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Agnieszka Ścibior * and Ewa Wnuk

Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University
of Lublin, 20-708 Lublin, Poland; ewa.wnuk@kul.pl
* Correspondence: agnieszka.scibior@kul.pl

Simple Summary: COVID-19 is a disease caused by the SARS-CoV-2 coronavirus spreading mainly
through person-to-person contact. It has caused millions of deaths around the world and lasting
health problems in individuals who have survived the disease. This review concisely summarizes
certain issues related to COVID-19 with a focus on elements and gives an update on clinical trials
where some minerals will be tested/have been tested alone or in combination with drugs, vitamins,
or plant extracts/herbal formulations in COVID-19 patients and in those at higher COVID-19 risk.

Abstract: The current report provides a brief overview of the clinical features, hematological/
biochemical abnormalities, biomarkers, and AI-related strategies in COVID-19; presents in a nutshell
the pharmacological and non-pharmacological therapeutic options; and concisely summarizes the
most important aspects related to sociodemographic and behavioral factors as well as comorbidities
having an impact on this disease. It also gives a brief outline of the effect of selected elements on
immune response and collects data on the levels of micro-/macro-elements and toxic metals in the
blood/urine of SARS-CoV-2 infected patients and on supplementation with minerals in COVID-19
subjects. Moreover, this review provides an overview of clinical trials based on the use of minerals
alone or in combination with other agents that can provide effective responses toward SARS-CoV-2
infection. The knowledge compiled in this report lays the groundwork for new therapeutic treatments
and further research on biomarkers that should be as informative as possible about the patient’s
condition and can provide more reliable information on COVID-19 course and prognosis. The
collected results point to the need for clarification of the importance of mineral supplementation in
COVID-19 and the relationships of the levels of some minerals with clinical improvement.

Keywords: COVID-19; biomarkers; clinical features; hematological/biochemical alterations;
therapeutic strategies; elements; clinical trials

1. Introduction

In December 2019, a novel coronavirus disease—i.e., COVID-19—caused by a betacoro-
navirus (β-CoV) of unknown origin called Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) broke out in Hubei province of China (Wuhan) and rapidly spread world-
wide, leading to a global pandemic. The dispersion of the single-stranded positive-sense
RNA virus via the respiratory tract made human-to-human aerosol transmission the ma-
jor source of the infection [1,2]. At present (i.e., 18 January 2022), COVID-19 is affecting
220 countries with over 326 million confirmed cases and more than 5.5 million deaths [3].

As COVID-19 has an impact on everyone’s life, in the present review we tried to
summarize certain issues related to the SARS-CoV-2 pandemic, focusing on elements in/for
COVID-19, in a form accessible to anyone interested in COVID-19 in general. After the
Introduction, the article consists of eight main sections presented in Figure 1. We aimed
to provide a brief overview of the available diagnostic tools for detection/monitoring of
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SARS-CoV-2 infection and artificial intelligence (AI)-related models helpful in COVID-19
management (Section 2), clinical features of COVID-19 (Section 3), laboratory abnormalities
and biomarkers crucial in the monitoring of COVID-19 patients (Section 4), therapeutic
strategies for this illness (Section 5), some sociodemographic/behavioral factors and certain
comorbidities affecting COVID-19 (Section 6), and some issues related to elements in
COVID-19 (Section 7 with Sections 7.1–7.3). Section 7.1 provides a concise summary of the
immunomodulatory potential of selected minerals, Section 7.2 collects data obtained from
studies on the blood/urinary levels of some metals in COVID-19 patients and findings
of research on supplementation of COVID-19 subjects with micronutrients, and the last
part—i.e., Section 7.3—overviews the registered clinical trials undertaken with the aim to
investigate the effects of administration of minerals alone or in combination with other
agents in COVID-19 patients and COVID-19 risk groups. Finally, Section 8 consists of a
summary and conclusions.

Figure 1. Graphical summary of the overviewed COVID-19 issues. CLB: clinical laboratory biomarkers.

One of the main goals of this review is to provide concise knowledge of the levels
of some elements in positive COVID-19 patients. Hence, we have overviewed the most
important literature presenting findings of recent research focused on examination of the
concentration of metals in the blood and urine of mild, moderate, severe, and critically ill
COVID-19 subjects and their relationships with the COVID-19 course. In the analysis of the
collected data, we aimed to obtain a clear answer to the following questions: (a) Does SARS-
CoV-2 infection disturb the homeostasis of some elements?; (b) Are their levels linked to
the disease progression and a fatal outcome?; and (c) Are they important for identification
of patients at risk? Additionally, we have sought an unequivocal answer to the question
whether (d) mineral supplementation affects the clinical course of COVID-19/ameliorates
the disease severity and reduces adverse outcomes. As some elements have an impact on
immune response, it can be assumed that they may influence the response to SARS-CoV-2
infection. Hence, we have reviewed original articles on the effects of supplementation with



Biology 2022, 11, 215 3 of 29

essential elements in COVID-19 patients. The current scenario for clinical (interventional)
studies, which can provide effective responses to COVID-19, was overviewed as well.
Clinical trials with minerals which will be tested/have been tested alone or in combination
with other agents in COVID-19 patients and those at higher COVID-19 risk were of our
special interest.

Methodology

Web of Science and PubMed were mainly used to collect articles related to the
topic. The keywords used to obtain data on the levels of some metals in COVID-19
patients and on supplementation of COVID-19 subjects with some minerals included
‘trace element*COVID-19’, ‘micronutrient*COVID-19’, ‘electrolyte imbalance*COVID-19’,
‘zinc*COVID-19’, ‘iron*COVID-19’, ‘metals*COVID-19 severity’, ‘clinical characteristic
*COVID-19’, ‘clinical features*COVID-19’, ‘COVID-19*zinc supplementation’, ‘COVID-
19*copper supplementation’, ‘COVID-19*selenium supplementation’, ‘COVID-19*magnesium
supplementation’, ‘COVID-19*calcium supplementation’. Only original journal articles
(published in 2020–2021) presenting human studies written in English were reviewed.

In turn, the website maintained by the National Library of Medicine (NLM) at the
National Institutes of Health (NIH) (https://clinicaltrials.gov/; accessed on 14 January
2022) [4] and Cochrane’s COVID-19 Study Register (https://COVID-19.cochrane.org/;
accessed on 14 January 2022) [5] were used to find registered clinical trials (including those
not yet recruiting/active not recruiting, recruiting, and completed) on the administration
of minerals (alone or in combination with drugs, vitamins, or plant extracts/herbal for-
mulations containing natural antioxidants) to COVID-19 subjects or individuals at higher
COVID-19 risk. The following keywords were used ‘COVID-19*zinc’, ‘COVID-19*copper’,
‘COVID-19*magnesium’, and ‘COVID-19*selenium’. Selected information about minerals
(i.e., the type of compound, dose, frequency, and duration of administration) and par-
ticipants (number, age, sex) included in clinical trials along with a unique identification
code in the NCT, CTRI, ACTRN, PACRT, and IRCT format are presented in a tabular
form. Additionally, we used certain websites (i.e., www.who.int; www.ema.europa.eu;
www.fda.gov; accessed on 14 January 2022) [6–8] to collect data on some issues related to
the topic of interest.

2. COVID-19: Detection and intelligent Models Application—A Brief Note

It is known that early detection of SARS-CoV-2 and prompt treatment are important
to control the spread of the virus and prevent the epidemic. Currently, the diagnostic
strategy used to confirm the COVID-19 infection includes a molecular assay, i.e., the
reverse-transcription polymerase chain reaction (RT-PCR), which is the preferred method
for testing [9]. As an alternative, a CRISPR-Cas 12-based assay has been developed to
detect SARS-CoV-2 from respiratory swab RNA extracts [10]. A well-known common
biochemical technique, i.e., an enzyme-linked immunosorbent assay (ELISA) detecting
antibody responses specific to SARS-CoV-2 [11], is another diagnostic tool. Additionally,
chest X-ray (CXR) which plays an important role in the diagnosis of COVID-19 and com-
puted tomography (CT) which useful for monitoring disease progression are also often
used, although the application of these diagnostic imaging techniques has certain rec-
ommendations [9], the description of which are omitted in this report. Moreover, lung
ultrasonography (US), which plays a crucial role for rapid assessment of the severity of
SARS-CoV-2 pneumonia/acute respiratory distress syndrome (ARDS) [12], is employed
as well [13].

