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A b s t r a c t  

The "Boom hierarchy" is a hierarchy of types that begins at the level of trees and 
includes lists, bags and sets. This hierarchy forms the basis for the calculus of total 
functions developed by Bird and Meertens, and which has become known as the "Bird- 
Meertens formalism". 

This paper describes a hierarchy of types that logically precedes the Boom hierarchy. 
We show how the basic operators of the Bird-Meertens formalism (map, reduce and filter) 
can be introduced in a logical sequence by beginning with a very simple structure and 
successively refining that structure. 

The context of this work is a relational theory of datatypes, rather than a calculus of 
total functions. Elements of the theory necessary to the later discussion are summarised 
at the beginning of the paper. 

1 Introduction 

This paper reports on an experiment into the design of a programming algebra. The 
algebra is an algebra of datatypes oriented towards the calculation of polymorphic func- 
tions and relations. Its design draws most inspiration from earlier research into theories 
of type in a functional setting but differs from those theories in including an element of 
indeterminacy. The selection of results chosen for presentation here has been made on the 
basis of level of correlation with the work of other members of IFIP Working Group 2.1. 
Other published selections from the work of the research team can be found in references 
[18, 19, 24, 261 . 

The goal of our work is to reduce a large class of type-manipulation problems to 
straightforward calculation. The hope is that within the next century it will become 
feasible to pose a large variety of such problems in school-leaving examinations alongside 
problems in, say, the differential calculus (with the implication that they are at the same 
level of difficulty). In order to achieve this goal it is vital to design a programming algebra 
in which the combination of economical notation with elegant programming laws is used 
to express powerful, fundamental concepts. 

Fluidity of calculation is considerably enhanced by attention to two design consider- 
ations. The first is that the operators in one's algebra should be ~otal funclions: their use 
should not be hedged with conditions on the type of their arguments, however simple 
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those conditions may be. The second is that  calculational rules should involve a mini- 

mum of bound variables (at most four being our yardstick) and no complicated nestings 
of universal and/or  existential quantifications. 

The axiomatic form of the calculus of relations developed by De Morgan, Peirce, 
SchrSder, Tarski and others has both these a t t r ibutes  par  excellence as well as offering 
mechanisms for modelling the indeterminacy that  is pervasive in programming problems. 

It has been chosen for these reasons as the basis for our experiment.  

The contribution made in [5, 4, 3] is to extend the calculus of relations with the so- 
called "polynomial relators". That  is, axioms are added defining a unit  type, "junction" 
and "split" operators,  and then it is shown how, via thelatter two operators,  disjoint sum 
and cartesian product  are defined. Sum and product are so-called "relators" (a corruption 
of the categorical notion of functor), and, with these as building blocks, new relators can 

be constructed by composition and by the construction of fixed points.  

In line with our design principles the junction and split operators are total  functions: 
this in contrast  to most category-theory-inspired theories of type where type restrictions 
are imposed on the corresponding operators. A consequence is that  the laws in our system 
have a recognisably different character to the laws in other systems. Instead of global type 

restrictions on the variables in the laws the restrictions appear  - -  where unavoidable - -  

in the laws themselves. One of our experimental objectives has been to explore to what  

extent this would impede or enhance calculations. Our experience is that  this des ign 
decision was fortunate. Only occasionally do type restrictions occur in our formulae and 
these act as a welcome reminder to the user of the calculus, and not as a tiresome detail.  
In this paper only one such type restriction occurs - -  in the very last theorem. 

The main concern of the current paper is to compare and contrast  the calculus to 
the so-called "Bird-Meertens Formalism". This formalism (to be more precise, our own 

conception of it) is a calculus of total  functions based on a small number of primitives 
and a hierarchy of types including trees and lists. The theory was set out  in an inspiring 

paper by Meertens [23] and has been further refined and applied in a number of papers 
by Bird and Meertens [9, 10, 13, 11, 14]. 

Essentially there are just  three primitive operators in the theory - -  "reduce", "map" 

and "filter". These operators are defined at  each level of a hierarchy of types called the 
"Boom hierarchy" 1 after tt .J.  Boom to whom Meertens a t t r ibutes  the concept. 

The Boom hierarchy begins at  the level of trees and subsequently specialises to lists, 
(finite) bags and sets. In this report we describe a hierarchy of types that  logically 
precedes the Boom hierarchy and in which all three primitive operators  of the Bird- 

Meertens formalism can be defined. We call the hierarchy a hierarchy of "freebies" because 
all types within the hierarchy are described by "free" algebras (i.e. algebras free of laws). 

ttow the Boom hierarchy itself is captured in the spec calculus is described in a companion 
paper  [18]. 

Space limitations have dictated the form and content of this paper.  The first eight 
sections prepare the reader for section 9 in which the main contribution of the paper 

1 For the record: Doaltse Swierstra appears to have been responsible for coining the name 
"Bird-Meertens Formalism" when he cracked a joke comparing "BMF" to "BNF" - -  Ba~kus- 
Naur Form - -  at a workshop in Nijmegen in April, 1988. The name "Boom hierarchy" was 
suggested to Roland Baekhouse by Richard Bird at the same workshop. 



Elements of a Relational Theory of Datatypes 9 

resides. In the former sections the basic elements of the calculus are summarised but  

no proofs of derived rules are given. Moreover, the axiomatisat ion of cartesian product  
has been omit ted since it has no bearing on the results included in section 9. Derived 
rules are, however, built  up in a logical order which will permit  the industrious reader to 
verify all our assertions. (The word industrious must be stressed: the exercise is likely to 
be quite t ime-comsuming even for those with some fluency in the calculus of relations. 

Nevertheless, the exercise is well worth while part icularly for those not so familiar wth 
the calculus.) In section 9, however, we do include all details of the calculations so tha t  
the reader may assess their merit. 

2 T h e  C a l c u l u s  o f  R e l a t i o n s  

2.1 A x i o m s  

In this section we summarise the axiom system in which we conduct our calculations. 
For pedagogic reasons we prefer to decompose the algebra into three layers with their 
interfaces and two special axioms. The algebra is, nevertheless, well known and can also 
be found in, for example, [25]. 

Let .A be a set, the elements of which are to be called specs (from specification). We 

use identifiers R, S, etc., to denote specs. On .A we impose the structure of a complete, 
completely distributive, complemented lattice (.A, R, U, --, -IT, .s ) where "f3" and "U" 
are associative and idempotent  binary infix operators with unit  elements "-IT" and "_tL", 
respectively, and "'~" is the unary prefix operator denoting complement (or negation).  

We assume familiarity with the standard definition of a lattice given above. 

The second layer is the monoid structure for composition: (,4, 0, I )  where 0 is an 
associative binary infix operator with unit element I .  The interface between these two 

layers is: o is coordinatewise universally "cup-junctive ' ,  i.e. for N, }'Y C .A, 

( u V ) o ( U w )  = u ( v , w  : v e v ^ w e w  : V o W )  

The third layer is the reverse structure: (.4, u ) where "u" is a unary postfix operator .  
The interface with the first layer is that  "~" is an isomorphism of the lat t ice structure,  

i.e. for all R, S E A, 

Ru -3 S = R 3 Su. 

The interface with the second layer is that  "u" is a contravariant monoid isomorphism 

(Ro S)o = So o Ro. 

To the above axioms we add the so-called middle exchange rule relating all three layers: 

X 3 R o Y o S  = "~Y 3 R ~ o - ~ X o S u  

Our last axiom, which is sometimes referred to as "Tarski's Rule", we call the cone rule: 

T F o R o ' I T  = -IT - R=~_LI_ 
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A model for this axiom system is the set of binary relations over some universe. 
The interpretations of the operators and constants is as follows: U, n,  -~ and -1 are 
interpreted as the set operators union, intersection, complement (with respect to the 
universal relation) and containment; 7Y, _Ll_ and I are the universal relation, the empty 
relation and the identity relation; finally, 0 and u are the familiar relational composition 
and converse operators. 

2.2 Operator precedence 

Some remarks on operator precedence are necessary to enable the reader to parse our 
formulae. First, operators in the metalanguage ( - ,  ~= and =~ together with V and A) 
have lower precedence than operators in the object language. Next, the operators in the 
object language " = ' ,  "_." and "E" all have equal precedence; so do "U" and "[3"; and, 
the former is lower than the latter. Composition " o "  has a yet higher precedence than all 
operators mentioned thus far. Finally, all unary operators in the object language, whether 
prefix or postfix, have the same precedence which is the highest of all. Parentheses will 
be used to disambiguate expressions where necessary. 

3 T h e  D o m a i n  O p e r a t o r s  

3.1 Monotypes  

The notion of a guard as a primitive entity in a programming language was first intro- 
duced in Dijkstra's guarded command language [15]. It is a useful notion since it is more 
flexible than the older, more conventional notion of a conditional statement. Its partic- 
ulax merit is that  it introduces partiality into programs and at the same time facilitates 
the introduction of indeterminacy thereby streamlining the derivation of programs. 

A guard acts as a filter on the domain of execution of a statement. Operationally it 
can be viewed as a partial skip. Mathematically, a guard is just a device that enables 
sets - -  subsets of the set of all states - -  to be incorporated into program statements. 

In the spec calculus there are two mechanisms for viewing sets as specs, and thus 
modelling guards, each of which has its own merits. The first is via so-called "monotypes ' ,  
the second via "conditions". Axiomatically, these have the following definitions. First: we 
say that spec A is a monotype iff I -7 A. Second: we say that spec p is a right condition 
iff p -- -IT o p. The dual notion of left condition is obtained by reversing the positions of 
-IT and p in the right side of the defining equation. 

