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Although much is known about the differences between expert and novice problem solvers, knowledge of those differences typically does 
not provide enough detail to help instructors understand why some students seem to learn physics while solving problems and others do not.  
A critical issue is how students access the knowledge they have in the context of solving a particular problem.  In this paper, we discuss our 
observations of students solving physics problems in authentic situations in an algebra-based physics class at the University of Maryland.  We 
find that when these students are working together and interacting effectively, they often use a limited set of locally coherent resources for 
blocks of time of a few minutes or more.  This coherence appears to provide the student with guidance as to what knowledge and procedures 
to access and what to ignore.  Often, this leads to the students failing to apply relevant knowledge they later show they possess.  In this paper, 
we outline a theoretical phenomenology for describing these local coherences and identify six organizational structures that we refer to as 
epistemic games.  The hypothesis that students tend to function within the narrow confines of a fairly limited set of games provides a good 
description of our observations. We demonstrate how students use these games in two case studies and discuss the implications for instruc-
tion. 

 

1. Introduction 
Students learning physics at the college level often have 

considerable difficulty with problem solving despite the fact 
that problem solving is an integral part of most physics 
classes.1  Instructors may assume that these difficulties arise 
from a lack of mathematical skills, but little evidence has 
been presented to determine if this is the case.  As part of a 
project to reform introductory algebra-based physics,2 we 
have collected extensive data of students learning physics 
and solving physics problems in a variety of environments.  
This data includes some familiar but remarkable student be-
havior, such as  

• failing to use their personal knowledge in favor of 
misinterpretations of authority-based knowledge 
when reasoning in a formal context, 

• using incorrect qualitative arguments to rebut a 
qualitative argument even when they know the 
correct formal argument. 

These behaviors are often quite robust, with students dra-
matically ignoring — appearing not even to hear — explicit 
suggestions from an instructor speaking to them directly.  As 
a result, these behaviors look like what one might crudely 
describe as “misconceptions of expectations” about how to 
solve problems.   

In order to make sense of this data, we propose a useful 
way of analyzing students’ problem solving behavior in 
terms of locally coherent goal-oriented activities that we re-
fer to as epistemic games.  These games both guide and limit 
what knowledge students think is appropriate to apply at a 
given time.  Identifying these games provides a way of pars-
ing students’ tacit expectations about how to approach solv-
ing physics problems.   

We work in the context of a theoretical model that allows 
us to describe the cognitive processes that students use – cor-
rectly and incorrectly – in the context of solving physics 
problems. We build on and extend ideas developed by  

diSessa, Sherin, and Minstrell3,4,5,6,7, and by Collins and Fer-
guson.8  Our theoretical approach fits into the more general 
theoretical framework we refer to as the resource 
model.9,10,11,12 In this broad model of student thinking, 
knowledge elements combine dynamically in associative 
structures activated by control structures in response to in-
puts from each other and from the environment. 

Our theoretical framework offers researchers and educa-
tors a vocabulary (an ontological classification of cognitive 
structures) and grammar (a description of the relationship 
between the cognitive structures) to describe students’ prob-
lem solving (and in particular, their understanding and use of 
mathematics) in the context of physics.13  Viewing student 
activity through the lens created by this framework can help 
researchers and educators understand how teacher-student 
interactions can more effectively help students develop their 
own problem solving skills. 

In the next section, we give a brief overview of our theo-
retical framework.  In section three, we describe a cognitive 
model for local coherence in problem solving in physics: 
epistemic games.  In section four, we describe the setting of 
the study: the student population, the modified instructional 
environment, and the methodology used to collect and ana-
lyze our data.  In section five, we use our theoretical model 
to analyze two student problem-solving sessions.  In the final 
section, we discuss some instructional implications, and pre-
sent some conclusions. Much of the work described here is 
taken from the dissertation of Jonathan Tuminaro and more 
detail can be found there.14

2. The Theoretical Framework 
Constructivism — the idea that a student constructs new 

knowledge based largely on what that student already knows 
— is the dominant paradigm in modern educational theo-
ries.15   The teacher’s role in the constructivist paradigm is to 
create environments that help students undertake this con-
struction accurately and effectively.  In order to do this, it 
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helps the teacher to know (i) the content and structure of the 
students’ existing knowledge and (ii) how the students use 
this knowledge to construct new knowledge.  There has been 
considerable direct observational research on the difficulties 
students have with various items of physics content;16,17 but 
to understand how students organize, access, and use their 
existing knowledge, we need a finer-grained understanding 
of how students think and respond.  We need to know not 
just that students construct their new knowledge based on 
what they know, we need some understanding of how stu-
dents construct new knowledge.  To develop such an under-
standing, we need to know at least some of the basic ele-
ments of fundamental cognitive activities and how they are 
organized.  

Previous Research 
Research on students’ naïve knowledge and on ex-

pert/novice differences in problem solving are two topics 
that are particularly relevant to the current study.  In this 
subsection, we give a brief review of these two areas of re-
search. 

Students’ Naïve Knowledge 
The fact that students bring prior naïve knowledge into a 

physics class has been well documented in the research lit-
erature.17,18 The level of abstraction at which the students’ 
naïve knowledge is described, however, varies considerably.  
Some researchers describe student knowledge that does not 
align well with the scientific knowledge we are trying to 
teach as “misconceptions,” “alternative conceptions,” or “na-
ïve theories.”  These researchers assume that students have 
internally consistent models of how aspects of the world 
work.18,19,20,21  Others describe the knowledge of beginning 
students in physics as fragmented and spontaneous.4,8 Both 
of these approaches contain elements of the truth.  Some-
times student knowledge is fragmented, other times it ap-
pears coherent.  In particular, expert knowledge is often 
highly coherent.  In order to understand the novice-to-expert 
transition we must have a model that can bridge these two 
cognitive states.  The resource model allows us to do this. 

Expert/Novice Differences in Problem Solving 
Researchers have studied problem solving in different con-
texts: problem solving associated with games such as 
chess,22 problem solving in mathematics,23,24,25 and mathe-
matical problem solving in the context of phys-
ics.26,27,28,29,30,31,32 There is agreement that there are substan-
tial differences between experts and novices; experts have 
more knowledge and organize it better. But most attempts to 
model the differences at a finer scale have focused on creat-
ing computer models that would solve problems effectively.  
Sometimes these models are algorithmic;33 sometimes they 
are based on heuristics extracted from expert informants.34 
While these approaches can produce computer software that 
can carry out some tasks that human experts do, it is not at 
all clear that they correctly model how a human being learns 
and functions. (A good summary of the successes and limita-
tions of this approach is given in d’Andrade.35) Other ap-

proaches are phenomenological, using expert heuristics to 
design learning environments that improve students’ prob-
lem-solving skills. 36,37, Neither approach helps us understand 
how students make the transition from novice to expert. 

The Resource Model 
If our goal is to teach a human being effectively, it is ap-

propriate to build a theoretical model based on our knowl-
edge of the functioning of that system (a human being) and 
not some other (a computer).38  In order to describe student 
behaviors, we want to create a model that is sufficiently 
coarse-grained that it allows us to describe observed behav-
iors and sufficiently fine-grained that it gives us insight into 
the mechanisms responsible for those behaviors.  The re-
source model10,11,12,13 provides such a structure.  It is based 
on a combination of three kinds of scholarship about the 
functioning human: neuroscience, cognitive science, and be-
havioral science.  It permits us to begin to create a finer-
grained understanding of student behavior that can bridge the 
alternative- and fragmented-conception models and can help 
us develop a more detailed understanding of the novice-to-
expert transition. 

Researchers in neuroscience, cognitive science, and be-
havioral science attempt to model human thought at a variety 
of grain sizes.  Much has been learned in all these areas 
(though one has to be cautious in applying research results at 
a fine-grained level from neuroscience or cognitive science 
to real-world situations), but there is still much to be learned, 
and there is much that is still uncertain about what we know 
about human thinking.  Nevertheless, we can model reasona-
bly safely when the basic structural elements of neurosci-
ence, the well-documented mechanisms of cognitive science, 
and the observations of real-world (ecological)39 behavior of 
real human beings acting in authentic situations all agree and 
support each other.   

Note that in building the resource model we are not at-
tempting to create a fundamental theory of human behavior.  
Rather, we are developing a theoretical framework or super-
structure11 within which plausible phenomenological models 
can be created that can help us understand what we see in 
our classrooms and that are also consistent with what is 
known about the fundamental mechanisms and operation of 
the brain.   

The Basis of Cognition 
A consistent model of cognition that is beginning to 

emerge from neuroscience and cognitive science is synthe-
sized and documented in many books.40,41,42,43 In this model, 
cognitive elements of knowledge and memory are repre-
sented by networks of connected neurons.  When someone 
recalls or uses the knowledge represented by a particular 
network, the neurons of the network are activated (increase 
their firing rate).44  Particular knowledge elements tend to be 
multi-modal (i.e., to involve activation and interpretation of 
multiple sensory and interpretive structures) and involve 
neurons in many parts of the brain.45  Cognitive networks 
arise from the building of associations among neurons 
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through synapse growth.46 The association of neurons can 
vary in strength and increases with repeated associational 
activations.47 ,48  

Neural connections can be excitatory or inhibitory.47 This 
creates the possibility of executive processes that result in the 
selective activation of some networks and the suppression of 
others.49 Modern fMRI studies and neurophysiological stud-
ies with patients who have brain lesions suggest that the pre-
frontal cortex is a primary site of a large number of control 
structures (though they are expected to occur in other parts 
of the brain as well).50,51,52

The critical elements of this model are the basic elements 
of knowledge stored in long-term memory, the way those 
elements are linked, and the way those linked structures are 
activated in different circumstances. We use the term knowl-
edge element to describe any knowledge stored in long-term 
memory that activates as a single unit or chunk.  We include 
both declarative and procedural knowledge. We refer to the 
linking patterns of association as knowledge structures and 
to the executive function that determines when those struc-
tures are activated as control structures. We broadly refer to 
all the elements of this model as resources.   

This model only provides a framework.  In order to de-
velop a practical phenomenology, we need to identify vari-
ous robust patterns of association of knowledge elements – 
i.e., specific knowledge structures, and demonstrate the value 
of recognizing these structures. 