It should also be highlighted that, due to its numerous advantages, the application
of artificial intelligence (AI), which is a rapidly developing internal branch of computer
science, is becoming increasingly popular in the management of COVID-19. AI is a valuable
tool for analysis of data related to this illness and can be helpful when a rapid diagnosis and
a decision to undertake appropriate treatment are required. As part of AI-related strategies,
some deep learning (DL) methods (consisting of numerous of algorithms)—including
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generative adversarial networks (GANs), extreme learning machine (ELM), and long-short
term memory (LSTM)—have been developed to be used in detection and diagnosis of
COVID-19. They can help monitor patients and predict effective strategies of treatment
(e.g., in a high-risk group of patients with certain comorbidities). They can also estimate
the treatment effectiveness and probability of stay in hospital or intensive care unit (ICU)
and allow detecting coronavirus when traditional approaches have been ineffective [14].
Moreover, some models—e.g., a novel variational-LSTM autoencoder model introduced
by Ibrahim et al. [15] based on DL—can be used to forecast the spread of COVID-19 at the
global and country levels. Last but not least, AI techniques can also improve the drug or
vaccine development process, which could be faster, cheaper, and more effective [16,17].

3. COVID-19: Clinical Characteristics—A Brief Summary

As reported by Centers for Disease Control and Prevention [18], there is a wide
range of COVID-19 symptoms that may appear within 2–14 days, most often 5–6 days [6]
after exposure to the virus. In Figure 2, clinical manifestations linked to COVID-19 are
concisely summarized.

Figure 2. COVID-19: symptoms. Elaborated on the basis of available literature data [19–22]. ARDS:
acute respiratory distress syndrome; RF: respiratory failure; SS: severe symptoms; CIS: critical illness
symptoms; MODS: multiple organ dysfunction syndrome.

According to the current WHO data [6], the most common symptoms of COVID-
19 include fever, dry cough, and fatigue. In patients with mild infection, especially in
children and adolescents, COVID toes were commonly observed [23]. Other symptoms
such as chills, dizziness, headache, sore throat, conjunctivitis, myalgia, a diminished
sense or loss of taste (i.e., hypogeusia and ageusia, respectively), a decreased ability to
detect odors (hyposmia) or total loss of olfactory function (anosmia), and gastrointestinal
disturbances such as diarrhea, nausea, and vomiting were reported to be the less common
clinical manifestations [6]. Rhinitis and hemoptysis were classified as rare symptoms [22].
Approximately 10–20% of patients are characterized by the presence of severe/critical
illness symptoms (SS/CIS) such as dyspnea and sepsis-related ARDS which, in extreme
cases, may result in multiple organ dysfunction syndrome (MODS) [19,24,25].
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Certain literature reports draw attention to the relationship between some symptoms
and the COVID-19 course. For example, Cao et al. [26] noted that a temperature over
38.5 ◦C is related to the severity of the illness. Gao et al. [27], who reviewed the risk
factors for severe and critically ill COVID-19 patients, referred to data on the higher
risk of mechanical ventilation in patients with a temperature above 38 ◦C. According to
the information provided by WHO [6], a high temperature (i.e., >38 ◦C) is indicative of
the severe symptoms of COVID-19 disease. It should be emphasized that the clinical
manifestations vary from asymptomatic to acute respiratory distress depending, e.g., on
host immunity and comorbidities.

4. COVID-19: Laboratory Abnormalities and Biomarkers—A Quick Overview

COVID-19 is characterized by several hematological and biochemical alterations. The
most frequent changes in laboratory findings in COVID-19 patients (requiring hospital-
ization) along with biomarkers related to COVID-19 severity are summarized in Figure 3.
Among hematological parameters, a lowered hemoglobin (Hb) level, reduced numbers
of red and white blood cells (RBCs and WBCs), and a decrease in platelet (PLTs) and
lymphocyte (LYMPHs) counts were noted. In turn, the neutrophil (NEUT) count and the
neutrophil-to-lymphocyte ratio (NLR) were observed to be elevated [20,28,29]. Some of
these indices, such as lymphocytopenia and thrombocytopenia, also appear at the early
stage of SARS-CoV-2 infection [28]. As for biochemical indices, lowered levels of K, Na, Ca,
and increased activity/levels of lactate dehydrogenase (LDH), acute-phase proteins (APPs),
and hepatic/cardiac markers were recorded. Hypoalbuminemia, hypercytokinemia, and
ferritinemia were also noted (Figure 3).

Figure 3. Hematological/biochemical abnormalities and biomarkers in COVID-19. Elaborated on the
basis of available literature data [20,22,28–38]. Hb: hemoglobin; RBC: red blood cells; PLT: platelets;
NEUT: neutrophils; WBC: white blood cells; LYMH: lymphocytes; NLR: neutrophil–lymphocyte
ratio; APPs: acute-phase proteins; LDH: lactate dehydrogenase; K: potassium; Na: sodium; Ca:
calcium; CRE: creatinine; BUN: blood urea nitrogen; CysC: cystatin C; BILI-T: total bilirubin; ChE:
cholinoesterase; AST: aspartate aminotransferase; ALT: alanine aminotransferase; CK: creatine kinase;
cTnI: cardiac troponin I; CK-MB: creatine kinase-myocardial band; ALB: albumin; CRE-C: creatinine
clearance; CRP: C-reactive protein; PCT: procalcitonin; FER: ferritin; LIGHT: tumor necrosis factor
superfamily member 14; IL: interleukin; NK cells: natural killer cells; PT: prothrombin time; Ang II:
angiotensin II; HCY: homocysteine; NLR: neutrophil-lymphocyte ratio; MLR: monocyte-lymphocyte
ratio. ↑ increase; ↓ decrease.
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Undisputed is the fact that biomarkers are key indicators of biological processes (both
normal and pathological) and pharmacological responses to a therapeutic intervention. It
is also undeniable that a panel of biomarkers, in comparison with single indicators, may
not only provide more reliable and comprehensive information but also point to the most
appropriate therapeutic strategies and help to identify high-risk groups [37]. As presented
in Figure 3, biomarkers play an important role in early detection of disease, identification of
the stages and severity of illness, diagnosis, and monitoring of health status. They are also
crucial in the recognition and prevention of complications, disease prognosis, and treatment.
The role of biomarkers in the development of new drugs and therapeutic interventions is
equally important.

Among the hematological markers, leukocytosis, lymphopenia, thrombocytopenia,
and neutrophilia were noted. In turn, such biochemical markers as creatinine (CRE),
blood urea nitrogen (BUN), cystatin C (CysC), total bilirubin (BILI-T), lactate dehydro-
genase (LDH), cholinoesterase (ChE), alanine and aspartate aminotransferase (ALT and
AST, respectively), creatine kinase (CK), cardiac troponin I (cTnI), and creatine kinase-
myocardial band (CK-MB) were found to be elevated. In contrast, creatinine clearance
(CRE-C) and albumin (ALB) were lowered. As for the inflammatory markers, C-reactive
protein (CRP), procalcitonin (PCT), ferritin (FER), and tumor necrosis factor superfam-
ily member 14 (LIGHT) as well as such interleukins as IL-2, IL-6, IL-8, and IL-10 were
demonstrated to be increased. In turn, the number of certain circulating immune cells—i.e.,
CD4+ and CD8+ cells as well as natural killer (NK) cells—were reduced, whereas some
coagulation markers such as prothrombin time (PT) and D-dimer were elevated according
to [33,36]. Among the potential novel biomarkers, the homocysteine (HCY) and angiotensin
II (Agn II) levels as well as the neutrophil-lymphocyte (NLR) and monocyte-lymphocyte
(MLR) ratios were recorded to be higher. As suggested, the increase in these indices can be
used as prognostic markers for predicting poor outcomes [33,39].

5. COVID-19: Therapeutic Approach—A Brief Outline

The COVID-19 pandemic is a challenge for scientists to design effective therapeutic
strategies for the SARS-CoV-2 infection. The pharmacological and non-pharmacological
options, along with available COVID-19 specific treatment are concisely presented in
Figure 4 and briefly described in the current section.