In the relational model we may assume, for example, that  the universe U contains two 
unequal values t r u e  and false. The monotype boolean is then defined to be the relation 

{(true, true), (false, false)} 

The right condition boolean is the relation 

{(x, true), (x, false) I~ ~ U} 

It is clear that for any given universe U there is a one-to-one correspondence be- 
tween the subsets of U and the monotypes. Specifically, the set A is represented by the 
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monotype_A where xAy -= x = y ~ A. Equally clear is the existence of a one-to-one 

correspondence between the subsets of U and the right conditions on U . Tha t  is, if A 
is some set then the right condition defined by A is that  relation A~ such tha t  for all x 
and y, x A r y  - y E A .  Similarly, the left condition corresponding to A is tha t  relation 

Al such tha t  for all x and y ,  z A l y  --  x E A .  

Using monotypes to represent subsets of U as specs, a guard on a spec is modelled 

by composition of the spec, either on the left or on the right, with such a monotype.  

Thus, if R and S are specs and A is a monotype then A o R and S o A are both specs, 

the first being spec R after restricting elements in its left domain to those in A, and 

the second being the spec S after restricting elements in its right domain to those in A. 
Using conditions a guard on the left domain of spec R is modelled by the intersection of 

R with a left condition, and a guard on the right domain of R by its intersection with 
a right condition. In principle, this poses a dilemma in the choice of representation of 

guards in the spec calculus. Should one choose monotypes or conditions? 

We choose monotypes,  there being several reasons for doing so. One is the simple 

fact tha t  guarding both on the left and on the right of a spec is accomplished in one go 
with monotypes whereas demanding two sorts of conditions (left and right conditions). 
Moreover, monotypes have very simple and convenient properties. Specifically, for all 

monotypes  A and B 

(1) A = I ~ A  = A u  = A o A  

(2) A o B  = B o A  = A n B  

The most compelling reason, however, for choosing to represent sets by monotypes is 
the dominant  position occupied by composition among programming primitives.  Intro- 

ducing a guard in the middle of a sequential composition of specs is a frequent act ivi ty  
tha t  is easy to express in terms of monotypes but difficult to express with conditions. 

Nevertheless conditions do have their place from time to time. They too have at- 
tractive calculational properties. In particular,  they form a suhlattice of the spec lattice. 
(That  is they are closed under U, n and -~.) However, from the above it is clear that  

there is a one-to-one correspondence between monotypes and both types of condition 
which we document formally below. Exploitation of this correspondence is central to 

many calculations in the spec calculus. 

3.2 Left and  Right  D o m a i n s  

We need to refer to the "domain" and "co-domain" (or "range") of a spec. In or- 

der to avoid unhelpful operational interpretations we use the terms l e f t - d o m a i n  and 
r i g h t - d o m a i n  instead. These are denoted by "<" and ">", respectively. In the context  of 

the present paper we mainly have use for the right domain and only occasionally the left 
domain.  Properties of the lat ter  are therefore omitted.  They can easily be discovered by 

dualising the properties of the right domain. 
The right domain operator is defined by two conditions. Firs L the right domain of a 

spec is a monotype: for all specs R, 

(3) I ~ R> 
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Second, the right domain operator is one adjoint of a Galois connection between the 
lattice of all specs and the sublattice of the monotypes: For all specs R and monotypes 
A, 

(4) A _ ~ R >  - W o A _ ~ R  

(The existence of such an operator involves a non-trivial proof.) According to a general 
theorem on Galols connections it follows that the right domain operator is universally 
I I-junctive. In particular, for all specs R and S, 

(5) (RUS)> = R> U S> 

An additional consequence is that the operator is monotonic. 

The left domain operator is defined by 

(6) R< = Ru> 

The one-to-one correspondence between monotypes and right conditions mentioned 
several times earlier is formulated precisely as follows: for all specs R, 

(7) qToR> = -IT o R  and (TToR)> = R> 

In particular, for all right conditions p and monotypes A, 

(8) qTop> = p and (TFoA)> = A 

Relational calculus yields the following alternative definition defining R> as the smallest 
monotype satisfying the equation in A, R o A = R: for all monotypes A, 

(9) R o A  = R = A _ R> 

The following properties are also used very frequently: 

(10) R> = Ru< 

(11) S o  R> = - R - o R  n S 

(12) (Ros)> = (R>os)> 

(13) (RFISoT)> = (SuoR FI T)> 

Of these properties, three are evident when specs are interpreted as relations. Two, 
(11) and (13), are less so. Nevertheless, it is worth drawing attention to them because they 
figure frequently in some of our calculations. The alternative closed form, I Iq TF o R, 
for R> is obtained from (11) by instantiating S to I and simplifying. 

It is immediate from (9) that 

(14) R = R o R> 

Indeed this law is used so frequently that, after a while, we hardly bother to mention it. 
It follows immediately from (2) with B instantiated to A that, for all monotypes A, 

(15) A = A> 
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4 Domain Complement 
t 

For the purpose of defining conditionals ( i f - then-e l se  statements) it is useful to have 
a total operator that has the properties of a complement operator when restricted to 

monotypes. We call this operator the complemented right domain operator. 
We specify the complemented right domain of R, denoted R>., by the requirement 

that  it is the greatest monotype A satisfying _Ls _~ R 0 A. I.e. 

(16) R>. "1 A = _12_ ~ R 0 A  

As always, such a requirement imposes on us the burden of showing that  it can indeed 
be fulfilled. To this end we first observe several expressions equivalent to the right side 
of equation (16). Two of these give a closed form for R>* thus establishing the existence 
(and uniqueness) of the operator. 

L e m m a  17 The following are all equivalent: 

(a) 2_ ~_ Ro  A 
(b) 22_ ~ R > o A  
(c) I n - , ( n > )  ~_ A 
(d) .1s ~ IT  o R o A 

(e) R E --(71-oA) 
(f) -~(T[-oR) ~ TI-oA 
(g) (~ (Wo n))> ~_ A 

O 
From the equivalence of (a), (c) and (g) we infer 

(18) R>. = I n - , ( R > )  = (-~(TYoR))> 

The latter two formulae are clumsy; exhibiting them serves the purpose of showing that 
R>, does exist. Both are formulae that are suggested by the intended interpretation of 
the complemented right domain and might have been proposed as definitions. We prefer, 
however, the form of (16) on the grounds that it is closer to our view of a specification 

and is easier to calculate with. 
Several properties of the complement domain suggest themselves. Specifically: 

L e m m a  19 

(a) R> II R>* = I and R> H R>, = II 

(b) R>.>. = R> 

(c) n>. = n>.> 
(d) n>. = n ,> .  = ( W 0  n)>. 

(e) n>. _ S> = S>* _ R> for <J e { E ,  =, =]}. 

r-] 

The importance of 19(d) has to do with the fact that  we have defined a total operator. 
One is tempted to make do with the complement operator in the monotype lattice - -  for 
monotype A its complement is I H -~A - -  or in the lattice of right (or left) conditions - -  
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for right condition p its complement -~p in the spec lattice coincides with its complement 
in the lattice of right conditions. However this creates a dilemma as to which to choose, 
a dilemma which it is better to circumvent. Lemma 19(d) indicates that  the choice is 
irrelevant. (We return to this matter when we introduce the definition of  conditionals.) 

The equivalence of (a) and (e) in lemma 17 together with the specification (16) of 
the complemented domain operator predict that the complemented domain operator is 
one adjoint of a Galois connection. It follows that the complemented domain operator is 
universally U-junctive. To be precise we have: 

T h e o r e m  20 For all sets of specs N, 

(a) = (W. )  

where ~ 4  denotes the infimum operator in the lattice of monotypes. (I.e. fq~B = I 
when set of monotypes B is empty, otherwise ~ B  = [3 B.) 
In particular, for all specs R and S, 

(b) (RUS) , = n 
[3 

In contrast, but not unexpectedly, the complemented domain operator is not universally 
N-junctive. Its I?-junctivity properties are inextricably linked, however, to those of the 
normal domain operator. 

T h e o r e m  21 For all sets of specs V, 

(a) ( n y ) ~  = u ( Y ~ )  - (n],,)> = na~(Y>)  

In particular, for all specs R and S, 

(b) ( R r I s ) > ,  = R>,  u S>,  - (RFIS)> = R> Iq S> 

(Note that  the right side of (b) is true if R and S are both monotypes or both right 
conditions. These are two situations in which the lemma proves useful.) 
[3 

4.1 Imps and Co-imps 

In this subsection we define "imps" and "co-imps" as special classes of specs. As we 
explain immediately following definition 24, an "imp" in the relational model is a function. 

Definition 22 

(a) A spec f is said to be an imp if and only if I 3 f 0 fu. 

(b) A spee f is said to be a co-imp if and only if fu  is an imp. 

(c) A spec is said to be a bijection if and only if it is both an imp and a co-imp. 
[3 
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We shall say that  f is a bijection to A from B if it  is a bijection and f< = A and 
f> = B. Note that  if this is the case then both A and B are monotypes and A = f o f~ 

a n d B  = f u o f .  
The intended interpretat ion is that  an "imp" is an " imp ' lementa t ion .  On the other 

hand, it is not the intention that  all implementations are "imps". Apar t  from their 
interpretat ion imps have an important  distr ibutivi ty property not enjoyed by a rb i t ra ry  

specs, namely: 

T h e o r e m  23 If f is an imp then, for all non-empty sets of specs V, 

Iq (P :  P E V :  p ) o  f = N ( P :  P E V :  p o f )  

In part icular ,  for all specs R and S, 
( RI q S )  o f = (R o f )  17 (S o f )  

0 

Monotypes are examples  of bijections. More generally, the requirement of being a function 

is the requirement of being single-valued on some subset of U, the so-called "domain" of 

the function. The domain and range are made explicit in the following. 

