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Basic elements for a relativistic theory of coordinate systems are introduced. The
main purposes of such a theory are to precise the physical and geometrical status of
coordinate systems in general relativity, to structure those presently known, to offer
a convenient scheme to incorporate new ones, to reveal voids in our knowledge of
their mutual relations, and to incitate their study. Relativistic operational criteria
to construct coordinate systems are given, with particular attention to satellite
positioning systems, to which the current GPS could be related.

1 Introduction

This talk concerns coordinate systems. They appear in mathematics as well
as in physics. And frequently, in theoretical studies, it is not clear when we
are using them as mathematical tools or as physical objects. In fact, their
status is rather ambiguous, even in a purely geometric context. But the rather
intensive use that physicists and mathematicians make of them, the need of
better understanding the most part of them and the conviction that they will
play increasing roles in physics, justify to tackle the construction of a theory of
coordinate systems. Taking into account the progress in experimental precision
and the already present relativistic effects in earth positioning, this theory
cannot be but a Relativistic Theory of Coordinate Systems. I believe that
things and thoughts are ripe to begin this construction.

The structure of such a relativistic theory of coordinate systems is bet-
ter that of a theory in the sense of Number Theory than that of a theory in
the sense of a pyramid-structured deductive theorie, like Set Theory. Like in
Number Theory, where numbers are considered as elements of classes (odd,
prime, Fibonacci, Bernouilly, etc.), in the theory of relativistic coordinate sys-
tems, coordinate systems are not considered individually, but as elements of
classes (harmonic, Born, Fermi, co-moving, symmetric, light-like, etc). Of
these classes, their existence, internal group structure, intrinsic and extrinsic
ways of definition and of generation of their elements, as well as their mutual
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relations, or nature of their intersections, generically creating new classes, are
taken into account. These unavoidable aspects constitute the formal part of
the theory.

But, as physicists, we are interested in coordinate systems not only as
mathematical tools to obtain tensorial results, but also as a true way to ref-
erence the space-time in our neighbourhood. So, we are specially interested
in their physical realization. This is the physical and operational part of the
theory.

The purpose of this talk cannot be to develop this vast program, but
only to present a miscellany of some of these aspects. A good part of the
results presented here have been obtained in cheerful collaboration with my
friends Llúıs Bel, Joan Josep Ferrando, Juan Antonio Morales and Albert
Tarantola, to which I am very indebted.

2 Aims of a Relativistic Theory of Coordinate Systems

Without exhaustive character, the aims of a relativistic theory of coordinate
systems are:

- to specify the geometrical and physical status of coordinate systems,
- to determine the internal groups associated to some classes of coordinate

systems (or eventually, their corresponding algebras),
- to find the compatibility relations between the usual classes of coordi-

nate systems (harmonics, Born, Fermi, of evolution, co-moving, adapted to
symmetries, etc.),

- to study the geometrical (existence in any space of given dimension) and
dimensional (existence in spaces of arbitrary dimension) genericity of many
other coordinate systems of physical interest,

- to sound out the geometry of space-times by means of specific coordinate
systems,

in order to give an adequate framework to collect all known results, to incorpo-
rate the new ones and specially to reveal the absence of results in some usual
situations, but also...

- to classify coordinate systems by their causal character, related to their
physical construction (there exist 199 causal classes1, that is to say, roughly
speaking, 197 unexplored ones).

- to introduce appropriate notions (extrinsic and intrinsic, integral and
differential definitions of generic, primary, immediate, retarded coordinate sys-
tems),
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allowing to better delimit the physically operational characteristics of coordi-
nate systems.

3 Status of Coordinate Systems in Theoretical Physics

Today, more than 80 years after the creation of the General Theory of Rela-
tivity, we are met here to talk about reference frames. Why? Because, in spite
of their apparent simplicity, there remain many obscurities on this subject.

I believe that one of the main reasons for this situation is the ambiguity
of the status of coordinate systems in physics. Compare, for example, the
status of a Cartesian coordinate system in this hall, with origin at that corner
and with axis the intersections of the walls and the floor, and that of the
Global Positioning System (GPS); the first one seems to consist essentially of a
convention, the last one stands on the physical signals cast by the constellation
of satellites and pick up by the GPS receptor.

