
E l e m e n t s of a R e l a t i o n a l T h e o r y of D a t a t y p e s

Roland Backhouse and Paul Hoogendijk

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

A b s t r a c t

The "Boom hierarchy" is a hierarchy of types that begins at the level of trees and
includes lists, bags and sets. This hierarchy forms the basis for the calculus of total
functions developed by Bird and Meertens, and which has become known as the "Bird-
Meertens formalism".

This paper describes a hierarchy of types that logically precedes the Boom hierarchy.
We show how the basic operators of the Bird-Meertens formalism (map, reduce and filter)
can be introduced in a logical sequence by beginning with a very simple structure and
successively refining that structure.

The context of this work is a relational theory of datatypes, rather than a calculus of
total functions. Elements of the theory necessary to the later discussion are summarised
at the beginning of the paper.

1 Introduction

This paper reports on an experiment into the design of a programming algebra. The
algebra is an algebra of datatypes oriented towards the calculation of polymorphic func-
tions and relations. Its design draws most inspiration from earlier research into theories
of type in a functional setting but differs from those theories in including an element of
indeterminacy. The selection of results chosen for presentation here has been made on the
basis of level of correlation with the work of other members of IFIP Working Group 2.1.
Other published selections from the work of the research team can be found in references
[18, 19, 24, 261 .

The goal of our work is to reduce a large class of type-manipulation problems to
straightforward calculation. The hope is that within the next century it will become
feasible to pose a large variety of such problems in school-leaving examinations alongside
problems in, say, the differential calculus (with the implication that they are at the same
level of difficulty). In order to achieve this goal it is vital to design a programming algebra
in which the combination of economical notation with elegant programming laws is used
to express powerful, fundamental concepts.

Fluidity of calculation is considerably enhanced by attention to two design consider-
ations. The first is that the operators in one's algebra should be ~otal funclions: their use
should not be hedged with conditions on the type of their arguments, however simple

8 Roland Backhouse and Paul Hoogendijk

those conditions may be. The second is that calculational rules should involve a mini-

mum of bound variables (at most four being our yardstick) and no complicated nestings
of universal and/or existential quantifications.

The axiomatic form of the calculus of relations developed by De Morgan, Peirce,
SchrSder, Tarski and others has both these a t t r ibutes par excellence as well as offering
mechanisms for modelling the indeterminacy that is pervasive in programming problems.

It has been chosen for these reasons as the basis for our experiment.

The contribution made in [5, 4, 3] is to extend the calculus of relations with the so-
called "polynomial relators". That is, axioms are added defining a unit type, "junction"
and "split" operators, and then it is shown how, via thelatter two operators, disjoint sum
and cartesian product are defined. Sum and product are so-called "relators" (a corruption
of the categorical notion of functor), and, with these as building blocks, new relators can

be constructed by composition and by the construction of fixed points.

In line with our design principles the junction and split operators are total functions:
this in contrast to most category-theory-inspired theories of type where type restrictions
are imposed on the corresponding operators. A consequence is that the laws in our system
have a recognisably different character to the laws in other systems. Instead of global type

restrictions on the variables in the laws the restrictions appear - - where unavoidable - -

in the laws themselves. One of our experimental objectives has been to explore to what

extent this would impede or enhance calculations. Our experience is that this des ign
decision was fortunate. Only occasionally do type restrictions occur in our formulae and
these act as a welcome reminder to the user of the calculus, and not as a tiresome detail.
In this paper only one such type restriction occurs - - in the very last theorem.

The main concern of the current paper is to compare and contrast the calculus to
the so-called "Bird-Meertens Formalism". This formalism (to be more precise, our own

conception of it) is a calculus of total functions based on a small number of primitives
and a hierarchy of types including trees and lists. The theory was set out in an inspiring

paper by Meertens [23] and has been further refined and applied in a number of papers
by Bird and Meertens [9, 10, 13, 11, 14].

Essentially there are just three primitive operators in the theory - - "reduce", "map"

and "filter". These operators are defined at each level of a hierarchy of types called the
"Boom hierarchy" 1 after tt .J. Boom to whom Meertens a t t r ibutes the concept.

The Boom hierarchy begins at the level of trees and subsequently specialises to lists,
(finite) bags and sets. In this report we describe a hierarchy of types that logically
precedes the Boom hierarchy and in which all three primitive operators of the Bird-

Meertens formalism can be defined. We call the hierarchy a hierarchy of "freebies" because
all types within the hierarchy are described by "free" algebras (i.e. algebras free of laws).

ttow the Boom hierarchy itself is captured in the spec calculus is described in a companion
paper [18].

Space limitations have dictated the form and content of this paper. The first eight
sections prepare the reader for section 9 in which the main contribution of the paper

1 For the record: Doaltse Swierstra appears to have been responsible for coining the name
"Bird-Meertens Formalism" when he cracked a joke comparing "BMF" to "BNF" - - Ba~kus-
Naur Form - - at a workshop in Nijmegen in April, 1988. The name "Boom hierarchy" was
suggested to Roland Baekhouse by Richard Bird at the same workshop.

Elements of a Relational Theory of Datatypes 9

resides. In the former sections the basic elements of the calculus are summarised but

no proofs of derived rules are given. Moreover, the axiomatisat ion of cartesian product
has been omit ted since it has no bearing on the results included in section 9. Derived
rules are, however, built up in a logical order which will permit the industrious reader to
verify all our assertions. (The word industrious must be stressed: the exercise is likely to
be quite t ime-comsuming even for those with some fluency in the calculus of relations.

Nevertheless, the exercise is well worth while part icularly for those not so familiar wth
the calculus.) In section 9, however, we do include all details of the calculations so tha t
the reader may assess their merit.

2 T h e C a l c u l u s o f R e l a t i o n s

2.1 A x i o m s

In this section we summarise the axiom system in which we conduct our calculations.
For pedagogic reasons we prefer to decompose the algebra into three layers with their
interfaces and two special axioms. The algebra is, nevertheless, well known and can also
be found in, for example, [25].

Let .A be a set, the elements of which are to be called specs (from specification). We

use identifiers R, S, etc., to denote specs. On .A we impose the structure of a complete,
completely distributive, complemented lattice (.A, R, U, --, -IT, .s) where "f3" and "U"
are associative and idempotent binary infix operators with unit elements "-IT" and "_tL",
respectively, and "'~" is the unary prefix operator denoting complement (or negation).

We assume familiarity with the standard definition of a lattice given above.

The second layer is the monoid structure for composition: (,4, 0, I) where 0 is an
associative binary infix operator with unit element I . The interface between these two

layers is: o is coordinatewise universally "cup-junctive ' , i.e. for N, }'Y C .A,

(u V) o (U w) = u (v , w : v e v ^ w e w : V o W)

The third layer is the reverse structure: (.4, u) where "u" is a unary postfix operator .
The interface with the first layer is that "~" is an isomorphism of the lat t ice structure,

i.e. for all R, S E A,

Ru -3 S = R 3 Su.

The interface with the second layer is that "u" is a contravariant monoid isomorphism

(Ro S)o = So o Ro.

To the above axioms we add the so-called middle exchange rule relating all three layers:

X 3 R o Y o S = "~Y 3 R ~ o - ~ X o S u

Our last axiom, which is sometimes referred to as "Tarski's Rule", we call the cone rule:

T F o R o ' I T = -IT - R=~_LI_

10 Roland Backhouse and Paul Hoogendijk

A model for this axiom system is the set of binary relations over some universe.
The interpretations of the operators and constants is as follows: U, n, -~ and -1 are
interpreted as the set operators union, intersection, complement (with respect to the
universal relation) and containment; 7Y, _Ll_ and I are the universal relation, the empty
relation and the identity relation; finally, 0 and u are the familiar relational composition
and converse operators.

2.2 Operator precedence

Some remarks on operator precedence are necessary to enable the reader to parse our
formulae. First, operators in the metalanguage (- , ~= and =~ together with V and A)
have lower precedence than operators in the object language. Next, the operators in the
object language " = ' , "_." and "E" all have equal precedence; so do "U" and "[3"; and,
the former is lower than the latter. Composition " o " has a yet higher precedence than all
operators mentioned thus far. Finally, all unary operators in the object language, whether
prefix or postfix, have the same precedence which is the highest of all. Parentheses will
be used to disambiguate expressions where necessary.

3 T h e D o m a i n O p e r a t o r s

3.1 Monotypes

The notion of a guard as a primitive entity in a programming language was first intro-
duced in Dijkstra's guarded command language [15]. It is a useful notion since it is more
flexible than the older, more conventional notion of a conditional statement. Its partic-
ulax merit is that it introduces partiality into programs and at the same time facilitates
the introduction of indeterminacy thereby streamlining the derivation of programs.

A guard acts as a filter on the domain of execution of a statement. Operationally it
can be viewed as a partial skip. Mathematically, a guard is just a device that enables
sets - - subsets of the set of all states - - to be incorporated into program statements.

In the spec calculus there are two mechanisms for viewing sets as specs, and thus
modelling guards, each of which has its own merits. The first is via so-called "monotypes ' ,
the second via "conditions". Axiomatically, these have the following definitions. First: we
say that spec A is a monotype iff I -7 A. Second: we say that spec p is a right condition
iff p -- -IT o p. The dual notion of left condition is obtained by reversing the positions of
-IT and p in the right side of the defining equation.