Basic Knowledge Elements: Compilation 
A network corresponding to an element of knowledge be-

comes robust through practice and experience.  For example, 
one can quickly and easily identify the combination of sensa-
tions associated with holding a cup of hot coffee.  We effort-
lessly combine the perception of the pixels (activation of 
rods and cones) on our retina with the touch, smell, and taste 
of the coffee into a perception of what appears to be a single 
object. Neuroscientists call this binding, but we prefer to de-
scribe it as compilation.53 Compilation of knowledge ele-
ments in associated knowledge structures results in new 
knowledge elements.  They are seen as irreducible by the in-
dividual and can be used as a single chunk in working mem-
ory.54 The instructional implications of compilation are dis-
cussed elsewhere.55

Note that a knowledge element may have a structure and 
that for some purposes it might be useful to decompose it 
into finer-grained knowledge elements even when the user 
sees it as irreducible.56  This is like considering molecules 
consisting of atoms.  For some tightly bound molecules in 
some situations (e.g., molecules in a gas in kinetic theory) it 
suffices to consider the molecule as a single functioning unit 
without substructure.  In other circumstances (e.g., situations 
in which chemical reactions occur or for more weakly bound 
molecules), it is essential to keep the molecule’s structure in 
terms of atoms in mind. 

Patterns of Association: Knowledge Structures  
Because cognitive networks are extended and because 

neurons have large numbers of synapses with other neurons, 
an individual neuron may be a part of multiple mutually 
linked knowledge structures.  As a result, activation of one 
network may result in the associated activation of other net-
works.  Patterns of association develop, linking different re-
sources in different situations.  Learning occurs as the result 
of the growth of new synapses that result in changing the to-
pology of existing networks.57  The patterns of association 
individuals develop may help or hinder them in solving 
physics problems.13  

In this paper, we propose that a useful way to analyze 
some of the common associational structures in student ap-
proaches to physics problem solving is to describe them in 
terms of locally coherent, goal-oriented activities. We choose 
to call these epistemic games because of their similarity to 
the structures proposed by Collins and Ferguson.9  Note that 
the activities that Collins and Ferguson describe are norma-
tive —activities carried out by experts to solve problems. We 
extend their idea to one that is ethnographic — descriptive of 
observed student behavior. (Note that some other researchers 
have also extended their use of the term in this way.58,59)  

Some Specific Resources:  
Reasoning Primitives and Intuitive Mathematics 

A variety of specific relevant resources are available to 
most students studying physics.  These include both knowl-
edge about the physical world and knowledge about mathe-
matics, both intuitive and formal.   

Students use a form of intuitive knowledge about physical 
phenomena and processes that they have learned in their eve-
ryday life experiences to make sense of the physical world.60  
DiSessa4 proposes that students develop an intuitive sense of 
physical mechanism from everyday experience.  This intui-
tive sense of physical mechanism arises from the activation 
and interaction of multiple cognitive resources that diSessa 
refers to as phenomenological primitives (p-prims).   

The name, phenomenological primitives, is used to con-
vey several key aspects of these cognitive structures.  The 
word “phenomenological” reflects the idea that these re-
sources are abstracted from everyday phenomena. For exam-
ple, closer is stronger could be abstracted from the phe-
nomenon that the closer one is to a fire, the warmer it feels.  
The word “primitive” reflects the idea that these resources 
are “irreducible and undetectable” to the user – they are of-
ten used as if they were self-explanatory. For example, asked 
why it is warmer closer to a fire, a student using closer is 
stronger may respond, “it just is.”61

Because of his focus on the irreducibility of p-prims with 
respect to the user, diSessa identifies p-prims at differing 
levels of abstraction: for example, force as mover and ab-
stract balancing.  Force as mover involves the very specific 
concept of an object moving under the influence of a force; 
whereas abstract balancing involves the general notion that 
two unspecified influences can be in a state of equilibrium.  
Because of the specific nature of p-prims like force as 
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mover, diSessa proposes that there are thousands of p-prims 
corresponding to the myriad of physical experiences one 
may have in this complex world. 

To reduce the extremely large number of p-prims and to 
group cognitive structures at their different levels of abstrac-
tion, we follow Redish11 and abstract from p-prims the no-
tion of intuitive pieces of knowledge called reasoning primi-
tives.  Reasoning primitives are abstractions of everyday ex-
periences that involve generalizations of classes of objects 
and influences.  In this view a p-prim like force as mover re-
sults from mapping an abstract reasoning primitive like agent 
causes effect into a specific situation that involves forces and 
motion. The specific agent, in this case, is a force and the 
effect it causes is movement. When a reasoning primitive is 
mapped into a specific situation, we refer to it as a facet of 
that reasoning primitive.8  Agent causes effect could also be 
mapped into force as spinner, another p-prim identified by 
diSessa.4  This shows how the notion of reasoning primitives 
reduces the total number of resources necessary to describe 
students’ previous knowledge about physical phenomena 
(compared to p-prims).  In addition, agent causes effect and 
abstract balancing both reflect relationships between ab-
stract influences and, therefore, exist at the same level of ab-
straction. 

Another reason to consider the reasoning primitives un-
derlying facets is to understand process components that may 
be addressable by instruction.  If a student is using an appro-
priate reasoning primitive but has mapped it inappropriately, 
it may be simple to help the student change the mapping.  
This more fine-grained theoretical model activates different 
instructional responses than if one considers a particular p-
prim to be an irreducible and robust “alternate conception.” 

Students can also activate a variety of resources from their 
intuitive mathematics knowledge including: intuitive sense 
of number,62 counting, ordering, a variety of grounding 
metaphors,63 symbolic forms, and interpretive devices.7  
Since these mathematical resources do not play a critical role 
in the examples used here, however, we save their discussion 
for another publication. (See ref. 15.) 

3. Epistemic Games  
Students have a wealth of previous knowledge and ideas 

that they bring to bear when solving physics problems.  To 
understand and talk about what students are doing, we need a 
description of the way they organize their resources.   

To determine some of these organizational structures, we 
analyzed 11 hours of video data drawn from about 60 hours 
of videotapes of groups of students solving homework prob-
lems in a reformed algebra-based physics class.  The context 
of the reforms and the methodology of the data collection 
and analysis are described in section 4.  In this section, we 
describe six locally-coherent organizational control struc-
tures that we saw students using in these tapes.  Examples of 
these games drawn from two case studies taken from the 
video data are given in section 5. 

One of the most interesting characteristics of the student 
behaviors we observed was their local coherence.  Over a 
period of a few minutes to half an hour, we saw students rea-
soning using a limited set of associated resources.   

We can best describe these behaviors by adapting the idea 
of epistemic game (or, e-game, for short) introduced by 
Collins and Ferguson.9 Collins and Ferguson define an epis-
temic game as a complex “set of rules and strategies that 
guide inquiry.”  They introduce the idea of epistemic games 
to describe expert scientific inquiry across disciplines. Stu-
dents in introductory physics courses are far from experts, so 
using scientists’ approaches to inquiry as a norm by which to 
describe students’ inquiry would not be appropriate.  For this 
reason, we generalize the idea of epistemic games to be de-
scriptive rather than normative. We define an epistemic game 
to be 

a coherent activity that uses particular kinds of knowledge 
and processes associated with that knowledge to create 
knowledge or solve a problem.11

The activities are ‘epistemic’ in the sense that students en-
gage in these activities as a means of constructing new 
knowledge.  We use the word ‘game’ in a very real sense; a 
particular game (like checkers or chess) is a coherent activity 
that has ontology components that identify the “things” of 
the game (players, pieces, and a playing board) and a struc-
ture (a beginning and an end, moves, rules) that makes it dis-
tinguishable from other activities.  Similarly, an e-game has 
ontological components (concepts, principles, equations) and 
a structure (starting and ending states, allowed moves, rules). 
The simplest epistemic game identified by Collins and Fer-
guson is a familiar one:  list making.  Every list is implicitly 
an answer to a question – it builds knowledge to satisfy some 
goal.  Some examples are: “What do I need from the grocery 
store?”; “What are the fundamental forces of nature?”; and, 
“What are the constituents of all matter?”   

Note that the idea of a “game” here — a locally coherent 
set of behavioral rules for achieving a particular goal — is 
very general.  Some of the behavioral science literature (es-
pecially in the opposite extremes of popularizations64 and 
mathematical economics65) has used the term game in this 
way. We focus here on epistemic games — games engaged 
in for the purpose of creating knowledge. 

Ontology of Epistemic Games   
Epistemic games have two ontological components: a 

knowledge base and an epistemic form.  An e-game is not 
simply a structure of a set of associated knowledge; it is an 
activation of a pattern of activities that can be associated 
with a collection of resources.  The collection of resources 
that an individual draws on while playing a particular e-game 
constitutes the knowledge base.  For example, to answer a 
question like, “What are the fundamental forces of nature?” 
one needs to have some requisite knowledge to list the 
forces.  

The epistemic form is a target structure, often an external 
representation that helps guide the inquiry during an epis-
temic game.  For example, the epistemic form in the list 
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making game is the list itself.  The list is an external repre-
sentation that cues particular resources and guides the pro-
gression of the inquiry.  In some of the games we describe 
below, the epistemic form could be a written out series of 
steps, or the derivation of an equation or result. 

Structure of Epistemic Games  
The structural components of epistemic games include the 

entry and ending conditions of the game and the moves.   
The entry and ending conditions specify the beginning 

and the ending of the game.  As we mentioned above, one 
may enter into the list making game as a means to answer a 
question.  When solving physics problems, students’ expec-
tations about physics problems determine the entry and end-
ing conditions.  These expectations can depend on real-time 
categorizations of physics problems and/or on preconceived 
notions about the nature of problem solving in physics. Re-
search by Hinsley and Hayes66 indicates that students can 
quickly categorize large classes of physics problems very 
shortly after reading the statement of the problem. In fact, 
these categorizations can be made after reading the first sen-
tence.  (Often these categorizations can be made after read-
ing the first sentence.)  The students’ ability to very quickly 
categorize physics problems may stem from their experience 
with and expectations about physics problem solving.  These 
expectations and categorizations of physics problems affect 
which epistemic game the students (perhaps tacitly) choose 
to play.  In addition, students’ preconceived epistemological 
stances about problem solving in physics can affect their ex-
pectations.  If students believe that problem solving in phys-
ics involves rote memorization of physics equations, that can 
affect the strategy they employ (i.e. which e-game they 
choose to play) and what they believe an answer in physics is 
(i.e. how they know they are done playing a particular 
game).67   

 
Ontological 
Components 

Structural  
Components 

Knowledge  
Base 

Cognitive 
resources 
associated 
with the 
game. 