This ambiguity of possible status is correlated with an almost total absence
of epistemological analysis concerning coordinate systems (role of the coordi-
nate systems in obtaining physical laws, in diffusion of experimental protocols,
in experimental determination of the tensorial character of physical quantities,
etc.).

In geometry, coordinate systems are used to define the structure of dif-
ferentiable manifolds. In this sense they are mathematical objects, but they
cannot be geometrical objects (roughly speaking, because a geometrical object
is a mathematical object that does not change when the coordinate system
changes). Coordinates are used in geometry as an scaffolding for the construc-
tion of geometrical results; but, once these results obtained, the scaffolding is
taken down and the results are presented “clean”, free from this “annoying”
piece.

Perhaps this is why in theoretical physics almost all physicists consider
coordinates as a mathematical tool having no physical interest. This point of
view is reinforced by the fact that in the geometrical structure of relativistic
theories, physical quantities are represented by tensorial objects.

In fact, this point of view may be compatible with theoretical works on
already established formalized theories (because there coordinate systems ap-
pear essentially as formal scaffolds allowing mathematical handlings), but in
other domains of physics, coordinate systems are basic physical pieces that
allow:

- to detect experimentally the tensorial character of the significant physical
quantities of an experiment,
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- to find experimentally the appropriate tensorial laws relating different
physical quantities,

- to ameliorate the experimental definition and determination of physical
events, which carries the same type of physical progress than that associate to
ameliorations in the definition and the determination of the physical units.

3.1 Physical Status of Coordinate Systems

A qualitative description of physics, as one finds in dictionaries, is the following
one: “scientific study of properties of matter and energy”. But, because today
the devices used for this task play an essential role, they may be explicitly
mentioned: “physics is the scientific study of properties of matter and energy
by means of ad hoc devices”. In fact, I propose the following slightly different
qualitative description of physics:

scientific study of interactions between matter
and energy with ad hoc devices.

If the interaction may be reduced to a simple action of matter and energy on
the ad hoc devices, the phenomenon would be classic, otherwise it would be
quantum.

The interest of this last description is that devices, and in particular coor-
dinate systems, when used in physics, appear on an equal footing with matter
and energy, that is to say, they are physical objects:

coordinate systems are physical objects.

Thus, from now on, we shall take as definition of a coordinate system for
classical, not quantum, purposes, the following one:

A coordinate system in a region of the space-time is a set of real or
virtual, passive (test) physical fields, controled and parametrized
in such a way to localize every one of the points of the region from
the values of the parameters.

3.2 Mathematical Status of Coordinate Systems

Because physical objects of space-time correspond to geometrical objects on a
four-dimensional manifold, and because coordinate systems are generically of
local character, coordinate systems on the four-dimensional manifold must be
described by local geometric objects. Fortunately, such a description is trivial.

Mathematically, a coordinate system is a set of n (local) coordinate func-
tions on a n-dimensional manifold. These n coordinate functions biunivocally
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define
(n

p

)
, 0 < p < n , families of coordinate p-surfaces, namely those ob-

tained when n − p coordinate functions take fixed values. The more usual of
these p-surfaces being the n congruences of coordinate lines (p = 1) and the n
families of coordinate hypersurfaces (p = n − 1) .

These families of surfaces are local geometric objects, so that conversely:

Physical systems of coordinates on the space-time may be repre-
sented by local geometric objects on four-dimensional manifolds,
namely by a sufficient and compatible number of local p-surfaces,
for some p’s such that 4 < p < 0 .

4 Some Notions on Coordinate Systems

A definition of a coordinate system is said extrinsic if it refers to another
given system. Example: polar coordinates {r, θ} in terms of Cartesian ones,
r2 = x2 + y2 , θ = arctan y/x .

A definition of a coordinate system is said intrinsic if it does not refer
to a given system. Example: {r, θ} , r being the affine parameter of a focal
congruence of straight lines, and θ the angle that every line forms with respect
to one of them.

