
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Q

00

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.

Elements of a Theory of Simulation

Steen Rasmussen1*2 and Christopher L. Barrett'i2

Los Alamos National Laboratory, Los Alamos NM 87545, USA
* Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA

Abstract. Artificial Life and the more general area of Complex Systems
does not have a unified theoretical framework although most theoretical
work in these areas is based on simulation. This is primarily due to an
insufficient representational power of the classical mathematical frame-
works for the description of discrete dynamical systems of interacting
objects with often complex internal states.
Unlike computation or the numerical analysis of differential equations,
simulation does not have a well established conceptual and mathemati-
cal foundation. Simulation is an arguable unique union of modeling and
computation. However, simulation also qualifies as a separate species
of system representation with its own motivations, characteristics, and
implications. This work outlines how simulation can be rooted in mathe-
matics and shows which properties some of the elements of such a math-
ematical framework has.
The properties of simulation are described and analyzed in terms of
properties of dynamical systems. It is shown how and why a simulation
produces emergent behavior and why the analysis of the dynamics of the
system being simulated always is an analysis of emergent phenomena.
Indeed, the single fundamental class of properties of the natural world
that simulation wil l open to new understanding, is that which occurs
only in the dynamics produced by the interactions of the components
of complex systems. Simulation offers a synthetic, formal framework for
the experimental mathematics of representation and analysis of complex
dynamical systems.
A notion of a universal simulator and the definition of simulatability is

proposed. This allows a description of conditions under which simula-
tions can distribute update functions over system components, thereby
determining simulatability. The connection between the notion of simu-

htability and the notion of computability is defined and the concepts are
distinguished. The basis of practical detection methods for determining
effectively non-simulatable systems in practice is presented.
The conceptual framework is illustrated through examples from molec-
ular self-assembly end engineering.

Keywords: simulatability, computability, dynamics, emergence, system
representation, universal simulator

To appear in ECAL 95, Lecture Notes in Computer Science, Springer Verlag.

1 Introduction

It is typical in both science and engineering to be interested in properties or

causal details of a phenomena for which we do not have an adequate, explicit

model. For instance this is the case when we are investigating the complicated

phenomena of life. In other less complicated situations a model of the phenom-

ena may not yet be derived; indeed, the derivation may be the very question

under investigation. Also, analytic solutions may not be tractable due to inher-

ent system complexity.
In these situations it is increasingly common to resort to synthetic methods

using computer simulation. In a certain sense then, the comments that follow

may seem as merely common sense. However they lead, we believe, to genuinely

important considerations that can be briefly summarized in the following para-

graph.
The essence of synthetic methods is that a simulation is a mechanism which

interacts many state transition models of individual subsystems (Le., system

components) and thereby generates system dynamical phenomena. There is

nothing inherently explanatory in this stage of investigation, it is essentially

representational. The issues are that the system dynamical representation is ana-

plicit and constructive: The relations that constitute the properties of interest are
nowhere explicitly encoded in the simulated component subsystems, but rather

emerge and become accessible to observation as a result of the collective effects

of computed interactions among these subsystems. This implies that certain

assumptions have been made concerning the status of the capabilities of simu-

lation as a species of representation in relation to computability, observability,

numerical stability, and many other issues.

In addition to these important and formalizable issues are the need to estab-

lish an elementary and general concept of the generative concept of emergence.

That is to separate the dynamics of the simulation mechanism, which is itself

an iterated system, from the simulated system, which itself is represented in the

framework provided by the simulation system. Thus, there is a need to relate

the concept of emergence and the concept of simulation. Some clarification of at

least the basic form of these issues is the aim of this paper.

Consistent with what is summarized in the above paragraph, the general

research, or indeed any application-specific, program of investigating or devel-

oping control strategies for complex dynamical phenomena using simulation is

in four basic parts: (i) We must always be aware that a simulation is generat-

ing dynamical phenomena at a level which is higher than the level from which

the elemental interactions are described. If we are to exploit simulation it is
necessary to understand what this capability to produce hierarchies of emergent

relations implies. (ii) We must have methods with which to identify the elements
of the underlying system that create the phenomena of interest. (iii) It is then

necessary to formulate models of the important underlying subsystems (those

that define the elemental subsystems and the element-element or object-object

interactions). (iv) Finally, we must create the framework in which the simulation

of the subsystems in interaction is composed, and embody the system represen-

tation in that framework so that the phenomena of interest can be generated

and analyzed.