In the relational model we may assume, for example, that the universe U contains two
unequal values t r u e and false. The monotype boolean is then defined to be the relation

{(true, true), (false, false)}

The right condition boolean is the relation

{(x, true), (x, false) I~ ~ U}

It is clear that for any given universe U there is a one-to-one correspondence be-
tween the subsets of U and the monotypes. Specifically, the set A is represented by the

Elements of a Relational Theory of Datatypes 11

monotype_A where xAy -= x = y ~ A. Equally clear is the existence of a one-to-one

correspondence between the subsets of U and the right conditions on U . Tha t is, if A
is some set then the right condition defined by A is that relation A~ such tha t for all x
and y, x A r y - y E A . Similarly, the left condition corresponding to A is tha t relation

Al such tha t for all x and y , z A l y -- x E A .

Using monotypes to represent subsets of U as specs, a guard on a spec is modelled

by composition of the spec, either on the left or on the right, with such a monotype.

Thus, if R and S are specs and A is a monotype then A o R and S o A are both specs,

the first being spec R after restricting elements in its left domain to those in A, and

the second being the spec S after restricting elements in its right domain to those in A.
Using conditions a guard on the left domain of spec R is modelled by the intersection of

R with a left condition, and a guard on the right domain of R by its intersection with
a right condition. In principle, this poses a dilemma in the choice of representation of

guards in the spec calculus. Should one choose monotypes or conditions?

We choose monotypes, there being several reasons for doing so. One is the simple

fact tha t guarding both on the left and on the right of a spec is accomplished in one go
with monotypes whereas demanding two sorts of conditions (left and right conditions).
Moreover, monotypes have very simple and convenient properties. Specifically, for all

monotypes A and B

(1) A = I ~ A = A u = A o A

(2) A o B = B o A = A n B

The most compelling reason, however, for choosing to represent sets by monotypes is
the dominant position occupied by composition among programming primitives. Intro-

ducing a guard in the middle of a sequential composition of specs is a frequent act ivi ty
tha t is easy to express in terms of monotypes but difficult to express with conditions.

Nevertheless conditions do have their place from time to time. They too have at-
tractive calculational properties. In particular, they form a suhlattice of the spec lattice.
(That is they are closed under U, n and -~.) However, from the above it is clear that

there is a one-to-one correspondence between monotypes and both types of condition
which we document formally below. Exploitation of this correspondence is central to

many calculations in the spec calculus.

3.2 Left and Right D o m a i n s

We need to refer to the "domain" and "co-domain" (or "range") of a spec. In or-

der to avoid unhelpful operational interpretations we use the terms l e f t - d o m a i n and
r i g h t - d o m a i n instead. These are denoted by "<" and ">", respectively. In the context of

the present paper we mainly have use for the right domain and only occasionally the left
domain. Properties of the lat ter are therefore omitted. They can easily be discovered by

dualising the properties of the right domain.
The right domain operator is defined by two conditions. Firs L the right domain of a

spec is a monotype: for all specs R,

(3) I ~ R>

12 Roland Bazkhouse and Paul Hoogendijk

Second, the right domain operator is one adjoint of a Galois connection between the
lattice of all specs and the sublattice of the monotypes: For all specs R and monotypes
A,

(4) A _ ~ R > - W o A _ ~ R

(The existence of such an operator involves a non-trivial proof.) According to a general
theorem on Galols connections it follows that the right domain operator is universally
I I-junctive. In particular, for all specs R and S,

(5) (RUS)> = R> U S>

An additional consequence is that the operator is monotonic.

The left domain operator is defined by

(6) R< = Ru>

The one-to-one correspondence between monotypes and right conditions mentioned
several times earlier is formulated precisely as follows: for all specs R,

(7) qToR> = -IT o R and (TToR)> = R>

In particular, for all right conditions p and monotypes A,

(8) qTop> = p and (TFoA)> = A

Relational calculus yields the following alternative definition defining R> as the smallest
monotype satisfying the equation in A, R o A = R: for all monotypes A,

(9) R o A = R = A _ R>

The following properties are also used very frequently:

(10) R> = Ru<

(11) S o R> = - R - o R n S

(12) (Ros)> = (R>os)>

(13) (RFISoT)> = (SuoR FI T)>

Of these properties, three are evident when specs are interpreted as relations. Two,
(11) and (13), are less so. Nevertheless, it is worth drawing attention to them because they
figure frequently in some of our calculations. The alternative closed form, I Iq TF o R,
for R> is obtained from (11) by instantiating S to I and simplifying.

It is immediate from (9) that

(14) R = R o R>

Indeed this law is used so frequently that, after a while, we hardly bother to mention it.
It follows immediately from (2) with B instantiated to A that, for all monotypes A,

(15) A = A>

Elements of a Relational Theory of Datatypes 13

4 Domain Complement
t

For the purpose of defining conditionals (i f - then-e l se statements) it is useful to have
a total operator that has the properties of a complement operator when restricted to

monotypes. We call this operator the complemented right domain operator.
We specify the complemented right domain of R, denoted R>., by the requirement

that it is the greatest monotype A satisfying _Ls _~ R 0 A. I.e.

(16) R>. "1 A = _12_ ~ R 0 A

As always, such a requirement imposes on us the burden of showing that it can indeed
be fulfilled. To this end we first observe several expressions equivalent to the right side
of equation (16). Two of these give a closed form for R>* thus establishing the existence
(and uniqueness) of the operator.

L e m m a 17 The following are all equivalent:

(a) 2_ ~_ Ro A
(b) 22_ ~ R > o A
(c) I n - , (n >) ~_ A
(d) .1s ~ IT o R o A

(e) R E --(71-oA)
(f) -~(T[-oR) ~ TI-oA
(g) (~ (Wo n))> ~_ A

O
From the equivalence of (a), (c) and (g) we infer

(18) R>. = I n - , (R >) = (-~(TYoR))>

The latter two formulae are clumsy; exhibiting them serves the purpose of showing that
R>, does exist. Both are formulae that are suggested by the intended interpretation of
the complemented right domain and might have been proposed as definitions. We prefer,
however, the form of (16) on the grounds that it is closer to our view of a specification

and is easier to calculate with.
Several properties of the complement domain suggest themselves. Specifically:

L e m m a 19

(a) R> II R>* = I and R> H R>, = II

(b) R>.>. = R>

(c) n>. = n>.>
(d) n>. = n ,> . = (W 0 n)>.

(e) n>. _ S> = S>* _ R> for <J e { E , =, =]}.

r-]

The importance of 19(d) has to do with the fact that we have defined a total operator.
One is tempted to make do with the complement operator in the monotype lattice - - for
monotype A its complement is I H -~A - - or in the lattice of right (or left) conditions - -

14 Roland Backhouse and Paul Hoogendijk

for right condition p its complement -~p in the spec lattice coincides with its complement
in the lattice of right conditions. However this creates a dilemma as to which to choose,
a dilemma which it is better to circumvent. Lemma 19(d) indicates that the choice is
irrelevant. (We return to this matter when we introduce the definition of conditionals.)

The equivalence of (a) and (e) in lemma 17 together with the specification (16) of
the complemented domain operator predict that the complemented domain operator is
one adjoint of a Galois connection. It follows that the complemented domain operator is
universally U-junctive. To be precise we have:

T h e o r e m 20 For all sets of specs N,

(a) = (W.)

where ~ 4 denotes the infimum operator in the lattice of monotypes. (I.e. fq~B = I
when set of monotypes B is empty, otherwise ~ B = [3 B.)
In particular, for all specs R and S,

(b) (RUS) , = n
[3

In contrast, but not unexpectedly, the complemented domain operator is not universally
N-junctive. Its I?-junctivity properties are inextricably linked, however, to those of the
normal domain operator.

T h e o r e m 21 For all sets of specs V,

(a) (n y) ~ = u (Y ~) - (n],,)> = na~(Y>)

In particular, for all specs R and S,

(b) (R r I s) > , = R>, u S>, - (RFIS)> = R> Iq S>

(Note that the right side of (b) is true if R and S are both monotypes or both right
conditions. These are two situations in which the lemma proves useful.)
[3

4.1 Imps and Co-imps

In this subsection we define "imps" and "co-imps" as special classes of specs. As we
explain immediately following definition 24, an "imp" in the relational model is a function.

Definition 22

(a) A spec f is said to be an imp if and only if I 3 f 0 fu.

(b) A spee f is said to be a co-imp if and only if fu is an imp.

(c) A spec is said to be a bijection if and only if it is both an imp and a co-imp.
[3

Elements of a Relati5nal Theory of Datatypes 15

We shall say that f is a bijection to A from B if it is a bijection and f< = A and
f> = B. Note that if this is the case then both A and B are monotypes and A = f o f~

a n d B = f u o f .
The intended interpretat ion is that an "imp" is an " imp ' lementa t ion . On the other

hand, it is not the intention that all implementations are "imps". Apar t from their
interpretat ion imps have an important distr ibutivi ty property not enjoyed by a rb i t ra ry

specs, namely:

T h e o r e m 23 If f is an imp then, for all non-empty sets of specs V,

Iq (P : P E V : p) o f = N (P : P E V : p o f)

In part icular , for all specs R and S,
(RI q S) o f = (R o f) 17 (S o f)

0

Monotypes are examples of bijections. More generally, the requirement of being a function

is the requirement of being single-valued on some subset of U, the so-called "domain" of

the function. The domain and range are made explicit in the following.

D e f i n i t i o n 24 For monotypes A and B we define the set A~- -B by f E A(B when-

ever

(a) A ~ f o f ~

The nomenclature " f E A(
[]

(b) .f> = B

B" is verbalised by saying that " f is an imp to A from B ' .

In terms of the relational model, property (24a) expresses the s ta tement that f is zero-
or single-valued, i.e. for each x there is at most one y such that y (f) x, and has range A.
Proper ty (24b) expresses the statement that f is total on domain B, i.e. for each x E B
there is at least one y such that y (f) x . Their combination justifies writing " f .x ' , for
each x C B, denoting the unique object y in A such that y (f) x. (Note that the argument
x in the expression y (f) x is on the right; we view functions as relations taking input on

the right to output on the left.)