The pharmacological approach includes empirical, targeted, and adjuvant therapies
with antiviral/antimalarial medications, antibiotics, and chelators, respectively. As for
antiviral drugs, favipiravir, ribavirin, darunavir, and lopinavir in conjunction with ritonavir
or oseltamivir as well as the ribavirin-pegylated interferon combination and remdesivir,
for which a conditional recommendation against its use for the treatment of COVID-
19 patients has been issued in the updated guidelines from WHO [52], are taken into
account as candidate medicines [42,50]. It has also been reported that quinoline-containing
antimalarial derivatives—i.e., chloroquine (CQ) and hydroxychloroquine (HCQ)—may
exhibit potential in fighting SARS-CoV-2 infection [53,54]. The mechanisms of action of
the above-mentioned medications are not analyzed in the present report, as they were
described in detail in other papers [53–55]. Steroid treatment is another option, but this
kind of therapy is mainly recommended for seriously and critically ill patients. According
to WHO, steroids should be limited with the decreasing severity of the disease [56]. The
use of iron chelators is another therapeutic strategy. Deferoxamine, for example, has
been suggested to improve the clinical outcomes for COVID-19 patients and reduce the
severity of COVID-19 infection [57]. Some authors highlight the high therapeutic value of
Fe chelators during the COVID-19 pandemic [44], whereas others also emphasize that “ . . .
chelation should not be employed until there is evidence that elevated iron levels exist and
are relevant . . . ” and stress that before chelation is applied “ . . . it must be determined
whether COVID-19 leads to elevated iron levels or AI” [58] (p. 1). Other potential therapies
are targeted at the use of the bradykinin (BK) system blockers [40] and angiotensin receptor
1 (AT1R) antagonists [43].
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Figure 4. Therapeutic strategies against COVID-19. Elaborated on the basis of available literature
data [20,22,32,40–51]. ECMO: extracorporeal membrane oxygenation; NIV: non-invasive ventilation;
IV: invasive ventilation; HFNC: high-flow nasal cannula; TEs: trace elements; VIT: vitamins; TCM:
traditional Chinese medicine; CPT: convalescent plasma therapy; BK: bradykinin; AT1R: angiotensin
receptor 1; mAbs: monoclonal antibodies; IFN: interferon; EMA: European Medicines Agency; FDA:
Food and Drug Administration.

Monoclonal antibodies (mAbs) and interferons (IFNs) should also be mentioned as
specific forms of therapy against COVID-19 [32,50]. mAbs are considered a promising
approach in treatment of high-risk mild-to-moderate non-hospitalized patients. Aleem
and Slenker [59] have presented a detailed discussion of the mechanism of action of mAbs
against SARS-CoV-2 and clinical indications of mAbs therapy for patients who are at high
risk of developing severe illness. Generally, the data show inhibition of the pathogenicity
of the virus on the one hand and draw attention to several side effects that can appear
during treatment on the other hand. Therefore, the need for further research to certify the
SARS-CoV-2 neutralization effects and limit/mitigate the adverse events associated with
this kind of therapy is emphasized [60]. As for IFN, Darazam et al. [61] evaluated the safety
and efficacy of two most promising type I interferons, i.e., interferon beta-1a (IFNβ-1a) and
interferon beta-1b (IFNβ-1b), on the course and outcomes of severe COVID-19 patients.
The authors demonstrated reductions in time to clinical improvement induced by IFNβ-1a
and numerical reductions in the case of IFNβ-1b. They concluded that, due to its excellent
safety profile and possible benefits, IFNβ-1a may be a reasonable choice for patients with
the severe COVID-19 form. However, the importance of IFNs in fighting the COVID-19
pandemic requires additional studies, as highlighted by researchers [40,49].

On 11 November 2021, the Committee for Medicinal Products for Human Use (CHMP)
of the European Medicines Agency (EMA) delivered a favorable opinion with regard to
two COVID-19 drugs—i.e., ronapreve and regkirona—which are the first mAbs against
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the coronavirus. The EMA recommended both preparations to be given marketing autho-
rization in Europe [62,63]. Molnupiravir, i.e., an isopropylester prodrug of the nucleoside
analog β-D-N4-hydroxycytidine (NHC) with a known mechanism of action [64,65], is the
next important candidate in the COVID-19 treatment. The results of a Phase 2a clinical
trial designed to evaluate the safety, tolerability, and antiviral activity of this drug in the
treatment of COVID-19 patients revealed its antiviral efficacy and a desirable safety and
tolerability profile [66]. However, since NHC has been reported to be mutagenic to mam-
malian cells [67], the risk for the host has been stressed to be carefully evaluated [67].
The researchers also highlight the need for further studies to assess the potential off-target
effects in this case [48]. The data on the use of molnupiravir against COVID-19 are reviewed
by EMA [68], which has issued advice on its use for the treatment of COVID-19 [69]. On 23
December 2021, molnupiravir was authorized by the U.S. Food and Drug Administration
(FDA) for the emergency use in the treatment of mild-to-moderate COVID-19 in adults with
positive SARS-CoV-2 test results who are at high risk for progressing to severe COVID-19,
including hospitalization or death, and for whom alternative COVID-19 treatment options
are not accessible or clinically appropriate [8]. Other drugs, such as paxlovid and barici-
tinib, were also authorized by the U.S. FDA on 22 December 2021 and 20 December 2021,
respectively: paxlovid for the emergency use in the treatment of mild-to-moderate COVID-
19 in certain adults and pediatric patients with SARS-CoV-2 infection and baricitinib for
the treatment of COVID-19 hospitalized adults and pediatric patients (2 years of age or
older) requiring supplemental oxygen, non-invasive or invasive mechanical ventilation,
or extracorporeal membrane oxygenation (ECMO) [8]. Both drugs are being evaluated by
EMA [7]. EMA also warns against overuse of COVID vaccines, as overly frequent booster
doses could potentially adversely affect the immune response, and recommends increasing
the booster dose interval.

The non-pharmacological activities undertaken to treat COVID-19 patients include
both non-invasive and invasive ventilation (NIV and IV), which are used in mild/moderate
cases and in severe COVID-19 patients, respectively [22]. A high-flow nasal cannula
(HFNC), effective in the management of acute hypoxemic respiratory failure associated
with COVID-19, is another non-pharmacological approach [70]. ECMO referred to as the
“last chance treatment” is the next valuable option, but this strategy is applied in patients
with COVID-19-related ARDS. Although its use may save lives, ECMO can intensify
cytokine storms and consequently cause multiorgan failure [32]. Convalescent plasma
therapy (CPT) is another therapeutic tool. As assessed by Rajendran et al. [71], this kind of
intervention may improve the clinical outcome in severe disease and reduce mortality.

Literature data also point to traditional Chinese medicine (TCM) as a potential thera-
peutic option in treating COVID-19 patients, but further studies are needed to evaluate the
efficacy and safety of TCM in the COVID-19 treatment and examine the mechanism of TCM
action [72]. The possible therapeutic role of certain vitamins—mainly A, B, C, D, and E—has
been highlighted as well [42,73]. For example, Jovic et al. [74] reviewed the current evidence
base and critically appraised the potential immunomodulatory and antioxidant roles of
vitamins A to E in the context of respiratory disease and their roles in the fight against
COVID-19. The data on the doses of recommended vitamins for COVID-19 were summa-
rized as well [50]. Some minerals such as Mg, Zn, Se, Cu, and Fe may also be helpful in the
fight against coronavirus disease, as they can modulate the immune system [44,51,73,75–80].
More information about this issue is collected and concisely summarized in one of the
further sections of the present review.

6. COVID-19: Sociodemographic/Behavioral Factors and Comorbid Conditions
Affecting Disease Susceptibility, Severity, and Mortality in a Nutshell

Since data on certain relevant factors affecting COVID-19 infection, severity, and
mortality has already been published [81–83], only the most important aspects related to
this issue are briefly summarized in Figure 5 and concisely described in the present section.
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Figure 5. Sociodemographic/behavioral factors and comorbid conditions affecting COVID-19. Elab-
orated on the basis of available literature data [81–83]. BMI: body mass index; COPD: chronic
obstructive pulmonary disease; BP: black people/patients; WP: white population; AP: Asian patients;
yr: year; >: more susceptible. ↑: increase.

Some sociodemographic (i.e., age, sex, race, ethnicity) and behavioral factors (smoking)
as well as some comorbidities may affect the course of COVID-19. Many studies have
indicated that the elderly vs. the young and men vs. women are more susceptible to
infection [84–87]. Some authors also found strong associations of older age, male sex,
and certain comorbidities with hospital admission and risk of critical illness in COVID-19
patients [88]. Additionally, Marin et al. [89], who reviewed data on predictors of COVID-19
severity, indicated older age as a major predictor of mortality. Higher COVID-19 severity
was also observed by Ebinger et al. [90] in older, male, obese, diabetic patients, and in
African Americans. As for race/ethnicity, Aldridge et al. [91], who examined the risk of
infection and death related to COVID-19, concluded that Black, Asian, and Minority Ethnic
(BAME) people are at increased risk of death due to this illness. Gross et al. [92]—who
focused on Black, Latinx, and white population—noted that Black people and the Latinx
population had higher COVID-19-associated risk of death than white patients.

