Bleiy) =

Now suppose that <y &, ci in TS}. If n(el) is undefined then from this

o as required.

it follows from Proposition 2.7 that fB(cl) = fﬂ(cz). If on the other hand,
n(el) = e, then it follows - once again from Proposition 2.7 - that fﬂ(cl} &2,

2

Now suppose that ¢y &1, ci in TS} and fﬂ(cl) 2, fﬁ(cz) in T52 and

C3 &1, Cq in TS1 . It follows at once - yet again from Proposition 2.7 that

e . i . .
fﬂ(c3) =2 fﬁ(c4) in TS, . Hence fﬁ is a G-morphism from TS, to TS, with the

fB(Ci) in TS,.

required property. o

Theorem 3.4. H : BN — EJ¥ is a functor.

Proof. Clearly H preserves identities. So assume that {ﬁl,nl) : N1 —_ N2
and (ﬂz,nz) : N2 —> N3 are two N-morphisms with Ni = (Bi’Ei’Fi’czn)’
j = . t f = of , .
i 1,2,3. We must show that 8,08, fﬁz 8,
Let fﬁeoﬂl = f, fﬂl = fl and Fﬂ = FZ. Then from Lemma 3.3 and the fact

2 .
that nfz°f1 = nfzonfl (easy to prove) it follows that
Mg = Mg op EN —y EN . The required result now follows at once from
20T 1 3
Proposition 1.6.
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4. FROM B3¢9 TO ENY
We now wish to construct a functor from §7¢ to ENS.

Definition 4.1. Let J be a map which assigns to each object
18 = (S,E,T,sin) in €7¢ the structure NTS = (RTS’E’FTS’Rsm) where

Fre e ((re) | re R neeEare °e} U
{(esr) | reRgrecEnre e’).
Furthermore let J assign to each G-morphism f : TS1 — T32 (with
~ i . : . ‘,
TSi = (Si’Ei’Ti’Sin)’ i=1,2, the pair (Bf,nf) where ne is the partial
function P El — E2 determined by f (as specified in Section 1) and
ﬂf < RTSI X RTSZ given by:

(rsrp) € Bp o F7lrp) = vy o

By Proposition 1.7, ﬁf as specified above is well-defined. The main
result of this section is that J is a functor. The first result we need is
that J(TS) is an elementary net system for every object in EZ7¥. As things
stand, this can fail to be the case for a "silly" reason. It might be that
RTS N E (where TS = (S,E,T,sin)) is non-empty and as a result (RTS,E,FTS} will
not be a net! Hence one must define the map J on the objects of EJ¥ more
carefully. For instance, for each TS in EJ¥, we could set J(T5) = NTS to be
the structure (RTS x {0}, E x {1}, FTS,RSm x {0}) with the definition of FTS
modified in the obvious way. In what follows we ignore this complication in
order to simplify the notations.

Propostition 4.2. lLet TS = (S,E,T,sin) be an elementary transition
system. Then NTS = (RTS’E’FTS’RS-> is an elementary net system.
mn

Proof. It suffices to prove that N = (RTS,E,FTS) is a simple net. By the
remarks made above, we may assume that RTS nE=g. Clearly FTS c (RTS x E} U
(E x RTS) and hence N is a net.

Suppose ej,e, € E such that Oel = “e, and e; = e,. By (A3) there exists

o

s $15 57 in TS. By Proposition 1.2,

e; € Rg which implies “e, < R.. Since TS
is elementary, e, must be enabled at Rs' Let s 25 s". Then once again by

Proposition 1.2, Rs" =(RS - e2) Ue,. But this implies that Rs" = Rs’ since

o}

e = °e2 and e; = ez and by Proposition 1.2 (again!) R, = (R - °e1) U e;.

Since TS is elementary, we then get s’ = s". We now have s €1, s’ and
s £2, s’ Hence by (Al) we can conclude that e = e,.

Next suppose that ry,r, € Ry¢ such that r; = “r, and r] = ry where for
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def o def

{e]eeEarree’}andr {e | eeEare’el.

We must show that ry = ro. We will first show that S;

n €71 iff Sin €' - To
this end, assume that Sin 9 We know that r, ¢+ . Let

ser, and Sg2S17Sps 18, € S and €gr€ys--r€ 1 € E such that Sin = So
Sp = S and (Si’ei’si+1) €T for 0 < i < n. By (A4) such a sequence of states

and events must exist. Let j be the least integer in {0,1,...,n-1) such that
sj €r, and Sj+1 €r,. Since we have assumed that So = Sin €1y and