We now come to the first of several translation rules.

L e m m a 25 (D o m a i n T r a n s l a t i o n)

R , 0 f = f o (a 0 f) ,
[3

For all specs R and imps f , we have:

The above domain translation rule is the embryonic form of the so-called "range trans-
lation rule" in the quantifier calculus [1]. The rule provides a mechanism for t ransla t ing

a restr ict ion (R>) on the left domain of imp f into a restriction ((R 0 f)>) on its right

domain.
Our next goal is to show that there is also a translation rule for the complemented

domain operator . Three lemmas are necessary.

L e m m a 26 For all specs R and S and all imps f ,

16

(a) R>* o f : f o (R>* o f)>
(b) S o (n> . o S)> -1 S 0 (n o S)>.

(c) (R>o 0 f)> E (R o f)>,
[3

Roland Backhouse and Paul Hoogendijk

Corol lary 27 (C o m p l e m e n t e d - D o m a i n Trans lat ion)

f o (R o f)>, _-- R>o o f
ra

For all specs R and imps f

5 Condi t iona l s

Conditionals (i f - then-else statements) are, of course, a well-established feature of pro-
gramming languages, and our own theory would be incomplete if they were not included.
In this section we show how they are expressed and we explore in some detail their
algebraic properties.

Several publications have already appeared documenting the algebraic properties of
conditionals, the most comprehensive account that we know of being given by Hoare el
al [17]. We shall therefore compare the rules given here with the list that they supply.
Their notation for conditionals will also be used, its vital characteristic being that it
promotes the Boolean condition to an in f ix operator. Some of the rules presented here
were included in Ba~kus's [6] Turing award lecture but his account is less comprehensive
and spoiled by the choice of the multifix notation used in the language Lisp.

We take the liberty of omitting proofs about conditionals on the grounds that the
properties are (or should be) unsurprising and their proofs involve only properties of the
underlying lattice structure plus a few extra rules to be stated (and proven) shortly.

Def in i t ion 28 (Cond i t i ona l) For all specs P we define the binary operator <IPI>
by:

R<1Pt>S = R o P> I I S O P > ,

D

The conditional R<~ P t > S can be viewed as a spec which applies R to those elements for
which condition P holds and applies S to the other ones.

Note that conditionals are defined for all specs but that for all specs P, R and S,

R<~PI>S = R<1(P>)I>S = R<1(T I -oP) t>S .

Totality of operators is something we strive for at all times: the alternative in this case
would have been to restrict P either to monotypes or to right conditions. Had we done
so then we would have imposed on ourselves the obligation to determine for every other
operator in the calculus whether it preserves monotypes and/or right conditions. In the
cases that that is not so the laws relating those operators to conditionals would inevitably
have taken on much clumsier forms.

Guards are usually formed by composing primitive guards with the boolean operators.
We apply the same design principle to the definition of the booleans: we seek definitions
that are total on all specs but are indifferent to the choice of monotypes or right conditions
as representations of sets. This leads to the following definition.

Elements of a Relational Theory of Datatypes 17

D e f i n i t i o n 29 (B o o l e a n O p e r a t o r s) The operators V, A and ,~, and constants

true and #a/se are defined by, for all sets of specs 7) and specs R,

(a) = (up)>

(b) = (P)>

(e) ~ R = R>,

(d) t r u e = I

(e) fa/se ----- II
O

Theorem 30 (C o n d i t i o n a l T r a n s l a t i o n) For all specs R, imps f and sets (possibly

empty) of specs 7) , we have:

(a) V~' o f = f o V(~of)

(b) A ' p o f = f o A(T, o f)
(c) NR o f = f 0 N(Rof)

Hence, for all proposit ional functions 0 (i.e. functions from specs to specs buil t from the
identi ty function, constant functions and the boolean operators A, V, N) and all vectors

of specs P of the appropria te arity,

(d) O.P o f = f o O.(_Pof)

[]

Theorem 31 The binary operator <1PI> respects imps. I.e.

imp.(f<~Pl>9) ~ i m p . f A imp.9
[]

Theorem 31 corresponds to the theorem

x := E<1PI>F = (x := E)<IPI> (x := F)

in the set of properties listed by Hoare et al [17]. For them the most primit ive implemen-

tat ion (thus, "imp") is an assignment and the content of their rule is that a condit ional
respects assignments. Their rule is thus at a lower level of abstract ion than ours, and
more detailed.

The theorem illustrates the sort of proof burden one encounters when type restrictions

are imposed on laws. We are obliged to document this theorem because, for example,

all the translation rules are restricted to translation by imps. Should we ever wish to
t ransla te a domain (say) via a conditional then we need to know in advance tha t the

conditional is an imp.
One final lemma is necessary before we can list the laws obeyed by conditionals.

Lemma 32

(a)
(b)
[]

(R<~Pt>S)> = R><~PI>S>

(R<~ PI> S)>* = R>*<~ PI> S>*

18 Roland Backhouse and Paul Hoogendijk

The set of "unsurprising" laws that we announced earlier can now be given:

Theorem 33 For all specs P, Q, R, S, T, imps f, and non-empty set of specs V:

(a) R<ltruet>S = R
(b) R~falsel>S = S
(c) R~Pt>R = R
(d) R.~,,,Pt>S = S~Pt>R
(e) R<IPI>(S,~Pt>T) = R<IPI>T = (R<IPt>S)<IPE>T
(f) R ~ (P AQ)I>S = (R<IPI>S)~Qt>S
(g) R<I(PVQ)t>S = R<IPt>(R~Qt>S)
(h) (UV)~Pt>S = U (V,~Pt>S)
(i) ([-IV)~Pt>S = r3 (V<IPt>S)
(j) S<I(P<IQt>R)I>T = (S<IPI>T)<JQt>(S<IRt>T)
(k) (R~Pt>S) U T = (R U T ~ P I > (S t . I T)
(l) (R<~Pt>S) f3 T = (RI -1T)OPI>(S~T)
(m) (R<IPt>S) <iQI> T = (R<IQt>T)<IPI>(S<IQI>T)
(n) T o R.dPt>S = (To R)~Pt>(T o S)

(o) n<lPt>S o f = (R o f) ~ (P o f) l > (S o f)

Moreover, for all propositional functions 0 and all vectors of specs P of the appropriate
arity,

(p) R<IO.PI>S o f = (R o f)~O.(Po f)l>(S o f)
0

Part (p) of this theorem is the translation rule for conditionals. Given a spec R<I PI>S
with right domain A and an imp f E A * - - B one may always translate it to a spec
with right domain (at most) B by translating the condition at the level of its primitive
components. It takes the place of the law

(x := E) ; (R~P(x)I>S) = ((x := E) ; R) <IP(E)I> ((x := E) ; S)

in the paper by Hoare et al [17].

6 R e l a t o r s

A fundamental argument for the use of type information in the design of large pro-
grams is that the structure of the program is governed by the structure of the data. A
well-established example is the use of recursive descent to structure the parsing (and
compilation) of strings defined by a context-free grammar; here the structure of the data
is defined by its grammar as is the structure of the parsing program. The idea is extended
in the denotational description of programming languages where a fundamental initial
step is the definition of so-called domain equations; those familiar with denotational
semantics know that once this step has been taken the later steps are often relatively
mundane and straightforward. Users of strongly-typed languages like Pascal will argue
strongly that the effective use of type declarations is extremely important for subsequent
program development, and even users of untyped languages like Lisp will admit that the

Elements of a Relational Theory of Datatypes 19

programming errors that they make are often caused by type violations. A fundamental
goal of our research is therefore to develop calculi of program construction that lay bare

the oneness of program and da ta structure.
In the algebraic approach to type theory the underlying principle is tha t a d a t a type

is a s tructured set of elements that is equipped with a mechanism governed by tha t
s t ructure for defining functions on the elements of the type. For the benefit of readers
who may not be familiar with it we now outline this approach as it pertains to functional

programming. A fuller account is contained in, for example, [22]. Other readers will
probably wish to skip the next two paragraphs; all they need to know is tha t we use
the te rm "catamorphism" to refer to F-homomorphisms whose domain is an initial F -

algebra.
The approach involves several stages building up to the definition of a "universal

object" in a category of algebras. First, the notion of endofunctor is of paramount im-
portance. An endofunctor is (in this context) a pair of functions, one from types to types

and the other from functions to functions. Typically, both functions are denoted by the

same symbol. Suppose F is an endofunctor, A and B are types and f and g are func-
tions of composable type. Let IA denote the identity function on the type A. Then it is

required that

F . f E F . A ~ - - - - F . B r f E A ~ - - - B

F . IA : IF.A

and F . (f o g) = F .] o F.g

The next step is to define an F-algebra as a pair consisting of a type A and a function
f E A ~ F .A . The da ta type defined by the endofunctor F is then an F -a lgebra
satisfying a so-called "universality property". Specifically, An F-a lgebra (A, f) is called

a da t a type if for each F-a lgebra (B, g) a unique function y exists such that

~ o f = g o F.~?

