
Elementary Transition Systems and

Refinement

M. Nielsen G. Rozenberg P.S. Thiagarajan

March 1991

Contents

0 Introduction 1

1 Motivating Examples 2

2 Elementary Transition Systems 8

3 State Refinement for ETS 17

4 Properties of State Refinement for ETS 24

i

0 Introduction

Elementary transition systems were introduced in [NRT] as a model of dis-
tributed computations. Their main asset is that they are just transition
systems – with a rich and well-established theory – which satisfy a few addi-
tional axioms. Fundamental notions such as conflict and concurrency from
net theory and the theory of event structures can be easily carried over to
this model. This was proved in [ER] by establishing a formal link between
elementary transition systems (ets’s) and a basic model of net theory called
elementary net systems. It was shown that – up to “isomorphism” – elemen-
tary transition systems are exactly the class of transition systems (called case
graphs) that explicate the operational behaviour of elementary net systems.
In [NRT] this link was lifted to a categorical framework by equipping both
elementary transition systems and elementary net systems with behaviour
preserving morphisms. After extending the two maps established in [ER]
(taking elementary transition systems to elementary net systems and vice
versa) to two functors, a number of strong results were proved concerning
the properties of these two functors. All these results support the view that
an elementary transition system is basically an abstract version of an ele-
mentary net system.

It turns out that this more abstract representation has many advantages over
net systems in certain kinds of theoretical studies. In particular, elementary
transition systems allow simple definitions of non-deterministic choice and
parallel composition following the lines of Winskel [W]. We will not discuss
here how various ccs-like operations can be defined over ets’s. Instead we
shall concentrate on the more difficult and interesting task of providing ets’s
with refinement operations. There seems to be two natural types of such
operations, – one over the local states (called regions) and the other over
local transitions (called events). In this paper we concentrate on local state
refinement.

In the next section we discuss an example to bring out the main motivations
underlying our refinement operations. In Section 2 we provide a brief intro-
duction to elementary transition systems. In the subsequent two sections we
propose a local state refinement operation and develop some of its proper-
ties. In the concluding section we discuss related work and issues concerning
future work.

1

1 Motivating Examples

Let us take as a first motivating example the net version of the cyclic sched-
uler studied in [M]. The example consists of a number of individual agents
performing jobs for the environment, and communicating internally to ensure
a certain pattern in their joint job performance. An individual agent behaves
as follows: first it gets permission (from another agent in the scheduler) to
accept an incoming job followed by acceptance of an incoming job, followed
by independently finishing the job and granting some other agent permis-
sion to accept a job from the environment. For details w.r.t. the desired
behavioral properties of the cyclic schedule we refer to [M].

In net terms an agent is described in [M] as follows: Suppose we wish to

events:

ip -- incomming permission

aj -- accept job

fj -- finish job

op -- outgoing permission

conditions

pj -- performing job

include in this description of the behaviour of an agent, a description of how
a job is performed. Imagine that performing a job consists of two independent
updates of variables, as represented by

2

initial case [1, 2]

final case [3, 4]

(job done)

Intuitively, we need to modify A, by refining the condition pj by a copy of
J , hooking it up appropriately with the pre- and postevents of pj. We would
expect such a refinement to produce

Imagine instead we would like to include in A a more detailed description of
what actually happens when a job is accepted. It might be that this could
either be an error message from the environment telling the agent to stop
computing or the sequential acceptance of two pieces of information related
to the job, as represented by

3

initial case [1]

final case [4]

What we need is to modify A, by refining the event aj. We would expect
such a refinement to produce

It is easy to come up with formal syntactic definitions of (local) state and
event refinement for ens’s capturing the intuitions from this example. Many
such definitions may be found in the literature [K,V], and we shall present
our version in this paper. However, as pointed out in [K] one would like any
such syntactic notions to be supported by methods of reasoning about the

4

behaviour of the refined system in terms of the behaviours of the component
systems in the refinement (compositional reasoning). This looks intuitively
to be the case with our (non formalized!) notions from the above example,
but let us consider another example.

Following the intuition from the previous example we would expect N1 with
condition “2” refined by N2 to look as

5

However, behaviourally this net has the firing sequence acb in which N2 has
been entered (by a) and left (by b), and yet after this firing sequence the net
is in a state in which part of N2 (the event e) is firable. So, behaviourally a
holding of condition 2 in N1 is not simply replaced by a complete behaviour
of N2 in N1[2← N2] – our intended intuition behind the notion of local state
refinement. Also, one sees by this example, that a “too” simple approach to
syntactic condition refinement may produce a net with contact even though
the two component nets (N1 and N2) are contact free.

The reader should be convinced that the kind of phenomenon illustrated by
Example 1.2 makes behavioural compositional reasoning extremely difficult.
It is easy to produce an example illustrating that one gets into the same kind
of problem with a naive approach to event refinement.

One “solution” to these problems is suggested in [K] where a dynamic substi-
tution of an event by a subnet is introduced, involving a fundamental change
in the definition of the firing rule. Or one may impose certain restrictions

6

on the class of nets/refinements one allows with the purpose of obtaining be-
havioural compositionality, e.g. [V]. This paper may be seen to be suggesting
another simple (and in the case of local state refinements very attractive)
“solution”. This paper tries to give formal arguments for the view that nets
are basically too concrete to support naturally a behavioural notion like re-
finement. As an attractive alternative, elementary transition systems will be
shown to have a simple notion of syntactic (local) state refinement, which
does allow compositional reasoning at the level of behaviours. Also, if one
wishes to stay within the framework of nets, we argue strongly in the follow-
ing that one should work only with canonical versions of net systems (the
so-called saturated net systems), in which the problems illustrated above dis-
appear completely, without changing basic principles like firing rules in any
way.

7

2 Elementary Transition Systems

Elementary transition systems are transition systems that satisfy a number
of additional requirements.
A transition system in the present context is a 5-tuple TS = (S, E, T, in, fin)
where

• S is a non-empty set of states

• E is a set of events

• T ⊆ S × E × S is a set of (labelled) transitions

• in, fin ∈ S is the initial and final state respectively.