D e f i n i t i o n  24 For monotypes A and B we define the set A~- -B  by f E A( B when- 

ever 

(a) A ~ f o f ~  

The nomenclature " f  E A( 
[] 

(b) .f> = B 

B" is verbalised by saying that  " f  is an imp to A from B ' .  

In terms of the relational model, property (24a) expresses the s ta tement  that  f is zero- 
or single-valued, i.e. for each x there is at  most one y such that  y (f)  x, and has range A. 
Proper ty  (24b) expresses the statement that  f is total on domain B, i.e. for each x E B 
there is at  least one y such that  y ( f ) x .  Their combination justifies writing " f .x ' ,  for 
each x C B, denoting the unique object y in A such that  y (f)  x. (Note that  the argument  
x in the expression y (f)  x is on the right; we view functions as relations taking input  on 

the right to output  on the left.) 

We now come to the first of several translation rules. 

L e m m a  25  ( D o m a i n  T r a n s l a t i o n )  

R ,  0 f = f o ( a 0 f ) ,  
[3 

For all specs R and imps f ,  we have: 

The above domain translation rule is the embryonic form of the so-called "range trans- 
lation rule" in the quantifier calculus [1]. The rule provides a mechanism for t ransla t ing 

a restr ict ion (R>) on the left domain of imp f into a restriction ( (R 0 f)> ) on its right 

domain. 
Our next goal is to show that  there is also a translation rule for the complemented 

domain operator .  Three lemmas are necessary. 

L e m m a  26 For all specs R and S and all imps f ,  
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(a) R>* o f : f o (R>* o f)> 
(b) S o (n> .  o S)> -1 S 0 ( n  o S)>.  

(c) (R>o 0 f)> E (R o f)>, 
[3 

Roland Backhouse and Paul Hoogendijk 

Corol lary  27 ( C o m p l e m e n t e d - D o m a i n  Trans lat ion)  

f o (R o f)>, _-- R>o o f 
ra 

For all specs R and imps f 

5 Condi t iona l s  

Conditionals ( i f - then-else statements) are, of course, a well-established feature of pro- 
gramming languages, and our own theory would be incomplete if they were not included. 
In this section we show how they are expressed and we explore in some detail their 
algebraic properties. 

Several publications have already appeared documenting the algebraic properties of 
conditionals, the most comprehensive account that we know of being given by Hoare el 
al [17]. We shall therefore compare the rules given here with the list that  they supply. 
Their notation for conditionals will also be used, its vital characteristic being that it 
promotes the Boolean condition to an in f ix  operator. Some of the rules presented here 
were included in Ba~kus's [6] Turing award lecture but his account is less comprehensive 
and spoiled by the choice of the multifix notation used in the language Lisp. 

We take the liberty of omitting proofs about conditionals on the grounds that the 
properties are (or should be) unsurprising and their proofs involve only properties of the 
underlying lattice structure plus a few extra rules to be stated (and proven) shortly. 

Def in i t ion  28 (Cond i t i ona l )  For all specs P we define the binary operator <IPI> 
by: 

R<1Pt>S = R o P> I I S O P > ,  

D 

The conditional R<~ P t > S  can be viewed as a spec which applies R to those elements for 
which condition P holds and applies S to the other ones. 

Note that conditionals are defined for all  specs but that for all specs P,  R and S, 

R<~PI>S = R<1(P>)I>S = R<1(T I -oP) t>S .  

Totality of operators is something we strive for at all times: the alternative in this case 
would have been to restrict P either to monotypes or to right conditions. Had we done 
so then we would have imposed on ourselves the obligation to determine for every other 
operator in the calculus whether it preserves monotypes and/or right conditions. In the 
cases that that  is not so the laws relating those operators to conditionals would inevitably 
have taken on much clumsier forms. 

Guards are usually formed by composing primitive guards with the boolean operators. 
We apply the same design principle to the definition of the booleans: we seek definitions 
that are total on all specs but are indifferent to the choice of monotypes or right conditions 
as representations of sets. This leads to the following definition. 
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D e f i n i t i o n  29 ( B o o l e a n  O p e r a t o r s )  The operators V, A and ,~, and constants 

true and #a/se are defined by, for all sets of specs 7 ) and specs R, 

(a) = (up)> 

(b) = (P)> 

(e) ~ R = R>, 

(d) t r u e  = I 

(e) fa/se ----- II 
O 

Theorem 30 ( C o n d i t i o n a l  T r a n s l a t i o n )  For all specs R, imps f and sets (possibly 

empty)  of specs 7 ) , we have: 

(a) V~' o f = f o V(~of) 

(b) A ' p  o f = f o A(T, o f )  
(c) NR o f = f 0 N(Rof )  

Hence, for all proposit ional functions 0 (i.e. functions from specs to specs buil t  from the 
identi ty function, constant functions and the boolean operators A, V, N) and all vectors 

of specs P of the appropria te  arity, 

(d) O.P o f = f o O.(_Pof) 

[] 

Theorem 31 The binary operator <1PI> respects imps. I.e. 

imp.(f<~Pl>9) ~ i m p . f  A imp.9 
[] 

Theorem 31 corresponds to the theorem 

x :=  E<1PI>F = (x  := E)<IPI>  (x := F )  

in the set of properties listed by Hoare et al [17]. For them the most primit ive implemen- 

tat ion (thus, "imp") is an assignment and the content of their rule is that  a condit ional  
respects assignments. Their rule is thus at  a lower level of abstract ion than ours, and 
more detailed. 

The theorem illustrates the sort of proof burden one encounters when type restrictions 

are imposed on laws. We are obliged to document this theorem because, for example, 

all the translation rules are restricted to translation by imps. Should we ever wish to 
t ransla te  a domain (say) via a conditional then we need to know in advance tha t  the 

conditional is an imp. 
One final lemma is necessary before we can list the laws obeyed by conditionals. 

Lemma 32 

(a) 
(b) 
[] 

(R<~Pt>S)> = R><~PI>S> 

( R<~ PI> S)>* = R>*<~ PI> S>* 
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The set of "unsurprising" laws that we announced earlier can now be given: 

Theorem 33 For all specs P, Q, R, S, T, imps f, and non-empty set of specs V: 

(a) R<ltruet>S = R 
(b) R~falsel>S = S 
(c) R~Pt>R = R 
(d) R.~,,,Pt>S = S~Pt>R 
(e) R<IPI>(S,~Pt>T) = R<IPI>T = (R<IPt>S)<IPE>T 
(f) R ~ ( P  AQ)I>S = (R<IPI>S)~Qt>S 
(g) R<I(PVQ)t>S = R<IPt>(R~Qt>S) 
(h) (UV)~Pt>S = U (V,~Pt>S) 
(i) ([-IV)~Pt>S = r3 (V<IPt>S) 
(j) S<I(P<IQt>R)I>T = (S<IPI>T)<JQt>(S<IRt>T) 
(k) (R~Pt>S) U T = ( R U T ~ P I > ( S t . I T )  
(l) (R<~Pt>S) f3 T = (RI -1T)OPI>(S~T)  
(m) (R<IPt>S) <iQI> T = (R<IQt>T)<IPI>(S<IQI>T) 
(n) T o R.dPt>S = (To  R)~Pt>(T o S) 

(o) n<lPt>S o f = (R o f ) ~ ( P o f ) l > ( S  o f )  

Moreover, for all propositional functions 0 and all vectors of specs P of the appropriate 
arity, 

(p) R<IO.PI>S o f = (R o f )~O.(Po f)l>(S o f )  
0 

Part (p) of this theorem is the translation rule for conditionals. Given a spec R<I PI>S 
with right domain A and an imp f E A * - -  B one may always translate it to a spec 
with right domain (at most) B by translating the condition at the level of its primitive 
components. It takes the place of the law 

(x := E) ; (R~P(x)I>S) = ((x := E ) ;  R) <IP(E)I> ((x := E ) ;  S) 

in the paper by Hoare et al [17]. 

6 R e l a t o r s  

A fundamental argument for the use of type information in the design of large pro- 
grams is that the structure of the program is governed by the structure of the data. A 
well-established example is the use of recursive descent to structure the parsing (and 
compilation) of strings defined by a context-free grammar; here the structure of the data 
is defined by its grammar as is the structure of the parsing program. The idea is extended 
in the denotational description of programming languages where a fundamental initial 
step is the definition of so-called domain equations; those familiar with denotational 
semantics know that once this step has been taken the later steps are often relatively 
mundane and straightforward. Users of strongly-typed languages like Pascal will argue 
strongly that the effective use of type declarations is extremely important for subsequent 
program development, and even users of untyped languages like Lisp will admit that the 
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programming errors that  they make are often caused by type violations. A fundamental  
goal of our research is therefore to develop calculi of program construction that  lay bare 

the oneness of program and da ta  structure. 
In the algebraic approach to type theory the underlying principle is tha t  a d a t a  type 

is a s tructured set of elements that  is equipped with a mechanism governed by tha t  
s t ructure  for defining functions on the elements of the type. For the benefit of readers 
who may not be familiar with it we now outline this approach as it pertains to functional 

programming.  A fuller account is contained in, for example, [22]. Other readers will 
probably wish to skip the next two paragraphs; all they need to know is tha t  we use 
the te rm "catamorphism" to refer to F-homomorphisms whose domain is an initial  F -  

algebra. 
The approach involves several stages building up to the definition of a "universal 

object"  in a category of algebras. First,  the notion of endofunctor is of paramount  im- 
portance.  An endofunctor is (in this context) a pair of functions, one from types to types 

and the other from functions to functions. Typically, both functions are denoted by the 

same symbol. Suppose F is an endofunctor, A and B are types and f and g are func- 
tions of composable type. Let IA denote the identity function on the type A. Then it is 

required that  

F . f E F . A ~ - - - - F . B  r f E A ~ - - - B  

F . IA  : IF.A 

and F . ( f  o g) = F . ]  o F.g 

The next step is to define an F-algebra  as a pair consisting of a type A and a function 
f E A ~ F .A .  The da ta  type defined by the endofunctor F is then an F -a lgebra  
satisfying a so-called "universality property".  Specifically, An F-a lgebra  (A, f )  is called 

a da t a  type if for each F-a lgebra  (B, g) a unique function y exists such that  

~ o f = g o F.~? 