Hu et al. [93], who analyzed the clinical course of COVID-19 to identify risk factors
associated with clinical outcomes, demonstrated that smoking is an independent risk factor
for an unfavorable outcome. Umnuaypornlert et al. [94], who conducted a comprehensive
systemic review and meta-analysis on the association between smoking and negative out-
comes in COVID-19 patients, concluded that smoking significantly increases the risk of
COVID-19 severity and patient death. They suggested that smoking cessation should be
recommended for all smokers along with avoidance of secondhand smoke by non-smokers.
Furthermore, Patanavanich and Glantz [95]—who studied the association between smoking
and COVID-19 disease progression—stressed that smoking is an independent risk asso-
ciated with severe progression of COVID-19, including mortality. They highlighted that
these effects seem to be higher in young people. Similarly, Vardavas and Nikitara [96], who
conducted a systemic review of studies on COVID-19 providing information on patients’
smoking status, emphasized that smoking is associated with negative progression and
adverse COVID-19 outcomes.

The presence of comorbidities such as hypertension, diabetes mellitus (DM), and
chronic obstructive pulmonary disease (COPD) has also been reported to be associated
with a severe COVID-19 course [85,97,98]. The available data also indicate that obese
patients are at increased risk of severe COVID-19 [99–101]. As for asthma, the analysis of
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clinical results performed by Izquierdo et al. [86] demonstrated that the increased risk of
hospitalization due to COVID-19 in patients with this a long-term lung disease is highly
associated with age and related comorbidities. As reported by Terry et al. [102], who
reviewed many studies related to the prevalence of asthma in patients with COVID-19,
there is no clear evidence of increased risk of COVID-19-related hospitalization, severity, or
mortality due to this illness.

7. COVID-19: Elements
7.1. Impact on Immune Response—A Concise Summary

Such elements as Mg, Zn, Cu, Fe, and Se are well known to play a role in the reg-
ulation of immune responses [103–107]. Therefore, the maintenance of homeostasis of
these essential minerals may be crucial for adequate immune activity and effective fight
against infections [77,108–110]. These elements are related to both cell mediated and hu-
moral immunity. Their immunomodulatory potentials are collected in Figure 6 and briefly
summarized in this section.

Figure 6. Impact of selected elements on immune responses. Elaborated on the basis of available lit-
erature data [75,111–134]. NK: natural killer; Tc: cytotoxic T cell; Treg: regulatory T cells; Ag: antigen;
Foxp3+: forkhead box transcription factor; Th: helper T cell; pro-INF-C: pro-inflammatory cytokines;
TNF-α: tumor necrosis factor alpha; IL-1β: interleukin 1 beta; NF-κB: nuclear factor kappa B; ROS:
reactive oxygen species; IL-6: interleukin 6; IFN-γ: interferon gamma; INF-I: infection incidence;
IL-2: interleukin 2; IL-2Rα: soluble IL-2 receptor alpha; IL-2R: IL-2 receptor; FTS: thymulin; CMI:
cell-mediated immunity. NEUT: neutrophils; NPA: neutrophil phagocytic activity; LPR: lymphocyte
proliferation response. ↑: increased; ↓: decreased; : increased activity; : inhibited activity; : trend
toward an increase; ↓: inhibited secretion. *: in vitro studies.
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7.1.1. Magnesium (Mg)

Mg has been reported to elevate the level of phagocytosis-positive NEUT and NEUT
phagocytic capacity, lead to an increase in the proliferative capacity of CD4+ T cells [111],
and reduce cytokine production [112] by reducing nuclear factor kappa B (NF-kB) activa-
tion [135]. Mg can also stimulate the expression of anti-inflammatory markers in a dose-
dependent manner [136] and the production of the IL-1 receptor antagonist (IL-1RA) [113].
Inhibition of the secretion of IL-4 and IL-10 by Th2 cells has been noted as well [114].

7.1.2. Zinc (Zn)

Zn has been reported to (a) increase CD4+ and CD8+ production [137], (b) enhance
NK cell cytotoxicity according to [138], (c) elevate neutrophil responses to microbes [139],
(d) induce CD4+CD25+Foxp3+ antigen (Ag)-specific regulatory T (Treg) cells [134], (e) sup-
press interferon gamma (IFN-γ) production [134], (f) reduce the number of activated Th
cells according to [75], (g) restore the activity of the Zn-dependent hormone thymulin
(FTS) according to [75] involved in maturation and differentiation of T lymphocytes [140],
(h) decrease infection incidence (INF-I) [125], modulate interleukin 6 (IL-6) levels [141],
and (i) inhibit the induction of tumor necrosis factor alpha (TNFα) and interleukin 1 beta
(IL-1β) mRNA by inhibiting the activity of NF-κB [126], which is the main regulator of
proinflammatory responses [125]. Moreover, studies on HUT-78 cells conducted by Prasad
et al. [118] demonstrated that Zn enhances the production and gene expression of IL-2
and interleukin-2 receptor alpha (IL-2Rα) via NF-kB activation. Additionally, Zn has been
reported to cause an increase in the level of one of the critical cytokines—i.e., interleukin 12
(IL-12) [122,130]—which plays a vital role in both innate and adaptive immunity [142,143].

7.1.3. Copper (Cu)

Cu increases lymphocyte proliferation response (LPR) [144], elevates neutrophil phago-
cytic activity (NPA) [144], supports Th1 response according to [145], and causes a significant
increase in the production of interleukin 2 (IL-2) [146], which is crucial for T helper cell
proliferation, NK cell cytotoxicity, and B cells function [147,148]. Cu may also enhance
inflammatory response (IL-6) according to [145] and affect the level of IL-6 [149], i.e.,
an essential inflammatory mediator capable of exerting a protective effect during acute
inflammation [150].

7.1.4. Iron (Fe)

Fe has been found to increase total T cells [119], improve the CD4+ cell count and
CD4:CD8 ratio [128], elevate the level of IL-4 [120], as well as modulate the IFN-γ ef-
fects [115] and the levels of IL-10 and IL-12 according to [124]. By the ability to produce free
radicals, this element may also play an important role in the prevention of infection [151].

7.1.5. Selenium (Se)

Se has been reported to increase T cell proliferation [121], elevate the Th cell (CD4)
count [123], increase NK cells according to [127], improve NK cell activity [116], and
enhance the expression of high-affinity IL-2 receptor (IL2-R) [117]. This element also
contributes to an increase in Th1 and Th2 responses, i.e., elevated IFN-γ/IL-2 levels
and IL-4 concentrations, respectively [152]. Se may also increase lymphocyte prolifer-
ation in response to mitogen stimulation [117] and decrease the levels of IL-2, IFN-γ,
and TNF-α [131,133].

7.2. Blood and Urinary Levels of Elements and Studies on Mineral Supplementation

This section collects results of studies on evaluation of metal levels in COVID-19
patients (both essential elements, including such micro- and macro-elements as Fe, Zn, Cu,
Se, Mn, Cr, Mg, Ca, Na, and K and the most toxic metals—i.e., Cd, Pb, and Hg) and findings
of research focused on the effects of supplementation with minerals in COVID-19 subjects.
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A brief summary of variations in the blood and urinary levels of elements in relation to
the disease severity and mortality along with minerals used (to date) in the supplementation
strategy in COVID-19 patients is presented in Figure 7. More information about this issue
is collected in Tables S1 and S2 and described in detail in this part.

Figure 7. Variations in blood and urinary metal levels in association with disease severity and
mortality and minerals with potential clinical significance in COVID-19. Elaborated on the basis
of available literature data [38,51,153–170]. Cd: cadmium; Hg: mercury; Pb: lead; Cr: chromium;
Mn: manganese; Se: selenium; Cu: copper; Fe: iron; Ca: calcium; K: potassium; Na: sodium;
Mg: magnesium, Zn: zinc. ↓ decrease; ↑ increase; ↑↑ hyperincrease.