An elementary transition system is a transition system which will be required
to satisfy six properties. A few of these properties are imposed for conve-
nience. Others are imposed to reflect the fact that these transition systems
“correspond” to elementary net systems (see [NRT]). Four of these properties
can be stated straightaway.

(A1) ∀e ∈ E. ∃(s, e, s′) ∈ T .

(A2) ∀s ∈ S. ∃s0, s1, . . . , sn ∈ S and ∃e0, e1, . . . en−1 ∈ E such that in =
s0, sn = s and (si, ei, si+1) ∈ T for 0 ≤ i < n.

(A3) ∀(s, e, s′) ∈ T.[s 6= s′]

(A4) ∀(s, e1, s1)(s, e2, s2) ∈ T.[s1 = s2 ⇒ e1 = e2].

(A1) and (A2) demand that there be no “redundant” events and states re-
spectively. The more crucical axioms (A3) and (A4) rule out self-loops and
multiple-arcs. Stated differently, (A3) demands that each event occurrence
should result in some change in the system state. (A4) demands that every
pair of states can be connected by at most one event occurence.
For stating the remaining two requirements, we need the important notion
of a region.

8

Definition 2.1

Let TS = (S, E, T, in, fin) be a transition system. A region of TS is a subset
r ⊆ S of states satisfying:

∀(s0, e, s
′

0), (s1, e, s
′

1) ∈ T.
(i) s0 ∈ r and s′0 6∈ r ⇒ s1 ∈ r and s′1 6∈ r
(ii) s0 6∈ r and s′0 ∈ r ⇒ s1 6∈ r and s′1 ∈ r.

✷

Thus a region is a subset r of states for which if one e-transition enters/leaves
r then all e-transitions enter/leave r. For an event e we mean of course by
an e-transition, a transition of the form (s, e, s′). We will say that an event
e is crossing the region r in case every e-transition is leaving or every e-
transition is entering r.

Let TS = (S, E, T, in , fin) be a transition system. Then it is easy to see that
both ∅ and S are regions of TS. They are called the trivial regions. We will
let RTS denote the set of non-trivial regions of TS. For s ∈ S, we will use
Rs to denote the set of regions containing s. Formally:

∀s ∈ S.Rs = {r ∈ RTS | s ∈ r}.

Finally, we shall use ◦e and e◦(e ∈ E) as notation for the set of pre-regions
and post-regions of e. Formally:

∀e ∈ E. ◦e = {r ∈ RTS | ∃(s, e, s
′) ∈ T. s ∈ r ∧ s′ 6∈ r}

e◦ = {r ∈ RTS | ∃(s, e, s
′) ∈ T. s 6∈ r ∧ s′ ∈ r}

Some useful properties of regions – which were shown in [ER] and [NRT] –
are the following

Proposition 2.2

Let TS = (S, E, T, in, fin) be a transition system. Then

9

(i) r ⊆ S is a region iff r̄ = S − r is a region.

(ii) ∀e ∈ E. e◦ = {r̄ | r ∈◦ e}.

(iii) ∀(s, e, s′) ∈ T. Rs − Rs′ =◦ e and Rs′ − Rs = e◦ and consequently
Rs′ = (Rs −

◦e) ∪ e◦.

✷

The last two properties we shall impose on our transition systems may now
be formulated.

(A5) ∀s, s′ ∈ S. [Rs = Rs′ ⇒ s = s′].

(A6) ∀s ∈ S ∀e ∈ E. [◦e ⊆ Rs ⇒ s
e
→].

The notation s
e
→ stands for the fact that e is enabled at s. We say that

the event e is enabled at the state s iff there exists a state s′ such that
(s, e, s′) ∈ T .

Definition 2.3

An elementary transition system is a transition system which satisfies the
axioms (A1) through (A6) stated above. ✷

It is easy to check that the transition system shown in Fig. 2.1. is elementary.
The convention we have used in this diagram to decorate the initial and final
state will be followed through the rest of the paper.

{{in, a}, {in, b}, {a, fin}, {b, fin}}

is the set of regions of this transition system. {a, fin} is a preregion of 3 and a
postregion of 1. The transition system shown in Fig. 2.2.a. is not elementary
because it does not fulfill (A5) (Ra = Rb = Rc). The transition system shown
in Fig. 2.2.b. is not elementary because it does not fulfill (A6) (at the state
b w.r.t. the event 2).

10

Fig. 2.1

We shall finish this section by quickly bringing out the relationship estab-
lished in [NRT] between elementary transition systems and elementary net
systems. For detailed definitions and explanation, we refer the reader to
[NRT]. Given our present purposes, it will be convenient to adopt the follow-
ing notion of elementary net systems.

Definition 2.4

An elementary net system is a 5-tuple N = (B, E, F, cin, cfin) where

• (B, E, F) is a simple net called the underlying net of N .

• cin ⊆ B is the initial case of N .

• cfin ∈ CN is the final case of N , where CN denotes the set of cases of

N reachable (sequentially) from the initial case of N . ✷

11

Fig. 2.2

In [NRT] both elementary net systems and elementary transition systems
were equipped with behaviour-preserving morphisms called N -morphisms
and G-morphisms respectively. These notions can be transported to the
present setting as follows.

Let Ni = (Bi, Ei, Fi, c
i

in, ci

fin
), i = 1, 2 be a pair of elementary net systems.

An N -morphism from N1 to N2 is a pair (β, η) where β ⊆ B1×B2 is a binary
relation and η : E1 → E2 is a partial function such that:

(i) β−1 is a partial function from B2 to B1.

12

(ii) ∀(b1, b2) ∈ β. b1 ∈ c1
in iff b2 ∈ c2

in.

(iii) c2
fin

= β(c1
fin

) ∪ (c2
in − β(c1

in)).

(iv) If η(e1) is undefined then β(•e1) = ∅ = β(e•1)

(v) If η(e1) = e2 then β(•e1) =• e2 and β(e•1) = e•2.

✷

Let ENS denote the category whose objects are elementary net systems and
whose arrows are N -morphisms with the obvious notions of identity arrows
and composition.

Turning now to elementary transition systems, G-morphisms are conveniently
defined in the present set-up as follows.