Entry 
and 
ending  
condi-
tions 

Conditions 
for when to 
begin and 
end playing 
a particular 
game. 

Epistemic 
Form 

Target 
structure 
that guides 
inquiry. 

Moves 

Activities 
that occur 
during the 
course of an 
e-game. 

 
Table 1: The ontological and structural components  

of epistemic games 
The moves in an e-game are the steps/procedures that oc-

cur in the game.  In the list-making game the moves may be 
to add a new item, combine two (or more) items, substitute 
an item, split an item, and remove an item.  As we will see, a 

critical element of an epistemic game is that playing the 
game specifies a certain set of moves.  What is particularly 
important about this is not just the moves that are included in 
the game, but also the moves that are excluded.  

Table 1 summarizes the ontological and structural compo-
nents of epistemic games. 

Epistemic Games Students Play in Introductory,  
Algebra-Based Physics   

In this section we discuss some of the epistemic games 
that account for the different problem-solving strategies seen 
in our data.  We identify six epistemic games that include 
most of  the different problem-solving behaviors we have 
seen. (See  
Table 2.)  We do not claim that this list spans all possible 
problem-solving approaches that could be employed during 
problem solving in physics and we do not claim to have 
identified all possible moves within each game.  If we had 
examined a different population of students or a different 
domain, it is possible that the list of epistemic games would 
be different, though we expect some of the games identified 
here to have broad applicability. We present these as exam-
ples of the type of structure we are proposing.  In the next 
section, we present two case studies showing how analyzing 
student behavior in terms of these games helps make sense 
of what they do and do not do in the context of solving a 
specific problem.  

Each of these games is described in more detail below.  
For each epistemic game we give a brief introduction and 
discuss its ontology and structure.  Note that some of the 
games have common moves and one game may look like a 
subset of another.  We identify them as distinct games be-
cause they have different ending conditions; students playing 
different games decide they are “done” when different condi-
tions are met. Section 5 gives an example of students playing 
each of these games. 

 
List of epistemic games 
Mapping Meaning to Mathematics 
Mapping Mathematics to Meaning 
Physical Mechanism Game 
Pictorial Analysis 
Recursive Plug-and-Chug 
Transliteration to Mathematics 

 
Table 2. List of epistemic games identified in our data set 

 
Mapping Meaning to Mathematics:  The most intellectu-

ally complex epistemic game that we identify is Mapping 
Meaning to Mathematics. In this game, students begin from a 
conceptual understanding of the physical situation described 
in the problem statement, and then progress to a quantitative 
solution.  We identify five basic moves (see Figure (1)): (1) 
develop a story about the physical situation, (2) translate 
quantities in the physical story to mathematical entities, (3) 
relate the mathematical entities in accordance with the physi-



cal story, (4) manipulate symbols, and (5) evaluate and inter-
pret the story.   

The knowledge base for this game (as with all the games 
we identify) comes from the set of physics and mathematics 
resources.  In general, however, different resources can be 
activated during the different moves of the game.  During the 
development of the conceptual story (move 1), reasoning 
primitives are most often activated.  That is, students often 
rely on their own conceptual understanding to generate this 
story – not on fundamental physics principles.  Translating 
the conceptual story into mathematical entities (move 2) is 
difficult for most of the students in our population.  Intuitive 
mathematics knowledge, symbolic forms, and interpretive 
devices may be activated during this move.  Relating the 
mathematical entities to the physical story (move 3), again is 
difficult for students in our population, and depends on intui-
tive mathematics knowledge, symbolic forms, and interpre-
tive devices.  Once the physics equations are written, the 
symbolic manipulations (move 4) often are carried out with-
out a hitch.  This is probably because most of our students 
have had ample practice manipulating symbols.  The evalua-
tion of the story (move 5) can occur in many different ways.  
For example, students may check the solution with a worked 
example (or solution in the back of the book), students may 
check their quantitative answer with their conceptual story, 
or students may check their solution against an iconic exam-
ple.  Note that these evaluations do not necessarily corre-
spond to an expert evaluation or what a teacher would want 
to see.  A superficial similarity to previously seen results 
may suffice for the student to decide that the end condition 
of the game has been met. 

 
Fig. (1): Schematic diagram of some moves  

in the epistemic game Mapping Meaning to Mathematics 

The epistemic form for Mapping Meaning to Mathematics 
is typically the collection of mathematical expressions that 
the students generate during moves (2) and (3).  These ex-
pressions lead the direction of the inquiry. Note, however, 
that the epistemic form is not the entire story in this game.  
The interpretation (story) that goes with the series of mathe-

matical expressions generated, may or may not be explicitly 
expressed, depending on the instructions for giving a written 
output and the students’ sense of how much “explanation” 
they are required to provide. 

Mapping Mathematics to Meaning: The second most intel-
lectually complex epistemic game that we identify is Map-
ping Mathematics to Meaning.  In this game, students de-
velop a conceptual story corresponding to a particular phys-
ics equation. The ontological components of Mapping 
Mathematics to Meaning are the same as those in Mapping 
Meaning to Mathematics.  In particular, both games involve 
the same kind of knowledge base (mathematical resources) 
and the same epistemic form (physics equations).  However, 
the particular resources and physics equations that are used 
in each game can vary from problem to problem.  

In addition, the structural components of the two games 
are different. In Mapping Meaning to Mathematics, students 
begin with a conceptual story and then translate it into 
mathematical expressions. In contrast, in Mapping Mathe-
matics to Meaning students begin with a physics equation 
and then develop a conceptual story.68 The structural differ-
ences between these two games make them distinguishable 
from each other. 

 

 
Fig. (2): Schematic diagram of some moves  

in the epistemic game Mapping Mathematics to Meaning. 

We identify four moves in Mapping Mathematics to 
Meaning (see figure  (2)): (1) identify target concepts, (2) 
find an equation relating the target concepts to other con-
cepts, (3) tell a story using this relationship between con-
cepts, and (4) evaluate story. 

Physical Mechanism Game.  In the Physical Mechanism 
Game students attempt to construct a physically coherent and 
descriptive story based on their intuitive sense of physical 
mechanism.  The knowledge base for this game consists of 
reasoning primitives.  In this game students do not make ex-
plicit reference to physics principles or equations.   
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The ontology of the Physical Mechanism Game is differ-
ent than in Mapping Meaning to Mathematics and Mapping 
Mathematics to Meaning. The epistemic form in the latter 
two games explicitly involves physics equations.  In contrast, 
the epistemic form in the Physical Mechanism Game does 



not.   Although the epistemic form is necessarily different, 
the same set of resources (intuitive mathematics knowledge, 
reasoning primitives, symbolic forms, and interpretive de-
vices) may be active in this game as in the previous games.   

 
Fig.(3): Schematic diagram of some moves  
in the epistemic game Physical Mechanism 

The structure of the Physical Mechanism Game is similar 
to the first move in Mapping Meaning to Mathematics – both 
involve the development of a conceptual story.  However, 
we can distinguish the two because the Physical Mechanism 
Game represents a separate, coherent unit of student activi-
ties; it has a different endstate. In Mapping Meaning to 
Mathematics, after move (1) students go on to move (2), then 
move (3), etc.  After (1) creating and (2) evaluating the con-
ceptual story developed in the Physical Mechanism Game 
(see figure (3)) students decide they are done.  The activities 
that follow this game do not cohere with the conceptual story 
– in direct contrast with the activities that follow move (1) in 
Mapping Meaning to Mathematics.  

Pictorial Analysis Game. In the Pictorial Analysis Game, 
students generate an external spatial representation that 
specifies the relationship between influences in a problem 
statement. For example, students who make a schematic 
drawing of a physical situation, a free-body diagram, or a 
circuit diagram are all playing the Pictorial Analysis Game.    

 

 
Fig. (4): Schematic diagram of some moves  

in the epistemic game Pictorial Analysis 

In this game, as with all the games previously discussed, 
the knowledge base consists of all the resources listed above 

plus some representational translation resources that we do 
not discuss here.  The epistemic form in this game is the dis-
tinguishing characteristic.  The epistemic form is a schematic 
or diagram that the students generate.  For example, if the 
students draw a circuit diagram during their inquiry, then 
that diagram serves as an epistemic form that guides their 
inquiry.  In the same way, a schematic drawing and/or free-
body diagram could each serve as a target structure that 
guides inquiry. 

The moves in this game are largely determined by the par-
ticular external representation that the students choose.  For 
example, if the students choose to draw a free-body diagram, 
then one move is to determine the forces that act upon the 
object in question; whereas, if the students choose to draw a 
circuit diagram, then one move is to identify the elements 
(e.g. resistors, capacitors, batteries, etc.). Despite differences 
that may arise based on the particular external representation 
chosen, there are three moves that are common to all instan-
tiations of the Pictorial Analysis Game (see figure  (4)): (1) 
determine the target concept, (2) choose an external repre-
sentation, (3) tell a conceptual story about the physical situa-
tion based on the spatial relation between the objects, and (4) 
fill in the slots in this representation. An example of students 
who choose to draw a free-body diagram while playing the 
Pictorial Analysis Game is given in our first case study in 
section 5.69

Recursive Plug-and-Chug.  In the Recursive Plug-and-
Chug Game students plug quantities into physics equations 
and churn out numeric answers, without conceptually under-
standing the physical implications of their calculations. 

Students do not generally draw on their intuitive knowl-
edge base while playing this game. Instead, they simply 
identify quantities and plug them into an equation.  Conse-
quently, students playing this game rely only on their syntac-
tic understanding of physics symbols, without attempting to 
understand these symbols conceptually.  That is, other cogni-
tive resources (such as intuitive mathematics knowledge, 
reasoning primitives, symbolic forms, and interpretive de-
vices) are usually not active during this game.   