Part (i) does not seem to have been treated in general terms of dynamics,

which is odd, since it is the foundation of all simulation-based work in many

disciplines. Part (ii) is problem specific, but genera1 principles do exist such

as those mentioned above that, in one form or another, occupy the attention of

systems science. Part (iii) involves how an appropriate “level of aggregation” and

useful “collective coordinates” can be chosen. These are not simple questions.

Among other things, aggregation depends on which global system properties are

of interest, how the component representations can be made as parsimoniously

as possible, and what can be observed about the system behavior. Parts (iii)

and (iv) can be combined to form a single, broader, question: “Given a system

composed of many interacting subsystems, how does one formulate models of

the subsystems and cause them to interact in a simulation environment that will

generate appropriate global system dynamics?” Or the Artificial Life variant:

“How can we generate lifelike behaviors using low-level, local rules?” Over the

years, a variety of proposals has been given in an attempt to answer this question,
depending on the characteristics of the system under investigation, the kind of

system properties of interest - as well as taste.

In large complex systems the system, in the sense of the generator of the

dynamics of interest, is implicitly presumed to exist. For example, we presume
that a solution of polymers with hydrophilic heads and hydrophobic heads in
water is indeed a system. Furthermore, we assume that it is a dynamical system

in the sense that the state of the system at time, t , and some “state transition

rules” completely determine the state of the system at time, t + At. That is to

say that the system has a “model”. However, we doubt the possibility of writing

down an explicit analytical expression of these dynamics in terms of all of the

relevant state variables and parameters and, therefore, the model of that system.

Moreover, we doubt the tractability of the solution of such a model even if one

could be somehow defined.

Eowever, we do not discount the possibility of modeling each of the rele-

vant elemental subsystems in isolation. By “elemental” subsystems we mean

as monomers and solvent molecules fll], or perhaps as vehicles, roadway seg-

ments, signals, and travel goals in a traffic system [9]. We can imagine various

specialist-practitioners to be able to define or, at least, hypothesize possible rel-

evant ental subsystems and characterize local interaction rules. We can imagine

modeling these individual subsystems and interaction rules well enough to define
the state transition and interaction possibilities of a single class of subsystems

that could be inherited by every instance of that class.

Given an object-entity-subsystem perspective, interactions can in general be

viewed as discrete events among the subsystems undergoing local state changes

and communicating these state changes to its neighbors in some space. That is

to say that the interactions can be viewed as calculable by means of discrete

As in TRANSEMS, an ongoing, large scale Transportation ANalysis and SIMulation
System project at the Los Alamos National Laboratory.

event, object-oriented, simulation of collections of subsystems.

The concept of an event driven simulation contains the most general updating

scheme for a simulation, since an event can either be externally or internally

generated, and, as a special case, an event can also be a time step. Thus, a

time stepped simulation is a special case of an event driven simulation, namely

a discrete event simulation where the update is driven by the event that a clock-

entity object produces as its internal state and transmits to all other objects. It

is perhaps more accurate to say that any time stepped method can be simulated

in some event driven method. It is, however, not the purpose of this paper to

develop new update schemes or to review the extensive literature in this area,

(e.g. Jefferson[G] and Lubachevsky[7]). We only mention the issue here to clarify

our use of language and basic concepts as well as to set the stage for what we

do intend to investigate. These issues will include the most general issues of the

concept of object state update and the coordination, the scheduling, of updates

of interacting object-subsystem.

The properties and consequences of a generalization of the simulation schedul-

ing problem, together with the notion of hierarchies of emergent dynamical re-
lations, seem to us to form the elementary foundations of simulation rooted in

dynamics.