Let TSi = (Si, Ei, Ti, ini, fini), i = 1, 2 be a pair of elementary transition
systems. Then a G-morphism from TS1 to TS2 is a map f : S1 → S2 which
satisfies:

(i) f(in1) = in2 and f(fin1) = fin2.

(ii) ∀ (s, e1, s
′) ∈ T1. [f(s) = f(s′) or there exists e2 ∈ E2 such that

(f(s), e2, f(s′)) ∈ T2].

(iii) If (s, e1, s
′) ∈ T1 and (f(s), e2, f(s′)) ∈ T2 then (f(s1), e2, f(s′1)) ∈ T2

for every (s1, e1, s
′

1) ∈ T1.

Let ET S denote the category whose objects are elementary transition sys-
tems and whose arrows are G-morphisms with obvious notions of identities
and composition. In [NRT] two functors J and H with J going from ET S
to ENS and H going ENS to ET S were constructed and it was shown J
and H form an adjunction (correflection) with J as a leftadjoint. To be pre-
cise, the objects considered were slightly different, in that final states (for
elementary transition systems) and final cases (for elementary net systems)
were not taken into account. However, it is easy to verify that the adjunction
result cited above goes through in the presence of final states and final cases.

13

In the present paper what will be of immediate interest is the manner in
which the functors J and H operate on the objects. For an elementary
net system N = (B, E, F, cin, cfin), H(N) = (CN , EN , TN , cin, cfin) where

(CN , EN , TN , cin), is the case graph (sometimes called the sequential case
graph) of N . For an elementary transition system TS = (S, E, T, in, fin),
J(TS) is given by:

J(TS) = (RTS, E, FTS, Rin, Rfin) where

FTS = {(r, e) | r ∈◦ e} ∪ {(e, r) | r ∈ e◦}.

The important observation here is that when viewing ets’s as nets (via the
functor J) regions play the role of conditions (local states).

The adjunction (co-reflection) result of [NRT] then at once implies that every
elementary transition system TS is G-isomorphic to H ◦J(TS). In addition,
this leades to a canonical representation of elementary net systems. We
will say that an elementary net system N is saturated iff there exists an
elementary transition system TS such that N is N -isomorphic to J(TS).
From the functorial nature of J and H, it follows that for an elementary net
system N , J ◦ H(N) is saturated. It seems natural to view J ◦ H(N) as a
canonical representation N . One of our aims will be to demonstrate that
canonical representations of elementary net systems are the proper objects
to work with if one is interested in local state refinement operations. We
conclude this section with a few examples. In Fig. 2.3 we have shown four
elementary transition systems and in Fig. 2.4 the J-images of these transition
systems. Final states/cases have been suppressed for convenience in these
figures, and in Fig. 2.4 only selected conditions are annotated by the regions
they represent.

14

Fig. 2.3

15

Fig. 2.4

16

3 State Refinement for ETS

Following the intuition from the introduction and the formal definition of
ets’s in the previous section, it seems natural to look for a formal definition
of local state refinement on an ets in terms of a region refinement. Intuitively
given one ets, TS1, and a non-trivial region r of TS1, refining r by some other
ets, TS2, should have the effect that any “holding” of r (i.e. any “visit” to r)
should behaviourally give rise to a complete behaviour of TS2, i.e. a behaviour
of TS2 from its initial to its final state. Also, following our intuition this
behaviour should only replace the “holding” of r, i.e. the behaviour of TS1

within r should otherwise be unaffected. We propose the following definition.

Definition 3.1

Let TS1 = (S1, E1, T1, in1, fin1) and TS2 = (S2, E2, T2, in2, fin2) be two ets’s
with disjoint sets of states and events, and let r1 be a non-trivial region of
TS1. Define the refinement of r1 in TS1 by TS2, denoted TS1[r1 ← TS2]
as the following structure TS = (S, E, T, in, fin) where

S = (S1 − r1) ∪ r1 × S2.

E = E1 ∪ E2.

T is the minimal subset of S × E × S such that:

i) for every (s1, e1, s
′

1) ∈ T1,
i1) if s1 /∈ r1, s

′

1 /∈ r1 then (s1, e1, s
′

1) ∈ T
i2) if s1 /∈ r1, s

′

1 ∈ r1 then (s1, e1, (s
′

1, in2)) ∈ T
i3) if s1 ∈ r1, s

′

1 /∈ r1 then ((s1, fin2), e1, s
′

1) ∈ T
i4) if s1 ∈ r1, s

′

1 ∈ r1 then for every s2 ∈ S2

((s1, s2), e1, (s
′

1, s2)) ∈ T

ii) for every (s2, e2, s
′

2) ∈ T2

for every s1 ∈ r1 ((s1, s2), e2, (s1, s
′

2)) ∈ T

in =

{

in1 if in1 /∈ r1

(in1, in2) if in1 ∈ r1

17

fin =

{

fin1 if fin1 /∈ r1

(fin1, fin2) if fin2 ∈ r1

✷

The different clauses in the definition of T represent the behaviour of TS
in terms of the behaviours of TS1 and TS2. Outside the area r1 × S2, the
transition system TS behaves like TS1 (i1). Whenever TS1 enters r1, the
transition system TS enters the area r1×S2 (i2) and a copy of TS2 is initiated
to begin one of its computations. Within this “common area” TS can move
independently according to the moves of TS1 internal to r1 (i4) or according
to moves from TS2 (ii). TS leaves the area r1 × S2 whenever TS1 leaves r1

and TS2 has finished a computation (i3).

Example 3.2

Let TS1 be the following ets with initial state a, final state e, events
{0, 1, 2}, and let r1 be the region {b, d}.

18

Let TS2 be the following ets with initial state α, final state γ and events
{3, 4}.

According to Definition 3.1 TS1[r1 ← TS2] is the following transition system.

TS1[r1 ← TS2] as defined in Definition 3.1 is obviously a transition system,
but is it also elementary? Before we prove that this is the case, it will be
convenient to state a few lemmas providing us with some of the regions of
TS1[r1 ← TS2].

19

Lemma 3.3

Let TS1, TS2, r1, and TS1[r1 ← TS2] = TS be as in Definition 3.1. Then for
every r̂ ∈ RTS1

r = (r̂ − r1) ∪ ((r1 ∩ r̂)× S2) ∈ RTS.