To emphasise the special r61e of such homomorphisms they are given a special name,

specifically the name "catamorphism' .
An example would be the da ta type natural number. Roughly speaking, IN has the

proper ty

IN = {0}+IN

where "§ denotes the disjoint sum of two types. (According to this definition the ele-
ments of IN are r and *--~.n where n ranges over IN and ~ and *-~ denote the injection

functions associated with disjoint sum. You should interpret "r as zero and "~-~"

as the successor function. More formally, we recognise in this equation an endofunctor
"{0}+". This is a function that maps the type A to the type {0}+A. But it may also be
extended to map functions to functions by defining { 0 } § to be that function g such tha t
g o r is the constant function always returning r and g 0 ~-~ _- ~ o f . (Moreover,
it satisfies all the properties required of a functor, but that we leave to the reader to

verify.) A {0}+-algebra is a set together with a constant and a unary operator (these

being zero and the successor function in the case of the natural numbers), and a {0}+-
homomorphism is just what one would normally understand by a homomorphism of an

20 Roland Backhouse and Paul Hoogendijk

algebraic structure, in this case a function ~b, say, from one {0}+-algebra (A, (a, tr)), say,
to another (B, (b, r)), say, that maps the constant of the first to the constant of the
second

i.e. r = b

and commutes with the unary operator of the first replacing it with that of the second

i.e. r o o- = r o r

That IN is "universal" in the class of (0}+-algebras just means that for any {0}+-algebra
(A, (a,a)) , say, there is a unique homomorphism mapping lN to A. With a suitable
definition of the operators it is also easily shown that {0}+IN is a {0}+-algebra satisfying
the universality property. Thus, IN is a fixed point of the endofunctor {0}+ in the sense
that there are homomorphisms mapping IN to {0}+IN and vice-versa which (on account
of their uniqueness) are each others' inverses.

To summarise this discussion: in the framework of functional programming datatypes
are fixed points of endofunctors on which are defined what we call "catamorphisms' , i.e.
homomorphisms satisfying a uniqueness and universality property. This is not the place
to discuss the practicality of catamorphisms as a program structuring method, that being
something that is addressed elsewhere. We hope however that we have provided sufficient
background to motivate the definitions that follow in this section. Specifically, we explore
the extension of the notion of a (functional) catamorphism to relations. For this we need
the notion of "relator" instead of functor.

Def in i t ion 34 (R e l a t o r) A relator is a function, F , from specs to specs such that

(a) I ~ F.I

(b) F.R_~F.S r R_~S
(c) F.(Ro S) = F.R o F.S

(d) F.(Ru) = (F.R)u

D

In view of (34d) we take the liberty of writing simply "F.R~" without parentheses, thus
avoiding explicit use of the property.

The above defines an endorelator, i.e. a unary relator from a given spec algebra ,4 to
itself. We also need to define a binary relator, i.e. a function from pairs of specs to specs.
If | denotes a binary relator, its defining properties are as follows.

(a) I :3 I |

(b) R | 1 7 4 r R ~ S A U~_V

(c) (R o S) | (U o V) = (R | o (S |

(d) (n u) | = (R |

The notational advantage of writing "u" as a postfix to its argument is, of course, lost in
this case.

A vital property of relators is that they commute with the domain operators.

Elements of a Relational Theory of Datatypes 21

T h e o r e m 35 If F is a relator then

(a) F.(R>) = (F.R)> (b) F.(R<) = (F.R)<
[]

In view of theorem 35 we write "F.R<" and "F.R>" without parentheses, again in order
to avoid explicit mention of the properties.

The following theorem allows a comparison to be made with our definition of "relator"
and the definition of "functor" (in the category of sets).

T h e o r e m 36 If F is a relator then

(a) A is a monotype :::V F.A is a monotype

(b) f is an imp =~ F . f is an imp

(c) f is a co-imp =~ F . f is a co-imp

(d) f E A~-----B =~ F . f E F.A, F.B
D

7 C a t a m o r p h i s m s

Since endorelators are, by definition, monotonic the Knaster-Tarski theorem asserts the
existence of their fixed points, in particular least and greatest. Specifically, the least fixed
point of the endorelator F, here denoted by pF , has the defining properties

(37) g F = F.IJF

and, for all X,

(38) X ~_ p F r X ~_ F .X

We shall refer to (38) as the induction principle.
From the induction principle follows immediately:

L e m m a 39 p F is a monotype.

r-1

Def in i t ion 40 For endorelator F we define a function, denoted by ~F; _]), by the

properties that, for all specs R and X,

(a) IF; R~ = n o F4F; R D
(b) X ~_ {F; R~ ,r X ~_ R o F .X
ul

In other words, ~F; R~ is the least solution to the equation

X :: X = R o F .X

Its well-definedness is thus guaranteed by the Knaster-Tarski theorem.

T h e o r e m 44
[]

22 Roland Backhouse and Paul Hoogendijk

We call specs of the form iF; R } catamorphisms (or F-catamorphisms when we
particularly wish to be explicit about F) and we verbalise IF; R]) as "(F-)catamorphism
R ' , omitting the qualification "F" when there is no doubt about the relator in question.

For reasons that will only become clear later, we call 40(a) the computation rule for
eatamorphisms. We call 40(b) the induction principle for catamorphisms.

Catamorphisms can be viewed as a recursively defined specs which follow the same
recursion pattern as the elements of pF.

The catamorphism r } is of particular importance since it is clearly the least fixed point
of F. Thus, we have:

(41) # F : i I~

The remarkable property of eatamorphisms that makes them such a delight to work with
is that they are the unique solution of a certain equation. Specifically, we have:

T h e o r e m 42 (Unique Extens ion P r o p e r t y) For all specs X and R,

x = CR} - x = R o F . X o ~F

D

A corollary of the above that figures very prominently in program calculations is:

Coro l la ry 43 (Catamorphlsm Fusion) For all _~ e {_~, =, C_},

U �9 i V} ~_ CR} ~ U o V 4_ R o F.U
[]

Fusion laws are important. In earlier publications [2, 21] we used the term "promotion"
property, this term having been used by Bird to name a technique for improving the effi-
ciency of programs [8] and which our notion captured and generalised. Maarten Fokkinga
suggested the more descriptive term"fusion" property. Several valuable properties of cata-
morphisms are listed below.

(Monoton ic i ty) CR} ~_ IS]) r R _~ S

T h e o r e m 45 (Domain Trading)

(a) JR} = CRo F.A} =

(b) IR} = iRo F.R<}
(c) IR} = i R o A }
[]

For all monotypes A and specs R,

CA o R) .r A ~ (R o F.A)<

A -7 F.R<

A consequence of this domain trading rule is we can now generalise (41) to a very flexible
and useful form.

T h e o r e m 46 (Iden t i ty Rule)

(a) p r = (A~ <= I ~ A _ p F

(b) ~F = ~ F } = r = r
ra

Elements of a Relational Theory of Datatypes

8 S a m p l e P o l y n o m i a l R e l a t o r s

23

We have now introduced the abstract concepts of a monotype, a relator and a catamor-

phism but we need some concrete examples to do anything useful. For the purposes of
this paper it will suffice to postulate the existence of a unit monotype and the disjoint
sum relator. These and their properties are briefly discussed in the next two subsections

following which we show how so-called map relators are constructed by a process of con-
structing endorelators and taking their fixed po in ts . For a detailed discussion of these
two classes of relators see [4, 5].

8.1 T h e Uni t T y p e

The unit type (a type with exactly one element) is denoted by 1. The only two properties
we demand of 1 are tha t it is a monotype and 11 * -IV is an imp.

8.2 Dis jo int S u m

To define disjoint sum we begin by postulating the existence of the two injections
(pronounced "inject left") and ~-~ (pronounced "inject right"). (Note the unconventional

direction of the arrow heads. As an aid to memory, and motivation for this choice, we

suggest that the reader bear in mind the diagram " X ~ X + Y ~ Y ' .) Further, we
introduce two binary operators on specs, v (pronounced " junc ') and + (pronounced
"plus"), defined in terms of the projection and injection specs as follows:

(47) P ~ , Q = (P 0 r I_J (Q o +--~o)

(48) P + Q = (r o p) v (~--~ o Q)

The relational model that we envisage assumes that the universe is a term algebra
formed by closing some base set under two unary operators r and *--' mapping the term
x to the terms r and ~--~.x, respectively. The two defined operators should be familiar
from their interpretat ions which are

x (P v Q) y _= S(z : : y = r A x (P) z)

V 3(z :: y = ~-~.z A x (Q)z)
x (P + Q) y =_ 3 (u , v : : x = r A y = r A u (P) v)

V 3(u,v :: x = +-~.u A y = ~-~.v A u(Q) v)

A commonly-occurring notation for P v Q is [P, Q]. The operators defined above have a

higher precedence than composition "o' .

Our first axiom is that the injections are both imps.

(49) I _~ (r o r U (+--~ , +.-~o)

We remark that axiom (49) takes the following form when rephrased in terms of the sum
operation.

(50) I ~_ I + [

24 Roland Ba~:khouse and Paul Hoogendijk

This is reassuring since it is one step on the way to guaranteeing that + is a binary

relator.
The second ax iom is as follows:

(51) (P v Q) o (R v S) u = (P o Ru) U(Q 0 Su)

It is straightforward to see that + satisfies three of the conditions necessary for it

to be a relator: the first is satisfied axiomatically, and monotonici ty and commutat ion

with reverse are satisfied by construction. Distr ibutivity with respect to composition is
a special case of a "fusion" law, namely that a sum can be fused with a june.