To emphasise the special r61e of such homomorphisms they are given a special name, 

specifically the name "catamorphism' .  
An example would be the da ta  type natural  number. Roughly speaking, IN has the 

proper ty  

IN = {0}+IN 

where "§  denotes the disjoint sum of two types. (According to this definition the ele- 
ments of IN are r and *--~.n where n ranges over IN and ~ and *-~ denote the injection 

functions associated with disjoint sum. You should interpret  "r as zero and "~-~" 

as the successor function. More formally, we recognise in this equation an endofunctor 
"{0}+".  This is a function that  maps the type A to the type {0}+A. But it  may also be 
extended to map functions to functions by defining { 0 } §  to be that  function g such tha t  
g o r is the constant function always returning r and g 0 ~-~ _- ~ o f .  (Moreover, 
it satisfies all the properties required of a functor, but  that  we leave to the reader to 

verify.) A {0}+-algebra is a set together with a constant and a unary operator  (these 

being zero and the successor function in the case of the natural  numbers),  and a {0}+- 
homomorphism is just  what one would normally understand by a homomorphism of an 
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algebraic structure, in this case a function ~b, say, from one {0}+-algebra (A, (a, tr)), say, 
to another (B, (b, r)), say, that maps the constant of the first to the constant of the 
second 

i.e. r = b 

and commutes with the unary operator of the first replacing it with that  of the second 

i.e. r o o- = r o r 

That  IN is "universal" in the class of (0}+-algebras just means that for any {0}+-algebra 
(A, (a,a)) ,  say, there is a unique homomorphism mapping lN to A. With a suitable 
definition of the operators it is also easily shown that {0}+IN is a {0}+-algebra satisfying 
the universality property. Thus, IN is a fixed point of the endofunctor {0}+ in the sense 
that  there are homomorphisms mapping IN to {0}+IN and vice-versa which (on account 
of their uniqueness) are each others' inverses. 

To summarise this discussion: in the framework of functional programming datatypes 
are fixed points of endofunctors on which are defined what we call "catamorphisms' ,  i.e. 
homomorphisms satisfying a uniqueness and universality property. This is not the place 
to discuss the practicality of catamorphisms as a program structuring method, that  being 
something that is addressed elsewhere. We hope however that we have provided sufficient 
background to motivate the definitions that follow in this section. Specifically, we explore 
the extension of the notion of a (functional) catamorphism to relations. For this we need 
the notion of "relator" instead of functor. 

Def in i t ion  34 ( R e l a t o r )  A relator is a function, F ,  from specs to specs such that 

(a) I ~ F.I 

(b) F.R_~F.S r R_~S 
(c) F.(Ro S) = F.R o F.S 

(d) F.(Ru) = (F.R)u 

D 

In view of (34d) we take the liberty of writing simply "F.R~" without parentheses, thus 
avoiding explicit use of the property. 

The above defines an endorelator, i.e. a unary relator from a given spec algebra ,4 to 
itself. We also need to define a binary relator, i.e. a function from pairs of specs to specs. 
If  | denotes a binary relator, its defining properties are as follows. 

(a) I :3 I |  

(b) R | 1 7 4  r R ~ S  A U~_V 

(c) (R o S) | (U o V) = ( R |  o ( S |  

(d) ( n u ) |  = ( R |  

The notational advantage of writing "u" as a postfix to its argument is, of course, lost in 
this case. 

A vital property of relators is that  they commute with the domain operators. 
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T h e o r e m  35 If F is a relator then 

(a) F.(R>) = (F.R)> (b) F.(R<) = (F.R)< 
[] 

In view of theorem 35 we write "F.R<" and "F.R>" without parentheses, again in order 
to avoid explicit mention of the properties. 

The following theorem allows a comparison to be made with our definition of "relator" 
and the definition of "functor" (in the category of sets). 

T h e o r e m  36 If F is a relator then 

(a) A is a monotype :::V F.A is a monotype 

(b) f is an imp =~ F . f  is an imp 

(c) f is a co-imp =~ F . f  is a co-imp 

(d) f E A~-----B =~ F . f  E F.A, F.B 
D 

7 C a t a m o r p h i s m s  

Since endorelators are, by definition, monotonic the Knaster-Tarski theorem asserts the 
existence of their fixed points, in particular least and greatest. Specifically, the least fixed 
point of the endorelator F,  here denoted by pF ,  has the defining properties 

(37) g F  = F.IJF 

and, for all X, 

(38) X ~_ p F  r X ~_ F .X  

We shall refer to (38) as the induction principle. 
From the induction principle follows immediately: 

L e m m a  39 p F  is a monotype. 

r-1 

Def in i t ion  40 For endorelator F we define a function, denoted by ~F; _ ]), by the 

properties that, for all specs R and X, 

(a) IF; R~ = n o F4F;  R D 
(b) X ~_ {F; R~ ,r X ~_ R o F .X  
ul 

In other words, ~F; R~ is the least solution to the equation 

X :: X = R o F .X  

Its well-definedness is thus guaranteed by the Knaster-Tarski theorem. 
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We call specs of the form iF; R }  catamorphisms (or F-catamorphisms when we 
particularly wish to be explicit about F) and we verbalise IF;  R]) as "(F-)catamorphism 
R ' ,  omitting the qualification "F" when there is no doubt about the relator in question. 

For reasons that will only become clear later, we call 40(a) the computation rule for 
eatamorphisms. We call 40(b) the induction principle for catamorphisms. 

Catamorphisms can be viewed as a recursively defined specs which follow the same 
recursion pattern as the elements of pF. 

The catamorphism r } is of particular importance since it is clearly the least fixed point 
of F. Thus, we have: 

(41) # F  : i I~  

The remarkable property of eatamorphisms that makes them such a delight to work with 
is that they are the unique solution of a certain equation. Specifically, we have: 

T h e o r e m  42 (Unique  Extens ion  P r o p e r t y )  For all specs X and R, 

x = CR} - x = R o  F . X o  ~F 

D 

A corollary of the above that figures very prominently in program calculations is: 

Coro l la ry  43 (Catamorphlsm Fusion) For all _~ e {_~, =,  C_}, 

U �9 i V}  ~_ CR} ~ U o V 4_ R o F.U 
[] 

Fusion laws are important. In earlier publications [2, 21] we used the term "promotion" 
property, this term having been used by Bird to name a technique for improving the effi- 
ciency of programs [8] and which our notion captured and generalised. Maarten Fokkinga 
suggested the more descriptive term"fusion" property. Several valuable properties of cata- 
morphisms are listed below. 

(Monoton ic i ty )  CR} ~_ IS]) r R _~ S 

T h e o r e m  45 (Domain  Trading)  

(a) JR}  = CRo F.A}  = 

(b) IR}  = iRo F.R<} 
(c) IR} = i R o A }  
[] 

For all monotypes A and specs R, 

CA o R )  .r A ~ (R o F.A)< 

A -7 F.R< 

A consequence of this domain trading rule is we can now generalise (41) to a very flexible 
and useful form. 

T h e o r e m  46 ( Iden t i ty  Rule)  

(a) p r  = (A~ <= I ~ A _ p F  

(b) ~F = ~ F }  = r = r 
ra 
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8 S a m p l e  P o l y n o m i a l  R e l a t o r s  
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We have now introduced the abstract  concepts of a monotype, a relator and a catamor-  

phism but  we need some concrete examples to do anything useful. For the purposes of 
this paper  it  will suffice to postulate the existence of a unit monotype and the disjoint 
sum relator.  These and their properties are briefly discussed in the next two subsections 

following which we show how so-called map relators are constructed by a process of con- 
structing endorelators and taking their fixed po in ts .  For a detailed discussion of these 
two classes of relators see [4, 5]. 

8.1 T h e  Uni t  T y p e  

The unit  type (a type with exactly one element) is denoted by 1. The only two properties 
we demand of 1 are tha t  it  is a monotype and 11 * -IV is an imp. 

8.2 Dis jo int  S u m  

To define disjoint sum we begin by postulating the existence of the two injections 
(pronounced "inject left") and ~-~ (pronounced "inject right").  (Note the unconventional 

direction of the arrow heads. As an aid to memory, and motivation for this choice, we 

suggest that  the reader bear in mind the diagram " X  ~ X + Y  ~ Y ' . )  Further,  we 
introduce two binary operators on specs, v (pronounced " junc ' )  and + (pronounced 
"plus"), defined in terms of the projection and injection specs as follows: 

(47) P ~ , Q  = (P  0 r I_J (Q o +--~o) 

(48) P + Q  = (r o p )  v (~--~ o Q) 

The relational model that  we envisage assumes that  the universe is a term algebra 
formed by closing some base set under two unary operators r and *--' mapping the term 
x to the terms r and ~--~.x, respectively. The two defined operators  should be familiar 
from their interpretat ions which are 

x ( P v Q )  y _= S(z : :  y = r A x ( P )  z) 

V 3(z :: y = ~-~.z A x (Q)z)  
x ( P + Q )  y =_ 3 (u , v : :  x = r A y = r A u ( P )  v) 

V 3(u,v :: x = +-~.u A y = ~-~.v A u(Q)  v) 

A commonly-occurring notation for P v Q is [P, Q]. The operators defined above have a 

higher precedence than composition "o' .  