Moreover, for every e ∈ E = E1∪E2, e is entering/leaving r in TS iff e ∈ E1

and e is entering/leaving r̂ in TS1.

Proof Obvious from the definition of TS1[r1 ← TS2]. ✷

Lemma 3.4

Let TS1, TS2, r1 and TS1[r1 ← TS2] = TS be as in Definition 3.1. Then for
every r2 ∈ RTS2

, r1 × r2 ∈ RTS. Moreover, for every e ∈ E = E1 ∪ E2, e is
entering/leaving r1 × r2 iff

either e ∈ E1 and e is entering/leaving r1

or e ∈ E2 and e is entering/leaving r2

Proof From the definition of TS in Definition 3.1 there are only two pos-
sibilities of an event entering r1 × r2:

1. if (s1, e1, s
′

1) ∈ T1 and s1 /∈ r1, s
′

1 ∈ r1, then if furthermore in2 ∈ r2 we
have (s1, e1, (s

′

1, in2)) as a transition entering r1 × r2 in TS. Since r1

is a region of TS1 we see that any e1-occurrence in T must be of this
particular form, and hence any e1-occurrence is also entering r1 × r2.
Notice, that this argument makes essential use of the fact that an ets
has a unique initial state!

2. if (s2, e2, s
′

2) ∈ T2 and s2 /∈ r2, s
′

2 ∈ r2, then for every s1 ∈ r1, we have
((s1, s2), e2, (s1, s

′

2)) as a transition entering r1 × r2 in TS. Since r2 is
a region, we see that any e2-transition must be of this particular form,
and hence any e2-transition is also entering r1 × r2.

20

Similar arguments apply in the case where an event is assumed to leave r1×r2.
Here, it is essential that we work with ets’s with one unique final state! ✷

Theorem 3.5

Let TS1, TS2, r1 and TS1, [r1 ← TS2] = TS be as in Definition 3.1. Then
TS is an Elementary Transition System.

Proof TS is clearly a transition system satisfying properties (A1)−−(A4).
So, let us prove that TS also satisfies properties (A5) and (A6).

Given two states s 6= s′ in S = (S1− r1)∪ (r1×S2) we must show that there
exists a region in TS containing one and not the other of the two states. We
consider the following cases

1. s, s′ ∈ S1 − r1

Take any region r′1 of TS1 such that s /∈ r′1, s
′ ∈ r′1 (at least one such

region must exist since TS1 is an ets). From Lemma 3.3 it now follows
that

r = (r′1 − r1) ∪ ((r′1 ∩ r1)× S2)

is a region of TS, clearly containing s′ and not s, i.e., r ∈ Rs′ , r /∈ Rs.

2. s ∈ S1 − r1 , s′ ∈ r1 × S2

Applying Lemma 3.4 to the region r2 = S2 of TS2 it follows that r1×S2

is a region of TS containing s′ and not s, i.e.,
r1 × S2 ∈ Rs′ , r1 × S2 /∈ Rs.

3. s, s′ ∈ r1 × S2

Let s = (x, y) and s′ = (x′, y′) where x, x′ ∈ r1. Since s 6= s′ we must
have either x 6= x′ or y 6= y′. Let us look at the two cases separately.

x 6= x′ Take any region r′1 of TS1 containing x′ but not x (at least
one such region exists, since TS1 is an ets. Then it follows from
Lemma 3.3 that

21

r = (r′1 − r1) ∪ ((r′1 ∩ r1)× S2)

is a region containing s′ = (x′, y′) but not s = (x, y), i.e., r ∈
R′

s, r /∈ Rs.

y 6= y′ Take any region r2 of TS2 such that y ∈ r2 , y′ /∈ r2 (some such
region must exist since TS2 is an ets). It follows now from Lemma
3.4 that r1 × r2 is a region of TS containing s = (x, y) but not
s′ = (x′, y′), i.e., r1 × r2 ∈ Rs, r1 × r2 /∈ Rs′ .

Thus TS satisfies (A5). We move now to verify (A6).

Let s ∈ S and e ∈ E, and assume that e is not enabled at s. We have to
show that ◦e 6⊆ RS.

Consider four cases:

1. s ∈ S1 − r1 and e ∈ E1.

From Definition 3.1 it follows that e is not enabled at s in TS1. Hence
we know (since TS1 is an ets) that there exists a region r′1 of TS1 such
that

r′1 ∈
◦e ∧ r′1 /∈ Rs

From Lemma 3.3 it now follows that r = (r′1 − r1) ∪ ((r′1 ∩ r1)× S2) is
a pre-region of e in TS which does not contain s.

2. s ∈ S1 − r1 and e ∈ E2.

Let (s2, e, s
′

2) be any e-transition of TS2, and let r2 be a region con-
taining s2 and not s′2 (at least one exists since TS2 is an ets). Clearly
r2 ∈

◦e in TS2. Then from Lemma 3.4 it follows that r1 × r2 is a
pre-region of e in TS not containing s.

3. s = (x, y) ∈ r1 × S2 and e ∈ E1.

From the definition of TS it follows that

either (a) e is not enabled at x in TS1,
or (b) for some x′ ∈ S1 − r1, (x, e, x′) ∈ T1 but y 6= fin2.

22

In case a) it follows from arguments like in case 1) above using Lemma
3.3 that a region may be constructed in TS which is a pre-region of e
not containing s.

In case (b) take any region r2 of TS2 such that y /∈ r2 and fin2 ∈ r2.
It follows from Lemma 3.4 that r1 × r2 is a region of TS such that
(x, fin2) ∈ r1 × r2 and (x, y) /∈ r1 × r2. From Definition 3.1 it follows
that ((x, fin2), e, x

′) ∈ T , and hence r1 × r2 ∈
◦e; but since also

r1 × r2 /∈ R(x,y) we have (x, y) /∈ r1 × r2.

4. s = (x, y) ∈ r1 × S2 and e ∈ E2.

Then e is not enabled at y in TS2. Since TS2 is an ets we have that
there exists a region r2 of TS2 such that

r2 ∈
◦e and r2 6∈ Ry in TS2.