An intrinsic definition may be integral, as in the example above, or differ-
ential as in the following example: {r, θ} such that ∇d r = (1/r)(g− dr⊗ dr) ,
dr·dθ = 0 , r|dθ| = cos 2θ . The conditions ∆xα = 0 for harmonic coordinates
constitute another example of a differential intrinsic definition.

A coordinate system is said generic for a class of space-times if it may be
constructed on any space-time of this class.

An interesting notion is that of Yano (or centrifugal) vector field associated
to a coordinate system, which allows to classify coordinate systems and to
describe some of them.

For every coordinate system {xi} , the Yano or centrifugal vector field
associated to it is the vector field ξ whose components are ξi = xi , i.e. the
analogue of the position vector for Cartesian coordinates.

Yano showed the converse2, that to every vector field ξ , there are associated
a set of Yano coordinate systems {xi} , i.e. those in which the vector field has
components xi . Normal coordinates and homothetic vector fields are particular
examples of the usefulness of this notion.

5 Harmonic Coordinates

There is no room here to collect the potpourri of questions and answers of
the talking version. This section will only be devoted to the open problem of
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harmonic exterior coframes.

In flat metric spaces it is possible to find specific coordinate systems :
those called Cartesian coordinate systems. Is it possible to find, in every
metric space, similar specific coordinate systems? No general answer is known
for this problem.

In particular curved space-times, harmonic coordinates were assimilated
by Fock as the analogs of Cartesian coordinates, but under addditional global
conditions. Nevertheless, the intrinsic structure of differential geometry being
local, and the existence of Cartesian coordinates being local for locally flat
spaces, the correct answer to this problem seems to be a local answer.

On the other hand, if we want these coordinates to be specific of the given
metric, the differential operators determining the coordinates must be concomi-
tants of the metric. The first differential operator concomitant of the metric
is the Laplacian. This suggests the old Focks’ idea that harmonic coordinates
are candidates to be considered as analogues to Cartesian coordinates for non
flat spaces. But local harmonic coordinates are excessively abundant, as com-
pared with Cartesian ones, so that additional restrictions are to be imposed.
To this end, let us observe that the natural frame for covectors (= coframe)
dxα of a system of harmonic coordinates {xα} , ∆xα = 0 , is also harmonic,
∆(dxα) = 0 , but that the corresponding natural frame for cotensors of order
p , p �= 1 , {xα} , ∆xα = 0 , is not harmonic in general.

Now, the way to impose additional conditions is clear; we give the following
definition:

A system of coordinates is said total covariant harmonic if, for any
p , 0 < p ≤ n , the natural basis for p-cotensors,

dxα1 ⊗ ... ⊗ dxαn

is harmonic:
∆(dxα1 ⊗ ... ⊗ dxαn) = 0 .

The following two questions are open: does any space-time admit total
covariant harmonic coordinates? if not, what are the space-times that admit
them?

This problem is mathematically difficult to analyze, essentially due to the
complicate properties of Laplacians over the tensorial algebra of symmetric
tensors. We may restrict it to the exterior algebra, and give the following
definition:
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A system of coordinates is said exterior covariant harmonic if, for
any p , 0 < p ≤ n , the natural basis for p-forms,

dxα1 ∧ ... ∧ dxαn

is harmonic:
∆(dxα1 ∧ ... ∧ dxαn) = 0 .

The analog of the above two questions for this exterior version are also
open, but we have an intermediate result. Denoting by δ the divergence oper-
ator on the exterior forms α, β of the exterior algebra Λ , the Schouten algebra
(Λ, {}) is defined by the braket

{α, β} = δα ∧ β + (−1)aα ∧ δβ − δ(α ∧ β) ,

where a is the degree of α , and we have3:

Proposition (Coll-Ferrando): The De Rham Laplacian over the exterior
forms,

∆ ≡ [d, δ] = dδ + δd ,

verifies
∆α ∧ β + α ∧ ∆β − ∆(α ∧ β) =

{dα, β} + (−1)a{α, dβ} + d{α, β}
for any two forms α, β .