We have for the current presentation mostly focused on discrete space and
discrete time systems (mappings), which, for the most part, are defined through

interacting objects with some (minimal) internal state complexity. We have cho-

sen to do so because the proposed framework is natural for such systems, but

it should be noted that continuous space, continuous time, dynamical systems,

equally well can be treated in the given framework. Moreover, discrete space,

discrete time systems do not have any other general formal framework within

which the dynamical properties can be generated and analyzed.

2 Simulation

This paper describes simulation as an iterated mapping of a (usually large and

complicated) system. The simulated system is usually decomposed to a level

where subsystems or system components are individually defined as encapsu-

lated objects that calculate and communicate internal state. The simulation is

an iterative system in which the simulated system is represented and its dynam-

ics calculated. Thus the simulation and the simulated system are both dynamical

systems and the interplay between the dynamics of the coordination of the sim-

ulation updates and the dynamics calculated in the time series of system states

are essential issues.

In the above paragraph, we have distinguished four “systems” that comprise

a simulation. We assume the existence of some CR, a real or natural system in the

world that we are interested in, C (s i E ~) , models of subsystems 5’; of this system

and rules that define interactions among the subsystems, Cs, a simulation of

.E, involving C (S , ~ M) and some update functional U, and finally, .E,, a formal

(and equivalent physical) computing machine on which Cs is implemented.

Dejnition: The objects (elements or subsystems) in a simulation are defined as

where fi is the representation of the dynamics of the ith object and where

I j j , j = ~ , . . . , ~ is the ith object’s interaction rules with other objects j . Interaction

and dynamics operate on zi, the state of the ith object. ti is the local object

time coordinate.

Definition of C (S , ~ M) : Si is an element in the system .E(s,~,~; that is, Si is a

modelof the ith element of the set of modeled system elements in M , i = 1, ..., n.

Thus, the algorithmic part of Si is equivalent to f i and ljj.

Definition of U : An object update functional U is the state transition

si(ti + Ai) + Si(t i) , i = 1, ..., n,

or

Sj(tj + Ai) = U (S j (t i)) , i = 1, ..., n, (3)

where U, the update functional, defines, organizes and executes the formal iter-
ative procedure that prescribes the state transition.

Definition of Cs: A simulation is the iteration of object updates over the entire

set of objects

or

(Si(t + 1)) = U((Si(t))) , i = 1, n. (5)

A valid update functional U also needs to be able to time align all objects at
regular intervals or at a given time, perhaps at each update. Note that fi together

with Iij, xi and U implicitly defines the dynamical properties of the system. U
can be viewed as the “active” part of Cs where as fi, Iij and xi can be viewed
as the “passive” parts of Cs.

Thus, the iteration of the dynamics of C S , ~ M using U constitutes a formal-

ization of Cs, the simulation system.

Definition of .E,: The formal, or equivalent physical implementation, of the

mechanisms of the iteration procedure that prescribe the interactions and con-

sequent object state transitions and their storage. & is normally a physically

and conceptually digital computer of some kind.

3 Emergence

Having defined n objects or structures St E EM and an update functional U
at some level of description, say L1, we now also introduce an observational

function 0' by which the objects can be inspected. Iterating EM using U a new

structure S2 may be produced over time

S2 C- U{Sl(f i , I : . , z i , t i) , 0'1,i~ndj = I.,..., n. (6)

This is what we call a second order structure occuring at level L2. This new
structure may be subjected to a possible new kind of observer 02.

Definition: We define that a property P is emergent iff

P E 0"S2), but P fz O1(Sf). (7)

In this sense emergence depends essentially on the observer in use which may be

internal or external. It should be noted that the generated, emergent properties

may be computable or non-computable. For a comprehensive discussion of emer-

gence we refer to [I.].

This process can be iterated in a cumulative, not necessarily a recursive, way to

form higher order emergent structures or hyperstructures of e.g. order N:

Note that the definition of an observation function is no more - or just as -
arbitrary as the definition of the objects and their interactions.