T h e o r e m 52 (J u n e - S u m a n d S u m - S u m F u s i o n)

(a) (P v Q) o (R+S) = (p oR) v (Q oN)
(b) (p + Q) o (R+S) = (p oR) + (QoS)
[]

C o r o l l a r y 53 + is a relator.
D

One more fusion property can be added on account of the universal U-junctivity of
composition, namely:

T h e o r e m 54 (S p e c - J u n c Fus ion)

p o (Q v R) = (P o Q) v (P o R)
D

The computat ion rules follow straightforwardly:

T h e o r e m 55 (C o m p u t a t i o n R u l e s for J u n c)

(a) (P v Q) o ~-, = p

(b) (P R O) o ~ = Q
In part icular
(c) (p+Q) o , ~ = , - - ~ o p
(d) (p+Q) o ~ = ~-..,o Q
[]

T h e o r e m 56

(b) r o ~ = I
[]

~.,~u 0 c-.+

Theorem 56(b) not only predicts that the injections are co-imps but also that they are

total . Formulae for the left domain of the injections are also easy to calculate:

Elements of a Relational Theory of Datatypes 25

Theorem 57

(a) r = I and ~--~> = I
(b) r = I+_LL and +---'< :
[]

h+I

The rules for the left and right domains of junc and sum are very simple. Both domain

operators distr ibute over sum, and over junc, but transforming the operator in one case

into cup and in the other into sum.

T h e o r e m 58

(a) (P+Q)> = P> + Q> (b) (P+Q)< = P< + Q<

(c) (P R O) < = P< u Q< (d) (P v Q) > = P> + Q>
[]

A possible explanation for the qualification "disjoint" in the terminology "disjoint sum"
is tha t the two components in a june or sum remain truly disjoint. To be precise:

T heorem 59 (Cancellation P r o p e r t i e s) For all ~ E {_, =, _~},

(a) P v Q ~_ R v S = P <1 R A Q ~_ S
(b) P + Q ~ R + S - P ~ R A Q ~_ S
[]

The final theorem is that both june and sum abide with both cup and cap.

T heorem 60 (J u n c / S u m - C u p / C a p A b i d e Laws)

(a)
(b)
(e)
(d)
o

(P v Q) U (R ~ , S) = (P U R) ~, (Q U S)
(P+Q) u (R+S) = (P U R)+(Q U S)
(P v Q) R (R ~ S) =- (P IqR) '~ (QV 1S)
(P+Q) ~ (R+S) = (P I-1 R)+(Q ~ S)

8.3 Map Relators

An impor tant mechanism for constructing new relators is via fixed points. The relators so
constructed are called map relators and have the following definition. (They are so named

because they generalise the map function defined on lists. See the discussion following

theorem 76.)

D e f i n i t i o n 61 Suppose | is a binary relator. I t is easy to verify tha t I | is a relator
(where (I | = I | R). Its catamorphisms therefore exist and we may define the

function w from specs to specs by:

= Cz| n|
[]

Several properties of map relators can be obtained by instant iat ing the general propert ies

of catamorphisms discussed earlier. Two of particular importance are:

26

Theorem 62 =, is a relator.
D

Theorem 63 (M a p Fusion)

D

This concludes the overview of the calculus.

{JR} o ~S

Roland Backhouse and Paul Hoogendijk

= ~Ro S |

9 A H i e r a r c h y o f F r e e b i e s

9.1 T h e B i r d - M e e r t e n s Formalism

One of the hardest tasks faced by the theoretician is the assessment of the practicality
of one's work. The task is not made any easier by the immense breadth of programming
problems to which any useful programming calculus should be applicable. The traditional
apology for such an assessment is the presentation of a few, inevitably worn and tired,
case studies. We shall not follow such a course.

The course we do follow is to pass the buck: we ask the reader not to assess the
practicality of our theory but to assess the practicality of the so-called "Bird-Meertens
formalism", and to combine that assessment with an evaluation of the way the formalism
is rendered within our theory.

The "Bird-Meertens formalism" (to be more precise, our own conception of it) is a
calculus of total functions based on a small number of primitives and a hierarchy of types
including trees and lists. The theory was set out in an inspiring paper by Meertens [23]
and has been further refined and applied in a number of papers by Bird and Meertens
[9, 10, 13, 11, 14]. Essentially there are just three primitive operators in the theory -
"reduce", "map" and "filter". (Actually, the names used by Meertens for the first two of
these operators were "inserted-in" and "applied-to-all". Moreover, just the first two are
primitive since filter is defined in terms of reduce and map.) These operators are defined
at each level of a hierarchy of types called the "Boom hierarchy"

The basis of this hierarchy is given by what Meertens calls "D-structures". A D-
structure, for given type D, is formed in one of two ways: there is an embedding function
that maps an element of D into a D-structure, and there is a binary join operation
that combines two D-structures into one. Thus, a D-structure is a full binary tree with
elements of D at the leaves. (By "full" we mean that every interior node has exactly two
children.) The embedding function and the join operation are called the constructors of
the type. Other types in the hierarchy are obtained by adding extra algebraic structure.
Trees - - binary but non-full - - are obtained by assuming that the base type D contains a
designated nil element which is a left and right unit of the join operation. Lists, bags and
sets are obtained by successively introducing the requirements that join is associative,
symmetric and idempotent.

Meertens describes the D-structures as "about the poorest (i.e., in algebraic laws)
possible algebra" and trees as "about the poorest-but-one possible algebra". Nevertheless,
in this section we exploit the power of abstraction afforded by the notion of a relator
to add several more levels to the Boom hierarchy each of which is "poorer" than those
considered by Meertens. We call this hierarchy a hierarchy of "freebies" because all

Elements of a Relational Theory of Datatypes 27

types within the hierarchy are decribed by "free" algebras (i.e. algebras free of laws).
Each level is characterised by a class of relators that specialises the class at the level
below it. In decreasing order of abstraction these are the "sum" relators, "grounded"
and "polymorphically grounded" relators, "monadic" relators and "pointed" relators.
("Grounded" and "polymorphically grounded" relators are formally indistinguishable
but it helps to introduce an artificial distinction for a first introduction.) The reason
for introducing these extra levels is organisational: the goal is to pin down as clearly
as possible the minimum algebraic structure necessary to be able to, first, define the
three operators of the Bird-Meertens formalism and, second, establish each of the basic
properties of the operators. The conciseness and systematic nature of the development
about to be presented, and the fact that it can be conducted at a level yet poorer than
"the poorest possible algebra" is for us the most satisfying aspect of this work.

The theorems presented in this section are more general than those in the publications
of Bird and Meertens since their work is mainly restricted to total functions. A danger of
generalisation is that it brings with it substantial overhead making a theory abstruse and
unworkable. At this stage in our work, however, the generalisation from (total) functions

to relations has been very positive bringing to mind a parallel with the extension of the
domain of real numbers to complex numbers. The fact of the matter is that we are rarely
aware of working with relations rather than functions. The following pages are intended
to provide some justification for that claim.

9.2 S u m R e l a t o r s

We begin our discussion with the so-called "sum" relators. Specifically, F is a sum relator

if for some relators G and H and for all specs X,

(64) F.X = G.X + H .X

In words, F is the (lifted) sum of G and H.
The class of sum relators is very broad hut, in spite of its generality, there is surpris-

ingly much that we can say about the class. The most important aspect of such a relator
F is that we can identify the "constructors" of #F , bringing the notion of relator some-
what closer to the notion of polymorphic type as it would be defined in a conventional
programming language. An additional technical aspect that proves to be very useful is
that F-catamorphisms can be restricted without loss of generality to arguments that are
the june of two specs. These two aspects are considered in turn below. Throughout the
remainder of this subsection we assume that equation (64) is in force.

Let us consider what consequences equation (64) has on/~F. We have the following
simple calculation:

F
= { # F is a fixpoint of F }

F.I~ F

= { definition of F: (64) }
G.#F + H.#F

= { definition of +: (48) }
(4 ~ G.~F) ~ (~ o H.~F)

28 Rolamd Backhouse and Paul Hoogendijk

Cont inuing with jus t the first component of this j unc expression, we calculate:

* G.pF

= { computa t ion rule: theorem 55(c) }
G.#F + H.I.tF *

= { definit ion of F : (64), # F = F . # F }
~ F o ~-+

Similar ly,

o H . # F = I~F o

Thus, in t roducing names r and ~ for the two componen t s of the above junc, we have
es tabl ished:

T h e o r e m 6 5 (C o n s t r u c t o r s) For relators F , G and H such t ha t F = G + H ,

F = r v ~
where r = r o G.I~F = # F o r
and 7/ = ~ o H . # F = # F o
[]

A pa raphrase of theorem 65 might be tha t all e lements of # F are cons t ruc ted by inject ions
of e lements of G.I~F or elements of H.I~F. For this reason we call r and ~ the constructors
o f # F .

Note t ha t the const ructors are biject ions (since they are res t r ic t ions of the two bijec-
t ions ~ and *-'). For their domains we have:

T>

= { definit ion of r : theorem 65 }
(~-+ * G.#F)>

= { domains: (12) }
(~+> o G.I~F)>

= { ~--~> = I : theorem 57(a) }

G.#F>
= { / i F is a monotype : (15) }

G.#F

and

"F<

= { definit ion of v: theorem 65 }
(juF * "--+)<

= { domains: dual of (12) }
(/~F , '---+<)<

= { '--*< = I + II : t h e o r e m 5 7 (b) }
o I + L) <

= { # F = G.I~F + H .#F , + abides wi th compos i t ion }
(G.#F + _l_k)<

= { domains: (58) and (15) }

G.I~F + II

Elements of a Relational Theory of Datatypes 29

By a completely

}7> =

Combining these

(see theorem 60)

T h e o r e m 66

properties:

(a) ~> =

(c) }7> =
(e) r< U

symmetrical argument we have:

H . # F and }7<" -- d J_ + H . # F

four domain calculations with the cup and cap abide propert ies of sum
and summarising we have established:

The Constructors r and r/are both bijections with the following domain

G.IJF (b) r< = G . # F + .J_L

H . # F (d) }7< = .Ll_ + H . p F

Interpreta t ing these statements in the relational model we have proved tha t the con-

structors r and }7 establish a (1-1) correspondence between the elements of p F and the

elements of the union of G . # F and H . p F in such a way that elements constructed by r
are dist inct from those constructed by }7.