o]
every r € RTS’ r

€ry- Suppose Sin €7

Sp = SET, such a j must exist. Clearly j < n-1. From (sj,ej,sj+1) € T we can

deduce that r, € e3 and consequently e, € °r2. But then °r2 = °r1 Teads to

ej € °r1 as well. But this implies that ry € e§ and hence sj €ry and

S.
J+1
exists k € {0,1,...,j-1} such that Sk €7 and Skel & ry- Clearly k < j-1 and

€ ry- We started with s0 =S €1y and now we have sj ¢ ry: Hence there

hence k < j. From (sk,ek,sk+1) € T we can now conclude that ry € cek and hence
e, € ri = r;. But this implies that s, e r, which contradicts the definition
of j. Hence Sip € rp S well. Since the argument we developed to show was
symmetric w.r.t. " and r, we can in fact conclude that Sin €11 iff Sin € To-
A simple induction on the "distance" of a state from the initial state
based on the above argument will easily show that Vs € S. s € " iff s e ro.

Thus ry =rpas required. o

In Figure 7 we have shown four elementary transition systems and in
Figure 8 their corresponding J-images. For convenience we have suppressed all
the names of states in Figure 7 and all the names of conditions in Figure 8.

\

O
., \./\
ey e,
Y
(d)

(a) (b) (c)

Figure 7
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(a) (b) (c) (d)

Figure 8

Net systems which are J-images of elementary transition systems are very
pleasant objects to work with. We will explore some of their properties in the
next section (see also [ER]). Here we just note that J(TS) is a contact-free
net system for every elementary transition system TS = (S,EQE,sin). This is so
because by Proposition 1.2, e = {r | re °e} for every e € E. Hence if
‘e ¢ R, we at once get e’ n R, = @ for every s e S.

Proposition 4.3. Let f : TS1 —— T52 be a G-morphism in EJ¥ with

B i .
TSi = (Si’Ei’Ti’Sin)’ i=1,2. Let ﬁf < RTSI X RISZ be as specified in
Definition 4.1. Then (Bf,nf} is an N-morphism from J(TSI) to J(TS2).

- : i Co -
Proof. Recall that NTSé = (RTSi’Ei’FTsi’RSiH) for i = 1,2. Ne 1s by

definition, a partial function from El to E2 . As observed sarlier, ﬁf is also
well-defined.

Clearly ﬁ;l is a partial function from RTS to RTsl because

2
/ L -1 ,
(rl’r2)’(r1’r2) S ﬁf 1mp'hes that Y‘l = f (Y‘z) = Y‘l.
Next suppose that (r,,r,) € B.. We must show that r, € R iff
1772 f 1 st
2

f being a G-morphism, we know that f(S}n) =Sy, Hence

r, € Rsﬁn‘
2 . 1 . -1 _ i .
Sin €T iff Si, € 1} since f (rz) =r. But Sip €15 iff r, € RSin for
i=1,2.

Next suppose that e, € E1 such that nf(el) is undefined. We must show
ﬂf('el) = = Bp(e;). Suppose that r; e °el in TS; and (r;,r,) € Bc. Then by
(the Tatter part of) Proposition 1.7, we get the contradiction that nf(el) is
defined. By a symmetric argument we can show that ﬂf(ei) =@ as well.
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Assume next nf(el) = e for some e € El’ From Proposition 1.7 it follows

that r, € °e2 ifF £l (r,) € °e1 and r, € eg iff f'l(rz) € e;. Now suppose

that ro € ﬁf('el). Then there exists ry € °e1 in TSl such that (rl,rz) € ﬂf.
But this implies, by the definition B¢ (i.e. f'l(rz) =r;) that r, e °e2 in

TS2 and hence ro € 'e2 in J(TSZ). Next assume that r, € 'ez in J(TSZ) so that
r, € °e2 in TS,. Then f'l(rz? =r € °e1 in TS;. Clearly r, ? e, i? TS, and
(rl,rz) € Bf. Hence ro € Bf( el). We have now shown that ﬁf( el) = e, In a
similar fashion, we can show that Bf(ei) = eé. o

As an example the G-morphism shown in Figure 9 from TS1 to TS2 is
translated by J into the N-morphism shown in Figure 10. Once again, we have

suppressed all unnecessary details.

Figure 9
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Figure 10

Theorem 4.4. J is a functor.

Proof. As before it is easy to verify that J preserves identities. Hence
assume that fl : TS1 — TS2 and fz : TS2 — TS3 are two G-morphisms. We must
ir?:e tha; (sz°f1’nfz°f1) = (ﬁfzoﬁfl,nfzonfl}, From the definitions, it

ollows that 7f20f1 = nfzonfi, . N
The required result now follows easily from Proposition 2.8. O
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5. BACK AND FORTH BETWEEN E7y AND ENY

The main result of this section is that the functors J and H form an
adjunction with J a Teft adjoint. In the process of establishing this we will
prove a number of intermediate results which are of independent interest.