The epistemic form in Recursive Plug-and-Chug is similar 
or even identical to that in Mapping Meaning to Mathemat-
ics and Mapping Mathematics to Meaning.  Each game has 
physics equations as part of the epistemic form, but the re-
sources that are active (i.e. knowledge base) are different.  
The rules and strategies that are employed in Recursive Plug-
and-Chug differ from those in Mapping Meaning to Mathe-
matics and Mapping Mathematics to Meaning – even though 
the epistemic form may be the same. A distinguishing feature 
of Recursive Plug-and-Chug is the resources that are not ac-
tivated during this game. 

In Recursive Plug-and-Chug, the students first identify a 
target quantity.  This is similar to the first move in Mapping 
Mathematics to Meaning, but it differs in that here the stu-
dents only identify the quantity and its corresponding symbol 
– they do not attempt to understand conceptually what the 
quantity represents physically as in Mapping Mathematics to 
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Meaning.  Second, the students identify an equation that re-
lates the target quantity to other quantities, but they do not 
attempt to create a story that justifies the use of that equation.  
Third, the students identify which quantities are known and 
which quantities are unknown.  If the target quantity is the 
only unknown, then they can proceed to calculate the an-
swer.  However, if there are additional unknowns, then they 
must choose a sub-goal and start this process over. Herein 
lies the ‘recursive’ nature inherent in this game.  Figure (5) 
shows a schematic depiction of the moves in this game. 

 

 
Fig. (5): Schematic diagram of some moves  

in the epistemic game Recursive Plug-and-Chug 

Transliteration to Mathematics.  Research on problem 
solving indicates that students often use worked examples to 
develop solutions to novel problems.70,71 Transliteration to 
Mathematics is an epistemic game in which students use 
worked examples to generate a solution without developing a 
conceptual understanding of the worked example.  “Translit-
erate” means “to represent (letters or words) in the corre-
sponding characters of another alphabet.”72  In the Translit-
eration to Mathematics game students map the quantities 
from a target problem directly into the solution pattern of an 
example problem.   

 

. 
Fig. (6): Schematic diagram of some moves  

in the epistemic game Transliteration to Mathematics 

Because students use the symbolism in this game without 
conceptual meaning, usually only resources associated with 
the syntactic structure of equations are active during this 
game.  The solution pattern of the target example serves as 

the epistemic form for the Transliteration to Mathematics 
game. 

The moves in this game are as follows: (1) identify a tar-
get quantity, (2) find a solution pattern that relates to the cur-
rent problem situation, (3) map quantities in the current 
problem situation into that solution pattern, and (4) evaluate 
the mapping (see figure (6)).  Many students find moves (2) 
and (3) very tricky.  Many times students may find a solution 
pattern that they think relates to the current problem, when in 
fact it does not. 

4. The Setting of the Study and Methodology 
This study was done as a part of a project carried out at 

the University of Maryland3 to determine whether an intro-
ductory physics course could serve as a venue to help biol-
ogy students learn to see science as a coherent process and 
way of thinking, rather than as a collection of independent 
facts; and whether this could be achieved within the context 
of a traditional large-lecture class without a substantial in-
crease in instructional resources.  The project adopted re-
forms that were well-documented to produce conceptual 
gains and adapted them to create a coherent package that 
produced epistemological and metacognitive gains.  We 
were able to accomplish this without sacrificing the concep-
tual gains associated with these reforms.73

Data on the student responses to the modified environ-
ment were collected in a variety of ways in order to provide 
triangulation on the learning process of individual students 
and evaluations of the overall class results.  The learning en-
vironments were constructed to encourage students to learn 
in group discussions taking place both in and out of the 
classroom.  Hundreds of hours of these group discussions 
were recorded on video and provide the data for this project.  
In addition, all student homework, quizzes, and exams were 
scanned before grading.  Finally, we gave pre-post concep-
tual (FCI74 and FMCE75) and epistemological attitude sur-
veys (modified MPEX76). 

Student Population 
The students in this study were enrolled in an introduc-

tory, algebra-based physics course.  They were approxi-
mately 60% female; more than 70% were juniors and sen-
iors, about 50% were biological science majors, and about 
40% were pre-meds.  (There were some year-to-year fluctua-
tions in these numbers.) A particularly interesting statistic for 
this study is that more than 95% of the students had success-
fully completed two semesters of calculus, yet they chose to 
enroll in an algebra-based introductory physics course de-
spite the availability of a calculus-based alternative.  Data 
were collected in 10 semester-long classes over a four-year 
period from a total of more than 1000 students. 

Structure of the modified course 
The course had four major structural components. The 

homework, the lecture, the discussion, and the laboratory 
were all modified to be non-traditional in some fashion. In 
addition, we attempted to make all parts of the course coher-
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ent with each other. We believe that the overall epistemo-
logical orientation of the class was responsible, at least in 
part, for the students’ willingness to spend long periods 
working together on individual problems and for some of the 
behaviors we observed, such as discussing the physics quali-
tatively before starting to write equations.  We describe here 
the details of the reforms that are directly relevant to the data 
presented.  Brief descriptions of the other reforms are given 
in the auxiliary appendix (available online at 
http://linktobedetermined/aux_appendix.pdf). 

Homework problems: Problems were regularly assigned 
and graded. The problems assigned were not traditional end-
of-chapter textbook exercises. Instead, they included a mix 
of challenging activities including representation translation 
problems, context-based reasoning problems, ranking tasks, 
estimation problems, and essay questions with epistemologi-
cal content. (For more on these types of problems see Chap-
ter 4 of Redish’s Teaching Physics.77) 

The instructor (Redish) expected that each problem would 
take the students about an hour to complete, and he commu-
nicated this expectation to the class.  In accordance with his 
expectation, the instructor only assigned about five problems 
each week.  (The specific problems we discuss here are 
given in the Appendix.) Because these problems were as-
signed as homework and graded, our observations of stu-
dents working on these problems gave us an authentic look 
at how students actually behave in real-world problem-
solving situations — as opposed to watching them solve 
problems artificially posed to them in an interview environ-
ment. 

Coherence: An important characteristic of the reformed 
class was the attempt to make the various parts epistemo-
logically oriented and mutually supportive.  The instructor 
and the teaching assistants frequently cross-referenced 
among homework, lectures, tutorials, and laboratories.  
Exam questions drew from and mixed information that the 
students had worked on in each of the class components. 

The Course Center 
Since the traditional discussion sections were converted to 

tutorials, the students did not have time to discuss the prob-
lems on the homework set with a teaching assistant (TA) 
during these periods.  To close this gap, a room was set up, 
called the course center, where students could gather to work 
on the homework problems together.  The data reported on 
here comes from videotaped sessions of students working on 
homework problems in the course center.  

A TA or instructor was available in the course center ap-
proximately twenty hours per week.  The TA or instructor 
was present to offer assistance but not to explicitly solve the 
problems for the students, as is often the case in many tradi-
tional recitation sessions. The relevant features of this room 
were its architecture, the white boards, and the audio-video 
set up. 
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Architecture:  Many students expect recitation sessions in 
which a teaching assistant stands at the front of the room and 
solves problems, while the students frantically copy down 

the solutions.  The architecture of the course center was al-
tered to modify this expectation by removing the front of the 
room.  All the chairs with desk arms were removed, and they 
were replaced with stools and five long workbenches.  (See 
figure (7) for a schematic lay out.)  This seating arrangement 
did not direct the attention of the students to any one location 
in the room – as is the case in all lecture halls in which the 
seating is arranged to face the ‘front,’ directing attention to 
the lecturer.  The natural focus of attention of a student 
seated at one of these worktables is the work area in front of 
them and the students seated across from them. 

 

 
Fig. (7): Top-view of the lay-out of the course center. 

Whiteboards:  As a second alteration to the course center, 
whiteboards were mounted on the walls and the students 
were provided with dry erase markers.  The reason for this 
was threefold.  First, the location of the whiteboards made 
them difficult to reach for the TAs but easy for the students – 
an architectural feature that encourages the students to go to 
the whiteboards and discourages the TAs from solving the 
problem for the student or “lecturing” at the whiteboards.  
Second, the whiteboards facilitate group problem solving.  
Research on expert and novice problem solving has shown 
that external representations are a helpful and sometimes 
necessary tool in the problem-solving process.25,32 The 
whiteboards offered the students a medium to share their ex-
ternal representations with each other.  Third, the white-
boards helped with our research agenda. The students’ 
shared representations on the whiteboards are visible to the 
video camera.  

Audio-video set-up:  The course center was equipped with 
a digital video camera.  Microphones were mounted in the 
middle of two tables to ensure quality audio reception.  The 
video camera was mounted about seven feet above the floor 
on the wall of the closet across from the tables that were 
equipped with microphones.  The elevation of the camera 
had three advantages: 
• Students and staff members walking by the closet did 

not block the camera;  
• Students sitting closer to the camera did not block our 

view of students who sat closer to the wall; and  
• We had a clear view of what the students wrote on the 

whiteboards. 



Students were encouraged to work at the two tables that 
could be recorded.  At the beginning of a session, the camera 
was pointed at an occupied table and that microphone con-
nected to the camera.  Most students were willing to work at 
these tables and we have strong evidence that they quickly 
forgot they were being recorded. 

Methodology 
The data for this study comes from about 60 hours of 

videotaped sessions of groups of students solving homework 
problems in the course center. Sixty hours of video is too 
much to be analyzed in detail, so we selected promising epi-
sodes from the full data set.  We looked for episodes rich in 
articulated student thinking and reasoning, and ones that 
contained some discussion of mathematical issues (qualita-
tive or quantitative).  These selection criteria reduced the 
data set to about 11 hours of video that were analyzed in de-
tail. 

These 11 hours of video were transcribed and analyzed. 
The games were determined by a semi-phenomenographic 
approach.78  We identified video segments that appeared to 
contain students carrying out coherent and consistent activi-
ties (whether correct or not). The authors viewed these seg-
ments multiple times and identified plausible goals, moves, 
and exclusions.  Hypotheses for specific games were pro-
posed.  During weekly meetings of the research team (the 
authors plus other members of the University of Maryland 
Physics Education Research Group), the transcription and 
coding of the episodes were scrutinized and the descriptions 
of the proposed e-games refined.  Finally, two different cod-
ers independently analyzed a sample episode in terms of 
epistemic games, with an inter-rater reliability of 80%.  After 
discussion, the two codings were in complete agreement.  
The process resulted in the identification of the 6 games de-
scribed in section 3.   