Let us now investigate the structure of the catamorphisms of a sum relator. We have:

= { domain trading: theorem 45(5) }

(R o (a . n + H.n)<~

= { + , G, H are relators: theorem 35)

(In o G.R< + H.R<)

= { definition +: (4 8))
(~ o (4 o a .R<) ~, (~ o H.R<)D

= { spee-junc fusion: theorem 54)
((n o ~ o G . R ,) ~ (R o ~ o H.R<)D

This calculation shows that we may assume without loss of generality that for every R

there exist specs S and T such that ~R~ = (S v T~. Specifically, S = R o r o G.R<

a n d T = R o ~ o H.R<.

Note that from (R) = (R~ o # F and the fact that # F can be expressed as a june

i t follows tha t every catamorphism can also be expressed as a june. This observation is
most useful when combined with the cancellation property of june (see theorem 59). To
see why let us first observe the following instantiation of the junc-cancellation property:

Lemma 67 For <1 e {~ ,= ,E} ,

X o p F ~_ Y o # F -- X o r <J Y o r A X o q ~_ y o } 7

P r o o f

X o p F ~ y o # F

_: { theorem 65)
X o vv}7 _ y o rv}7

-- { spec-junc fusion: theorem 54)
(X o ~ -) ~ , (X o } 7) __ (Y o T) ~ (Y o }7)

30 Roland Backhouse and Paul Hoogendijk

{ june cancellation: theorem 59 }
X o 7. ~_ Y o 7. A X o TI < 1 Y o T 1

Combining lemma 67 with the unique extension property of catamorphisms we derive
a characterisation of F-eatamorphisms (for sum relators F, of course), namely:

T h e o r e m 68 (U E P for S u m Relators)

X o p F = { R v b ~

X o T . = R o G . (X o p F) A X o y = S o H . (X o p F)

P r o o f

X o # F = (R v S ~
= { catamorphism uep: theorem 42 }

X o # F = R v S o F . (X o p F) o # F

= (lemma 67 }
X o 7" = R v S o F . (X o # F) o 7.

A X o ~ = R v S o F . (X o p F) o 71

Proceeding further with just the first of the conjuncts on the right hand side of the
equivalence (the other being completely symmetrical) we have:

R v S o F . (X o # F) o 7.

= { definition of 7.: theorem 65 }
R v S o F . (X o p F) o # F o r

= { p F = F . p F = # F o p F)

R v S o F . (X o p F) o

= { definition of F: (64), junc-sum fusion: (5 2))
(R o G . (X o p F)) v (S o H . (X o # F)) o

= { june computation: theorem 55(a) }
R o G . (X o p F)

Back-substituting, the desired theorem is obtained.
[3

Compared with the general uep property (theorem 42) theorem 68 splits the task of
deriving a catamorphism realising a given spec into two separate components, one for
each of the constructors. This separation is further reflected in the computation rules for
r and T/:

Theorem 69 (Computation Rule)

(a) (R ~ S) o 7" = n o G . r D

(b) (R v S~ o , = S o H . q R v S~

P r o o f Instantiate theorem 68 with X = (R v S]) and simplify using the fact that
(R v S]) = (Rv51) o pF .
O

Elements of a Relational Theory of Datatypes 31

Several other properties of sum relators can be derived simply by instant iat ing the
more general properties of eatamorphisms listed in section 7, in part icular the fusion
and monotonici ty properties of catamorphisms (theorems 43 and 44). The benefit tha t is
gained is that , in each case, the premise in the theorem can be expressed as a conjunction
of two simpler premises, thus decomposing the proof obligations. We postpone performing

this exercise, however, until we have added more structure to our class of relators.

9.3 Polymorphical ly Grounded Relators

A typical characteristic of monotypes occurring in programming problems is tha t their
elements are generated from a base (mono)type by application of one or more operations.

For example, the Peano numbers are generated from the set containing jus t zero by the

successor operation. Polymorphic types, such as list or tree, are families of monotypes
parameterised by some base (mono)type. We call such types p o l y m o r p h i c a l l y g r o u n d e d

types (or rather we call their defining relators polymorphically grounded), the word
"grounded" referring to the existence of a base monotype. In this section we abst ract
a definition of "polymorphically grounded" relator. We do this in two steps. First , we
abst ract what it means for a relator to be grounded. Then, in order to capture the

"polymorphic" element, we abstract sufficient conditions for the existence of a "map"
operator . We conclude the section with some consequences of the obtained definition.

The mechanism needed to introduce the notion of a ground monotype into our class

of relators is straightforward: we consider a sum relator and choose the left component
of the sum to be a constant relator, i.e. we consider the case that G . X = A for some
monotype A and all specs X, thereby specializing F to the form:

(70) F . X : A + H . X

Using this the constructors are

(71) r = p F o ~ = ~ o A

(72) 7/ = p F o ~ = ~ o H . p F

The form of the constructors provides some motivation for the chosen restriction on F .
Specifically, suppose we interpret monotypes as sets and f o B, for monotype B and imp

f , also as a set, namely the set obtained by applying the function f to the elements of B.
Then the set p F is formed by "juncing" two sorts of sets, the set of "ground" elements,
i.e. those elements formed by r , i.e. by applying r to elements of A , or "non-ground"

elements, i.e. those built by ~/from existing elements of # F . We call relators F satisfying

(70) g r o u n d e d relators.
The extra structure introduced into grounded types makes little difference to the

computat ion rule; where it is needed we shall simply instantiate theorem 69(a) with
G . X = A . The fusion property for ground-relator-catamorphisms is worth stating, how-

ever, because we can exploit the extra structure to strengthen the general result.

Theorem 73 (G r o u n d - R e l a t o r F u s i o n) For <1 in {E, =, ~},

U o ~ R v S]) <1 ~P v Q)
~= U o R o J <1 P o A A U o S o H . I <1 Q o H . U

[]

32 Roland Backhouse and Paul Hoogendijk

The added-value of this theorem relative to theorem 43 - - apart from the antecedent
having been split into two conjuncts - - is the introduction of the domain restrictions A
and H. I in the first and second conjuncts, respectively, of the antecedent. Note that

U o R o A <~ P o A r U o R <1 P

Thus the first conjunct in the antecedent has been weakened. (That it is a true weakening
is easily seen by taking A = .Ll..) The second conjunct has been similarly weakened.

Proof Let _ E { _ , = , E } . Then

D

=

U o ~RvS]) _~ ~ P v Q ~
(domain trading: theorem 45(a), since A + H . I = F.I

and junc.sum fusion: theorem 52(a) }
U o ~ (R o A) , ~ (S o H . I) ~ <1 ([P~,Q~

{ catamorphism fusion: theorem 43 }
U o (R o A) v (So H.I) ~_ P v Q o F.U

{ spee-junc fusion: theorem 54;
definition of F: (70),
and + abides with composition: theorem 52(b) }

(U o R o A) , , (U o S o H . I) <I (P o A) v (Q o H . U)

{ june cancellation: theorem 59(a) }
U o R o A ~_ P o A A U o S o H . I ~_ Q o H.U

We come now to the first of the primitive operators in the Bird-Meertens formalism,
namely the map operator. Section 7 provides the appropriate mechanism for introducing
such an operator: we must express F in the form I | for some binary relator | This we
can do by choosing A = K . I for some relator K and defining the binary relator | by

(74) R | = K . R + H . S

Accordingly we have:

(75) F.X = (I | = K. I + H . X

Note that K . I is a monotype so that F is indeed grounded. It is also polymorphic in the
sense that we have defined a family of relators, namely the set of relators (B| for B
ranging over all monotypes. More importantly we can instantiate the theorems of section
7 to obtain the sought-after map operator. Specifically, instantiating definition 61 and
citing theorem 62, we have:

Theorem 76 (M a p) The function ~ from specs to specs defined by

~,~ = (K .R + H.I)

is a relator.
Q

Elements of a Relational Theory of Datatypes 33

The function w defines a family of monotypes, namely the monotypes wB where B
ranges over monotypes. In particular, w I -: IzF. For each spec R, the spec w R has left
domain w(R<) and right domain w(R>). In addition, for monotypes A and B and imps
f E A (B , w f E ~ A ~ w B . (With the exception of the property wI = p F these
properties are valid for all relators, not just map relators.) An instance of such a relator is
the List relator which is sometimes denoted by *. In functional programming texts . f is
commonly called "map f" (and sometimes written that way too) and denotes a function
from lists to lists that "maps" the given function f over the elements of the argument
list (i.e. constructs a list of the same length as the argument list whereby the elements
are obtained by applying f to each of the elements of the argument list). This then is
the origin of the name "map" for w.

We will mostly use another but equivalent definition for map that exploits the par-
ticular structure of the relator | That definition is obtained by first instantiating the
map fusion theorem (theorem 63) of section 7.

Theorem 77 (Map Fusion)

~P v Q) o wR = q(P o K .R) v Q~

P r o o f

o

~P v Q~ o w R

{ map fusion: theorem 63, definition of | (74) }
~P v Q o K . R + H. I~

{ june-sum fusion: theorem 52(a) }
q(P o K . R) v Q o K . I + H . I)

(domain trading: theorem 45(c), g . I - 4 - H . I = F . I }

~(P o K . R) v Q)

T h e o r e m 78 w R -_ ~(7" o K . R) v TI~

P r o o f

t l

~ R
= { w is a relator }

= , I o ='R

= { wI = , F = ~/zF~ }
r ~

--= { p F : v v ~, map fusion: theorem 77 }
([(7" ~ K . R) ,, ,~)

The reason why we sometimes prefer this definition is that catamorphisms of the
shape ~R v ~/]} enjoy many properties.