Examples of emergent properties could for instance be the dynamical properties

of a polymer in solution or the properties of a congestion in a traffic system. The

polymer as well as the congestion can be viewed as S2 structures. A lower level

L1 description of the interactions will in the polymer example mean to describe

the monomer-monomer interactions together with the monomer-solvent molecule
interactions (S:-Sj interactions). In the example of traffic congestion it means to

describe the vehicle-vehicle interactions together with the vehicle-roadway and

-signal interactions (again $-S' interactions).

In these examples the S! interactions generate the S2 phenomena, but the S2
structures also have a downward causal eflect on the S,! structures. The polymer
restricts the dynamics of the monomers, that it is made up of. The jam does the

same, it also restricts the dynamics of the vehicles it is made up of.

However, emergent properties, as defined above, may not always have a down-

ward causal effect. For example, the joint distribution of heads and tails gener-

ated from two independent coin flips is an emergent property of the system, but

the distribution does obviously not have any influence on the dynamics of the
coins.

A central question to ask here is: What is the minimal (or critical) object com-
plexiiy needed to generate an emergent property of a given order in Cs? Com-
plexity here refers to computational complexity, which may be defined through

the time (or number of steps) or the capacity (memory), which at a minimum,

is needed to generate the particular property [lo].

4 Simulation and Emergence

It is in the general case very difficult, and perhaps in some cases even impossible,

to come up with a direct, a priori description (a model) of the dynamics of the

phenomena S2 of interest in systems consisting of many, interacting elements
with some internal complexity. In general it may, however, be possible to identify

the level, say L', from which the phenomena of interest emerges and where it
in a direct way is possible to describe the interactions or the dynamics of the
elements or objects that generate S 2 .

If we assume that a formal description of the object-object interactions is

possible at level L' and that some observation mechanism O2 exists so that

properties of S2 can be detected and their dynamics followed, then the situation

is the following at level L': Explicit models St exist to describe the dynamics of

and the interactions between the n objects where the object's states depend on

each other. However, a global state dynamics function F1 may only dmplicitly
exist at level L1. F' is the global function that describes the system wide state
changes caused by the object-object interactions described by the set of local fis

and &js. The total system state xl (t) at level L1 can be obtained via appropriate

observational functions 0' successively applied to each of the objects. Thus,

= (zi(t), zk(t)). (9)

The state dynamics function F' is therefore always at least implicitly given at
level L', since x can be computed at any time. Thus the description of the L'
dynamics is in principle known on the form

To actually produce the dynamics some update functional U is needed which is
able to organize the update of the interacting set of objects in a consistent way.

Assuming that some update functional U exists we have

Thereby the dynamics of system Cs can be generated.

From the above it is clear that whenever it is possible to define an update

functional U that can organize the interactions of the objects defined at level L1
through the set of models M , then the L2 phenomenon of interest S2 emerges

and can be followed, applying the observation function 02. Note that this is

possible even without knowing F' explicitly. Thus, a recursive application of U
to the objects generates S2 and the dynamics of S2 (which is a property P 2 of

S2) can then be followed by a recursive application of 02.

The central point is that a simulation is a representational mechanism that is
distinguished by its capacity t o generate relations that are not explicitly encoded.

Recall that S2 for instance could be a polymer described through monomer-

monomer and monomer-solvent interactions. In that situation P 2 could be the

polymer elasticity. S2 could also be a traffic jam described through vehicle-

vehicle and vehicle-roadway interactions and then P2 could for instance be the

lifetime of a jam.

Thus, we have
s2 + U((S,1, .", SA})

and

Note that S2 in (13) is defined through the implicit (emergent) relations that

are generated between the objects on the left hand side of (11).

P2 = 02(S2). (14)

Recall that we in principle would like to be able to follow the state dynamics

of CR through some .EM at level L2 in a direct way. But this requires that the

state variables {;zz(t), ..., = X 2 (t) together with the state dynamics function

F2 at level L2 were known explicitly, thus that we could write

X 2 (t + 1) + F2(X2(t)) , (15)
which expresses that the state dynamics can be derived from the current state

by applying some F2. Knowing F2 would in principle also enable some update

functional U 2 to produce the dynamics

x2(t + 1) = U2(F2(x2(t))) .