By iteration, this proposition allows to show the following one.

Proposition (Coll-Ferrando): The Laplacian of an exterior product of p
closed exterior forms αi , i = 1, ..., p , dαi = 0 , admits the expression

∆(α1 ∧ ... ∧ αp) =

p−1∑
i=1
j>1

(−1)π(i,j;p)α1 ∧ ...î...ĵ ... ∧ αp ∧ Lij ,

where the forms Lij associated to the pairs αi, αj are given by

Lij ≡ ∆(αi ∧ αj) − p − 2
p − 1

(∆αi ∧ αj + αi ∧ ∆αj) ,

π(i, j; p) is the parity associated to αi and αj , and the ai’s are the degrees of
the αi .
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So we have the following

Theorem (Coll-Ferrando): A harmonic coordinate system {xi} , ∆xi =
0 , is an exterior covariant harmonic system if, and only if, it verifies

∆(dxi ∧ dxj) = 0 , ∀i, j = 1, ..., n .

6 Physical notions Related to Coordinate Systems

A definition of a coordinate system is said operational if it contains a detailed
protocol for its construction. According to the general definition of a physi-
cal coordinate system given in Section 3, the detailed protocol must indicate
the nature of the constituent physical fields, their parameterisation and their
interrelation.

Like a formal one, an operational definition may be extrinsic or intrinsic.
A coordinate system is said primary if it is given by an intrinsic operational

definition.

In Newtonian physics, the effective construction of coordinate systems,
irrespective of their simple or sophisticated character, seems always related to
constructions of parametrized straight lines. In relativistic physics, straight
lines have to be substituted by geodesics; and the easiest way to produce
generically parametrized geodesics are light rays.

But, because today the operational definitions of meters and seconds are
obtained from light rays, the metric parametrization of any other type of
geodesics (timelike or spacelike) involve also them. For this reason, one can
say that in relativistic physics, the effective construction of coordinate systems
has to be related to constructions of parametrized lightlike rays.

In fact, light rays may be considered as geometrical lines only for high
frequency parametrizations. For low frequency the effective construction of
coordinate systems has to be related to the duals of lightlike rays, i.e., to front
waves.

Of course, light rays are usually taken into account in the effective con-
struction of coordinate systems. Synges Chronometry is one of the best exam-
ples. In it, the scheme of the determination of the radial coordinate r (distance)
of a particle P with respect to an inertial observer I , is represented in figure 1.
In it, we see that, neither the observer, nor the particle, knows the value of
this coordinate in real time. We are led to give the following definition:

A primary coordinate system is said immediate if the values of the coor-
dinates of any event may be obtained without delay. Otherwise, the primary
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coordinate system is said retarded.

The main purpose of a Relativistic Theory of Coordinate Systems is
the construction of generic immediate primary coordinate systems
for the class of all gravitational fields.

Figure 1: An inertial observer determines the po-
sition r of a point particle by means of a light ray.
This method gives rise to a retarded coordinate
system
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7 Coordinate Systems of GPS type

Coordinate systems whose congruence of lines consist of light rays were con-
sidered many years ago4. They may be interesting in some physical situations
and also as candidates to measure the gravitational field itself, but here their
interest is stopped by the fact that we do not know if they are or not generic
for all gravitational fields.

A dual version of them (the congruence of light rays being substituted by
families of front waves) is the one constituted by four focal points emitting
parametrized front waves. Specifically, we shall suppose here that the focal
points are four satellites in geodetic motion, and that the parameterized front
waves send their proper time.

Due to the similarities of such system with the current well known GPS
(Global Positioning System) we shall call them coordinate systems of GPS
type (see below for the differences).

It is easy to see that coordinate systems of GPS type are relativistic im-
mediate coordinate systems, generic for all gravitational fields.

7.1 The current GPS System

The current GPS system consists of a spatial segment, constellation of 24
satellites around the earth, a control segment, of five earth stations, and a user
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segment, which has to allow military and civilian users to find their position
by means of appropriate receivers.