Lemma 5.1. Let TS = (S,E,T,sin) be an elementary transition system and
N = J(TS). Then
(1) Cy = (Ry | s €S)
(11) —y = {(Rg,e,R./) | (s,e,8°) € T}
(ii1) EN = E

Proof. To prove (i), consider ¢ ¢ CN. Let p be a firing sequence in N
such that cin[p>c where Cin is the initial case of N. We proceed by induction
on k = |p]|.

k =0 By definition, Cip = RS

in
K>0 Let p=p'ewitheetE and Tet cin[p’>c’. By the induction hypothesis
there exists s’ € S such that ¢’ = RS,. We know that (c’,e,c) € —y Hence

‘e c ¢’. This means that ‘e ¢ Rs’ in TS by the definition of the flow relation
of the underlying net of N. But then TS is elementary. Hence e is enabled at
s’ in TS. Let (s’,e,s) € TS. Then R5 = (Rs,m°e) U e’ by Proposition 1.2. At
the same time, ¢ = (c’-"e) u e’ in N. Since e = "e and e®° = e’ we get ¢ = R_.

S
To show containment in the other direction first note that R is the

in

initial case of N. Hence R, € CN‘ Now consider s € S - {Sin}' By (A4), there

in
i e K e c £ t s. =5 =
exist SO’SI’ 1Sy € S and elgez, yen € E such tha Smn 0 Sn S

and (s 1) €T for 0 < i < n. We proceed by induction on n.

78541759+

¢}

n=1 Then Sin €1, 5 in TS. By Propostion 1.2, e ¢ R and e? N RS' =g,

Sin in

Since °e1 = "e; and ei = e; (here "e; and e, refer to the pre and
post-conditions of ey in NN) we have that e is enabled at Rsl(e CN) in N.
mn

This implies that (RS‘—Oel) U e; € Cy. By Proposition 1.2 again,

R = (R

s - el) ue;.

Sw’n

n>1 The fact that RS € CN follows from the induction hypothesis and the
proof of the basis step.
The proofs of (ii) and (iii) are now easy. O
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Theorem 5.2. Let TS = (S,E,T,sin) be an elementary transition system and
J(TS) = N. Then the (regional) map u : S — CN given by u(s) = RS for every
s € S is a G-isomorphism from TS to HoJ(TS) (= H(N)).

Proof. From the previous lemma it follows at once that u is a G-morphism
with n, s the (total) identify function. Now consider the map u’ : CN —> S
given by. Yc € CN u’(c) = s where s € S is such that ¢ = RS. Since TS is
elementary, u(sl) = u(sz) implies S]1 =S, for every S138, € S. On the other
hand by part (i) of the previous lemma, u is an onto function from S to CN'
Hence u’ is well-defined. Let H(N) = TS’. From part {ii) of the previous lemma
it follows at once that u’ is a G-morphism from TS’ to TS. It is now routine
to check that uou’ = ITS’ and u’ou = 1TS . O

Thus our means of translating elementary transition systems into net
systems is "sound" in the following sense. The operational behaviours of
J(TS) - when viewed as a transition system - agrees completely with that of
TS. As already hinted at previously, there is more to J(TS) than that. It is a
very special kind of a net system. Before we go into this in more detail, we
shall indulge in a pleasant digression.

Corollary 5.3. Let TS = (S’E’T’Sin) be a transition system (which
fulfills the axioms (Al) through (A4)). Then TS is elementary iff there exists
an elementary net system N such that TS and H(N) are G-isomorphic to each
other,

Proof. One half of this result is Theorem 5.2. So assume that
N = (B,E’,F,cin) is an elementary net system such that there is a
G-isomorphism f from TS to H(¥). We must verify that TS fulfills {A5) and
(R6).

Let S8, € S such that S; # S, We will show that R # R s, Note first
that f(sl) # f(sz) because f is a G-isomorphism. Let f(sl) S and
f(s ) = Cy- Then we can assume, without Toss of generality, that there exists
b € B such that b e Cy and b ¢ Cye Recall now that ry = {c| ce CN and b € ¢}
is a region of H(N). We must have clearly CiETY and Cyp & 1p- Hence

s| € f'l( rp) and s, & f'l(rb) But then r ’l(rb) is a region of TS by
Proposition 1.7. Consequent]y r e R and r ¢ R

Suppose s € S and e € E such that e ¢ RS. we must prove that e is
enabled at s in TS. It is easy to check that f : § — CN is a bijection.
Next, by (A3), we know that there exists (sl,e,si) e T. Let f(sl) = ¢ and

f(si) = ci. Since f is injective, we must have ¢ ci. Now f being a
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G-morphism there exists e’ € E’ such that (cl,e’,ci) € —.