7.2.1. Essential Trace Elements (Fe, Zn, Cu, Se, Mn, Cr)

Fe

The literature comprises some articles on the level of Fe in COVID-19 subjects. For
example, Sonnweber et al. [35], who examined patients with mild to critical COVID-19,
demonstrated an association between this illness and prolonged disturbances of Fe home-
ostasis. Thirty percent of all observed subjects had Fe deficiency two months after the
COVID-19 onset. A significantly lowered level of this element was also found by Skalny
et al. [171] in the serum of mild, moderate, and severe COVID-19 patients, compared to the
control, by Zeng et al. [163] in the whole blood of patients who developed a severe form
of COVID-19, in comparison with non-severe cases, and by Zhao et al. [159] in severely
ill COVID-19 patients, compared to mild cases (Table S1). The serum Fe deficit was also
observed to be closely correlated with COVID-19 severity and mortality and was found
to be an independent risk factor for death in patients with COVID-19 [159]. Addition-
ally, variations in the concentration of one of the markers of Fe metabolism—i.e., ferritin
(FER)—in the serum of patients, depending on the COVID-19 severity were noted. For
example, Alkattan et al. [157] reported that people with severe disease had a 3.5-fold higher
concentration of this protein than those with non-severe COVID-19. Similarly, Sonnweber
et al. [35], Yasui et al. [162], and Alkattan et al. [157] recorded a higher level of FER in the
serum of severe case patients, compared to non-severe, mild/moderate group (Table S1).
Taken together, these data suggest that Fe disorders may affect the COVID-19 course.
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Zn

The literature also provides interesting data on the levels of Zn in patients with
COVID-19. Abdelmaksoud et al. [167], who assessed the Zn levels in the serum of COVID-
19 patients with different grades of severity, did not reveal any significant differences in the
concentration of this element between patient subgroups. Similarly, Alkattan et al. [157]
did not observe significant changes in the level of Zn in the serum of severe versus non-
severe COVID-19 patients (Table S1). In turn, Muhammad et al. [172], Elham et al. [173],
and Jothimani et al. [38] reported a significant reduction in the concentration of Zn in the
plasma/serum of COVID-19 patients, in comparison with the control. It was also reported
by Dubourg et al. [158] in the plasma of patients with poor versus good clinical outcome
and by Zeng et al. [163] in the whole blood of severe versus non-severe COVID-19 patients
(Table S1). In addition, a study conducted by Jothimani et al. [38] revealed that 57.4% of
COVID-19 subjects were Zn deficient and developed more complications. As observed, the
deficit of Zn was associated with a prolonged hospital stay and increased mortality. Skalny
et al. [171], who showed a significantly lowered Zn concentration in the serum of moderate
and severely ill COVID-19 patients compared to the control, also observed a gradual
decrease in the level of this metal with increasing severity of this illness. Moreover, Heller
et al. [80] demonstrated that Zn concentrations in COVID-19 patients were lower than in
healthy subjects and found that the majority of samples from the non-survivors (i.e., 73.5%)
and almost half of the samples from the survivors (i.e., 40.9%) were below the threshold for
Zn deficiency (i.e., <638.7 µg/L) (Table S1). Pour et al. [174] also indicated that the serum
Zn concentration in the deceased group was significantly lower, compared to the recovered
group (Table S1). Finally, Yasui et al. [162], who evaluated the predictive factors for a
critical illness of COVID-19, indicated a remarkably lower concentration of this element
in the serum of severe patients (Table S1, [35,38,51,80,157–159,162–165,167,168,171–176])
and suggested that prolonged hypozincemia (<70 µg/dL) can be a risk factor for a severe
COVID-19 course.

To sum up, the majority of the above-mentioned studies demonstrated that COVID-
19 is related to a significant fall in the level of Zn, which seems to point to the need of
supplementation with this essential element of COVID-19 subjects to reduce poor outcomes.
The analysis of available literature data showed single studies on supplementation with this
mineral in COVID-19 patients. One of them—i.e., a prospective clinical trial study—provides
results of the serum Zn levels in subjects with COVID-19 of various severities (with and
without olfaction dysfunction) and data on the effect of Zn therapy in the recovery of smell
disorders [167]. The second study presents findings from a retrospective design on the
serum Zn and Cu levels and Zn supplementation in parenteral nutrition (PN) as well as
their association with inflammatory markers and prognosis [168]. The third article shows
data on the clinical significance of Zn and Se in critically ill COVID-19 patients with severe
ARDS [169]. The fourth study presents the results of a retrospective observational design
on administration of Zn with HCQ and azithromycin (AZM) in hospitalized COVID-19
patients [177]. The fifth article shows findings on the association between Zn and the
survival of hospitalized patients with COVID-19 [178]. The sixth paper presents results
of a retrospective case series study on the treatment of COVID-19 outpatients with Zn
in combination with low-dose HCQ and AZM [179] and another two studies provide
data on the efficacy and safety of Zn as adjunctive therapy in critically ill patients with
COVID-19 [180] as well as the effectiveness of this element in the prevention and mitigation
of COVID-19 [181]. Finally, the last multi-center cohort study shows data on the effect of
Zn with a ionophore on COVID-19 in-hospital mortality rates [182].

The first study mentioned above [167] (including 134 participants, 105 with olfactory
disturbances) showed a significantly lowered duration of recovery of olfactory function in
COVID-19 patients receiving Zn therapy (49), in comparison with those without Zn treat-
ment (56). However, no marked differences in the total recovery duration from COVID-19
between both groups were noted. The second study [168] (including 35 participants, aged
~65 y) demonstrated that the serum Zn level during NP support is inversely correlated
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with the length of hospital stay but not with mortality, and this association was observed in
patients in both ICU and intermediate care. The third one, including 22 patients (median
age 60.5 y), showed a beneficial effect of supplementation with Zn and Se in the treat-
ment of critically ill COVID-19 patients [169]. The fourth study [177] with 932 subjects
(~63 y of age), with 411 receiving Zn together with HCQ and AZM, showed a reduced
risk of mechanical ventilation and mortality in subjects receiving Zn along with HCQ and
AZM, in comparison with those without Zn supplementation. The fifth study mentioned
above [178] including 242 patients (median age 65 y), with 196 administered zinc sulfate at
a total daily dose of 440 mg (100 mg elemental Zn), did not reveal any significant benefi-
cial effect of the supplementation with this element. The sixth study with 141 COVID-19
patients (median age 58 y) receiving Zn, HCQ, and AZM (i.e., Zn sulfate: 220 mg, 50 mg
elemental Zn, once daily; HCQ: 220 mg twice daily; AZM: 500 mg once daily) for five con-
secutive days demonstrated that the treatment with the triple therapy may prevent a large
number of hospitalizations [179]. One of three last studies—i.e., a two-center retrospective
study [180] on 164 patients aged ≥ 18 y (82 receiving Zn at a daily dose of 220 mg, 50 mg
elemental Zn)—indicated that Zn, as an additional treatment, may have survival benefits.
Other interventional, prospective, single-blind study [181] involving 96 control subjects
(71 y of age) and 104 patients (74 y of age) treated with 10, 25, or 50 mg of Zn picolinate
daily revealed that the Zn supplementation in all three doses may be effective prophylaxis
of symptomatic COVID-19 and may mitigate the severity of COVID-19 infection. The last
one including 3473 adult hospitalized patients showed a significant reduction in hospital
mortality rates after administration of Zn in combination with ionophore [182].

Cu

The level of Cu in COVID-19 patients was also evaluated providing the data presented
below. A significant decrease in the concentration of this element was noted by Muhammad
et al. [172] in the plasma of COVID-19 patients, in comparison with the control group, by
Arrieta et al. [168] in critically ill COVID-19 patients, and by Hackler et al. [175] in non-
surviving versus surviving COVID-19 subjects (Table S1). The latter authors [175], who
assessed the potential value of the biomarkers of the Cu and Se status, demonstrated that a
composite biomarker of Cu and selenoprotein P (Se-P) may provide reliable information
on the COVID-19 course and survival odds. In turn, a significant increase in the serum
Cu concentration was noted by Skalny et al. [171] in patients with moderate and severe
COVID-19 groups, in comparison with the control, and by Zeng et al. [163] in the whole
blood of severe versus non-severe COVID-19 patients. Finally, Alkattan et al. [157] did not
report any significant changes in the serum Cu concentration in severe COVID-19 patients,
compared to non-severe individuals (Table S1).

A deficit of Cu in the blood of critically ill COVID-19 patients reported by some authors
cited above may suggest the need for supplementation with this mineral. Unfortunately,
the lack of findings from observational studies/clinical trials on the evaluation of the
potential efficacy of supplementation with these essential elements in severe COVID-19
patients does not allow us to discuss the results more extensively. On the other hand, the
elevated level of this mineral in the blood of COVID-19 patients reported by other research
groups and the lack of changes in its concentration noted by Alkattan et al. [157] makes Cu
supplementation not so obvious.