5. Two Case Studies 
We now present two case studies that demonstrate how an 

analysis in terms of resources and e-games can help make 
sense of student problem-solving behavior; in particular, 
why students often do not use what seems to the instructor to 
be the appropriate resources in a given context.  The full 
transcripts of these episodes are included in the on-line ap-
pendix (http://linktobedetermined/aux_appendix.pdf). 

Case 1: Building Knowledge Using E-Games 
The episode for this case study involves three female stu-

dents working on an electrostatics problem, which we refer 
to as the three-charge problem (Appendix, problem #1).79 
This episode occurs in the second week of the second semes-
ter of a two-semester introductory, algebra-based physics 
course.  All the students in the group had been in the re-
formed course the first semester and were familiar with its 
innovative features.  In particular, they were familiar with 
the interaction style between students and teaching assistants 
in the course center and with the type of homework problems 
that were assigned in this course.  Most importantly, they 

were cognizant of the fact that the instructor expected the 
students to spend about an hour on each homework problem 
– during which time they were expected to generate solutions 
to the questions that “made sense to them.” 

An “instructor’s” solution to the three-charge problem in-
volves straightforward balancing of forces and the use of 
Coulomb’s Law.  The parenthetic comment in the problem 
states there is “no net electrostatic force” acting on charge q3.  
Symbolically, this can be written as 0
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Canceling similar terms on both sides of the equation and 

setting q2 = Q  yields the result: q1 = -4Q. 
There are several inferences and steps involved in generat-

ing this solution. However, in spite of the multiple steps in-
volved, most experienced physics teachers solve this prob-
lem in less than one minute.  Some can “see” the answer in a 
conversational beat and give the correct answer immediately.  

The most interesting aspect about the students’ approach 
is that it takes so long.  The students work for nearly 60 min-
utes before arriving at a solution – two orders of magnitude 
longer than the typical teacher!  Why does it take so long?  
The typical teacher has a broader mathematical knowledge 
base (i.e. a larger collection of compiled mathematical re-
sources) and richer collection of problem-solving strategies 
(i.e. an assortment of epistemic games for solving problems 
in physics) than most students.  For the typical teacher, the 
problem statement immediately cues the appropriate epis-
temic game and tightly compiled resources; whereas, the 
students’ mathematical resources do not exist in compiled 
form.  The difference in the teacher and the students’ knowl-
edge structure could account for the difference in the speed 
of the problem solution and demonstrates the power and ef-
fectiveness of cognitive compilation.56

The students do not follow a straightforward approach to 
solving this problem.  However, these students’ various 
problem-solving approaches are readily understood in terms 
of epistemic games.  We identify five different epistemic 
games that are played during this problem-solving session: 
Physical Mechanism, Pictorial Analysis, Mapping Mathe-
matics to Meaning, Transliteration to Mathematics, and 
Mapping Meaning to Mathematics.  We divide the discus-
sion into segments corresponding to different e-games and 
refer to these segments as “strips.”  The names in the tran-
scripts of the strips are gender indicative pseudonyms. 

Playing the Physical Mechanism Game  
The students’ initial attempt to solve this problem follows 

a less formal path than the instructor’s solution outlined 
above.  Throughout this strip the students draw on intuitive 
reasoning primitives to explain and support their conclu-
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sions.  The students do not activate any formal mathematics 
or physics principles to support their claims. The reasoning 
consists almost entirely of facets.  This first strip occurs 
about 7 minutes into the problem-solving process. 
 

Darlene: I'm thinking that the charge q1 must have 
it's...negative Q. 

Alisa: We thought it would be twice as much, because it 
can't repel q2, because they're fixed.  But, it's repelling 
in such a way that it's keeping q3 there. 

Bonnie: Yeah.  It has to—  
Darlene: Wait say that. 
Alisa:  Like— q2 is— q2 is pushing this way, or attract-

ing—whichever.  There's a certain force between two 
Q, or q2 that's attracting.   

Darlene: q3. 
Alisa:  But at the same time you have q1 repelling q3. 

 
Darlene initiates the conversation by asserting that the 

charge on q1 must be “negative Q.”  The negative sign in this 
case standing for her realization that q1 and q2 will have op-
posite effects on q3.  Alisa elaborates on this point by articu-
lating that q2 exerts an influence on q3, which she identifies 
as a force, that is either repelling or attracting, and that q1 
exerts the opposite influence on q3.  The semantic content 
contained in Alisa’s explanation can be summarized in the 
following facet: ‘the attractive effect of q2 on q3 cancels the 
repulsive effect of q1 on q3.’ The abstract reasoning primitive 
underlying this facet is canceling. In this case, canceling is 
an appropriately mapped primitive, because in fact the two 
forces acting on q3 do cancel, which results in there being no 
net electrostatic force on q3. 

From Alisa’s initial cursory comment (“we thought [the 
charge on q1] would be twice as much [as the charge on q2]”) 
it appears that she has the reasoning primitives more is more 
and balancing activated.  That is, since the two influences 
acting on q3 balance, q1 must have more charge because 
there is more distance between q1 and q3 than there is be-
tween q2 and q3.   

It cannot be confirmed whether Alisa has more is more 
and balancing activated, because the direction of the conver-
sation changes.  Darlene contends with the other students, 
because it appears she has activated a different reasoning 
primitive: blocking. 

 
 Darlene: How is it repelling when it's got this charge in 

the middle? 
Alisa:  Because it's still acting.  Like if it's bigger, than q2 

it can still, because they're fixed.  This isn't going to 
move to its equilibrium point.  So, it could be being 
pushed this way.   

Darlene: Oh, I see what you're saying.  
Alisa:  Or, pulled.  You know, it could be being pulled 

more, but it's not moving. 
Darlene: Um-huh. 
 

The orientation of the charges cues the reasoning primi-
tive of blocking, because q2 is between q1 and q3.  From the 
superposition principle we know the effect of q1 on q3 does 
not get blocked by the presence of q2, so the activation of 
blocking is an unnecessary distraction.  In contrast to the rea-
soning primitive of canceling that was activated earlier in 
this strip, blocking does not get mapped into a productive 
facet for solving this problem.  (This is not to say that block-
ing is ‘wrong’; rather, in this particular instance the activa-
tion of blocking does not lead to a productive facet.)   

Bonnie continues Alisa’s line of reasoning by explaining 
why the value of q1 has to be twice as big as that of q2.  

 
Alisa:  So, we—we were thinking it was like negative two 

Q or something like that. 
Bonnie:  Yeah.  Cause it has to be like big enough to push 

away. 
Darlene: Push away q3. 
Bonnie:  Yeah, which we—which I figured out negative 

two. 
Darlene: Cause it's twice the distance away than q2 is? 
Bonnie:  Yeah. 
Darlene: I agree with that.  
 
It appears that Alisa draws on overcoming when she ex-

plains that ‘Like if it's bigger, than q2 it can still [have an ef-
fect]’ and Bonnie restates this as ‘[q1] has to be like big 
enough to push away [q3].’  That is, q1 has to have enough 
charge to overcome the influence of q2.  The tacit conclusion 
from this assertion is that the charge of q1 must have a larger 
magnitude than that of q2.  This is particularly interesting 
since Alisa later shows (see below) that she understands 
Coulomb’s law and superposition.  But in the context of 
Physical Mechanism she generates an (incorrect) argument 
in support of her sense that the force from both source 
charges must be included using reasoning primitives and 
facets.  This is a clear example of the e-game she is playing 
limiting the responses that she considers appropriate within 
the context of this particular game. 

Bonnie and Darlene quantify this conclusion by using the 
reasoning primitive more is more and the symbolic form de-
pendence (which has the symbol template  = […x…]) to 
assert that the charge on q1 has to be twice the magnitude of 
q2.   More is more and dependence get mapped into the facet 
twice the distance is twice the charge. Bonnie’s argument 
stays within the rules of the local e-game. Because physical 
mechanism does not include moves that access formal 
knowledge, they do not invoke the formal knowledge that 
says blocking is irrelevant. We will see later that they (and 
Alisa in particular) indeed do have the relevant formal 
knowledge. 

The students’ problem-solving activities during this entire 
strip have the ontology of Physical Mechanism. While play-
ing this game the students draw on their intuitive knowledge 
base rather than their formal knowledge to support their 
claims.  During this strip the students use various reasoning 
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primitives and do not mention any formal mathematics or 
physics principles.  The epistemic form in the Physical 
Mechanism Game involves a coherent, physical description 
that is either verbal or imagistic.  These students are actively 
seeking physical causes for the effects that are described in 
the problem. 

Playing this game helps the students become oriented to 
this problem, but the solution to this problem necessarily in-
volves physics equations (in particular Coulomb’s Law).  
Since Physical Mechanism does not include mathematical 
expressions or equations, it cannot ultimately lead them to 
the correct answer.  In the next strip, a comment from the TA 
helps them reframe the problem, which activates other re-
sources they have, and cues them to play another epistemic 
game. 

Playing the Pictorial Analysis Game 
In the last strip we saw the students making sense of the 

problem by using their intuitive reasoning primitives in the 
context of Physical Mechanism game.  At the end of the 
strip, the students appear to have difficulty focusing their 
collective attention.  Although they achieve the correct con-
clusion (which forces are relevant to consider), a question 
asked by one of them causes the others to begin the discus-
sion anew, losing the ground they had gained through the 
discussion.80  This happens twice.  To assist them, the TA 
(Tuminaro) offers a suggestion. 