Set f(s) = c. We claim that e’ is enabled at ¢ in H(N). To see this,
consider b € “e’. Then b € Cy and b ¢ ci. Hence Ci €Ty and ci €y
Consequently ry € e’ in H(N). Since nf(e) = e’ we can now conclude that

f'l(rb) € % in TS. Let r = F'l(rb), We have assumed that ‘e ¢ R . Hence

s € r. But then f(f'l(rb)) =Ty Hence f(s) = c € I Consequently b € c. We
have now shown that "e’ ¢ c.
Consider now b € (e’)". Then b ¢ ¢ and b € ci. Hence cp &r, and

’

C] €. Consequently ry € (e’)° in H(N). By Proposition 1.7, f'l(rb) € e’ in

T1S. Let r = f'l(rb). By Proposition 1.2, e° = {r | re °e}. We have assumed

Al

that ‘e ¢ Rs‘ Hence e° n RS = @ and consequently r ¢ Rs‘ Thus s ¢ r, and this
implies ¢ ¢ . We now have b ¢ ¢ which leads to (e’)" nc = g&.

Thus the claim is proved and e’ is enabled at c. From the fact that f is
a G-isomorphism it follows easily now that e is enabled at s. 0o

This result was proved - in a different setting - in [ER]. It seems
reasonable to call net systems which are N-isomorphic J-images of elementary
transition systems saturated net systems. The system is saturated with
conditions. In other words, as shown in [ER], no new conditions can be added
without violating the simplicity of the underlying net or without altering the
operational behaviour of the net system. For finite transition systems what
this boils down to is:

Suppose TS = (S,E,T,sin) is an elementary transition system so that

J(TS) = (RTS’E’F?S’Rg.)° Suppose J(TS) is a proper subsystem of a net system
in

N = (B,E,F,cin) with the same set of events. In other words, RTS < B and

Rsm <€ Cip and FTS is F restricted to (RTS x E) u (E x RTS}. Then there can be

no G-isomorphism from TS to H{N').
Unfortunately the result holds only for finite transition system.
Consider the infinite elementary transition system shown in Figure 11.

Figure 11
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Let TS = ({Si | i€ NO}, N,T,so) be this transition system where N
the set of non-negative integers, N is the set of positive integers and

{(50,1 S. ) | i eN}. Let N = (R u {b},E, F g Y {(b,1)}, R ). Then it is
easy to see that N’ is an elementary net system. H(N ) will then be as shown
in Figure 12.

0 is

Figure 12

It is easy to construct a G-isomorphism going from TS to H(N').

However, it may be proved that a modified version of the above result
holds for arbitrary elementary transition systems (the conclusion in the
result modified to: Then there can be no G-isomorphism £ from TS to H(N")
such that Ne = id : £ — E).

Before proceeding further it is worthwhile to nail down the notion of a
saturated net system. We will say that the net system N is saturated if there
exists an elementary transition system TS such that there exists an
N-isomorphism from J(TS) to N. It is not difficult to prove that the net
system N is saturated iff it is N-isomorphic to JoH(WN). A different
characterization of saturated net sytems is provided in [ER].

The saturated net systems are "maximal" objects w.r.t. N-morphisms in the
sense that given a pair of net systems Nl and N2 in general there will be
"many more" interesting N-morphisms from JoH(Nl) to N2 than from N1 to NZ' To
bring this out consider the pair of net systems shown in Figure 13.
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Figure 13

It is not difficult to check that there can be no N-morphism
(B,n) : N1 sy N2 in which ¢ is a total function. It turns out that this is
the case even if we use W-morphisms instead of N-morphisms. However there is
such an N-morphism from JoH(NI) to N2 as shown in Figure 10. It seems
reasonable to call JoH({¥N) the canonical representation of the net system N for
this and other reasons. We will however not explore this any further here. It
is time now to establish the main result of this section.

Theorem 5.4. J : 7Y — BN and H : BN — BT form an adjunction
(coreflection) with J as left adjoint and u : TS — HoJ(TS) as defined in the
statement of Theorem 5.2 as unit.

Proof. From [Mac] it follows that one way to prove this result is to show
that for any object TS1 in 87¢ and any object N2 in N if there is a
G-morphism f from TS1 to H(Nz) then there is a unique N-morphism (B8,n) from

J(TSl) to N2 such that the diagram shown in Figure 14 commutes.
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(8,n)
¢ ) HoJ(TS;)
-7 H(B) |
Ve \
H(LVZ) .‘(72
Figure 14
Let us denote,
1
J(TS) (RI,EI,FI, )
2
Ny = (ByrEp,Focyp)
H(N2) = (CZ’EZ T2’Sin)' ) )
Note that R1 RTS » Cip = RSl , Eé = EN and Sin = S following the
definitions of J and H. We propose the f0110w1ng (B,n).
77=77f
ﬂ R1 X 82 given by
= {(r,b) | r = ({c € C2 | bec})}.