The findings obtained by another research group [164] focused on analysis of urinary
concentrations of essential and/or toxic metals and on the associations between them and
severe illness/outcome in patients with COVID-19 showed a significant increase in the level
of this element in the urine of severe COVID-19 patients, in comparison with non-severe
cases. The creatinine-adjusted urinary concentration of Cu was also significantly elevated
in severe patients, compared to non-severe subjects (Table S1). Additionally, the level of Cu
in the urine of severe patients was significantly higher in the deceased group than in the
recovered group and, when adjusted by urinary creatinine, its concentration still remained
markedly elevated in the deceased versus recovered group [164]. As suggested, high
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urinary Cu excretion can be associated with liver dysfunction and enhanced inflammatory
processes. The authors also showed that the urinary creatinine-adjusted Cu concentration
(>25.57 µg/g and >99.32 µg/g) was associated with significantly increased risk of severe
illness and fatal outcome, which suggests that the urinary Cu may serve as a prognostic
factor of severe COVID-19.

Se

Certain studies aimed at analyzing the level of Se in COVID-19 patients also revealed
disturbances in homeostasis of this mineral. For example, a markedly elevated concen-
tration of Se was found by Alkattan et al. [157] in the serum of severe versus non-severe
COVID-19 patients. In turn, a significant decrease in the concentration of this element was
noted by Majeed et al. [176] and Muhammad et al. [172] in the serum/plasma of COVID-
19 patients, in comparison with the control. A significantly reduced serum Se level was
also found by Jahromi et al. [165] in patients with severe COVID-19, in comparison with
those classified into a mild and moderate group, and by Skalny et al. [171] in the serum of
moderate and severely ill COVID-19 subjects, compared to the control (Table S1). The latter
authors also observed a gradual decrease in the level of Se in the serum with increasing
COVID-19 severity. A significant decline in the concentration of Se and, additionally, Se-P
was recorded by Moghaddam et al. [51] in the serum of non-survivors, in comparison with
survivors (Table S1). The authors also found a strong positive correlation between the Se
and SeP levels in the group of non-survivors and survivors.

In addition to the above-mentioned findings, Zeng et al. [164] recorded a significant
decrease in the level of Se in the urine of severe versus non-severe COVID-19 patients, and
a significant increase in its urinary concentration after creatinine adjustment (Table S1).
Additionally, among the severe cases, the creatinine-adjusted urinary level of this element
was markedly elevated in the deceased than recovered group [164]. As suggested, liver
dysfunction may be responsible for such an effect according to [164].

To the best of our knowledge, there is only one paper presenting the findings of an
observational study on the influence of administration of Se in COVID-19 ICU patients with
severe ARDS [169], in which 22 subjects (~60.5 y of age) received 1.0 mg of intravenous Se
(as selenite) per day for 2 weeks and artificial diet additionally containing Se and Zn. As
shown, the selected supplementation strategy effectively compensated Se and Zn deficiency
as well as Se-P deficit in COVID-19 patients. It was also found that Se-P inversely correlated
with CRP, IL-6, IL-1β, and IL-10 and positively correlated with CD8+ T cells and NK cells.
Additionally, Se was negatively correlated with CRP and positively associated with the
number of NK cells. Thus, the results of this study provide tangible evidence for the
importance of Se and Zn supplementation in severe COVID-19 patients.

Mn and Cr

The levels of Mn and Cr, which may act as anti-inflammatory agents [183,184], were
also investigated in COVID-19 patients. For example, significantly lowered concentrations
of Mn were noted by Muhammad et al. [172] in the plasma of COVID-19 patients, compared
to control subjects and by Zeng et al. [163] in the whole blood of severe, compared to the
non-severe group. The latter authors [163] also found significantly elevated concentrations
of Cr in the whole blood of severe COVID-19 patients, compared to non-severe cases
(Table S1), and in the whole blood of deceased versus recovered patients. In addition, they
found markedly elevated concentrations of Mn in the urine of patients with severe COVID-
19 (both without and after urinary creatinine adjustment), in comparison with non-severe
subjects (Table S1), and in the urine of the deceased group (without and after urinary creati-
nine adjustment), compared to recovered ones. The urinary excretion of Cr also markedly
increased in severe versus non-severe cases and its concentration (without and after urinary
creatinine adjustment) in the severe patients was significantly higher in the deceased than
recovered group [164]. As suggested, the disturbances in urinary concentrations of Mn and
Cr are associated with severe illness and a fatal COVID-19 outcome.
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7.2.2. The Most Toxic Trace Metals (Hg, Pb, Cd)

The levels of Hg, Pb, and Cd, which are well known to be toxic to mammals, were also
investigated. The reviewed data did not reveal any significant changes in the concentrations
of Hg and Pb in the whole blood of severely ill and deceased patients, in comparison with
the non-severe and recovered group, respectively [163]. In turn, their urinary concentrations
(when adjusted by urinary creatinine) significantly increased in severe COVID-19 patients,
compared to non-severe subjects (Table S1), and in the deceased versus recovered group
after or without adjustment by urinary creatinine [164]. In turn, the concentration of Cd in
the whole blood of severe COVID-19 patients did not change significantly, compared to
non-severe subjects (Table S1), but its level significantly increased in the deceased patients,
compared to the recovered group [163]. A significant increase in the concentration of this
metal was also found in the urine (without and after urinary creatinine adjustment) of
severe patients with COVID-19, in comparison with non-severely ill individuals, and in the
deceased versus recovered group [164]. As suggested, the markedly higher Cd, Hg, and Pb
levels in the urine of severe COVID-19 patients may have resulted from kidney damage.

7.2.3. Macroelements (Mg, Ca, Na, K, Cl)

Given the importance of macroelements in human health [185], their inadequate
balance can lead to serious health consequences and impair immune function. Some
published studies focused on macroelements in COVID-19 patients revealed alterations
in the Mg, Ca, Na, K, and Cl levels. For example, Quilliot et al. [186], who evaluated the
prevalence of dysmagnesemia in COVID-19 patients, but not the relationship between
magnesemia and patient prognosis, noted a significant decrease in the concentration of
Mg in moderately versus critically ill subjects. They also found that hypomagnesemia
was significantly higher in patients classified into the moderate group than in critically
ill subjects, whereas the prevalence of high-level serum Mg concentrations was markedly
elevated in critically ill COVID-19 patients [186]. A significant decrease in the level of
Mg was also noted by Zeng et al. [163] in the blood of severe COVID-19 patients and by
Alamdari et al. [187] in the blood of expired versus discharged patients (Table S2).

To date, the results of only one observational study evaluating the effect of supple-
mentation with Mg in combination with vitamin D and B12 on the progression to severe
outcomes in older patients (≥50 years of age) with COVID-19 [170] provided evidence of
the beneficial effects of the strategy of supplementation with this mineral. As indicated by
the study, the combined administration of Mg with vitamin D and B12 is associated with a
significant reduction in the proportion of patients with clinical deterioration.

As for Ca, a markedly lowered level of this element was noted by Elham et al. [173]
in the serum of COVID-19 patients versus healthy individuals and by Alkattan et al. [157]
and Qian et al. [188] in the serum of severe patients versus non-severe ones. Cappellini
et al. [147] also found a significant decrease in the concentration of both total Ca in the
serum and ionized Ca (Ca2+) in the whole blood of COVID-19 subjects, compared to healthy
subjects. Sun et al. [166], who examined correlations between the level of Ca in the serum
and clinical outcomes in patients with SARS-CoV-2 infection, observed an association
between the serum Ca concentration and the disease severity and prognosis; subjects at
serum Ca levels less than 2.0 mmol/L had higher MODS incidences, septic shock, and
a higher 28-day mortality rate. The incidence of hypocalcemia was found to reach 74%.
Bennouar et al. [189] also demonstrated a high frequency of hypocalcemia in severe COVID-
19 patients and provided evidence of their potential link to poor short-term prognosis. The
authors found that only 35.8% of patients had an adequate serum Ca level and that the
concentration of this element in the serum lower than 2.05 mmol/L can predict short-term
mortality with a sensitivity of 84% and a specificity of 60%. The above-mentioned findings
seem to point to correction of hypocalcemia, common in severely ill COVID-19 patients, to
attenuate disease severity. However, in literature, there are no available data on the effects
of Ca supplementation in hypocalcemic COVID-19 patients. In turn, other data (referring
to other cases of critical illness) have shown that administration of Ca brings no benefit
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and may even be harmful [190,191]. This shows that further studies are needed to verify
the beneficial and unfavorable effects of Ca supplementation in critically ill patients. In
another study [163], a significantly elevated Ca concentration in the whole blood of severe
COVID-19 subjects compared to non-severely ill individuals was found.