Since we assume that the system cannot a priori be described at level L2, but

that it can be described at level L' the dynamics at level L2 can be generated by
simulating the interactions of the objects Si, ..., SA at level L'. In other words:

By simulating the interactions of S: at level L1 the phenomena and relations of
interest at level L2 will emerge.

Note that simulation is a direct generative way to obtain knowledge of this

kind of non-explicitly encoded (dynamical) relations and phenomena. Simulation
is therefore a natural method to study emergence. The non-explicitly encoded

relations may later explicitely be modeled in a closed form, but that is irrelevant.

In fact, science if full of descriptions of systems where we have both an L'
and an L2 description. Classical examples include the Statistical Mechanical (L ')
versus the Thermodynamical (L 2) description of matter as well as the Lattice

Gas Automata for fluid particle dynamics (L ') versus Navier Stokes equations

for macroscopic fluid dynamics (L 2) .

5 Simulatability

A major remaining issue concerning simulation is: Under which conditions does

an update functional exist for a large number of different, interacting objects? It
is obvious that the object interactions can be rather involved and thus difficult

to “untangle” so that the objects actually can be updated.

Let q (S i , ..., S:) be a hierarchically distinct representation of a subset of the

interacting objects S;, ..., S:. Thus, p(Si, ..., S,‘) defines a sub-aggregation (an

aggregated model) of some of the objects.

Definition: If

for some order of the objects, then the update U is distributable over the de-

composition EM of the system and each object and object aggregation can be

updated independently of each other.

Note that if U is operating in a sequential manner the list on the right hand side

of (17) is ordered. Thus the sequence in which the objects are updated matters.

If U is operating in a parallel manner the order in which the objects are updated

does not matter.

A simple example of a subaggregation in a simulation is a particle collision in

a lattice gas automata [4] [5]. As long as the fluid particles do not interact they

are updated independently of each other - they just propagate along the lattice.
But when they collide they are aggregated and the individual particle velocities

after the collision are given by a collision table which takes the incoming, collid-
ing particle velocities as arguments.

The nature of the update functional W has a significant influence on the dy-

namics. The same model decomposition M will in general generate different

dynamical properties if different update functionals U are applied. For instance,

the elementary lD, radius one cellular automata with rule 58 (00111010) will

exhibit very different dynamics using a parallel or a random update respectively.

Obviously, both the random and the parallel update distributes over any of the
elementary rules on the 1D lattice.

It is clear that the representation of the objects and their interactions, M
(the models of interactions at L’) is crucial for whether a given update U can

distribute or not. I t is assumed that each object, given the (M , U) pair, indi-

vidually can be updated when supplied with the appropriate state information

from its communicating objects.

Thus, a system is sirnulatable iff there exists a pair (M , U) such that U distributes

over S; E M .

The above follows directly from our assumptions and definitions. Since it is as-

sumed that each object, or sub-aggregation of objects, given the (M , U) pair,

can be updated individually and that problems can only occur due to the order

and the organization of the object-object interactions. Since each of the objects

and/or sub-aggregations can be updated independently in a system where the

(MI U) pair allows the update to distribute the above follows.

A direct consequence of this is that if no distributable U exists for some

sub-aggregation of the objects M which allows the update to distribute, then

the system is non-simulatable. Conversely, if no M exists so that a given U can

distribute then the system is also non-simulatable.

A situation may occur where the smallest sub-aggregation which can be u p

dated independently is the system itself. In this situation the sub-aggregation

defines a model for the whole system at level L'.

An example of a non-simulatable systems consider a model polymer defined
on a 2D lattice [Ill. Assume that the polymer is embedded in some solvent

(heat bath) and that we would like to update each of the monomers in parallel.