Satellites broadcast over the earth their identification code, a shifted TAI
(International Atomic Time) called the GPST and their WGS-84 (World Geode-
tic System) position, calculated and controled by the control segment.

Undoubtedly, the engineering work involved by the GPS, with its rigorous
schedule of conditions, is admirable. But, once more GPS shows that, if it
is important for technology and science to form an harmonic couple, it is
equally important to clearly distinguish one of the other, their spirits being very
different. If apart from maintenance and updating, the engineering work may
be considered as achieved, the corresponding scientific work still has to be done.
Not only the basic theory is not relativistically correct but the fundamental
importance of the spatial segment has not been understood.

From the conceptual point of view, there are many inadequacies in theory
and practise of the current GPS: i) the starting point of the theory must not be
the control segment and the model of the earth, but the space segment and its
light like coordinate systems; ii) satellites must not emit the GPST indicated by
the control segment but every satellite must emit its proper time; iii) satellites
must not emit their position with respect to the earth, but referred to the
ICRS (Internation Celestial Reference System; iv) the control segment, which
individually controls every satellite, must be substituted by a survey system,
with the sole mission of surveying the satellites constellation as a whole; v)
individual satellites must survey their proper trajectories with respect to the
others (to fix ideas: if the coordinate system were a Cartesian one, an exterior
control station would control the correct motion of the origin and the correct
orientation of the system in space, the internal properties of the system, namely
orthogonal axes and metric parameterization, would correspond to internal
controls); vi) users must be able to survey the correct functioning of the system
at any moment.

7.2 GPS as a Coordinate System

As compared with the current GPS system, our interest is the construction
of a complete relativistic theory of coordinate systems of GPS type exempt of
the above criticisms, with special interest in the geometric study of the spatial
segment

In a 2D space-time representation, a coordinate system of GPS type is
constituted by two (geodesic) satellites emitting their proper time:

According to our definition (subsection 3.1) of a coordinate system the
real proper time parametric radiations in Ω define the immediate coordinate
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system associated to the GPS. Note that no observer drags it (the coordinate
system is not co-moving).

Figure 2: A 2D relativistic primary immediate
generic coordinate system for all gravitational
fields.

ΩΩ
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Observer

7.3 A Users’s Control Result

Concerning the control of the system by users, we have obtained a result that
we present in a simplified version:

Theorem: In 2D Minkowski space-time, let S1 and S2 be two geodesic
satellites emitting their proper times. Let s1 and s2 be respectively their values
measured by an user U , and s′1 and s′2 the values respectively measured by S2

and S1 at the instants s2 and s1 . Then, the space-time metric is given by

ds2 =
√

s1 s2

s′1 s′2
ds1 ds2 .

Observe that, in terms of these proper times, the expression is indepen-
dent not only of the velocities of the satellites in their constellation (relative
velocities), but also of the velocity of the user with respect to the constellation.

Figure 3: In 2D Minkowski space-time, the coordinates of
an event and that of the two satellites allow to completely
know the metric at the event.
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7.4 Other points of interest of the system of type GPS

i) In the absence of gravitational fields, the theory may be developed in
exact and complete form.

ii) By perturbation methods, the theory may be developed exact to first
order and complete for the cases:

- perturbations dues to satellite trajectories or to emission frequencies.
- perturbations due to a field of refraction indices taking into account

atmospheric influence.
- perturbations dues to weak gravitational fields.

iii) The theory may be generalized to different situations (solar system,
post-Newtonian gravitational fields, etc)

iv) These coordinates naturally offer a natural frame for physical vectors
and tensors of interest (velocity, acceleration, deformation tensor, electromag-
netic field, etc).

v) The current treatment of the spatial segment may be assimilated to a
treatment of action at a distance; meanwhile our approach is that of a field the-
ory. If one thinks to the enriching points of view that gravitational (Poisson) or
electromagnetic (Maxwell) field theories have introduced on the corresponding
action at a distance previous theories, one may hope that our field theoretical
approach will allow to see GPS systems under new interesting lights.
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