Clearly B and 1 are well-defined.
We need to prove:
(i) (B,n) is an N-morphism from J(TSI) to N?'
(11) H((B,n))ou = f
(i11) (B,n) is unique satisfying (i) and (ii) (among all the N-morphisms from
J(TSI) to N2‘
(i) clearly n is a partial function and ﬂ"l is a partial function from 82 to
R

K
Suppose (r, b) e B. Then r € C}n iff r e R if s}n evr. But {r,b) € B
1mp11es that r = ((c € C2 | b ec}) and f be;%g a G-morphism, we have
2 2 2 1 2
f(s1n) = s;, 2 and Sin = Cin Thus Sip €T iff ciy € {c e C | b € c} and hence

1

rec; iff b e c2

in
Assume that n(e) is undefined. We have to prove that f('e) = @ = B(e’).

Suppose that r e °e(e’) and (r,b) € B for some b € B,. Then from the fact that
={ce CN2 | b ec) is aregion in H(N,) and that f-I(r’) = r (by the
definition of B) it follows from Proposition 1.7 that n(e) is defined which is
a contradiction.
Next assume that n(e) is defined. We must prove that g('e) = "n(e) and
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B(e’) = n(e)". Now for b e "n(e), let r = f-l({c € CNz | b ec}). From

Proposition 1.7 it follows at once that r € e in J(TSl) and hence (r,b) € B.
This shows that "n(e) < B("e). On the other hand r € °e implies once again by
Proposition 1.7 that b € “n(e) in case (r,b) € B. This shows that

B("e) < "n(e). By symmetric arguments we get B(e’) = n(e)". We have now shown
that (B8,n) is an N-morphism from J(TSI) to NZ’
(ii) Let H((B,n)) = f’. From Lemma 3.3 it follows that Ner = M. But from
Theorem 5.2 it follows that UM is the (total) identity function from El to El‘
Hence Nen = Ne where f" = H((B,n))ou. Consequently f" = f by Proposition 1.6.

(iii) To prove the uniqueness of (8,n) we first note that f = H((8,n))cu
implies that Ne = nH((ﬂ,n))°nu which in turn implies that Ne = nH((ﬂ,n)}’ and
hence from Lemma 3.3 n(e) = nf(e) for all e € EI” Now suppose {B8',n’) is any
other N-morphism from J(TSI) to N2 which fulfills (i) and (i1}, then by the
above argument we must have n’ = 5. From Proposition 2.8 we then get 8’ = B.
Since u is a G-isomorphism by Theorem 5.2 we get that J and H form a
co-reflection (in the sense of [J]). o

This theorem has an interesting corollary which throws some light on the
construction of saturated net systems.

Corollary 5.5. The counit cu of the coreflection established in
Theorem 5.4 defines for each net system N = (B,E,F,cin) an N-morphism
cu = (B,n) : JoH(N) — N where
(i) n=1{(ese) | e€Ey}.

(ii) B¢ R x B is defined by
Hv) 5
(ryb) eBer =1 "({ce CN | b ec}).

Proof. Follows easily from a simple computation following [Mac]. o

It is now easy to see that a net system N is saturated iff
u : JoH(N}) — N is an N-isomorphism.

Corollary 5.6. For every net system N, JoH(N) and cu : JoH(N) — N are
cofree in the sense that for any saturated net system ﬁ and G-morphism
(B,n) : ﬁ —> N there exists a unique G-morphism (8',n’) : ﬁ — JoH(N) such
that the diagram shown in Figure 15 commutes.
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8.n") (8:1)
/
/
/
#
JoH(N) = N
cu
Figure 15
Proof. Immediate consequence of Theorem 5.4 following [Mac]. o

Yet another interesting consequence of our main result is the following.

Corollary 5.7. Let YENS denote the category of saturated net systems with
N-morphisms. Then J : 879 — SENS is an equivalence with adjoint H.

Proof. Once again follows immediately from Theorem 5.4 (see [Mac]). O

We shall conclude this section by showing that EJ¥ has products,
coproducts and null objects.

Definition 5.8. Let TSi = (Si,Ei,Ti,s;ﬂ} for i = 1,2 be two elementary

transition systems. Then the product TS1 X T82 is the structure

TS = (S,E,T,sin) where

« S = S1 X 52

CE = [El x {*}] U {{*} x EZ) u [El x Ez] where * is not in E; U E,.