Our first axiom is that  the injections are both imps. 

(49) I _~ (r o r U (+--~ , +.-~o) 

We remark that  axiom (49) takes the following form when rephrased in terms of the sum 
operation.  

(50) I ~_ I + [  
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This is reassuring since it is one step on the way to guaranteeing that  + is a binary 

relator. 
The second ax iom is as follows: 

(51) ( P v Q )  o ( R v S ) u  = (P  o Ru) U(Q 0 Su) 

It is straightforward to see that  + satisfies three of the conditions necessary for it  

to be a relator: the first is satisfied axiomatically, and monotonici ty and commutat ion 

with reverse are satisfied by construction. Distr ibutivity with respect to composition is 
a special case of a "fusion" law, namely that  a sum can be fused with a june. 

T h e o r e m  52 ( J u n e - S u m  a n d  S u m - S u m  F u s i o n )  

(a) ( P v Q )  o (R+S)  = ( p  oR) v (Q oN) 
(b) ( p + Q )  o (R+S) = (p  oR) + (QoS)  
[] 

C o r o l l a r y  53 + is a relator. 
D 

One more fusion property can be added on account of the universal U-junctivity of 
composition, namely: 

T h e o r e m  54 ( S p e c - J u n c  Fus ion)  

p o ( Q v R )  = ( P o Q ) v ( P o R )  
D 

The computat ion rules follow straightforwardly: 

T h e o r e m  55 ( C o m p u t a t i o n  R u l e s  for J u n c )  

(a) ( P v Q )  o ~-, = p 

(b) ( P R O )  o ~ = Q 
In part icular  
(c) (p+Q) o , ~  = , - - ~ o  p 
(d) (p+Q) o ~ = ~-..,o Q 
[] 

T h e o r e m  56 

(b) r o ~ = I 
[] 

~.,~u 0 c-.+ 

Theorem 56(b) not only predicts that  the injections are co-imps but  also that  they are 

total .  Formulae for the left domain of the injections are also easy to calculate: 
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Theorem 57 

(a) r = I and ~--~> = I 
(b) r = I+_LL and +---'< : 
[] 

_h_+I 

The rules for the left and right domains of junc and sum are very simple. Both domain 

operators  distr ibute over sum, and over junc, but transforming the operator  in one case 

into cup and in the other into sum. 

T h e o r e m  58 

(a) (P+Q)>  = P> + Q> (b) (P+Q)<  = P< + Q< 

(c) ( P R O ) <  = P< u Q< (d) ( P v Q ) >  = P> + Q> 
[] 

A possible explanation for the qualification "disjoint" in the terminology "disjoint sum" 
is tha t  the two components in a june or sum remain truly disjoint. To be precise: 

T heorem 59 (Cancellation P r o p e r t i e s )  For all ~ E {_,  =,  _~}, 

(a) P v Q  ~_ R v S  = P <1 R A Q ~_ S 
(b) P + Q  ~ R + S  - P ~ R A Q ~_ S 
[] 

The final theorem is that  both june and sum abide with both cup and cap. 

T heorem 60 ( J u n c / S u m - C u p / C a p  A b i d e  Laws)  

(a) 
(b) 
(e) 
(d) 
o 

( P v Q )  U ( R ~ , S )  = (P  U R) ~, (Q U S) 
(P+Q) u (R+S)  = (P U R)+(Q U S) 
( P v Q )  R ( R ~ S )  =- (P IqR ) '~ (QV 1S)  
(P+Q) ~ (R+S)  = (P I-1 R)+(Q ~ S) 

8.3 Map  Relators 

An impor tant  mechanism for constructing new relators is via fixed points. The relators so 
constructed are called map relators and have the following definition. (They are so named 

because they generalise the map function defined on lists. See the discussion following 

theorem 76.) 

D e f i n i t i o n  61 Suppose | is a binary relator. I t  is easy to verify tha t  I |  is a relator 
(where ( I |  = I | R). Its catamorphisms therefore exist and we may define the 

function w from specs to specs by: 

= Cz| n| 
[] 

Several properties of map relators can be obtained by instant iat ing the general propert ies  

of catamorphisms discussed earlier. Two of particular importance are: 
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Theorem 62 =, is a relator. 
D 

Theorem 63 ( M a p  Fusion)  

D 

This concludes the overview of the calculus. 

{JR} o ~S 
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= ~Ro S |  

9 A H i e r a r c h y  o f  F r e e b i e s  

9.1 T h e  B i r d - M e e r t e n s  Formalism 

One of the hardest tasks faced by the theoretician is the assessment of the practicality 
of one's work. The task is not made any easier by the immense breadth of programming 
problems to which any useful programming calculus should be applicable. The traditional 
apology for such an assessment is the presentation of a few, inevitably worn and tired, 
case studies. We shall not follow such a course. 

The course we do follow is to pass the buck: we ask the reader not to assess the 
practicality of our theory but to assess the practicality of the so-called "Bird-Meertens 
formalism", and to combine that assessment with an evaluation of the way the formalism 
is rendered within our theory. 

The "Bird-Meertens formalism" (to be more precise, our own conception of it) is a 
calculus of total functions based on a small number of primitives and a hierarchy of types 
including trees and lists. The theory was set out in an inspiring paper by Meertens [23] 
and has been further refined and applied in a number of papers by Bird and Meertens 
[9, 10, 13, 11, 14]. Essentially there are just three primitive operators in the theory - 
"reduce", "map" and "filter". (Actually, the names used by Meertens for the first two of 
these operators were "inserted-in" and "applied-to-all". Moreover, just the first two are 
primitive since filter is defined in terms of reduce and map.) These operators are defined 
at each level of a hierarchy of types called the "Boom hierarchy" 

The basis of this hierarchy is given by what Meertens calls "D-structures". A D- 
structure, for given type D, is formed in one of two ways: there is an embedding function 
that maps an element of D into a D-structure, and there is a binary join operation 
that combines two D-structures into one. Thus, a D-structure is a full binary tree with 
elements of D at the leaves. (By "full" we mean that every interior node has exactly two 
children.) The embedding function and the join operation are called the constructors of 
the type. Other types in the hierarchy are obtained by adding extra algebraic structure. 
Trees - -  binary but non-full - -  are obtained by assuming that the base type D contains a 
designated nil element which is a left and right unit of the join operation. Lists, bags and 
sets are obtained by successively introducing the requirements that join is associative, 
symmetric and idempotent. 

Meertens describes the D-structures as "about the poorest (i.e., in algebraic laws) 
possible algebra" and trees as "about the poorest-but-one possible algebra". Nevertheless, 
in this section we exploit the power of abstraction afforded by the notion of a relator 
to add several more levels to the Boom hierarchy each of which is "poorer" than those 
considered by Meertens. We call this hierarchy a hierarchy of "freebies" because all 
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types within the hierarchy are decribed by "free" algebras (i.e. algebras free of laws). 
Each level is characterised by a class of relators that specialises the class at the level 
below it. In decreasing order of abstraction these are the "sum" relators, "grounded" 
and "polymorphically grounded" relators, "monadic" relators and "pointed" relators. 
("Grounded" and "polymorphically grounded" relators are formally indistinguishable 
but it helps to introduce an artificial distinction for a first introduction.) The reason 
for introducing these extra levels is organisational: the goal is to pin down as clearly 
as possible the minimum algebraic structure necessary to be able to, first, define the 
three operators of the Bird-Meertens formalism and, second, establish each of the basic 
properties of the operators. The conciseness and systematic nature of the development 
about to be presented, and the fact that it can be conducted at a level yet poorer than 
"the poorest possible algebra" is for us the most satisfying aspect of this work. 

The theorems presented in this section are more general than those in the publications 
of Bird and Meertens since their work is mainly restricted to total functions. A danger of 
generalisation is that  it brings with it substantial overhead making a theory abstruse and 
unworkable. At this stage in our work, however, the generalisation from (total) functions 

to relations has been very positive bringing to mind a parallel with the extension of the 
domain of real numbers to complex numbers. The fact of the matter is that  we are rarely 
aware of working with relations rather than functions. The following pages are intended 
to provide some justification for that claim. 

9.2 S u m  R e l a t o r s  

We begin our discussion with the so-called "sum" relators. Specifically, F is a sum relator 

if for some relators G and H and for all specs X, 

(64) F.X  = G.X + H .X  

In words, F is the (lifted) sum of G and H. 
The class of sum relators is very broad hut, in spite of its generality, there is surpris- 

ingly much that we can say about the class. The most important aspect of such a relator 
F is that  we can identify the "constructors" of #F ,  bringing the notion of relator some- 
what closer to the notion of polymorphic type as it would be defined in a conventional 
programming language. An additional technical aspect that proves to be very useful is 
that F-catamorphisms can be restricted without loss of generality to arguments that are 
the june of two specs. These two aspects are considered in turn below. Throughout the 
remainder of this subsection we assume that equation (64) is in force. 