As far as Na is concerned, Alkattan et al. [157] did not observe any significant
changes in the level of this element in the serum of severe versus non-severe COVID-
19 patients, but other studies showed a significant reduction in the concentration of Na
in the serum/plasma of patients with a severe form of COVID-19, in comparison with
a group with mild disease [188,192] (Table S2). Sjöström et al. [193], who explored the
dynamics of electrolytes in COVID-19 patients, revealed the presence of hyponatremia
in subjects at admission followed by the development of hypernatremia during the first
2 weeks of hospitalization. As observed, hypernatremia was common and associated with
a more severe COVID-19 course and a higher mortality rate. Hyponatremia, as well as
hypokalemia and hypochloremia, were also recorded more frequently in patients infected
with COVID-19 than in controls [194]. Moreover, hyponatremia was found to be associated
with COVID-19 in patients requiring ICU admission. Gálvez-Barrón et al. [195], who ana-
lyzed the most important prognostic factors of severe disease and mortality in a cohort of
oldest-old people with COVID-19 ≥ 80 years of age, demonstrated that the serum Na level
was associated with mortality in these subjects. As Na deficiency may increase the risk of
developing severe and fatal COVID-19 infection [196,197], the monitoring of the level of
this element in severe COVID-19 seems be desirable. A significant decrease was also found
in the concentration of K in the blood of deceased patients [187], in the plasma of severe
and critically ill patients [155], and in the serum of non-critically ill subjects with confirmed
COVID-19 [198]. In turn, Alkattan et al. [157] did not observe any significant alterations in
the level of K in the serum of patients with severe versus non-severe COVID-19 subjects
(Table S2, [154,155,157,163,173,186–189,192,198,199]). Finally, in severe COVID-19 patients,
compared to non-severe cases, a markedly lowered concentration of Cl was also noted [157]
(Table S2). These data suggest that derangements in homeostasis of the above-mentioned
elements may predispose patients to severe COVID-19 symptoms.

7.3. COVID-19: Clinical Trials on Supplementation with Minerals—A Brief Update in a Nutshell

This section is an attempt to provide an overview of interventional clinical studies with
such minerals as Zn, Cu, Se, and Mg (alone or in combination with some drugs, vitamins,
or herbal formulations/plant extract), which are currently being used in COVID-19 patients
or in subjects at higher COVID-19 risk. The results obtained from these clinical trials
conducted in the USA, Australia, China, India, Brazil, and other countries may provide
real clinical data for COVID-19 challenges and shed light on the potential suitability of
minerals as prophylactic agents against SARS-CoV-2 infection. Noteworthy, due to their
potent antiviral activities, these elements may be part of a preventive/therapeutic regime
against SARS-CoV-2 infection. A brief summary of the current status of clinical trials with
Zn, Cu, Se, and Mg, at the time of writing this review, is provided below, while more details
are given in specific sections included in this part of the review.

As on 18 January 2022, one (1), seven (7), one (1), and three (3) clinical trials marked as
‘Not yet recruiting’/‘Active, not recruiting’ include Mg, Zn, Se, and Cu, respectively, one (1)
and eleven (11) clinical studies with the ‘Recruiting’ status include Mg and Zn, respectively,
and seven (7), two (2), and five (5) marked as ‘Recruitment complete’ include Zn, Mg, and
Se, respectively.

7.3.1. Zn

Clinical trials marked as ‘Not yet recruiting’/‘Active, not recruiting’ (Table S3) are un-
dertaken to evaluate (a) the efficacy of HCQ and Zn in the prevention of COVID-19 infection
in military healthcare workers (NCT04377646); (b) the effect of combined supplementation
with Zn and green tea extract (GTE) on reduction in symptom duration and severity from
cold and flu-like illness, including COVID-19, in adult patients (NCT04898023); (c) the
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efficacy and safety of HCQ, AZM, and Zn in the treatment of patients with SARS-CoV-
2 infection in Senegal (PACTR202005622389003); (d) the effect of Zn and ascorbic acid
(AscA) supplementation in hospitalized COVID-19 positive patients in Bangabandhu
Sheikh Mujib Medical University—BSMMU (NCT04558424); (e) the therapeutic role of
Zn in COVID-19 patients (CTRI/2020/07/026340); (f) the efficacy of combined therapy
with ivermectin (IVM), doxycycline (DOXY), Zn, vitamin D3, and vitamin C in COVID-19
infection treatment (NCT04482686); and (g) the effect of resveratrol (RSV)-assisted Zn
therapy in non-hospitalized patients with SARS-CoV-2 infection (NCT04542993).

In turn, the clinical trials marked as ‘Recruiting’ (Table S3) are focused on the eval-
uation of (a) the effectiveness of quadruple therapy with Zn on the clinical outcomes of
patients infected with COVID-19 (NCT04468139); (b) the effect of supplementation with Zn
on the clinical efficacy of CQ in treatment of COVID-19 (NCT04447534); (c) the effect of
ivermectin (IVM) with or without Zn in treating the COVID-19 patients (NCT04472585);
(d) the effectiveness of high-dose intravenous Zn in COVID-19 positive critically ill patients
(ACTRN126200000454976); (e) the efficacy and safety of therapy including AZM, HCQ,
Zn, vitamin D3/B12 with or without vitamin C (vitamin C) in participants with COVID-19
(NCT04395768); (f) the efficacy of quintuple therapy (HCQ, AZM, vitamin C, vitamin D,
and Zn) in the treatment of patients with COVID-19 infection (NCT04334512); (g) the effec-
tiveness of a variety of non-prescription approaches for the treatment of non-hospitalized
adults positive for COVID-19 (NCT04621149); (h) the effect of vitamin D and Zn supple-
mentation on improving COVID-19 treatment outcomes among COVID-19 patients in India
(NCT04641195); and (g) the treatment with HCQ, vitamin C, and vitamin D in combination
with Zn for the prevention of COVID-19 infection in medical workers, who are at elevated
risk of COVID-19 due to the exposure to COVID-19 positive patients in the Emergency
Department or Intensive Care Unit (NCT04335084); as well as (h) with HCQ or IVM in com-
bination with Zn as a prophylaxis for asymptomatic healthcare workers (NCT04384458). In
the last clinical trial NCT04323228 with the ‘Recruiting’ status, a combination of dietary
supplements including Zn will be used as an intervention against COVID-19.

Finally, the clinical trials marked as ‘Recruitment complete’ (Table S3) were under-
taken with the aim to evaluate (a) the safety and efficacy of HCQ and Zn in combination
with either AZM or DOXY in a higher risk COVID-19 positive outpatient population
(NCT04370782); (b) the effect of Zn on treatment and clinical course of SARS-CoV-2 pa-
tients (IRCT20180425039414N2); (c) the impact of AscA and zinc gluconate (ZnGLU) in
reducing duration of symptoms in patients diagnosed with coronavirus disease 2019
(NCT04342728); (d) the efficacy of Zn in a higher risk COVID-19 positive outpatient pop-
ulation (NCT04621461); (e) the effectiveness of Kabasura Kudineer (KSK) and vitamin
C-Zn in the management of asymptomatic COVID-19 patients (CTRI/2020/05/025215);
(f) the efficacy of prophylaxis treatment among migrant workers at high-risk of COVID-19
(NCT04446104); and (g) the efficacy of a combination of doxycycline (DOXY) and Zn in
the primary prevention of COVID-19 infection in health care professionals (NCT04584567).
More details related to these studies are provided in Table S3.

7.3.2. Cu and Se

As far as Cu is concerned, in clinical trials marked as ‘Not yet recruiting’ only, patients
with pneumonia due to SARS-CoV-2 (CTRI/2020/05/025337—phase II), asymptomatic or
mildly symptomatic patients with SARS-CoV-2 infection (CTRI/2020/05/025336—phase
III), and SARS-CoV-2 positive cancer patients, who are symptomatic or have COVID-
19-induced pneumonia (CTRI/2020/07/026514) will be tested with a new molecule—i.e.,
resveratrol (RSV)—in combination with Cu in the form of RSV-Cu tablets. Table S4 provides
more details about the patients and treatment.

As for Se, clinical trial with the ‘Not yet recruiting’ status (NCT04869579) will consist
in the use of selenious acid (SeA) in moderately-, severely-, and critically-ill COVID-19
patients. More precisely: the COVID-19 patients will receive a SeA infusion (2000 µg) on
day one and next a continuous infusion of SeA will be applied at a maintenance dose of
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1000 µg daily on days 2–14 together with continued standard of care therapy (Table S5). As
highlighted, “the working hypothesis of this trial is that selenium treatment would decrease
the death rates and increase the rate of hospital discharges among hospitalized patients”.