. With Mo S — S1 and Ty S — S2 as the projections given by
ﬂi((x,y)) =xifi=1andy if i=2, let

T={ (s,(e1 »s') | ( s) el, (s")) € T YU

{ (s,(*,ez),s | (7, (S’)) €T, }u
{ (s,(el,ez),s’ | ﬂl s),el,ﬂl(s’)) € T1 and (ﬂz(S),ez,ﬂz(S')) € T2 }.
sy = Gl o

From [W2], it follows that in order to prove that TS1
product of TS1 and TS2 in €7¢ if suffices to prove that TS

X T32 is indeed the

] X T82 is
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elementary. It is easy to check that TS1 X TSZ is a transition system which
fulfills the axioms (Al) through (A4). The following lemmas will be useful for
verifying the regional axioms (A5) and (A6).

Lemma 5.9. Let TSl,TS2 and TS1 X TS2 be as in Definition 5.8. Let | be a
region 1in TSI’ Then ry X S2 is a region of TSl X TSZ' Furthermore, if " is a
pre-region (post-region) of some e, € El then ry x 52 is a pre-region

(post-region) of every event of the form (el,x) in TS1 X T32 , X € E2 U {*}.

Proof. Assume that (51,52) —iﬁLXla (si,sé) and (VI’VZ) —Lflzla (vi,vé) in
TS1 X TSZ' Suppose that (SI’SZ) € ry X 52 and (si,sé) ¢ ry X SZ‘ We must praove
that (vl,vz) €ry X S2 and (vl,vz) € r; X 52.

case 1  Suppose (x,y) = (el,*) or (x,y) = (el,ez) for some e, € El and

e 7 e P 7
e, € E2° Then Sy T—le s1 and vy —1s vi in TSl. Moreaover SRS and S] €y
Since ry is a region we then get Vi ey and Vi €7y Hence (vl,vz) €ry X SZ
and (vi,vé) ¢ ry X 32.

case 2 Suppose (x,y) = (*,ez) for some e, € EZ‘ This case is impossible
because by the definition of TSl X TSz we must have Sy = si which contradicts
(31’52) €ry x S2 and (Sl,Sé) ¢ ry X SZ’

Symmetric arguments apply in ce» (sl,sz) ¢ r X 52 and (si,sé) €r x 52‘

Thus we know that ry x Sz is a region of TSi X TSZ' Now suppose that ry € °e1
in TS, for some e, € El’ Consider any transition of the form

(e1,Xx) Dol /
(51,52) —=1nd, (31,52} in TSI X TSZ, Then s €M and KA and )
consequently (51’52) €ry X 82 and (51,52) & ryx 52. Thus ry X S2 € (el,x)
in TS1 X TSZ' Symmetric arguments apply for post-regions. o

Lemma 5.10. lLet TSPTS2 and T51 X TSZ be as in Definition 5.8. Let ro be
a region of TSZQ Then S1 X Ty is a region of TS1 X TSZ’ Furthermore, if ro is
a pre-region (post-region) of some e, € E2 then S1 X Ty is a pre-region
(post-region) of every event of the form (x,ez) in TSl X TS2 , X € E1 U {*}.

Proof. Very similar to the proof of Lemma 5.9. o

Theorem 5.11. Let TSI,TS2 and TS1 X TS2 be as in Definition 5.8. Then

TS1 X TS2 is the product of TS1 and T52 in 879 with the projections ) and Ty

Proof. As observed earlier due to [W2], it suffices to prove that
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TS1 X T32 satisfies (A5) and (A6).

Suppose (51’52)’ (si,sé) € S such that (51’52) # (si,sé). Then S si or
So # sé. Assume first that S # si. Then TS1 being elementary, we can find a
region " in TS1 such that S] €T and si ¢ ry- From Lemma 5.9 it follows that
ry X 82 is a region in TS1 X TSZ' Clearly (51’52) €ry X 52 but
(si,sé) € ry x 82.

In case S = si and Sy ¢t sé then a similar argument can be applied using
Lemma 5.10 to find a region in TS1 X T52 which contains (sl,sz) but not
(si,sé).

To verify (A6) consider (51’52) € S and e € E such that e is not enabled
at (sl,sz) in TS1 X TSZ' We must show that there exists a pre-region of e in

TS1 X T52 which does not contain (sl,sz).

case 1 e is of the form (el,*) where e; € El' From the definition of T it is
clear that if e is enabled at S in TS1 then (el,*) is enabled at (51’52) in
TS1 X TSZ' Hence there exists a pre-region " of e in TS1 which does not
contain Sy From Lemma 5.9 it follows that ry SZ is a pre-region of (el,*)
in TS1 X TS2 which does not contain (sl,sz).

case 2 e is of the form (*;ez) for some e, € EZ' The argument is similar to
the argument for the previous case with the difference that we appeal to the
elementariness of TS2 and to Lemma 5.10.

case 3 e is of the form (ez,ez} where e, € El and e, € E2. From the
definition of T it follows that if e is enabled at S and e, is enabled at S5
then (el,ez) is enabled at (51?52}. Hence e is not enabled at sy ore, is not
enabled at So- We can now use the arguments used for settling the previous two
cases to settle this case too. o

Next we wish to show that E7# has coproducts.