 
Darlene:  I think they all have the same charge. 
Bonnie:  You think they all have the same charge?  Then 

they don't repel each other.   
Darlene:  Huh? 
Bonnie:  Then they would all repel each other. 
Darlene:  That's what I think is happening. 
Bonnie:  Yeah, but q3 is fixed.  If it was being repelled— 
Alisa:  No, it's not.  q3 is free to move. 
Bonnie:  I mean, q3 is not fixed.  That's what I meant. 
Darlene:  Right. 
Bonnie:  So, like... 
Darlene:  So, the force of q2 is pushing away with is only 

equal to d. 
Bonnie:  Yeah, but then... 
Darlene: These two aren't moving. 
Bonnie:  Wouldn't this push it somewhat? 
Alisa:  Just because they're not moving doesn't mean 

they're not exerting forces. 
Darlene:  I know. 
Alisa: What do you think? 
TA:   Can I make a suggestion?   
Darlene: Uh-huh. 
TA:   You guys are talking about like a lot of forces and 

stuff.  And, one thing I've suggested in previous semes-
ters, if you write it down and say, what forces do you 
think are acting here, you can all talk about it. 

Darlene: Where did the marker go? 
TA:   That's a suggestion—a general suggestion—that I 

might make.  

 
In the first few lines above, it seems as though the stu-

dents take a step back.  Earlier, they appeared to have estab-
lished the major aspect of the problem:  two influences act 
on q3, which exactly cancel each other. In this strip, the stu-
dents restate the set up of the problem (“these two are mov-
ing”) and recite remembered facts (“just because they’re not 
moving doesn’t mean they’re not exerting forces”).  While 
these things are important to keep straight, this discussion 
does not appear to push the problem-solving process for-
ward.   

The suggestion to write on the whiteboards has two ef-
fects on the students.  First, it nudges them into playing a dif-
ferent epistemic game, pictorial analysis.81  Second, the in-
troduction of this new epistemic game and a new e-form re-
frames the students’ interactions and helps them focus their 
collective attention and clarifies their communication.  

Alisa attempts to make an external representation of this 
problem on the white board while Bonnie and Darlene offer 
their assistance:  

 
Darlene:  You're trying to figure out what q1 is, right? 
Bonnie:  Oh, yeah. 
Alisa: Because this [q3] is in equilibrium, there's some 

force... 
Darlene: Pulling it that way and some force pulling ex—

equally back on it. 
Bonnie:  Yeah. 
Alisa:  And, they’re equal? 
Bonnie:  Yes.  
Darlene: Same with up and down.  Not that that matters, 

really. 
Bonnie:  We'll just stick with... 
Darlene: Horizontal. 
Bonnie:  Yeah, one dimension.  
 
In this strip the students are deciding which features men-

tioned in the problem should be included in their diagram  — 
a move within Pictorial Analysis.  The structure of this game 
is similar to Physical Mechanism; however, the ontological 
components of Physical Mechanism and Pictorial Analysis 
are different.  The epistemic form in Pictorial Analysis in-
volves a coherent, physical description and an external rep-
resentation; the epistemic form for Physical Mechanism only 
involves a coherent, physical description. 

The external representation generated in the Pictorial 
Analysis epistemic game activates additional resources in the 
students, which help them better understand this problem.  In 
particular, the students draw on the interpretive device of 
physical change to conclude that q1 and q2 have to have op-
posite charges. 

 
Alisa:  So, maybe this is pushing... 
Darlene: That's [q2] repelling and q1's attracting? 
Bonnie:  Yeah, it's just that whatever q2 is, q1 has to be the 

opposite.  Right? 



Alisa:  Not necessarily. 
Darlene: Yeah. 
Bonnie:  OK, like what if they were both positive? 
Alisa:  Well, I guess you're right, they do have to be dif-

ferent, because if they were both positive... 
Bonnie:  Then, they'd both push the same way. 
Alisa:  And, if this were positive it would go zooming that 

way. 
Darlene: They would both push. 
Alisa:  And, if this were negative it would go there. 
Bonnie:  It would go zooming that way. 
Alisa:  And, if they were negative... 
Darlene: It would still—they'd all go that way. 
Alisa:  It would be the same thing.  
 
Bonnie claims that the charge on q1 has to be the opposite 

of q2, but the other students do not initially agree, despite the 
fact that this claim was agreed upon in the context of a dif-
ferent game in the previous strip.  Bonnie’s suggestion to 
verify, or falsify, her claim involves the interpretive strategy 
of physical change.  That is, she considers the affect of an 
actual physical alteration to the system (“OK, like what if 
they were both positive?”).  From this move the students al-
most immediately conclude that the charges on q1 and q2 
must be different, or else q3 would go ‘zooming’ away, since 
both forces would push in the same direction.  

Switching to Pictorial Analysis turns out to be a very ef-
fective strategy for this group of students.  By decomposing 
the forces in space and creating an external representation, 
they are able to physically justify why q1 and q2 have to have 
opposite charge.  This strip also illustrates that the students’ 
problem does not stem from lack of knowledge or skills; 
rather, the epistemic game the students play in their initial 
approach (Physical Mechanism) does not help them ade-
quately articulate the physical relationship between the 
charges.  The external representation they collectively gener-
ate in Pictorial Analysis cues resources they already possess 
(physical change), which helps them make progress on this 
problem (i.e., conclude with confidence that q1 and q2 have 
opposite charges). 

Although the students’ external representation and con-
clusion marks progress, they have yet to solve the problem. 
In fact, they have not even identified the necessary physics 
principle (Coulomb’s Law), which is what happens in the 
next strip. 

Playing the Mapping Mathematics to Meaning Game 
So far the students have drawn a diagram representing 

which forces act and in what direction, and they have con-
cluded that q1 and q2 have opposite charges. However, they 
have not yet solved the problem.  In this strip we see Alisa 
spontaneously reframe the problem-solving process by draw-
ing on a new set of resources: formal mathematics knowl-
edge. 

 
Alisa:  Are we going to go with that? [That q1 is twice as 

big as q2 and opposite.] 

Bonnie:  I think it makes sense. 
Darlene: That makes... 
Alisa:  Well, I don't know, because when you're covering 

a distance you're using it in the denominator as the 
square.  

Bonnie:  Oh!  Is that how it works? 
Alisa:  And (?) makes a difference. 
Bonnie:  Yeah, you're right. 
TA:  So, how do you know that? 
All:  From the Coulomb's Law. 
Bonnie:  So, it should actually be negative four q?  Or 

what?  Since it has… 
Alisa:  Cause we were getting into problems in the begin-

ning of the problem with [the 2D-three-charge prob-
lem, Appendix, problem  #2], because I thought that 
like if you move this a little bit to the right the decrease 
for this would make up for the increase for this.  But, 
then we decided it didn't.  So, that's how I know that I 
don't think it would just increase it by a factor of two. 

 
Alisa is not only attempting to introduce an equation, she 

is negotiating a shift in how this problem is being viewed — 
asking the group to play a new epistemic game.  All the pre-
vious reasoning relied on intuitive reasoning primitives, 
without any explicit reference to physics principles or equa-
tions.  Alisa’s introduction of Coulomb’s Law is the first 
mention of a physics principle during this entire problem-
solving process.  In addition, it’s the first time anyone ex-
plicitly makes reference to an equation (“when you cover a 
distance you use it in the denominator as the square”).   
Alisa’s use of formal physics principles and explicit refer-
ence to equations is (tacitly) asking the other students to play 
Mapping Mathematics to Meaning. 

 

 
Fig. (8): Schematic map of Alisa’s moves  
within Mapping Mathematics to Meaning 

Alisa’s discussion follows all the moves within Mapping 
Mathematics to Meaning (see figure (8)).  First, the distance 
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and force are identified as the relevant concepts in this prob-
lem.  Second, she identifies Coulomb’s Law, F = kq1q2/r2, as 
an equation that relates the target concept to other concepts.  
Third, she develops a story using this relationship between 
concepts: “When you’re covering a distance you’re using it 
in the denominator as the square.”  Fourth, she evaluates the 
validity of her story by referencing a previous problem.  She 
acknowledges that her intuitive reasoning had failed her on 
the previous problem, which justifies for her the need for 
Coulomb’s Law on this problem: “I thought that like if you 
move this a little bit to the right the decrease for this would 
make up for the increase for this.  But, then we decided it 
didn't.” 

Alisa’s use of Coulomb’s Law is significant progress on 
this problem, but all the other students don’t know how to 
apply this new piece of information.  In fact, the introduction 
of Coulomb’s Law cues Darlene to play a new (and counter-
productive) epistemic game. 

Playing the Transliteration to Mathematics Game  
Although it appears the students are making progress on 

this problem, they take a detour and attempt to use another 
problem as a prototype for solving this problem.  Alisa has 
suggested that Coulomb’s Law is an important concept.  It 
appears that Darlene does not initially know how to apply 
this new information.  She attempts to find a different prob-
lem that uses Coulomb’s Law in its solution, and then map 
the solution pattern from the other problem to the Three-
Charge Problem.  The problem that Darlene identifies as us-
ing Coulomb’s Law in the solution is the two-charge prob-
lem (Appendix, problem #3). 

 
Darlene:  Where is that other problem?  Three times as 

far apart as they were now what is the magnitude of the 
force? 

Bonnie:  I think it should be four times.   
Darlene: If it's three times as far apart it's...you di-

vide...uh!  I think it's q over two. 
Bonnie:  Q over two?  So, if you think of it as half the 

force of q2. 
Darlene: Look at this one. 
Bonnie:  Is this one you're talking about? 
Darlene: Uh-huh.  If you increase the distance that they 

are from each other it's decreasing by the same 
amount.  I thought it was four (?), but they said it was 
(?).  I don't know why.  Just three times...does it mat-
ter? I'm looking at this one.  Number three, isn't that 
like the same thing? 

Alisa:  Three was an estimation problem. 
Darlene: No, no with the q and four q and all that, you 

know how there was this question that asked when you 
move the charges three times further apart than they 
originally were, what the resulting force is. 

Alisa: OK. 
Darlene: And, you said it was—we said it was four—the 

charge would be like q, or nine, but it would get three 

times as far apart.  Why it's not three I don't under-
stand, but that’s all right.  So—  

Alisa: Well, 'cause in the equation you square this—the 
distance between them.  Like if you're multiplying by 
three... 

Darlene: Oh!  So, I would think this one would be q over 
four—negative q over four.  Cause it's twice as far 
away, opposite charge.  Does that make sense? 

Alisa:  But, then it's a smaller charge than this. 
Bonnie:  Yeah. 
Alisa:  So, I don't understand how it would be pushing 

three or pulling three whatever it's doing. 
 