If we apply Lemma 3.4 to r2 we get a region of TS which is a pre-region
of e not containing s.

✷

23

4 Properties of State Refinement for ETS

In this section we shall state and prove a few results in support of our notion
of state refinement. These results will establish that the state refinement
operation defined here can be studied in terms of G-morphisms between
elementary transition systems. We first recall the notion of G-morphisms.

Definition 4.1 Let TSi = (Si, Ei, Ti, ini, fini) for i = 1, 2 be a pair of
elementary transition systems. A G-morphism from TS1 to TS2 is a map
f : S1 → S2 which satisfies:

(i) f(in1) = in2 and f(fin1) = fin2

(ii) ∀ (s, e1, s
′) ∈ T1. [f(s) = f(s′) or there exists e2 ∈ E2 such that

(f(s), e2, f(s′)) ∈ T2.]

(iii) If (s, e1, s
′) ∈ T1 and (f(s), e2, f(s′)) ∈ T2 then (f(s1), e2, f(s′1)) ∈ T2

for every (s1, e1, s
′

1) ∈ T1.

The G-morphism f : TS1 → TS2 defined above induces a unique partial
function denoted ηf from E1 to E2 given by:

∀ e1 ∈ E1. ηf (e1) =

{

e2, if ∃(s, e1, s
′) ∈ T1 such that (f(s), e2, f(s′)) ∈ T2

undefined, otherwise.

A simple but useful observation from [NRT] concerning G-morphisms is that
a G-morphism is completely determined by the partial function over events
that it induces.

Proposition 4.2 Let f1 and f2 be two G-morphisms from TS1 to TS2

where TS1 and TS2 are two elementary transition systems. Then f1 = f2 iff
ηf1

= ηf2
. ✷

Yet another basic property of G-morphisms (see, e.g., [ER] or [NRT]) is that
they preserve regions in the following sense.

24

Proposition 4.3 Let TS1 = (Si, Ei, Ti, ini, fini), i = 1, 2 be a pair of el-
ementary transition systems and f : TS1 → TS2 a G-morphism. Suppose
r2 is a region of TS2. Then f−1(r2) is a region of TS1. Moreover for every
e1 ∈ E1, it is the case that f−1(r2) is a pre-region/post-region of e1 in TS1

iff ηf (e1) is defined and r2 is a pre-region/post-region of ηf (e1) in TS2. ✷

Let TS1, r1, TS2 and TS = TS1[r1 ← TS2] be as in Definition 3.1. Then our
first result states that in TS, the behaviour of TS1 is left unchanged if we
“suppress” the behaviour of TS2. To state this precisely we shall make use
of the notion of firing sequences. Let TS = (S, E, T, in, fin) be an elementary
transition system. (Actually the notion of firing sequences can be defined in
terms of general transition systems). Then FS, the set of firing sequences of
TS is the least subset of E∗ given inductively by:

(i) λ ∈ FS and in[[λ > in

(λ is the null sequence)

(ii) suppose ρ ∈ FS and in[[ρ > s and (s, e, s′) ∈ T . Then ρe ∈ FS and
in[[ρe > s′.

Next suppose f : TS1 → TS2 is a G-morphism with TSi = (Si, Ei, Ti, ini, fini),
i = 1, 2. Then the partial function ηf : E1 −→∗ E2 induced by f extends
uniquely to a total function η∗

f from FS1 to FS2 where FSi is the set of firing
sequences of TSi. This extension is given by

(i) η∗

f (λ) = λ

(ii) η∗

f (ρe) =

{

η∗

f (ρ)ηf (e), if ηf (e)is defined
η∗

f (ρ), otherwise

By abuse of notation we will often write η∗

f as ηf .

Theorem 4.4 Let TS1, r1, TS2 and TS = TS1[r1 ← TS2] be as in Defini-
tion 3.1. Let f : S → S1 be given by (recall that S = (S1 − r1) ∪ (r1 × S2)):

∀s ∈ S. f(s) =

{

s, if s ∈ S1 − r1

x, if s = (x, y) ∈ r1 × S2.

25

Then the following statements hold.

(i) f is a G-morphism from TS to TS1.

(ii) ηf : E →∗ E1 satisfies:

∀e ∈ E. ηf (e) =

{

e, if e ∈ E1

undefined, otherwise.

(iii) FS1 = {ηf (ρ) | ρ ∈ FS} where FS1 is the set of firing sequences of
TS1 and FS is the set of firing sequences of TS.

Proof Follows easily from the definitions. ✷

Thus as promised, the behaviour of TS is precisely that of TS1 provided
we “blank out” completely the behaviour of TS2. A similar result does not
hold in general for TS2 in relation to TS when we blank out the behaviour
of TS1. But this is only because TS2 may be “restarted” several times in
TS1[r1 ← TS2] (see example after next theorem).

Theorem 4.5 Let TS1, r1, TS2 and TS = TS1[r1 ← TS2] be as in Defini-
tion 3.1. Assume further in2 = fin2. Let f : S → S2 be given by:

∀s ∈ S. f(s) =

{

in2, if s ∈ S1 − r1

y, if s = (x, y) ∈ r1 × S2.

Then the following statements hold.

(i) f is a G-morphism from TS to TS2.

(ii) ηf : E →∗ E2 satisfies:

∀e ∈ E. ηf (e) =

{

e, if e ∈ E2

undefined, otherwise.

(iii) FS2 = {ηf (ρ) | ρ ∈ FS}, where FS2 is the set of firing sequences of
TS2 and, FS is the set of firing sequences of TS.

26

Proof: Follows again from the definition. However, one must use the fact
that in2 = fin2 to prove that f is a G-morphism. ✷

Here is an example which shows that in general the above result does not
hold.

Fig 4.1

Then clearly there can be no non-trivial G-morphism from TS to TS2 let
alone a G-morphism g with the property FS2 = ηg(FS).