Let us consider what consequences equation (64) has on/~F.  We have the following 
simple calculation: 

# F  
= { # F  is a fixpoint of F } 

F.I~ F 

= { definition of F:  (64) } 
G.#F + H.#F 

= { definition of +:  (48) } 
( 4 ~  G.~F) ~ ( ~  o H.~F) 
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Cont inuing  with jus t  the  first component  of this  j unc  expression,  we calculate:  

* G.pF  

= { computa t ion  rule: theorem 55(c) } 
G.#F  + H.I.tF * 

= { definit ion of F :  (64), # F  = F . # F  } 
~ F  o ~-+ 

Similar ly,  

o H . # F  = I~F o 

Thus,  in t roducing  names r and  ~ for the two componen t s  of the  above  junc,  we have 
es tabl ished:  

T h e o r e m  6 5  ( C o n s t r u c t o r s )  For relators  F ,  G and H such t ha t  F = G + H ,  

# F  = r v ~  
where r = r o G.I~F = # F  o r 
and  7/ = ~ o H . # F  = # F  o 
[] 

A pa raphrase  of theorem 65 might  be tha t  all e lements  of # F  are cons t ruc ted  by inject ions 
of  e lements  of G.I~F or elements  of H.I~F. For this  reason we call r and  ~ the constructors 
o f # F .  

Note  t ha t  the const ructors  are biject ions (since they  are res t r ic t ions  of the two bijec- 
t ions ~ and  *-'). For their  domains  we have: 

T> 

= { definit ion of r :  theorem 65 } 
(~-+ * G.#F)> 

= { domains:  (12) } 
(~+> o G.I~F)> 

= { ~--~> = I : theorem 57(a) } 

G.#F> 
= { / i F  is a monotype :  (15) } 

G.#F  

and  

"F< 

= { definit ion of v: theorem 65 } 
(juF * "--+)< 

= { domains:  dual  of (12) } 
(/~F , '---+<)< 

= { '--*< = I +  II : t h e o r e m 5 7 ( b )  } 
o I + L ) <  

= { # F  = G.I~F + H .#F ,  + abides  wi th  compos i t ion  } 
(G.#F + _l_k)< 

= { domains:  (58) and (15) } 

G.I~F + II 
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By a completely 

}7> = 

Combining these 

(see theorem 60) 

T h e o r e m  66 

properties: 

(a) ~> = 

(c) }7> = 
(e) r< U 

symmetrical  argument  we have: 

H . # F  and }7<" -- d J_ + H . # F  

four domain calculations with the cup and cap abide propert ies  of sum 
and summarising we have established: 

The Constructors r and r/are both bijections with the following domain 

G.IJF (b) r< = G . # F  + .J_L 

H . # F  (d) }7< = .Ll_ + H . p F  

Interpreta t ing these statements in the relational model we have proved tha t  the con- 

structors r and }7 establish a (1-1) correspondence between the elements of p F  and the 

elements of the union of G . # F  and H . p F  in such a way that  elements constructed by r 
are dist inct  from those constructed by }7. 

Let us now investigate the structure of the catamorphisms of a sum relator.  We have: 

= { domain trading: theorem 45(5) } 

( R  o ( a . n  + H.n)<~ 

= { + ,  G, H are relators: theorem 35 ) 

(In o G.R< + H.R<)  

= { definition +:  ( 4 8 ) )  
(~ o ( 4  o a .R<)  ~, ( ~  o H.R<)D 

= { spee-junc fusion: theorem 54 ) 
( ( n  o ~ o G . R , ) ~  ( R o  ~ o H.R<)D 

This calculation shows that  we may assume without loss of generality that  for every R 

there exist specs S and T such that  ~R~ = (S  v T~. Specifically, S = R o r o G.R< 

a n d T  = R o ~ o H.R<. 

Note that  from (R) = (R~ o # F  and the fact that  # F  can be expressed as a june 

i t  follows tha t  every catamorphism can also be expressed as a june. This observation is 
most useful when combined with the cancellation property of june (see theorem 59). To 
see why let us first observe the following instantiation of the junc-cancellation property:  

Lemma 67 For <1 e {~ ,= ,E} ,  

X o p F  ~_ Y o # F  -- X o r  <J Y o r  A X o q  ~_ y o } 7  

P r o o f  

X o p F  ~ y o # F  

_: { theorem 65 ) 
X o vv}7 _ y o rv}7 

-- { spec-junc fusion: theorem 54 ) 
( X o ~ - ) ~ , ( X o } 7 )  __ (Y o T) ~ (Y o }7) 
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{ june cancellation: theorem 59 } 
X o 7. ~_ Y o 7. A X o TI < 1 Y  o T 1 

Combining lemma 67 with the unique extension property of catamorphisms we derive 
a characterisation of F-eatamorphisms (for sum relators F,  of course), namely: 

T h e o r e m  68 ( U E P  for  S u m  Relators) 

X o p F  = { R v b ~  

X o T .  = R o G . ( X o p F )  A X o y  = S o H . ( X o p F )  

P r o o f  

X o # F  = ( R v S ~  
= { catamorphism uep: theorem 42 } 

X o # F  = R v S  o F . ( X o p F )  o # F  

= ( lemma 67 } 
X o 7" = R v S  o F . ( X o # F )  o 7. 

A X o ~ = R v S  o F . ( X o p F )  o 71 

Proceeding further with just the first of the conjuncts on the right hand side of the 
equivalence (the other being completely symmetrical) we have: 

R v S  o F . ( X o # F )  o 7. 

= { definition of 7.: theorem 65 } 
R v S  o F . ( X o p F )  o # F  o r 

= { p F  = F . p F  = # F o p F  ) 

R v  S o F . ( X  o p F )  o 

= { definition of F: (64), junc-sum fusion: ( 5 2 ) )  
( R  o G . ( X  o p F ) )  v ( S o  H . ( X  o # F ) )  o 

= { june computation: theorem 55(a) } 
R o G . ( X o p F )  

Back-substituting, the desired theorem is obtained. 
[3 

Compared with the general uep property (theorem 42) theorem 68 splits the task of 
deriving a catamorphism realising a given spec into two separate components, one for 
each of the constructors. This separation is further reflected in the computation rules for 
r and T/: 

Theorem 69 (Computation Rule) 

(a) ( R ~ S )  o 7" = n o G . r  D 

(b) ( R v  S~ o , = S o H . q R v  S~ 

P r o o f  Instantiate theorem 68 with X = (R v S]) and simplify using the fact that  
( R v S ] )  = (Rv51)  o pF .  
O 
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Several other properties of sum relators can be derived simply by instant iat ing the 
more general properties of eatamorphisms listed in section 7, in part icular  the fusion 
and monotonici ty properties of catamorphisms (theorems 43 and 44). The benefit tha t  is 
gained is that ,  in each case, the premise in the theorem can be expressed as a conjunction 
of two simpler premises, thus decomposing the proof obligations. We postpone performing 

this exercise, however, until we have added more structure to our class of relators. 

9.3 Polymorphical ly  Grounded Relators 

A typical  characteristic of monotypes occurring in programming problems is tha t  their 
elements are generated from a base (mono)type by application of one or more operations.  

For example, the Peano numbers are generated from the set containing jus t  zero by the 

successor operation. Polymorphic types, such as list or tree, are families of monotypes 
parameterised by some base (mono)type. We call such types p o l y m o r p h i c a l l y  g r o u n d e d  

types (or rather  we call their defining relators polymorphically grounded), the word 
"grounded" referring to the existence of a base monotype. In this section we abst ract  
a definition of "polymorphically grounded" relator. We do this in two steps. First ,  we 
abst ract  what  it means for a relator to be grounded. Then, in order to capture the 

"polymorphic" element, we abstract  sufficient conditions for the existence of a "map" 
operator .  We conclude the section with some consequences of the obtained definition. 

The mechanism needed to introduce the notion of a ground monotype into our class 

of relators is straightforward: we consider a sum relator and choose the left component  
of the sum to be a constant relator, i.e. we consider the case that  G . X  = A for some 
monotype A and all specs X, thereby specializing F to the form: 

(70) F . X  : A + H . X  

Using this the constructors are 

(71) r = p F  o ~ = ~ o A 

(72) 7/ = p F  o ~ = ~ o H . p F  

The form of the constructors provides some motivation for the chosen restriction on F .  
Specifically, suppose we interpret  monotypes as sets and f o B, for monotype B and imp 

f ,  also as a set, namely the set obtained by applying the function f to the elements of B. 
Then the set p F  is formed by "juncing" two sorts of sets, the set of "ground" elements, 
i.e. those elements formed by r ,  i.e. by applying r to elements of A ,  or "non-ground" 

elements, i.e. those built by ~/from existing elements of # F .  We call relators F satisfying 

(70) g r o u n d e d  relators. 
The extra  structure introduced into grounded types makes little difference to the 

computat ion rule; where it is needed we shall simply instantiate theorem 69(a) with 
G . X  = A .  The fusion property for ground-relator-catamorphisms is worth stating,  how- 

ever, because we can exploit the extra structure to strengthen the general result. 

Theorem 73 ( G r o u n d - R e l a t o r  F u s i o n )  For <1 in {E, =,  ~},  

U o ~ R v  S]) <1 ~P v Q) 
~= U o R o  J <1 P o  A A U o S o H . I  <1 Q o H . U  

[] 
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The added-value of this theorem relative to theorem 43 - -  apart from the antecedent 
having been split into two conjuncts - -  is the introduction of the domain restrictions A 
and H. I  in the first and second conjuncts, respectively, of the antecedent. Note that 

U o R o  A <~ P o  A r U o R <1 P 

Thus the first conjunct in the antecedent has been weakened. (That it is a true weakening 
is easily seen by taking A = .Ll..) The second conjunct has been similarly weakened. 