In the Force-Distance Two-Charge Problem, the students 

had found that if the force between two charges for a given 
distance is F, tripling the distance results in a force between 
the two charges that is decreased by a factor of nine (see Ap-
pendix, problem #3), in compliance with Coulomb’s Law.  
Darlene is attempting to match the quantities in the Three 
Charge Problem with quantities from the Force-Distance 
Charge Problem, so the solution pattern can be transferred; 
i.e. she is playing the Transliteration to Mathematics epis-
temic game.  

One piece of evidence that Darlene is playing Translitera-
tion to Mathematics comes when she says, “Why it’s not 
three I don’t understand, but that’s all right.”  Darlene is ex-
plicitly indicating that she does not understand the previous 
problem, but conceptual understanding is not a move in the 
Transliteration to Mathematics epistemic game.  All that is 
important is that the problems have enough similar features 
that the solution from one problem can be transferred to the 
other.   

Darlene’s metacognitive statement (“Why it’s not three I 
don’t understand, but that’s all right.”) stands in stark con-
trast to Alisa’s meta-cognitive statement (“I thought that like 
if you move this a little bit to the right the decrease for this 
would make up for the increase for this.”). Darlene simply 
admits she does not understand and slavishly transfers the 
solution pattern from the previous problem anyway.  In con-
trast, Alisa’s metacognitive statement leads to her justifica-
tion for using Coulomb’s Law.   

Darlene’s Transliteration to Mathematics approach 
doesn’t help her with the Three-Charge Problem.  She says, 
“If you increase the distance that they are from each other it's 
decreasing by the same amount.”  The problem with Dar-
lene’s approach is that she is unaware of the two meanings 
that she attributes to the pronoun ‘it.’  In the previous prob-
lem the pronoun stands for ‘force,’ so that the statement 
would read, “If you increase the distance that they are from 
each other, then the force is decreasing by the same amount.”  
However, Darlene tacitly maps this into the statement, “If 
you increase the distance that they are from each other, then 
the charge is decreasing by the same amount.”  The Translit-
eration to Mathematics game is not helpful in this case be-
cause force and charge are not related to distance in the same 
way in Coulomb’s Law. The charge has to be found from the 



balance of two forces. This is not to say that the Translitera-
tion to Mathematics game is wrong.  Rather, it does not work 
in this situation because of Darlene’s inappropriate mapping 
of force and charge.  The components (ontology and struc-
ture) of Transliteration to Mathematics can also be found as 
a part of the richer Mapping Mathematics to Meaning game 
– just as is true for Recursive Plug-and-Chug, but the goals 
(perceived endstates) of the games differ. 

Playing the Mapping Meaning to Mathematics Game 
In this strip the students finally come to the solution of the 

problem.  Alisa summarizes her final solution as the other 
students listen.  Alisa’s problem-solving activities follow the 
Mapping Meaning to Mathematics epistemic game (see fig-
ure (9)).  First, she develops a conceptual story describing 
the physical situation.  This conceptual story relies heavily 
on the reasoning primitives of balancing.  

TA:   What did you do there? 
Alisa:  What did I do there? 
TA:   Yeah, can I ask? 
Alisa:  All right, so because this isn't moving, the two 

forces that are acting on it are equal:  the push and the 
pull.   

Alisa correctly maps ‘force’ as the two influences that bal-
ance in this physical situation.  Second, Alisa uses the idea of 
identity (a symbolic form,7 with the symbol template  = …) 
to translate her conceptual story into mathematical expres-
sions: 

Alisa:  So, the F—I don't know if this is the right F sym-
bol—but, the F q2 on q3 is equal to this (see Equation 
2).  And, then the F q1 on q3 is equal to this (see Equa-
tion 3), because the distance is twice as much, so it 
would be four d squared instead of d squared.  

 

2
3

32 d
kQq

F qq =→
   (2) 

2
3

31 4d
kxQq

F qq =→
   (3) 

Alisa explains why she wrote the charge on q1 as ‘xQ,’ by 
drawing on the reasoning primitive of scaling (another sym-
bolic form,7 this one with the syntax x ). 

 
Alisa:  And, then I used xQ like or you can even do—

yeah—xQ for the charge on q1, because we know in 
some way it's going to be related to Q like the big Q we 
just got to find the factor that relates to that.  

 
In the third step in the Mapping Meaning to Mathematics, 

Alisa relates the mathematical entities that she derived in 
step 2 with her conceptual story that she developed in step 1: 

 
Alisa:  Then, I set them equal to each other… 
 
Fourth, she manipulates the mathematical expression to 

arrive at the desired solution: 

Alisa:  … and I crossed out like the q2 and the k and the d 
squared and that gave me Q equals xQ over four.   And, 
then  Q equals four Q, so x would have to be equal to 
four.  That's how you know it's four Q. 

 
Fifth, the other students evaluate Alisa’s problem-solving 

approach and conclusion. 
 
Bonnie:  Well, shouldn't it be—well equal and opposite, 

but... 
Alisa:  Yeah, you could stick the negative. 
Bonnie:  Yeah. 
Darlene:  I didn't use Coulomb's equation, I just—but it 

was similar to that. 
Bonnie:  That's a good way of proving it. 
Darlene:  Uh-huh. 
Bonnie:  Good explanation. 
Alisa:  Can I have my A now? 
 
Darlene and Bonnie accept Alisa’s approach is “a good 

way of proving it.”  In fact, Alisa must realize that this is a 
good way to prove this, since she self-evaluates her solution 
and asks for an “A now.”   

 

 
Fig. (9): Schematic map of Alisa’s moves  
within Mapping Meaning to Mathematics. 

Case 2: Playing Recursive Plug-and-Chug 
In our second case study, a group of three students is at-

tempting to solve the Air Pressure problem (Appendix, Prob-
lem #4). The episode occurs near the end of the first semes-
ter of the class.  The problem is a fairly straightforward esti-
mation problem in which the students have to come up with 
numerical data on their own from their personal experience.  
There has been such a problem on nearly every homework 
assignment and on every exam throughout the semester.  
Nonetheless, some students bring into the class what appear 
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to be quite robust “misconceptions of expectations” and have 
considerable difficulty in getting into the spirit of estimation 
problems.  For most of the recorded episode, one student 
(code named Susannah) dominates the discussion.  Part way 
into the episode, a teaching assistant attempts to help get her 
on the right track. 

An instructor’s solution to this problem is straightforward.  
The problem asks the student to estimate the pressure differ-
ence between the floor and ceiling of their dorm room.  The 
equation that governs the pressure difference is 

pfloor − pceiling = ρgh   (4) 
where ρ is the density of the air, g is the gravitational field 
constant (~10 N/kg) and h is the height of the ceiling above 
the floor.  The value of h can be easily estimated by knowing 
your own height, visualizing yourself in your dorm room, 
and estimating how many times taller than yourself the ceil-
ing is.  A reasonable height for many rooms is 3 m.  Putting 
this together with the density of the air (given as ~1 kg/m3) 
gives the result 

pfloor − pceiling ≈ (1 kg/m3)(10 N/kg)(3 m) = 30 N/m2 = 30 P 
The solution appears quite straightforward – if you choose 

the correct equation and if you use your own experience as a 
source of quantitative data.  The student in this episode does 
neither.   

At the beginning of the episode, we transcribe the follow-
ing interesting strip. 

 
Martha:  We're saying that the pressure... 
Susannah:  Right. 
Martha:  Well pressure's supposed to be higher at the bot-

tom, isn't it? 
Susannah:  Hmm? 
Martha:  Pressure is supposed to be higher at the bottom. 
Susannah:  I think there's more at the bottom, because the 

thing, because the gravitation. 
Martha:  And, there's pressure pushing down on it. 
Susannah:  Um-huh. 
Martha:  OK. 
Susannah:  Pressure's equal to the radius times the moles 

of the gas times the temperature divided by the volume.  
So, what we need to do, we know the pressure find the 
volume from this.  Density is equal to... 

Martha:  Are you using pV equals nRT? 
Susannah:  Huh? 
Martha:  Are you using pV equals nRT? 
Susannah:  Yeah, or yeah. 
Martha:  Or. 
Susannah:  Or p equals R times nT... 
Martha:  Over V. 
Susannah:  Over V. 
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What’s going on in this exchange can be nicely described 
in terms of e-games.  Martha begins with a statement that 
proposes they play an e-game involving mechanism and a 
qualitative story, perhaps physical mechanism.  We can’t say 
for sure, since Susannah quickly makes a move to establish a 

different e-game, one that, it soon becomes clear, is recursive 
plug-and-chug. Her choice of the form of the law 
(p = nRT/V) suggests that she began with the identification of 
a variable – the pressure, rather than the pressure difference. 
And she knows an equation containing that variable – the 
ideal gas law.  

The next strip is also remarkable. 
 
Susannah:  OK.  So, if let's say it's [the density] equal to 

mass over volume, then [to another student] yeah.  No I 
just found the formula to do it.  So, this is equal to mass 
over volume, then the mass is equal to...  So, basically 
we just found the formula that p is equal to the radius 
times the moles times the temperature over the volume.  
So, if we have the density we can find the volume. 

Martha:  Is R the radius? 
Daphne:  I don't think R is the radius. 
Susannah:  It's not? The radius of the... 
Martha:  R isn't radius.  R is... 
Susannah:  Or, whatever R is. 
Daphne:  Some number. 
Martha:  It's not radius. 
Susannah:  Is it a constant? 
Alice:  Yeah, it's a constant.  It's a constant. 
Martha:  It's a constant.  It's... 
Susannah:  Awesome.  One less thing for us to find. 
 
Susannah has focused on the fact that the density is given 

and is trying to use that number to generate the value of 
other unknowns in her formula. She admits to being deeply 
mistaken about the meaning of one of the symbols in her 
equation (“It’s not? The radius of the…?”).  This doesn’t 
bother her; on the contrary, she is very pleased (“Awesome. 
One less thing for us to find.”).  This is strong evidence that 
she is playing recursive plug-and-chug, an e-game with a 
strict and very limited set of allowed moves.  It is not an ad-
missible move in this game to evaluate whether the equation 
makes sense in terms of mechanism, and (as we see below), 
it is not an admissible move to get quantitative information 
from anywhere but an authoritative source tied to the class. 