Our next result states that our notion of state refinement respects G-morphisms
– in the following sense. Suppose TS ′

2 is simulated by TS2 modulo some G-
morphism f2. Then for any TS1 and a region r1 of TS1, one would expect

27

TS1[r1 ← TS ′

2] to be simulated by TS1[r1 ← TS2] modulo a G-morphism
which respects f2 w.r.t. its effect on the events of TS ′

2. Similarly if TS ′

1 is
simulated by TS1 modulo some G-morphism f1 then for any region r1 of
TS1 and any TS2, one would expect TS ′

1[f
−1
1 (r1)← TS2] to be simulated by

TS1[r1 ← TS2] modulo a G-morphism which respects f1 w.r.t. its effect on
the events of TS ′

1. This is indeed so. Rather than stating and proving these
results seperately, we combine them into the following.

Theorem 4.6 Let TS1, r1, TS2 and TS = TS1[r1 ← TS2] be as in Defini-
tion 3.1. Let fi, i = 1, 2, be a pair of G-morphisms from TS ′

i = (S ′

i, E
′

i, T
′

i , in
′

i, fin′

i)
to TSi for i = 1, 2. Let f be the function from the states of TS ′ =
TS ′

1[f
−1
1 (r1) ← TS ′

2] = (S ′, E ′, T ′, in′, fin′) to the states of TS = TS1[r1 ←
TS2] defined as follows.

∀s′ ∈ S ′. f(s′) =

{

f1(s
′), if s′ ∈ S ′

1 − f−1
1 (r1)

(f1(x), f2(y)), if s′ = (x, y) ∈ f−1
1 (r1)× S ′

2.

Then the following statements hold:

(i) f is a G-morphism from TS ′ to TS.

(ii) ηf satisfies:

∀e′ ∈ E ′. ηf (e
′) =

{

ηf1
(e′), if e′ ∈ E ′

1

ηf2
(e′), if e′ ∈ E ′

2.

(iii) Let FS ′ denote the set of firing sequences of TS ′. Then

∀ρ ∈ FS ′. ηf (ρ) |̀ E1 = ηf1
(ρ |̀ E ′

1) and

ηf (ρ) |̀ E2 = ηf2
(ρ |̀ E ′

2).

Proof: Parts (ii) and (iii) follow easily from (i). This is easy to check.
Hence we will just prove (i).

Notice first that by Proposition 4.3 TS ′

1[f
−1
1 (r1)← TS ′

2] is well-defined. The
only non-trivial part of the proof is proving that f as defined is indeed a
morphism, so we concentrate on that part of the proof. We split the proof
into subcases, according to the five different forms of moves (s, e, s′) in TS ′.

28

1. s, s′ ∈ S ′

1 − f−1
1 (r1), e ∈ E ′

1

1a) ηf1
(e) defined

Since f1 is a G-morphism we know that (f1(s), ηf1
(e), f1(s

′)) =
(f(s), ηf (e), f(s′)) is a transition in TS1, and since f1(s), f1(s

′) ∈
S1 − r1 we also have this transition in TS.

1b) ηf1
(e) undefined

Since f1 is a G-morphism we have f1(s) = f1(s
′). From the defi-

nition of f it follows f(s) = f(s′).

2. s ∈ S ′

1 − f−1
1 (r1), s′ = (x, in′

2) ∈ f−1
1 (r1)× S ′

2, e ∈ E ′

1

By definition we have (s, e, x) ∈ T ′

1, and since f1(s) ∈ S1 − r1 and
f1(x) ∈ r1 we must have s 6= x and hence ηf1

(e) is defined . Since f1 is
a G-morphism we also know (f1(s), ηf1

(e), f1(x)) ∈ T1, and hence from
Definition 3.1 (f1(s), ηf1

(e), (f1(x), in2)) =
(f(s), ηf (e), f(s′)) is a transition in TS1[r1 ← TS2] = TS.

3. s = (x, fin′

2) ∈ f−1
1 (r1)× S ′

2, s′ ∈ S ′

1 − f−1
1 (r1) and e ∈ E ′

1

By arguments similar to case 2) we must have ηf (e) = ηf1
(e) defined

and (f1(x), ηf1
(e), f1(s

′)) ∈ T1 where f1(x) ∈ r1 and f1(s
′) ∈ S1 − r1.

But then again from Definition 3.1 it follows that
((f1(x), fin2), ηf1

(e), f1(s
′)) = (f(s), ηf (e), f(s′)) is a transition of TS.

4. s = (x, y), s′ = (x′, y) ∈ f−1
1 (r1)× S ′

2, e ∈ E ′

1

From Definition 3.1 we have (x, e, x′) ∈ T ′

1 and x, x′ ∈ f−1
1 (r1).

4a) ηf1
(e) is defined

Since f1 is a G-morphism we have (f1(x), ηf1
(e), f1(x

′)) ∈ T1

and (f1(x), f1(x
′) ∈ r1. Hence from Definition 3.1 we also have

((f1(x), f2(y)), ηf1
(e), (f1(x

′), f2(y)) = (f(s), ηf (e), f(s′)) as a tran-
sition of TS.

4b) ηf1
(e) is undefined

Since f1 is a G-morphism we have f1(x) = f1(x
′), and hence also

f(s) = (f1(x), f2(y)) = (f1(x
′), f2(y)) = f(s′).

5. s = (x, y), s′ = (x, y′) ∈ f−1
1 (r)× S ′

2, e ∈ E ′

2

This case is treated similarly to case 4.
The rest of the proof is routine and we omit the details. ✷

29

Next we would like to show how our notion of state refinement translates to
elementary net systems. It turns out that modulo the act of adding “satu-
rating conditions”, our notion does indeed translate into the naive notion of
condition-refinement that we considered (and rejected!) in Section 1. The
key point is that we apply this simple minded condition- refinement opera-
tion only to saturated net systems. Recall that the elementary net system
N is said to be saturated in case N is N -isomorphic to J(TS) for some ele-
mentary transition system TS. First let us formalize the naive approach to
condition-refinement.

Definition 4.7 Given two elementary net systems
Ni = (Bi, Ei, Fi, c

i

in, ci

fin
), i = 1, 2, where the Bi’s and Ei’s are mutually

disjoint sets. Let b ∈ B1.