Instantiating the computation rule (69) with the revised definition of F - - (70) - -
and the above definition of w we obtain the following computation rules:

w R o v = v o K . R and w R o ~ = ~1 o H .~ ,R

34 Roland Backhouse and Paul Hoogendijk

These two equations can be recombined into one using theorem 59 viz:

(79) wR ~ r v r / = (r o K . R) v (r 1 ~ H.~,R)

Recalling that

~ I = # F = r ~ O = (r o g . O ~ (7 ~ H.~I)

(see theorems 46, 65 and equations (71), (72) and (75)) one can view wR as a spec which,
when applied to an element o f p F , applies R to the ground elements but does not destroy
the original structure.

9.4 Defining Reduce

The second primitive in the Bird-Meertens formalism is called "reduce" and is denoted
by the symbol "/". In the context of our work, reduce is a function from specs to specs.
We shall adopt the same symbol but use it as a prefix operator in order to be consistent
with our convention of always writing function and argument in that order. Thus we
w r i t e / S and read "reduce with if ' or just "reduce if ' .

(In choosing to write reduce as a prefix operator we are turning the clock back to
Backus' Turing award lecture [6] rather than following the example of Bird and Meertens.
In the context of Bird and Meertens' original work reduce was a binary infix operator
with argument a pair consisting of a binary operator, say @, and a list, say x, thus giving
@/x. In the course of time it was recognised that calculations and laws could be made
more compact by working with the function (x ~ @/x) rather than the object @/x.
To achieve the compactness the notation ~ / (or sometimes (~ /)) was adopted for the
function, the process of abstracting one of the arguments of a binary operator being
commonly referred to as "sectioning". By this development, presumably, they came to
the convention of using "/" as a postfix operator. Since our concern is to profit from
what has been learnt rather than repeat the learning process we shall not adopt their
notation in its entirety.)

The idea behind reduce is that it should have a complementary behaviour to map.
Recall that map, applied to an element of pF, leaves the structure unchanged but applies
its argument to the ground elements. Reduce should do the opposite: leave the ground
elements unchanged but destroy the structure. Since a catamorphism does both (modifies
the ground elements and the structure) we formulate the requirement on reduce as being
that every catamorphism is factorisable into a reduce composed with a map. I.e. for all
specs R and S,

Let us try to calculate a suitable definition f o r / S .

/ S o ~ R

= { We try to express /S as a catamorphism:
assume P and Q exist such t h a t : / S = (P v Q~ }

(P v Q9 o ~,R
= { map fusion: theorem 77 }

~(P ~ K.R) v Q)

Elements of a Relational Theory of Datatypes 35

Now we cannot choose P and Q (for arbitrary relator K) such that

((p o K . R) v Q~ = ~ R v S~

But if we take P = I and Q = S, i.e. we define the reduce operator by:

(80) / S = (K . I ,~ S~

then we have established the following factorisation property:

Lemma81 / S o wR = ~K.R v S~

[]

Some simplification of (80) is possible using domain trading and junc-sum fusion
(theorems 45(a) and 52(a)). Specifically, we claim that the term K . I in (80) may be
repla~ed by I (the verification being left to the reader) which leads us to the following
definition of reduce:

Definition 82 (Reduce) / S : ~I v S~

D

For / S we have the following computation rules (obtained by instantiating theorem 69
with G . X = K . I for all X):

/ S o r = K . I and / S o ~ = S o H . / S

So one can v i e w / S as a spec which, when applied to an element of #F , strips the ground
elements of the constructor T and replaces the constructor ~ by S.

9.5 M o n a d i c Re la to r s

As mentioned before, with F having the form given by (75), we cannot factorise every
catamorphism into a reduce and a map for arbitrary relator K. For relator K defined by
K . X = X - - i.e. the identity relator - - we can, since

= { K . R = R }
~ K . R v S)

-- { catamorphism factorisation: theorem 81)

I S ~ ~,R

So we further specialise the binary relator | and the unary relator F by defining

(83) u . x = x

(84) X | Y = X + H . Y

(85) F . X = (I | = I + H . X

for all specs X and Y. Then we have established the all-important:

36 Roland Backhouse and Paul I-Ioogendijk

T h e o r e m 86 (Factor isat ion)
all specs R and S,

[R ,SD = ~So*oR

With relator F defined by (84) and (85) we have, for

The importance of this theorem derives from the fact that i t enhances further decomposi-
tion of calculations with catamorphisms. Instead of working with the entire catamorphism

one works with the c o m p o n e n t s / S and ,oR. Laws are also formulated concerning the
individual behaviours of reduce and map as well as their interaction. The advantage is

that the laws become extremely compact and thus more manageable, the disadvantage is
tha t there are more of them. Let us illustrate this by considering the computat ion rules,
the unique extension property and the fusion properties of reduce and map.

First, the definitions of the constructors r and 0 are speeialised accordingly:

(87) r = # F o ~-+ = r

(88) 7/ = # F o ~-~ = ~-, o H . p F

Whereas before we had two computation rules, one for each of the constructors, we now
have four rules:

T h e o r e m 89 (C o m p u t a t i o n R u l e)

(a) *oR o r = r 0 R (b) *oR0 ~ = ~ o H.*oR

(c) / S o r = I (d) / S o r I = S o H . / S

D

(Of course these rules can be recombined into two using the factorisation theorem, and
whether one chooses to do so is a matter of taste.)

In the case of the unique extension property there is li t t le gain from the use of the
factorisation theorem.

T h e o r e m 90 (U n i q u e E x t e n s i o n P r o p e r t y)

X o p F = ~ S o * o R

X o r = R A X o ~} = S o H . (X o p F)

D

On the other hand, the fusion law becomes more compact since it suffices to state the

law only for a reduce. We call the resulting theorem a "leapfrog" rule because its symbol
dynamics is that a reduce "leapfrogs" from one side to the other of a composition of two
specs. (The more general fusion law can be recovered by combining the reduce leapfrog
theorem with the monotonicity of the relator ~.)

T h e o r e m 91 (R e d u c e Leapfrog) For <1 in {_~, =, _U},

R o / S <1 / T o ~,'R r R o S o H . I ~_ T o H . R

Elements of a Relational Theory of Datatypes 37

P r o o f

.r

[3

n o /S ~ / T o ~ n

{ definition 82, factorisation: theorem 86 }

{ ground relator fusion: theorem 73, A = K . I = I)

R o I o I "~ R o I A R o S o H . I <~ T o H . R

{ calculus }
R o S o H . I ,a T o H . R

T h e o r e m 92 (I d e n t i t y R u l e) /7/ 0 wr =

P r o o f

177 0 ~ r

= { factorisation: theorem 86 }

= { constructors: theorem 65 }

= { identity rules: theorems 46 and 46 }

D

Because # F is expressible as a catamorphism, it too can be factorised:

o I

Theorem 92 is one of those theorems that, because of their simplicity, are very often

overlooked and yet prove to be vital.

A special reduce is / q (for list-structures this is the "flattening" catamorphism; it
maps a list of lists to a list). For this catamorphism there exist two special leapfrog
properties:

T h e o r e m 93 (/0 L e a p f r o g)

(a) /S o /7 = /S o o / S (b) ~ n 0 / 7 = / 7 o o ~ n

P r o o f Immediate from the reduce leapfrog rule - - theorem 91 - - and the two 7-
computat ion rules - - theorem 89(b) and (d).
[]

C o r o l l a r y 94 The triple (w, r , a) , where a = / 7 o w w I , is a monad in the following

(a) o is a relator. (b) wR o 1- = r 0 R
(c) o R 0 ~ = s 0 o o n (d) ~ 0 ~ = o I

(e) , ~ 0 ~ = o I (f) , ~ 0 / 7 = ,~0 o ,~

P r o o f Par t (a) has already been mentioned. Parts (b) and (e) follow from the compu-

tat ion rule of r (theorem 89), (c), (d) and (f) follow from theorem 93 together with the
identity rule, in the case of (d).

s e n s e :

38 Roland Backhouse and Paul Hoogendijk

rn

The concept of a monad is highly significant and is given due prominence in the math-

ematical literature. (See for instance [7, 20]. Note that monads are also called "triples".)
In the computing science literature the importance of monads is as yet difficult to as-
sess but appears to be steadily growing, the best known example being lists: a monad is

formed by the t r i p l e . , [_] and f l a t t e n , where �9 denotes the list map operation, [_] is the
function that constructs a singleton list, and f l a t t e n is the function that "flattens" a list

of lists into a single list. See for instance [27] for examples of part icular relevance to the
design and implementation of functional programming languages.

The existence of a monad structure i s the reason why we call the relator of this
subsection a "monadic" relator.