Definition 5.12. Let TSi = (Si,Ei,Ti,sén}, i = 1,2 be two elementary
transition systems. Define the coproduct of TS1 and T32 - denoted TSi + T82 -
as the structure TS = (S,E,T,sin) where
. [S = S1 x {s?n}] U {{S%n} X SZ} with the injections il : S1 — S and
12 : S2 — S given by:

il(s) = (s,s%n) for every s € S1 and iz(s) = (s}n,s) for every s € SZ'
- E
- T

E1 x {*} u {*} x E2 where * is not in El U EZ'
(C(iq(s), (e,),i(s) | (s,eq,8") € Ty } U
{ (i2(5)9 (*sez),iz(sl)) I (S’ez)sl) € T2 }.
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* Sin T (S%n’sin)‘

As before, due to [W2] in order to show that TS as defined above is the
coproduct of TS1 and TS2 it suffices to prove that TS is an elementary
transition system. Once again it is easy to check that TS fulfills the axioms
(A1) through (A4). To verify the remaining two axioms we will use the
following intermediate result.

Lemma 5.13. Let TSl,TS2 and TSl + TS2 be as in Definition 5.12. Let r be
a region of TS1 and ro be a region of T52 such that S%n €r iff s%n Er,.

Then

(i) r = ry X {s?n} U {S%n} X Ty is a region of TS1 + TSZ.

(i1) If " is a pre-region (post-region) of e in TS1 then r is a pre-region
(post-region) of (el,*) in TS1 + TSZ'

(iii) If s is a pre-region (post-region) of e, in TS2 then r is a pre-region
(post-region) of (*,ez) in TSl + TSZ“

Proof. Assume that X1 &, Xo and X3 &, Xg in TSl + T32 such that X| €Y
and Xo & 7. We must show that X3 €7 and Xg € 1. (symmetric arguments - which
we omit - will apply for the case Xy €1 and X, € r). Assume without Toss of
generality that e is of the form {el,*), From the definition of TS1 + T32 it
follows that the xi's must be of the form Xy = (si,sin) for i = 1,2,3,4.
Moreover, S &, S, and S3 £, S4 in TSI‘ Now using the definition of r and

the hypothesis that s} €ry iff sfn €ry it is easy to check that S; €1y iff

n
X; € for i = 1,2,3,4. Consequently s; €1y and So ¢ " and moreover it
suffices to prove that S3 € 1y and Sg & ry- But this must be the case because
" is a region of TSI' The remaining parts of the Temma are now easily

established. a

Theorem 5.14. Let TSI,TS2 and TSI + TSZ be as in Definition 5.12. Then

TS1 + TS2 is the coproduct of TSl and TS2 in E7¢ with ii and 12 as injections.
Proof. As noted earlier the proof reduces to showing that TS fulfills

(A5) and (A6). Assume that s,s’ € S such that s # s’. lLet s = (51,52) and

s’ = (si,sé). Suppose that S; # si. Then TS1 being elementary, there exists a

region ) in TS1 which contains S but not si. Assume that S%n €.

(Otherwise replace " by Fl and interchange the roles of 51 and si in what

follows). Then @ being a region in T32 which does not contain s?n we get from
the previous lemma that ry X {s%n} is a region in TS1 + TSZ. Clearly this
region contains s but not s’. Symmetric argument applies in case Sy = si and
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S, # S,.
2 2

To verify (A6), assume that e € E is not enabled at s € S. Assume without
loss of generality that e is of the form (el,*).

case 1 s is of the form (sl,sfn). From the definition of T, it follows that
e is not enabled at S in TSl. Hence there exists a pre-region " of e in
TS1 which does not contain S1- Suppose S%n €ry. Then by setting ry = S2 we
can use Lemma 5.13 to get a pre-region r of (el,*) in TSl which does not

1

. 2 : -
contain (Sl’sin)' Suppose Sin € 1- Then by setting r, = @ we can use

Lemma 5.13 to get a pre-region r of (el,*) in TS1 + TS2 which does not contain

2
(s3> 85p)-

2
in

case 2 s is of the form (s%n,sz) with Sy #S
e in TSI' Suppose S}n €ry. Then T52 being elementary, we can find a region