Define “N1 with b defined by N2”, notationally N1[b← N2], as the net N =
(B, E, F, cin, cfin) where

B = (B1 − {b}) ∪B2

E = E1 ∪ E2

F = F1 − ({b} × E1 ∪ E1 × {b})

∪F2

∪{(e1, b2) | (e1, b) ∈ F1 ∧ b2 ∈ c2
in}

∪{(b2, e1) | (b, e1) ∈ F1 ∧ b2 ∈ c2
fin}

cin =

{

c1
in if b 6∈ c1

in
(c1

in − {b}) ∪ c2
in if b ∈ c1

in

cfin =







c1
fin

if b 6∈ c1
fin

(c1
fin
− {b}) ∪ c2

fin
if b ∈ c1

fin

✷

As we saw earlier this pleasingly simple and intuitive definition does not
“work” if applied to arbitary net systems. N1 and N2 might be contact-
free but N1[b ← N2] might not be. Even if we choose to ignore this, one
would expect to explain the operational behaviour of N1[b ← N2] (i.e. that

30

of H(N1[b ← N2])) by refining the operational behaviour of N1 (i.e. that of
H(N1)) with the help of H(N2) where naturally the region of H(N1) that one
would expect to refine would be rb = {c ∈ CN1

| b ∈ c} (known to be a region
from [NRT]). In other words, it does not seem unreasonable to demand that
H(N1[b← N2]) and H(N1)[rb ← H(N2)] should be G-isomorphic. However,
as illustrated earlier this, in general, is not the case. All these problems
however disappear if one works only with saturated net systems. We shall
first bring this out before putting down the “correct” operation of condition-
refinement for saturated net systems.

Theorem 4.8 Let N1 = (Bi, Ei, Fi, c
i

in, ci

fin
), i = 1, 2 be a pair of saturated

net systems with disjoint pairs of conditions and events. Let b ∈ B1 and
N = N1[b ← N2] be as in Definition 4.7. Then H(N) is G-isomorphic to
H(N1)[rb ← H(N2)] where rb = {c ∈ CN1

| b ∈ c}.

Proof We can assume without loss of generality that

TSi = (Si, Ei, Ti, ini, fini),

i = 1, 2 is a pair of elementary transition systems such that Ni = J(TSi) for
i = 1, 2. Consequently Bi = RTSi

, ci

in = Rini
and ci

fin
= Rfin

i

for i = 1, 2.

Moreover

Fi = {(r, e) | r ∈◦ e in TSi} ∪

{(e, r) | r ∈ e◦ in TSi}

From the results of [NRT] it also follows that ui : Si → CNi
given by:

ui(s) = Rs in TSi

is a G-isomorphism from TSi to H(Ni) for i = 1, 2.

We will break the proof up into basically two steps.

Since b ∈ B1, it is clear that b is a non-trivial region in TS1. Hence it makes
sense to consider the elementary transition system

TS = TS1[b← TS2].

We will show:

31

(i) TS is G-isomorphic to H(N1)[rb ← H(N2)].

(ii) TS is G-isomorphic to H(N1[b← N2]).

Proof of (i) We have the following situation.

Now define the map f from the states of TS to the states of TS ′ as follows.

∀ s ∈ S f(s) =

{

u1(s), if s ∈ S1 − b
(u1(x), u2(y)), if s = (x, y) ∈ b× S2.

By Theorem 4.6, f is a G-morphism from TS to TS ′ provided u−1
1 (rb) = b

which we will now proceed to show.

Suppose s ∈ u−1
1 (rb). Then there exists c ∈ rb such that u1(s) = c. Now

c ∈ rb implies that b ∈ c (where b is viewed as a condition and c is viewed as
a case of N1). But u1(s) = Rs and hence b ∈ Rs implies that s ∈ b (Here b
is viewed as a region of TS1!). Hence u−1

1 (rb) ⊆ b.

Now let s ∈ b in TS1. Then b ∈ Rs and hence b ∈ u1(s). Thus b holds in
the case u1(s) of N1. Consequently u1(s) ∈ rb (in H(N1)). This implies that
s ∈ u−1

1 (rb). Hence b ⊆ u−1
1 (rb) and we are done.

We now wish to show that f is in fact a G-isomorphism.

Clearly f viewed as a function from the states of TS to the states of TS ′ is
a bijection because u1 and u2 are G-isomorphisms and S1 − b and b× S2 are
disjoint sets by definition.

32

From Theorem 4.6 it follows easily that ηf is a total function from E1 ∪ E2

to E1 ∪ E2, and moreover it is the identity function.

From the facts that both f (viewed as a map between sets) and ηf are
bijections, it follows at once that f is indeed a G-isomorphism from
TS1[b← TS2] to H(N1)[rb ← H(N2)].

Proof of (ii) We propose the following map g from the states of TS to the
states of H(N1[b← N2]).

∀s ∈ S. g(s) =

{

Rs, if s ∈ S1 − b
(Rx − {b}) ∪Ry, if s = (x, y) ∈ b× S2.

We first argue that g is well-defined. We can do this by picking s ∈ S and
doing induction on the “distance” of s from in, the initial state of TS.

Suppose s = in. There are two cases to consider. Assume first that in ∈
S1 − b. Then in = in1 and b 6∈ Rin = Rin1

. But Rin1
= c1

in, the initial case

of N1 and according to the definition of N1[b ← N2], b 6∈ c1
in implies that

c1
in = cin, the initial case of N1[b← N2]. Thus g(s) ∈ CN .

Now suppose in ∈ b×S2. Then in1 ∈ b and hence b ∈ Rin1
. Then once again

by the definition of N1[b← N2], cin = (c1
in−{b})∪ c2

in. But c1
in = Rin1

and

c2
in = Rin2

. Hence g(in) = cin, the initial case of CN as required.

Now suppose that (s, e, s′) ∈ T and g(s) ∈ CN where N = N1[b ← N2].
Depending on the type of this transition (w.r.t. its cross relation with the
region b in TS1) there are five possible cases to consider. We just consider
one of the cases here to illustrate the kind of arguments that are involved.

Case 1 s ∈ S1 − b, s′ = (x, y) ∈ b× S2 and e ∈ E1.