9.6 Po inted Relators and Filter

The third, and final, primitive operator in the Bird-Meertens formalism is called "filter"
and denoted by 4. The function of ~P (read "filter with P" , or jus t "filter P ') is just to

filter out the elements in a given da ta structure that do not satisfy the predicate P .
There are two obvious requirements on the definition of a filter operation. The first

is that ~ t r u e should be the identity function on # F . The second is that ~ f a l s e should
return an "empty" data-structure. In order to meet the lat ter requirement we introduce

a so-called "unit element" into the definition of H , viz:

(95) H . X = 11 + J . X

where J is a relator. Consequently, F is specialised to:

(96) F . X = I + (~ + J . X)

with the two constructors we already have

(97) v = # F o ~-+ =

(98) T1 = # F o ~- , - - ~ o ~ + J . # F

and two new ones

(99) tn = # F o ~-' o ~-+ = +-~ o ~-~ o ll

(100) -14- = # F o ~ o ~ - ~ = ~ o ~ o J . # F

Note that

(101) ~ = Q ~ 44-

Because this relator has a disjoint unit in its ground as well, we call these relators
"pointed relators". Again we want to point out that because this relator F is just an

instance of the previous one, the definition of map and reduce stay the same and all the
theorems stated so far remain valid. For our immediate purposes we only need to update

the computat ion rule:

Elements of a Relational Theory of Datatypes 39

Theorem 102 (Computation Rule)-
theorem 89 we have:

In addition to the computation rules given in

(a) ~R o 0 = []

(b) ~Ro41- = + o J.~R

(c) / (S v T) ~ D = So 1l
(d) / (S v T) oqq- = T o J . / (S v T)

P r o o f There are two pairs of computation rules given in the theorem but by using
june cancellation (theorem 59(a)) we can derive the elements of each pair simultaneously.
We illustrate the method on the second pair:

(/(S v T) o D) v (/(Sv T) o--pc)

= { spec-junc fusion: theorem 54(a) }
/ (s ~ T) o o ~ +

= { (101) }
/ (S ,, T) o

= { computation rule: theorem 89(d) }
S v T o "+J./(S v T)

= { june-sum fusion: theorem 52(a) }
(So]I) v (T o J . / (S v T))

We have thus proved the equality of two juncs. Rules (c) and (d) now follow by the june
cancellation theorem. The first pair is derived similarly.
[]

The definition of filter is borrowed directly from the work of Meertens [23] and Bird
[lq:

Definition 103 (Filter) For all specs P,

,~P =_ /q o w(r,~Pt>(Do 3T))
[]

Note that from the fact that r and O 0 77- are imps and the fact that conditionals,
june and catamorphism respect imps it follows that ,~P is an imp.

In this section we explore several algebraic properties of the filter operation. The
properties that we seek are motivated by the relationship between the Bird-Meertens
formalism and the quantifier calculus often used in the derivation of imperative programs
(e.g. [1, 16]).

By design <~true is the identity function on specs of the correct type:

Theorem 104 ~true = ~ I

P r o o f

,~true
{ definition 103 }

/~/ o w(r<l trueD([:] o Tl-))

40

D

= { conditionals: theorem 33(a)

/7 ~ ~ r
= { identity rule: theorem 92 }

Roland Backhouse and Paul Hoogendijk

}

Now we consider whether two filters can be fused into one. Since <P is a catamorphism
of the f o r m / r / o wp where p = r<l Pt>(O 0 TF) it pays to begin by exploring whether a
map can be fused with a filter. Indeed it can.

L e m m a 105

(a) wR . ,~P _- /7 ~ ~((7"~
(b) /7 ~ ~ ' R o ,~P = / 7 ~

P r o o f For brevity let p denote r<lPt>(D o -IT), Then we prove part (a) as follows:

wRo ,~p

= { definition 103 }

= { /T/leapfrog: theorem 93(b) }

= { ~ is a relator, definition of p }
/ 7 o w(wRo r,~ PI>(D, Tl-))

= { conditionals: theorem 33(n) }
/ 7 ~ r) P (Ro o o rr))

= { computation rule: theorem 102(a) }
/7 0 w((r~ R ~ Pt>(D ~ -IT))

Part (b) is derived from (a) using the leapfrog rule, theorem 93(a), followed by theorem
33(n) and the computation rule 102(c).
D

A direct consequence of lemma 105 is:

T h e o r e m 106 (4 d is tr ibut ion) ~p o ,~ Q = ~ (P A Q)

P r o o f

o

<IPo ,~Q

= { definition 103, lemma 105(b) }
/7 o ~,((r<IPI>(D o -IT)~QI>(D o -IT))

= { conditionals: theorem 33(f) }
/ 7 o w(1-<1 (PA Q)I>(D 0 -IT))

= { definition 103 }
,~(PAQ)

We conclude with yet another translation rule.

Elements of a Relational Theory of Datatypes 41

T h e o r e m 107 (F i l t e r T r a n s l a t i o n) . For all imps f

<p o ~ f = ~ f o < (p ~ f) o ~ f>

P r o o f

~ f 0

/,7 0

/ 7 ~

/~ o

/ 7 ~

/ 7 ~

/rl o

,~P o

4 (P o f) o w f>
{ lemma 105(a) }
w((ro f ~ (p o f) l > (o o "IT)) 0 w f>

{ relator.w }
~ ((r o f ~ (p o f)t>(O o -IT) ~ f>)
{ imp.(f>) , conditionals: theorem 33(o) }

w((r o f ~ f > ~ l (P ~ f o f>)l>(O ~ -IT ~ f>))
{ domains: (14) and TI-~ f> = TI-~ f : (11) }

w ((r ~ f ~ (P ~ f)t>(O ~ TF o f))
{ * imp . f , conditionals: theorem 33(o) }
w(r<~pt>(13 ~ "IT) o f)

{ relator.w
~ (~ p ~ (o o w)) ~ ~,f
{ definition 103 }

~f

[]

Theorem 107 can also be strengthened in the same way that theorem 33(0) was

strengthened to theorem 33(p).
The syntactic resemblance of theorems 25 and 107 should not go unnoticed. After

some thought the resemblance is not surprising: P> is a sort of filter but on elements of

some base set, ,1P is the same filter but "lifted" to elements of ~ I .

R e f e r e n c e s

1. R.C. Backhouse. Program Construction and Verification. Prentice-Hall InternationM, 1986.
2. R.C. Backhouse. An exploration of the Bird-Meertens formalism. Technical Report

CS8810, Department of Mathematics and Computing Science, University of Groningen,
1988.

3. R.C. Backhouse. Calculating the Warshall/Floyd path algorithm. Eindhoven University
of Technology, Department of Computing Science, Computer Science Note No. 92/09, May
1992.

4. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and J. van der
Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, and G. Scollo, editors,
Proceedings of the 2nd Conference on Algebraic Methodology and Software Technology,
AMAST'91. Springer-Verlag, Workshops in Computing, 1992.

5. R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der Woude. Rela-
tional catamorphisms. In MSller B., editor, Proceedings of the 1FIP TC2/WG2.1 Working
Conference on Constructing Programs, pages 287-318. Elsevier Science Publishers B.V.,
1991.

6. J. Backus. Can programming be liberated from the yon Neumann style? A functional style
and its algebra of programs. Communications of the ACM, 21(8):613-641, August 1978.

42 Roland Backhouse and Paul Hoogendijk

7. M. Burr and C. Wells. Toposes, Triples and Theories. Springer-Verlag, 1985.
8. R.S. Bird. The promotion and accumulation strategies in transformational programming.

ACM. Transactions on Programming Languages and Systems, 6(4):487-504, 1984.
9. R.S. Bird. Transformational programming and the paragraph problem. Science of Com-

puting Programming, 6:159-189, 1986.
10. R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Programming

and Calculi of Discrete Design. Springer-Verlag, 1987. NATO ASI Series, vol. F36.
11. R.S. Bird. A calculus of functions for program derivation. Technical report, Programming

Research Group, Oxford University, 11, Keble Road, Oxford, OX1 3QD, U.K., 1988.
12. R.S. Bird. Lectures on constructive functional programming. In M. Broy, editor, Con-

structive Methods in Computing Science, pages 151-216. Springer-Verlag, 1989. NATO
ASI Series, vol. F55.

13. R.S. Bird, J. Gibbons, and G. Jones. Formal derivation of a pattern matching algorithm.
Technical report, Programming Research Group, Oxford University, 11, Keble Road, Ox-
ford, OX1 3QD, U.K., 1988.

14. R.S. Bird and L. Meertens. Two exercises found in a book on algorithmics. In L.G.L.T.
Meertens, editor, Program Specification and Transformations, pages 451-457. Elsevier Sci-
ence Publishers B.V., North Holland, 1987.

15. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
16. E.W. Dijkstra and W.H.J. Feijen. Een Methode van Programmeren. Academic Service,

Den Haag, 1984. Also available as A Method of Programming, Addison-Wesley, Reading,
Mass., 1988.

17. C.A.R. Hoare et al. Laws of programming. Communications of the ACM, 30(8):672-686,
1987. Corrigenda in 30, 9, p. 770.

18. P.F. Hoogendijk. (Relational) Programming laws in the Boom hierarchy of types. To
appear: Conference Proceedings, Mathematics of Program Construction, Oxford UK, June,
1992.

19. G. Hutton and E. Voermans. Making functionality more general. In Functional Program-
ming, Glasgow 1991, Workshops in computing. Springer-Verlag, 1991. (To appear).

20. J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic, volume 7 of
Studies in Advanced Mathematics. Cambridge University Press, 1986.

21. G. Malcolm. Homomorphisms and promotability. In J.L.A. van de Snepscheut, editor,
Conference on the Mathematics of Program Construction, pages 335-347. Springer-Verlag
LNCS 375, 1989.

22. E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer-Verlag, Berlin, 1986.

23. L. Meertens. Algorithmics - towards programming as a mathematical activity. In Pro-
ceedings of the CW1 Symposium on Mathematics and Computer Science, pages 289-334.
North-Holland, 1986.

24. F.J. Rietman. A note on extensionality. In J. van Leeuwen, editor, Proceedings Computer
Science in the Netherlands 91, pages 468-483, 1991.

25. G. Schmidt and T. Str6hlein. Relationen und Grafen. Springer-Verlag, 1988.
26. E. Voermans. Pers as types, inductive types and types with laws. In PHOENIX Semi-

nar and Workshop on Declarative Programming, Sasbachwalden, Workshops in Computing.
Springer-Verlag, 1991. (To appear).

27. P. Wadler. Comprehending monads. In A CM Conference on Lisp and Functional Program-
rainy, June 1990.