. Let " be any pre-region of

ro in T52 which contains S?n but not So- We can then use Lemma 5.13 to find a
pre-region r in TS1 + T52 of (el,*) which does not contain (s%n,sz). On the
other hand, if S%n € then setting ro = g we get - using Lemma 5.13 - a

pre-region r of (el,*) in TS1 + T82 which does not contain (s}n?sz). O

Finally we note that every elementary transition system of the form
TS0 = ({so},ﬁ,ﬂ,so) is both an initial and final object in 7 because for any
other object TS = (S,E,T,sin) in €7 there is exactly one G-morphism f from
TS0 to TS(f(sO) = Sin) and there is exactly one G-morphism g from TS to
TSO(g(s) = Sy for every s € S). Thus EJ¢ has initial and final ehjects which
are of the form specified above.
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6. DISCUSSION

In this paper we have extended to the functorial level, the relationship
between elementary transition systems and elementary net systems established
in [ER]. Our extended relationship works in the presence of G-morphisms
between transition systems and N-morphisms between net systems. It seems
fairly natural to single out G-morphisms as the appropriate morphisms between
transition systems, especially if the transition systems are meant to model
the behaviour of distributed sytems. As for the choice of morphisms between
net systems there are a number of possibilities. We chose N-morphisms mainly
because they capture exactly the relationship between the conditions of a net
system and the regions of the "corresponding" transition system. A second
possibility is to work with the less restrictive W-morphisms due to Winskel.

As pointed out already these morphisms are not -strictly speaking! -
strictly more liberal than N-morphisms because we do not require our net
system to be contact-free. However, one often imposes contact-freeness anyway
and hence there is a good case for choosing W-morphisms. It turns out however
that in this case our main result will not go through. To see this, let TS1 be
the (infinite) transition system shown in Figure 16 (a) and N2 be the net
system shown in Figure 16 (b).

\

1
|
] e
i.

e
) ;
& 7
e
©3
(a) (b) (c)

Figure 16

H(Nz) = TS2 is shown in Figure 16 (c) with s = (b} and s’ = {b’}.
Consider the G-morphism f : TS1 — H(Nz) given by: f(si) =s if 1 is odd and
f(si) = s’ if i is even. It is difficult to pictorially represent J(TSI) = N1
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because RTsl has uncountably many elements! However we can identify two

interesting portions of N1 which can be used to construct two different

N-morphisms (ﬂl,n) and (Bz,n) from N1 to N2' Set n(ei) = e if i is odd and
n(ei) = e’ if i is even. For specifying ﬂl let ry = {51’32"“’51} for every

positive integer i. Clearly each r, is a non-trivial region of TSl. Now set
Bl = {(ri,b),(r1+1,b/) | 1 is odd}. Next set 90 = {si | i is odd} and
?1 = {Si | i is even } and define Bz = {(Qo,b),(9l,b’)}. For the reader
familiar with W-morphisms, it should be easy to check that both (ﬁl,n) and
(ﬁ2>ﬂ) are W-morphisms with the property H((ﬂl,n)) = H((ﬂz,n)). This example
also illustrates a different point. Clearly, there can be no non-trivial
N-morphism (8,n) (i.e. B # @ and  #+ @) from U(NZ)’ the unfolding of N2
[NRT], to N2. The W-morphism (Bl,n) is however in some sense the {couniversal}
W-morphism from U(Nz), to N2 constructed in [W2]. The existence of {ﬂz,n)
tells us however that there is a nice N-morphism from the saturated version of
U(NZ) (which is upto isomorphism, Nl) and the saturated version of NZ (which
is upto isomorphism, itself)! Thus there is some hope that unfoldings can be
understood in terms of N-morphisms as well, provided we work with saturated
net systems.

Our recent work on refinement operations for net systems suggest that it
might anyway be a good idea to just work with saturated net systems.

Two other proposals have been made in the literature for net morphisms.
The earliest proposal is due to Petri [P1]. His notion of morphism is defined
purely in terms of nets and hence no general principles can be derived
concerning behaviour. Some particular results can however be stated as
illustrated in [RS] and [DM]. Yet another proposal for net morphisms is due to
Meseguer and Montanari [MM]. Their net morphisms work for Petri nets in
general and at present it is not clear how these morphisms - when brought down
to the level of elementary net systems - relate to N-morphisms.

This brings us to possible extensions of the results reported here. There
is one obvious way of lifting our results to labeled net systems. First fix Z,
an alphabet of labels. Then one extends the notion of elementary transition
systems to labeled elementary transition systems. One can then demand that
both G-morphisms and N-morphisms preserve labels. This is however a very
narrow-minded method of handling labeled structures. More thought and work
need to be devoted to this important topic. Dropping various subsets of the
axiom set {AI’AZ""’AG} will of course permit larger classes of objects. One
natural extension seems to be to just drop (Al) in order to handle 1l-safe
Petri nets which properiy include elementary net systems. The axiom (A2)
appears to be equally fundamental and dropping it seems to invite a great deal
of trouble. It might be necessary to drop (A3) and (A4) once we start to
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define interesting operations on elementary transition systems. These issues
and others are currently under study.
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