Proof  Let _ E { _ , = , E } .  Then 

D 

= 

U o ~RvS]) _~ ~ P v Q ~  
( domain trading: theorem 45(a), since A + H . I  = F.I  

and junc.sum fusion: theorem 52(a) } 
U o ~ ( R o A ) , ~  ( S o H . I ) ~  <1 ([P~,Q~ 

{ catamorphism fusion: theorem 43 } 
U o ( R o A )  v (So  H.I) ~_ P v Q  o F.U 

{ spee-junc fusion: theorem 54; 
definition of F:  (70), 
and + abides with composition: theorem 52(b) } 

( U o R o A ) , ,  ( U o S o H . I )  <I ( P o A )  v ( Q o H . U )  

{ june cancellation: theorem 59(a) } 
U o R o  A ~_ P o A A U o S o H . I  ~_ Q o H.U 

We come now to the first of the primitive operators in the Bird-Meertens formalism, 
namely the map operator. Section 7 provides the appropriate mechanism for introducing 
such an operator: we must express F in the form I |  for some binary relator | This we 
can do by choosing A = K . I  for some relator K and defining the binary relator | by 

(74) R |  = K . R + H . S  

Accordingly we have: 

(75) F.X  = (I |  = K. I  + H . X  

Note that K . I  is a monotype so that F is indeed grounded. It is also polymorphic in the 
sense that we have defined a family of relators, namely the set of relators (B| for B 
ranging over all monotypes. More importantly we can instantiate the theorems of section 
7 to obtain the sought-after map operator. Specifically, instantiating definition 61 and 
citing theorem 62, we have: 

Theorem 76 ( M a p )  The function ~ from specs to specs defined by 

~,~ = (K .R  + H.I) 

is a relator. 
Q 
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The function w defines a family of monotypes, namely the monotypes wB where B 
ranges over monotypes. In particular, w I  -: IzF. For each spec R, the spec w R  has left 
domain w(R<) and right domain w(R>). In addition, for monotypes A and B and imps 
f E A ( B ,  w f  E ~ A  ~ w B .  (With the exception of the property wI = p F  these 
properties are valid for all relators, not just map relators.) An instance of such a relator is 
the List relator which is sometimes denoted by *. In functional programming texts . f  is 
commonly called "map f"  (and sometimes written that way too) and denotes a function 
from lists to lists that  "maps" the given function f over the elements of the argument 
list (i.e. constructs a list of the same length as the argument list whereby the elements 
are obtained by applying f to each of the elements of the argument list). This then is 
the origin of the name "map" for w. 

We will mostly use another but equivalent definition for map that  exploits the par- 
ticular structure of the relator | That definition is obtained by first instantiating the 
map fusion theorem (theorem 63) of section 7. 

Theorem 77 (Map Fusion) 

~P v Q)  o wR = q(P o K .R)  v Q~ 

P r o o f  

o 

~P v Q~ o w R  

{ map fusion: theorem 63, definition of | (74) } 
~P v Q o K . R  + H. I~  

{ june-sum fusion: theorem 52(a) } 
q(P o K . R )  v Q o K . I  + H . I )  

( domain trading: theorem 45(c), g . I - 4 - H . I  = F . I  } 

~(P o K . R )  v Q)  

T h e o r e m  78 w R  -_ ~(7" o K . R )  v TI~ 

P r o o f  

t l  

~ R  
= { w is a relator } 

= , I  o ='R 

= { wI  = , F  = ~/zF~ } 
r  ~ 

--= { p F  : v v ~, map fusion: theorem 77 } 
([(7" ~ K . R )  ,, ,~) 

The reason why we sometimes prefer this definition is that  catamorphisms of the 
shape ~R v ~/]} enjoy many properties. 

Instantiating the computation rule (69) with the revised definition of F - -  (70) - -  
and the above definition of w we obtain the following computation rules: 

w R  o v = v o K . R  and w R  o ~ = ~1 o H .~ ,R  
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These two equations can be recombined into one using theorem 59 viz: 

(79) wR ~ r v r /  = (r  o K . R ) v  (r 1 ~ H.~,R) 

Recalling that 

~ I  = # F  = r ~ O  = (r  o g . O  ~ (7 ~ H.~I )  

(see theorems 46, 65 and equations (71), (72) and (75)) one can view wR as a spec which, 
when applied to an element o f p F ,  applies R to the ground elements but does not destroy 
the original structure. 

9.4 Defining Reduce 

The second primitive in the Bird-Meertens formalism is called "reduce" and is denoted 
by the symbol "/".  In the context of our work, reduce is a function from specs to specs. 
We shall adopt the same symbol but use it as a prefix operator in order to be consistent 
with our convention of always writing function and argument in that order. Thus we 
w r i t e / S  and read "reduce with if '  or just "reduce if ' .  

(In choosing to write reduce as a prefix operator we are turning the clock back to 
Backus' Turing award lecture [6] rather than following the example of Bird and Meertens. 
In the context of Bird and Meertens' original work reduce was a binary infix operator 
with argument a pair consisting of a binary operator, say @, and a list, say x, thus giving 
@/x. In the course of time it was recognised that calculations and laws could be made 
more compact by working with the function (x ~ @/x) rather than the object @/x. 
To achieve the compactness the notation ~ /  (or sometimes (~ / ) )  was adopted for the 
function, the process of abstracting one of the arguments of a binary operator being 
commonly referred to as "sectioning". By this development, presumably, they came to 
the convention of using "/" as a postfix operator. Since our concern is to profit from 
what has been learnt rather than repeat the learning process we shall not adopt their 
notation in its entirety.) 

The idea behind reduce is that it should have a complementary behaviour to map. 
Recall that  map, applied to an element of pF, leaves the structure unchanged but applies 
its argument to the ground elements. Reduce should do the opposite: leave the ground 
elements unchanged but destroy the structure. Since a catamorphism does both (modifies 
the ground elements and the structure) we formulate the requirement on reduce as being 
that  every catamorphism is factorisable into a reduce composed with a map. I.e. for all 
specs R and S, 

Let us try to calculate a suitable definition f o r / S .  

/ S  o ~ R  

= { We try to express /S  as a catamorphism: 
assume P and Q exist such t h a t : / S  = (P v Q~ } 

( P  v Q9 o ~,R 
= { map fusion: theorem 77 } 

~(P ~ K.R) v Q) 



Elements of a Relational Theory of Datatypes 35 

Now we cannot choose P and Q (for arbitrary relator K) such that 

( ( p o  K . R )  v Q~ = ~ R v  S~ 

But if we take P = I and Q = S, i.e. we define the reduce operator by: 

(80) / S  = ( K . I  ,~ S~ 

then we have established the following factorisation property: 

Lemma81  / S  o wR = ~K.R v S~ 

[] 

Some simplification of (80) is possible using domain trading and junc-sum fusion 
(theorems 45(a) and 52(a)). Specifically, we claim that the term K . I  in (80) may be 
repla~ed by I (the verification being left to the reader) which leads us to the following 
definition of reduce: 

Definition 82 (Reduce) / S  : ~I v S~ 

D 

For / S  we have the following computation rules (obtained by instantiating theorem 69 
with G . X  = K . I  for all X): 

/ S  o r = K . I  and / S  o ~ = S o H . / S  

So one can v i e w / S  as a spec which, when applied to an element of #F ,  strips the ground 
elements of the constructor T and replaces the constructor ~ by S. 

9.5 M o n a d i c  Re la to r s  

As mentioned before, with F having the form given by (75), we cannot factorise every 
catamorphism into a reduce and a map for arbitrary relator K. For relator K defined by 
K . X  = X - -  i.e. the identity relator - -  we can, since 

= { K . R = R  } 
~ K . R  v S )  

-- { catamorphism factorisation: theorem 81 ) 

I S  ~ ~,R 

So we further specialise the binary relator | and the unary relator F by defining 

(83) u . x  = x 

(84) X | Y = X + H . Y  

(85) F . X  = ( I |  = I + H . X  

for all specs X and Y. Then we have established the all-important: 
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T h e o r e m  86 (Factor isat ion)  
all specs R and S, 

[R ,SD = ~So*oR 

With relator F defined by (84) and (85) we have, for 

The importance of this theorem derives from the fact that  i t  enhances further decomposi- 
tion of calculations with catamorphisms. Instead of working with the entire catamorphism 

one works with the c o m p o n e n t s / S  and ,oR. Laws are also formulated concerning the 
individual behaviours of reduce and map as well as their interaction. The advantage is 

that  the laws become extremely compact and thus more manageable, the disadvantage is 
tha t  there are more of them. Let us illustrate this by considering the computat ion rules, 
the unique extension property and the fusion properties of reduce and map. 

First,  the definitions of the constructors r and 0 are speeialised accordingly: 

(87) r = # F  o ~-+ = r 

(88) 7/ = # F  o ~-~ = ~-, o H . p F  

Whereas before we had two computation rules, one for each of the constructors, we now 
have four rules: 

T h e o r e m  89 ( C o m p u t a t i o n  R u l e )  

(a) *oR o r = r 0  R (b) *oR0 ~ = ~ o H.*oR 

(c) / S o  r = I (d) / S o  r I = S o H . / S  

D 

(Of course these rules can be recombined into two using the factorisation theorem, and 
whether one chooses to do so is a matter  of taste.) 

In the case of the unique extension property there is li t t le gain from the use of the 
factorisation theorem. 

T h e o r e m  90 ( U n i q u e  E x t e n s i o n  P r o p e r t y )  

X o p F  = ~ S o * o R  

X o r = R A X o ~} = S o H . ( X o p F )  

D 

On the other hand, the fusion law becomes more compact since it suffices to state the 

law only for a reduce. We call the resulting theorem a "leapfrog" rule because its symbol 
dynamics is that  a reduce "leapfrogs" from one side to the other of a composition of two 
specs. (The more general fusion law can be recovered by combining the reduce leapfrog 
theorem with the monotonicity of the relator ~.) 