Then b ∈ e◦ in TS1. By the definition of N1 and N2(Ni = J(TSi)),
•e =◦ e

and e• = e◦ (in the respective net systems (where •e and e• denote the pre-
conditions and post-conditions of e in the underlying nets of N1 and N2). For
convenience (and to avoid confusion!) let pre(e) and post(e) denote the set
of pre-conditions and post-conditions respectively of e in N = N1[b← N2].

Now by the definition of TS = TS1[b ← TS2], (s, e, x) ∈ T1. Hence Rs
e
−→

Rx in N1 (by the results of [NRT]). By the definition of N , it follows that

33

pre(e) =• e and post(e) = (e• − {b}) ∪ c2
in. By the induction hypothesis,

g(s) = Rs ∈ CN . Now pre(e) ⊆ Rs because pre(e) =• e =◦ e. On the other
hand, B1 and B2 are required to be disjoint sets and hence c2

in ∩ Rs = ∅.
(Rs ∈ CN1

). Since e• = e◦ ∩ Rs = ∅, because e is enabled at Rs in N1, we
now get post(e) ∩ Rs = ∅ in N . Thus e is enabled at N . It is now easy
to verify that (Rs − pre(e)) ∪ post(e) = (Rx − {b}) ∪ Ry where Ry = Rin2

.
Consequently g(s′) ∈ CN as required.

The remaining cases can be proved using similar applications of the defini-
tions of N and TS.

Now going through the details of the arguments it is also easy to establish
the following .

(i) ∀ (s, e, s′) ∈ T. (g(s), e, g(s′)) ∈ T ′′

where H(N1[b← N2]) = (S ′′, E ′′, T ′′, in′′, fin′′).

(ii) ∀ s ∈ S and ∀ e ∈ E. [(g(s), e, c) ∈ T ′′ implies that there exists s′ ∈ s
such that (s, e, s′) ∈ T and g(s′) = c]

It is then routine to establish – using once again the facts that u1 and u2 are
G-isomorphisms – the following:

(iii) g is a G-morphism

(iv) g, viewed as a function from S to S ′′ is a bijection.

(v) ηg is a total function from E to E, and in fact is the identity function.

These three facts at once leads to the desired conclusion that g is a G-
isomorphism. ✷

It is a curious fact that N = N1[b← N2] can fail to be contact-free although
both N1 and N2 are required to be saturated net systems. This however
seems to be a pathological case where N2 is the empty net system and N1

has two distinct events e1 and e2 such that •e1 ∩
•e2 = {b} and there exists

a case c ∈ CN1
at which both e1 and e2 are enabled! The main idea can be

illustrated by an example. Let TS1, TS2 and b be as indicated.

34

Fig 4.2

Then TS = TS1[b ← TS2], N1, N2 and N = N1[b ← N2] will be as shown
below.

Fig 4.3

Thus N will have contact although H(N) and TS1[b ← TS2] will be G-

35

isomorphic. Thus the “correct” state refinement operation for saturated net
systems , in addition to the simple-minded operation specified in Definition
4.7, should “saturate” the resulting object. This motivates the following
definition.

Definition 4.9 Let Ni = (Bi, Ei, Fi, c
i

in), i = 1, 2 be a pair of saturated
net systems and b ∈ B1. Then the (saturated?) refinement of b in N1 by
N2 is denoted as N1[[b← N2]] = JoH(N1[b← N2]). ✷

It will be interesting to investigate the translation of our notion of refinement
into other behavioural formalisms. We have some preliminary results in this
regard w.r.t. firing sequences. Much more however needs to be done even at
this level and also w.r.t. more sophisticated notions such as traces (in the
sense of Mazurkiewicz; we expect this to be hard), non-sequential processes
(we expect to this be easy) and labelled event structure (we expect this to
be hard too!).

36

Discussion

The model of Elementary Transition Systems was introduced in [ER], [NRT]
as an abstraction of Elementary Net Systems – with a formal embedding
in terms of a categorical coreflection, keeping behavioural information like
causality, concurrency and conflict, but forgetting the concrete programming
of a particular behaviour over an event set using conditions. In this paper we
have given one example of the advantages of ETS over ENS, – the definition of
local state refinement. What we have shown is that the well known problems
in understanding within nets the simple notion of syntactic substitution of
conditions by (sub)nets behaviourally, – these problems seem to disappear
when moving to the more abstract level of ETS. Formally, we have shown that
the ETS-version of condition-substitution (Theorem 4.8) does satisfy nice
and natural properties, e.g., projection and compositionality results w.r.t.
a standard notion of transition system morphisms (Theorems 4.4, 4.5, 4.6).
Similar results do not hold for nets, – at least not with the simple notion of
condition substitution and the corresponding notion of net morphisms.

We see this as only a small but promissing contribution to the understanding
of refinement in models for concurrency. Much work needs to be done, e.g.,
studying the robustness of our results w.r.t. other notions of behaviour, and
providing a notion of event-refinement for ETS also accompanied by some
theoretical justification.

Acknowledgements

This work has been part of joint work of ESPRIT Basic Research Actions
CEDISYS and DEMON from which support is acknowledged. The third
author acknowledges support from the Dutch National Concurrency Project
REX sponsored by NFI.

37

References

[ER] Ehrenfeucht, A. and Rozenberg, G., (1990), Partial 2-structures;
Part II: State spaces of concurrent systemes, Acta Informatica,
27, 348-368.

[K] Kiehn, A., (1990), Petri Net Systems and their Closure Proper-
ties, Lecture Notes in Computer Science, 424, 306-328, Springer
Verlag.

[M] Milner, R., (1980), A calculus of Communicating Systems, Lecture
Notes in Computer Science, 92, Springer Verlag.

[NRT] Nielsen, M., Rozenberg, G., Thiagarajan, P. S., (1990), Elemen-
tary Transition Systems, Technical Report, PB-310, Computer
Science Department, Aarhus University, Denmark.

[V] Vogler, W., (1987), Behaviour Preserving Refinement of Petri
Nets, Lecture Notes in Computer Science, 246, 82-93, Springer
Verlag.

[W] Winskel, G., (1987), Event Structures, Lecture Notes in Computer
Science, 235, 325-392, Springer Verlag.

38