After some discussion, Susannah and Martha have de-
cided that they need to find the volume of the dorm room.  
The TA is passing by and in the next strip they ask for help.  
He asks how far they have gotten and they explain their posi-
tion.  Following the guiding principles we set down for TAs, 
he does not tell them they have the wrong equation.  Rather, 
he encourages them to reason it through fully.  Susannah de-
cides she knows both the mass and the volume of the dorm 
room. 

 
Susannah:  Well, it's one kilogram per for meters cubed, 

so it's kind of easy. 
TA:  That's the density? 
Susannah:  Yeah, but that's kind of giving it to us easy, 

right, 'cause it's... 
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Martha:  It's saying that mass is one, one kilogram.  Is 
that what you're saying? 

Susannah:  One kilogram per one meter cubed. 
TA:  Right, so if you lived in a room that was this big [He 

gestures in space describing a one meter cube.], one 
meter cubed there would be one kilogram of air there. 

Susannah:  Yeah. 
TA:  I don't think you live in a room that big. 
Susannah:  Yeah, I feel silly.  OK.  So, it's one kilogram... 
TA:  So, what um... 
Martha:  So, the mass is one kilogram, is what you're say-

ing? 
TA:  Would you agree with me this is an estimation prob-

lem? 
Susannah:  Um. 
Martha:  Yes. 
TA:  OK.   
Susannah:  To a certain extent, yeah.  
TA:  What this problem is about a dorm room.  How big is 

a dorm room? 
Susannah:  Oh! 
Martha:  Not big at all. 
Susannah:  He gave it in another problem.  Like another 

homework. 
 
In this strip, Susannah shows serious resistance to the idea 

that the data she is to use in a physics problem can come 
from her own experience.82  In watching the video, her facial 
expressions, cadence, intonation, and body language give 
clear clues to what she is thinking.  At the beginning of the 
strip, she feels that she has found the answer – there is a 
mass and a volume given in the problem that she has over-
looked: the density (of air) is specified as a mass over a vol-
ume.  Since she appears to be looking for a number given in 
the problem and since interpretation of the number is not an 
allowed move in her e-game, she is satisfied with finding a 
mass (1 kg) and a volume (1 m3).  Indeed, she comments, 
“it’s kind of easy.”  Her later statement “I feel silly” does not 
appear to be in response to the TA’s statement, “I don’t think 
you live in a room that big.”  On the contrary, she appears to 
be ignoring the TA and not attending to his statement at all.  
This is confirmed by her immediate continuation (without a 
pause), “so it’s 1 kilogram…” The TA, apparently realizing 
that Susannah is not thinking about a dorm room at all but 
just looking for numbers tries to get her to play the right 
game by saying, “Would you agree with me that this is an 
estimation problem?”  Susannah, apparently not fully attend-
ing to the question, looks up and makes a non-committal 
sound. Martha quickly and firmly agrees.  In response to fur-
ther pressure, Susannah suggests they look back in their 
notes for previous information. 

Susannah’s response to, “How big is a dorm room?” is 
“He gave it in another problem” and she starts to look in her 
notebook.  This response makes no sense unless we accept 
the idea that Susannah is operating under a particular pair of 
local rules: all information to be used in a problem must 

come from a course-related authority and it is not necessary 
(or even allowed) to think about what is going on in terms of 
mechanism or conceptual story.  Susannah is stuck playing 
recursive plug-and-chug and even specific hints from the TA 
are ignored in this context. 

What We Learn from These Case Studies 
These two studies are reasonably typical of the 11 hours 

of video that we have studied of students in algebra-based 
physics class authentically solving physics problems.  They 
demonstrate two points.   

First, this population of students often works on problems 
within an invisible and often unstated web of constraining 
expectations we refer to as epistemic games.  These expecta-
tions limit the resources these students are willing to use at a 
given time in the context of a given task.  This limitation is 
in itself neither good nor bad.  One cannot access all one’s 
knowledge at any given time.  One must restrict to a set of 
tools appropriate to the given task.   

Second, a problem does arise when a student’s perception 
of the tools appropriate to the task are not what we intend as 
instructors.  If we only consider the epistemic form – a deri-
vation, say, of an equation or result – and not the intuitive 
sense-making the instructor expects to go on behind it, we 
can be misled as to what the students are doing and the stu-
dents can misinterpret what we are trying to teach.  They 
wind up learning to play the wrong game. 

The study reported in this paper focuses on students at the 
university level and most of them were upper division stu-
dents who had already taken many science courses at the 
university.  As a result, we make no claims concerning the 
origin of the games the students were playing.  However, we 
often saw students playing games that were clearly learned 
somewhere.  Students playing recursive plug-and-chug, for 
example, had a very strong sense of what they thought they 
were supposed to be doing — both the goals of their local 
activities and what they ought to be doing to get there.  We 
can well imagine the students being taught to “identify the 
variable to be found,” to “find an equation containing that 
variable,” and so forth.  This strongly suggests that we need 
to be aware that when we are teaching our students processes 
that can produce effective results in situations with a particu-
lar limited class of problems to be solved, we may also unin-
tentionally be teaching them to play particular epistemic 
games without helping them to develop a good sense of 
when those games might (or might not) be appropriate.  Such 
instruction might help students get through the vicissitudes 
of a particular course but might have unintended negative 
consequences at later stages in the students’ education. 

6. Implications for Instruction 
Far too often in physics instruction, physics teachers focus 

on the content and the answers to physics problems rather 
than on what it is they really want their students to learn — 
how to think about physics and how to solve problems effec-
tively.  When we choose our content as learning Newton’s or 
Kirchoff’s Laws, when we give students a syllabus consist-



ing of particular chapters in an encyclopedic text, and when 
we permit them to take a card consisting of all the “necessary 
equations” into an exam, we are sending an unintended mes-
sage that what matters in physics are the equations and an-
swers rather than the processes of generating and evaluating 
them.   

Physics teachers generally know that this is not the case 
and may stress understanding and reasoning in their lectures.  
But students may not understand what this means.  They may 
ignore the derivations and reasoning the teacher presents, 
box the final results in their notes for memorization, and ig-
nore the process that generated them.   

Research in physics education documents that students 
bring understandings of the physical world into their physics 
class that may contradict and confound their attempt to make 
sense of what is being taught.  This can lead them to empha-
size memorization — which in some environments works 
even when you have little understanding of what you are 
memorizing. 

Physics teachers often have the sense that “problem solv-
ing is where you learn to actually do physics” — where stu-
dents should learn the process and sense-making that exem-
plifies good physical thinking.  We assign many problems 
and in our lectures we model the processes we want our stu-
dents to follow.  But until we have a good understanding of 
what kinds of thinking the students need to activate for solv-
ing problems, it is difficult to understand why some students 
seem to get so little out of solving large numbers of prob-
lems.83   

As experts, our knowledge exists in compiled and well-
structured form, whereas the students’ knowledge does not.  
As instructors, we may not be aware of all the knowledge 
and reasoning that goes into solving a problem, if we can see 
the solution easily and quickly.  Decomposing students’ 
problem-solving sessions in terms of epistemic games and 
resources allows us to “see” and examine the knowledge and 
reasoning that is involved in solving a problem in more de-
tail.  With increased understanding of the knowledge and 
reasoning involved in a seemingly simple problem, we can 
begin to develop teaching environments and interventions 
that more effectively and efficiently cue the appropriate re-
sources and epistemic games.  This in turn could help stu-
dents become better and more efficient problem solvers. 

The study reported on here gives two examples of how 
cognitive modeling helps increase our understanding of what 
our students need to learn. The specific resources and games 
we describe are not the only ones students use or play. Our 
intention is to introduce a new kind of structure for analyzing 
students’ thoughts on problem solving.  In addition, we have 
studied a particular population in a particular course.  Further 
research is needed to determine whether the games that we 
have observed to be common among our students occur 
commonly among other student populations.  Although it is 
true that, in the end, an epistemic game lives in the head of 
an individual student, and, therefore, each student may pos-
sess a unique set of games, we expect that, since many stu-

dents experience similar learning environments, a limited set 
of games will prove useful in describing the behavior of 
large numbers of students. 

Our focus has been on structures in the cognitive model of 
the individual student, but it is clear that two additional fac-
tors play essential roles and also require further research.  
First, the student’s decisions (tacit or conscious) about which 
games to play have a critical role.  Second, the interaction of 
the students in their group games is extremely important and 
the structures proposed here could be of considerable help in 
understanding a group’s negotiation of how to approach and 
solve a problem.  We expect that the description of student 
problem solving behavior in terms of epistemic games will 
be useful both in understanding how to teach strategies and 
metacognition in problem solving and in analyzing group 
behavior in the context of problem solving. 
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Appendix 
 
1. Three-Charge Problem  

 
Figure (10): The figure for the three-charge problem. 

In the figure above three charged particles lie on a straight 
line and are separated by distances d.  Charges q1 and q2 are 
held fixed.  Charge q3 is free to move but happens to be in 
equilibrium (no net electrostatic force acts on it).  If charge 
q2 has the value Q, what value must the charge q1 have? 

 
2. 2-D Three-Charge Problem 
Suppose you have a particle with a negative charge -q ex-

actly between two identical particles with equal, positive 
charge Q, as shown in the figure below. 

 
Fig. (11): The figure for the 2D three charge problem. 
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                                                                                                   A. If you moved the particle in the middle a tiny bit to the 
right, what direction would the total force be on it by the 
other two charges? 

B. Start with that particle back dead center again, and now 
move it a tiny bit up. In what direction would the total force 
be? 

 
3. Two-Charge Problem84  
Two small objects each with a net charge of Q (where Q is 

a positive number) exert a force of magnitude F on each 
other.  We replace one of the objects with another whose net 
charge is 4Q.  If we move the Q and 4Q charges to be 3 
times as far apart as they were, what is the magnitude of the 
force on the 4Q?  

  (a) F/9  (b) F/3  (c) 4F/9  (d) 4F/3  (e) other 
 

 
Figure (12). Figure for the force-distance two-charge problem  

(with the answer shown). 

 
4. Air-Pressure Difference Problem 
Estimate the difference in pressure between the floor and 

the ceiling in your dorm room. (Note: You may take the den-
sity of air to be about 1 kg/m3.) 
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