T h e o r e m  91 ( R e d u c e  Leapfrog)  For <1 in {_~, =,  _U}, 

R o / S  <1 / T  o ~,'R r R o S o H . I  ~_ T o  H . R  
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P r o o f  

.r 

[3 

n o  /S  ~ / T o ~ n  

{ definition 82, factorisation: theorem 86 } 

{ ground relator fusion: theorem 73, A = K . I  = I ) 

R o I o  I "~ R o I A R o S o  H . I  <~ T o  H . R  

{ calculus } 
R o S o H . I  ,a T o H . R  

T h e o r e m  92 ( I d e n t i t y  R u l e )  /7/ 0 wr = 

P r o o f  

177 0 ~ r  

= { factorisation: theorem 86 } 

= { constructors: theorem 65 } 

= { identity rules: theorems 46 and 46 } 

D 

Because # F  is expressible as a catamorphism, it too can be factorised: 

o I  

Theorem 92 is one of those theorems that,  because of their simplicity, are very often 

overlooked and yet prove to be vital. 

A special reduce is / q  (for list-structures this is the "flattening" catamorphism; it 
maps a list of lists to a list). For this catamorphism there exist two special leapfrog 
properties: 

T h e o r e m  93 ( /0  L e a p f r o g )  

(a) /S  o /7 = /S  o o / S  (b)  ~ n  0 / 7  = / 7  o o ~ n  

P r o o f  Immediate from the reduce leapfrog rule - -  theorem 91 - -  and the two 7- 
computat ion rules - -  theorem 89(b) and (d). 
[] 

C o r o l l a r y  94 The triple (w, r ,  a) ,  where a = / 7  o w w I ,  is a monad in the following 

(a) o is a relator. (b) wR o 1- = r 0 R 
(c)  o R 0 ~  = s 0  o o n  (d)  ~ 0 ~  = o I  

(e)  , ~ 0  ~ = o I  (f)  , ~ 0 / 7  = ,~0  o ,~  

P r o o f  Par t  (a) has already been mentioned. Parts  (b) and (e) follow from the compu- 

tat ion rule of r (theorem 89), (c), (d) and (f) follow from theorem 93 together with the 
identity rule, in the case of (d). 

s e n s e :  
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rn 

The concept of a monad is highly significant and is given due prominence in the math- 

ematical  literature. (See for instance [7, 20]. Note that  monads are also called "triples".) 
In the computing science literature the importance of monads is as yet difficult to as- 
sess but  appears to be steadily growing, the best known example being lists: a monad is 

formed by the t r i p l e . ,  [_] and f l a t t e n ,  where �9 denotes the list map operation, [_] is the 
function that  constructs a singleton list, and f l a t t e n  is the function that  "flattens" a list 

of lists into a single list. See for instance [27] for examples of  part icular  relevance to the 
design and implementation of functional programming languages. 

The existence of a monad structure i s  the reason why we call the relator of this 
subsection a "monadic" relator. 

9.6 Po inted  Relators and Filter 

The third, and final, primitive operator in the Bird-Meertens formalism is called "filter" 
and denoted by 4. The function of ~P ( read "filter with P" ,  or jus t  "filter P ' )  is just  to 

filter out the elements in a given da ta  structure that  do not satisfy the predicate P .  
There are two obvious requirements on the definition of a filter operation. The first 

is that  ~ t r u e  should be the identity function on # F .  The second is that  ~ f a l s e  should 
return an "empty" data-structure.  In order to meet the lat ter  requirement we introduce 

a so-called "unit element" into the definition of H ,  viz: 

(95) H . X  = 11 + J . X  

where J is a relator. Consequently, F is specialised to: 

(96) F . X  = I + (~ + J . X )  

with the two constructors we already have 

(97) v = # F  o ~-+ = 

(98) T1 = # F  o ~- ,  - -  ~ o ~ + J . # F  

and two new ones 

(99) tn = # F  o ~-'  o ~-+ = +-~ o ~-~ o ll 

(100) -14- = # F  o ~ o ~ - ~  = ~ o ~  o J . # F  

Note that  

(101) ~ = Q ~ 44- 

Because this relator has a disjoint unit in its ground as well, we call these relators 
"pointed relators". Again we want to point out that  because this relator F is just  an 

instance of the previous one, the definition of map and reduce stay the same and all the 
theorems stated so far remain valid. For our immediate purposes we only need to update  

the computat ion rule: 
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Theorem 102 (Computation Rule)- 
theorem 89 we have: 

In addition to the computation rules given in 

(a) ~R  o 0 = [] 

(b) ~Ro41- = + o J.~R 

(c) / ( S  v T) ~ D = So 1l 
(d) / ( S v T )  oqq- = T o J . / ( S v T )  

P r o o f  There are two pairs of computation rules given in the theorem but by using 
june cancellation (theorem 59(a)) we can derive the elements of each pair simultaneously. 
We illustrate the method on the second pair: 

(/(S v T) o D) v (/(Sv T) o--pc) 

= { spec-junc fusion: theorem 54(a) } 
/ ( s  ~ T )  o o ~ + 

= { (101) } 
/ (S  ,, T) o 

= { computation rule: theorem 89(d) } 
S v T o "+J./(S v T) 

= { june-sum fusion: theorem 52(a) } 
(So]I)  v ( T o  J . / ( S v T ) )  

We have thus proved the equality of two juncs. Rules (c) and (d) now follow by the june 
cancellation theorem. The first pair is derived similarly. 
[] 

The definition of filter is borrowed directly from the work of Meertens [23] and Bird 
[lq: 

Definition 103 (Filter) For all specs P, 

,~P =_ /q  o w(r,~Pt>(Do 3T)) 
[] 

Note that  from the fact that  r and O 0 77- are imps and the fact that  conditionals, 
june and catamorphism respect imps it follows that ,~P is an imp. 

In this section we explore several algebraic properties of the filter operation. The 
properties that we seek are motivated by the relationship between the Bird-Meertens 
formalism and the quantifier calculus often used in the derivation of imperative programs 
(e.g. [1, 16]). 

By design <~true is the identity function on specs of the correct type: 

Theorem 104 ~true = ~ I  

P r o o f  

,~true 
{ definition 103 } 

/~/ o w(r<l trueD([:] o Tl-)) 
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D 

= { conditionals: theorem 33(a) 

/7  ~ ~ r  
= { identity rule: theorem 92 } 
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} 

Now we consider whether two filters can be fused into one. Since <P is a catamorphism 
of the f o r m / r / o  wp where p = r<l Pt>(O 0 TF) it pays to begin by exploring whether a 
map can be fused with a filter. Indeed it can. 

L e m m a  105 

(a) wR . ,~P _- /7  ~ ~( (7"~  
(b) /7  ~ ~ ' R o  ,~P = / 7 ~  

P r o o f  For brevity let p denote r<lPt>(D o -IT), Then we prove part  (a) as follows: 

wRo ,~p 

= { definition 103 } 

= { /T/leapfrog: theorem 93(b) } 

= { ~ is a relator, definition of p } 
/ 7 o  w(wRo r,~ PI>(D,  Tl-)) 

= { conditionals: theorem 33(n) } 
/ 7 ~  r) P ( Ro o o rr)) 

= { computation rule: theorem 102(a) } 
/7  0 w((r~ R ~  Pt>(D ~ -IT)) 

Part  (b) is derived from (a) using the leapfrog rule, theorem 93(a), followed by theorem 
33(n) and the computation rule 102(c). 
D 

A direct consequence of lemma 105 is: 

T h e o r e m  106 (4 d is tr ibut ion)  ~p  o ,~ Q = ~ (P A Q) 

P r o o f  

o 

<IPo ,~Q 

= { definition 103, lemma 105(b) } 
/7  o ~,((r<IPI>(D o -IT)~QI>(D o -IT)) 

= { conditionals: theorem 33(f) } 
/ 7  o w(1-<1 (PA Q)I>(D 0 -IT)) 

= { definition 103 } 
,~(PAQ) 

We conclude with yet another translation rule. 
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T h e o r e m  107 ( F i l t e r  T r a n s l a t i o n )  . For all imps f 

<p  o ~ f  = ~ f  o < ( p ~  f )  o ~ f>  

P r o o f  

~ f  0 

/,7 0 

/ 7  ~ 

/~ o 

/ 7  ~ 

/ 7  ~ 

/rl  o 

,~P o 

4 ( P o f )  o w f> 
{ lemma 105(a) } 
w((ro  f ~ ( p o f ) l > ( o o  "IT)) 0 w f> 

{ relator.w } 
~ ( ( r  o f ~ ( p o  f)t>(O o -IT) ~ f>) 
{ imp.(f>) ,  conditionals: theorem 33(o) } 

w((r o f ~  f > ~ l ( P ~  f o  f>)l>(O ~ -IT ~ f>))  
{ domains: (14) and TI-~ f> = TI-~ f :  (11) } 

w ( ( r ~  f ~ ( P ~  f)t>(O ~ TF o f ) )  
{ * imp . f ,  conditionals: theorem 33(o) } 
w(r<~pt>(13 ~ "IT) o f )  

{ relator.w 
~ ( ~ p ~ ( o o  w ) )  ~ ~,f 
{ definition 103 } 

~f  

[] 

Theorem 107 can also be strengthened in the same way that  theorem 33(0) was 

strengthened to theorem 33(p). 
The syntactic resemblance of theorems 25 and 107 should not go unnoticed. After 

some thought the resemblance is not surprising: P> is a sort of filter but  on elements of 

some base set, ,1P is the same filter but "lifted" to elements of ~ I .  
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