Another interventional clinical studies employing this element, marked as ‘Recruit-
ment complete’ (Table S5), were undertaken with the aim to examine (a) the effect of
supplementation with Se on inflammatory markers and blood cells in COVID-19
patients (IRCT20210427051100N1); (b) the effect of administration of Se on the physi-
cal burden linked to ARDS, mortality, and the need for hospitalization in patients diag-
nosed with COVID-19 at early stages (IRCT20190418043307N1); (c) the increase in the
chance of recovery and reduction of death rates and the need for intensive care/mechanical
ventilation by adding injectable Se to the treatment regimen for 19-year-old
inpatients (IRCT20160706028815N5); (d) the effect of the combination of Se, vitamin C,
and methylprednisolone (MPS) on the mortality and morbidity of COVID-19 patients
(IRCT20190312043030N2); and evaluate (e) the effectiveness of Se added to intravenous
nutrition therapy on mortality and duration of ICU hospitalization in COVID-19 patients
(IRCT20160919029870N3).

7.3.3. Mg

One clinical trial with the ‘Not yet recruiting’ status is aimed to compare the safety and ef-
ficacy of vitamin D with Mg in mild to moderate COVID-19 patients (CTRI/2020/06/026189).
Another clinical study, marked as ‘Recruiting’, is being done to determine whether admin-
istration of oral Mg citrate (MgCIT) and a probiotic will improve the outcome of adults
hospitalized with COVID-19 (NCT04941703). In turn, clinical trials marked as ‘Recruitment
complete’ were undertaken to evaluate the efficacy and safety of inhaled Mg sulfate (MgS) in
combination with standard treatment in COVID-19 patients (IRCT20191211045691N1) and
the effect of supplementation with vitamin D and Mg on clinical symptoms, inflammatory
markers, and oxidative stress in patients with COVID-19 (IRCT20210702051763N1) (Table S6).

To date, the results of only three clinical trials—i.e., NCT04342728, CTRI/2020/05/025215,
and NCT04447534 (Table S3)—have been published. The findings of the other clinical trials
are still awaited.

The data of the randomized NCT04342728 clinical trial where 214 patients with SARS-
CoV-2 infection received either 10-day therapy with ZnGLU (50 mg) and AscA (8000 mg)
separately (58 and 48 subjects, respectively) and in combination (58 individuals) or stan-
dard care (50 subjects) showed that the treatment with these agents administered alone or
together did not significantly reduce the duration of symptoms, compared to the standard
care [200]. Patients without the supplementation achieved a 50% reduction of symp-
toms with a mean of 6.7 days, in comparison with 5.5 for AscA, 5.9 for ZnGLU, and
5.5 for AscA+ZnGLU.

In turn, the results of the prospective, single-center, open-labeled, randomized, con-
trolled CTRI/2020/05/025215 trial with 60 asymptomatic COVID-19 patients receiving
KSK (60 mL twice daily for 7 days; 30 subjects) or standard care (30 individuals), i.e.,
vitamin C (60000 IU, 7 days) and Zn (100 mg, 7 days) revealed a reduced SARS-CoV-2 viral
load on the seventh day in both groups, with more pronounced results in the KSK group.
Simultaneously, no adverse effects were observed [201].

Finally, the findings obtained from the last randomized NCT04447534 clinical trial
including 191 patients with a confirmed diagnosis of COVID-19 infection receiving HCQ in
combination with Zn (96 subjects, ~43 years of age) or HCQ alone (95 individuals, ~43 years
of age) showed that Zn did not enhance the clinical efficacy of HCQ [202], which works as
Zn ionophore, thereby increasing Zn concentration [203].

To sum up, although the results of the above-mentioned trials did not show a sig-
nificant effect of Zn, other clinical trials employing this element in COVID-19 may shed
different light on Zn supplementation and offer valuable data on Zn adjunct treatment. It
should be added that it will be possible to discuss thoroughly the clinical value of supple-
mentation with this mineral when the data of the trials collected in this review become
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available. It should also be mentioned that one of the clinical studies, observational in
nature (including 229 participants), which was undertaken to evaluate the Zn, Cu, Se,
vitamin A, D, and E status in elderly subjects affected by COVID-19 and to correlate this
status with prognosis of this illness (NCT04877509, France), may provide interesting data
on association of Zn and other micronutrients with adverse outcomes during viral infection
and provide the basis for future research.

8. Summary

The studies on elements in COVID-19 patients overviewed in the current report
showed abnormal levels of both toxic metals and those crucial for the proper function
of the organism in the blood/urine of COVID-19 patients. They also revealed that, in
some cases, the changes in the concentrations of certain elements are more exacerbated
in subjects who developed a severe form of COVID-19, compared to those with non-
severe/mild-to-moderate COVID-19 infection, and in non-survivors than in survivors.
In certain cases, a gradual decrease in the levels of elements that are able to maintain
an optimal immune response and effectively counteract SARS-CoV-2 infection was also
observed with increasing COVID-19 severity.

Based on the presented findings, it can be concluded that SARS-CoV-2 infection inter-
feres with the levels of metals and that variations in their concentrations can be associated
with COVID-19 severity. Since this disease may have an impact on the homeostasis of some
essential elements (macro-/micro-elements), the control of their levels in the blood/urine
of COVID-19 patients seems to be necessary for detection of potentially imbalanced mineral
homeostasis, identification more severe patients, progression of the illness, and improve-
ment of treatment. The results collected also indicate that some elements may be important
for identification of patients with a severe COVID-19 course/high mortality risk and pro-
vide convincing reasons to believe that supplementation with such minerals as Mg, Zn,
and/or Se may be effective in the treatment of COVID-19 patients. As shown in some stud-
ies, supplementation with these essential elements (i.e., Mg, Zn, and/or Se) can improve
poor outcomes caused by SARS-CoV-2 infection and reduce the duration of recovery of
some less-severe COVID-19 related symptoms (Zn).

It should, however, be highlighted that the overviewed results were mainly obtained
from observational studies, including such limitations as the variety of populations, the
small-scale sample size, different measurement techniques, and different reference values.
All these limitations and the lack of data from larger-scale studies, which would verify the
present results to some extent, as well as the lack of results from most clinical trials on the
effectiveness of supplementation of COVID-19 patients with such minerals as Mg, Zn, or Se
alone or in combination with other agents (which could help to determine their role in the
COVID-19 course) make it impossible to provide clear answers to the questions included
in the Introduction at this stage, and this is the weakness of this review.

A strength of the review is the compilation of knowledge of the levels of some es-
sential/toxic elements in mild, moderate, severe, and critically ill COVID-19 patients and
the recent data on the effects of supplementation with some micronutrients in COVID-19
subjects, which may lay the groundwork for new therapeutic advances and further research
on laboratory biomarkers for COVID-19. It may also be helpful in improving screening
patients at risk and accurate diagnosis.

9. Conclusions

At this stage, the main conclusion that may be drawn from the overviewed data is that
essential elements involved in the modulation of inflammatory processes, especially Mg, Zn,
and Se, should be routinely monitored in COVID-19 patients to detect possible variations
in their levels and restore their homeostasis, as they can potentially limit the development
of complications and increase the chance for survival. Some of the results presented in this
review clearly revealed the benefits of supplementation with these minerals, which suggests
that they can be used therapeutically in severely ill COVID-19 patients. However, further
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well-controlled and designed studies are needed for more precise evaluation of the mineral
adjunct therapy for COVID-19 and the metal levels in the context of markers of disease
severity and prognosis. More studies are also necessary on composite biomarkers, which
could contribute to a better approach to COVID-19 diagnosis, prognosis, and treatment.
We believe that the information provided in the review will be useful not only for those
interested in the role of elements in COVID-19 and therapeutic strategies against this illness,
but also to anyone interested in the SARS-CoV-2 pandemic in general.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11020215/s1, Table S1: Summary of results for essential
and toxic elements: COVID-19 patients. Table S2: Summary of results for macroelements: COVID-19
patients. Table S3: Summary of clinical trials with zinc (Zn) for COVID-19. Table S4: Summary of
clinical trials with copper (Cu) for COVID-19. Table S5: Summary of clinical trials with selenium (Se)
for COVID-19. Table S6: Summary of clinical trials with magnesium (Mg) for COVID-19.
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Straburzyńska-Migaj, E.; et al. The patient with heart failure in the face of the coronavirus disease 2019 pandemic. Kardiol. Pol.
2020, 78, 618–631. [CrossRef] [PubMed]

33. Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev.
Clin. Lab. Sci. 2020, 57, 389–399. [CrossRef] [PubMed]
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