To perform the update and thus generate a possible new (lattice) position for
each of the monomers in the polymer the polymer should not break and it

should respect its excluded volume. That means that each monomer requires

information about every other monomer in the polymer to be able to resolve

possible conflicts due to the no-break and the excluded volume constraints. Thus,

the minimal complexity of the model M depends on the polymer length! OnIy

allowing, say k steps, in the update cycle (in the model of monomer-monomer

and solvent-monomer interactions) implies that polymers above a certain (finite)

length are non-sirnulatable, because the update does not distribute over the

objects, since the objects cannot be updated independently of each other after
they have communicated with each other.

However , defining a update scheduling such that alternating monomers are
updated in every first and every second part of the update cycle, polymers of

any length can be simulated. The monomer models M becomes much simpler

using such a two step parallel scheduling instead of using a strict parallel update

[111-

6 A Universal Simulator

We define a universal simulator U S as a machine that is able to resolve all

causal dependencies among the objects S:. Thus, a U S can determine whether
the system given the (M , U) pair is simulatable or not. Further it can give an

appropriate order of updating for the objects if it is simulatable and detect where

the problems are if the system is non-simulatable. Thus, the schedding problem

lives in the US. Since the causal dependencies is being done on-line it may be

of particular, practical interest for event driven simulations.

Fig. 1. A universal simulator. The objects are denoted S: , the 9;’’s denote counters
associated with the objects, q = (g1, ...,gR), Q = ci(qi) (the sum of all the individual

object counters). qf counts the failed update trails, the updute functional is denoted U
and the interaction graph is denoted IG.

The structure of a US is defined in figure 6.

To perform a complete update of Es each of the objects Si‘ need to be

updated at least once and all need to be aligned in time. Assume that we are

at time 1. The dynamics of the machine is as follows: Start by attempting to

update Sf. If Sf does not depend on the state of any other object at time 1 it
is updated and its associated counter q1 is incremented by one. If, however, Si
has dependencies (depends of the state of one or more of the other objects at
time 1) the object Si is exited and qf is incremented and the next object Si is
attempted to be updated. If also Si has dependencies q j is again incremented
and object 3 is attempted to be updated and so forth until an updatable object,

say Si is found.

Without any loss of generality assume that all objects have internal dynamics

on the same time scale (no objects need to be updated with any smaller time

resolution than any other) and that U is a discrete time update.

There are n ways to pick the first object to update and each of these objects

have at most (n - 1) objects they can depend on. Thus an upper bound on

the number of operations needed to find the first updatable object is n(n - 11,

given that it exists. The second updatable object does at most require (n - 1)

operations to find and it takes a t most (n - 1) operations to check whether

any of the other objects influence it. Thus, an upper bound on the number of

operations it takes to update the whole system once is given by

n- 1

Z(n - l)(n - i).
i = O

As an upper bound, the universal simulator can therefore determine whether a

system is simulatable or not in at most C:zt(n - l)(n - i) operations.

As the update steps through the US-algorithm that sorts out the object inter-

dependencies it simultaneously defines the object update dependency Jacobian.

where the derivative dqi faq, expresses how many updates of object j are nec-

essary to update object i once. Thus .Aqi/Aqj = 0 indicates that the update of

object i is independent of object j and Aqi/Aqj = 1 (or any natural number

larger than one) tells that the update of i needs the state of object j at current

time before it can be updated. As a special case Aqi/Aqj E 1 for i = j .

A system .Es is sirnulatable if Dq is a diagonal matrix (unit matrix). This follows
directly from the definition of the object update dependency Jacobian.

If Dq contains sub-matrices on the diagonal and Cs is found non-simulatable

it is an indication that .Es could become simulatable by the construction of sub-

aggregations including the objects contained within each of the sub-matrices.

Recall the definition of simulatability in section 5.
In the case of an upper diagonal object update dependency Jacobian a re-

organization of the ordering of the updates can make a diagonal matrix.

Note that a parallel updatable system as well as a strictly sequential updatable

system have the same structure in their update dependency matrices. If D;q is
a diagonal matrix it only insures that the system is simulatable and it gives a

causal order of the object updates. Other orderings may exist.

Since aQ/aqi, Q = Ci(qi), defines the relative computational load of the ith

object the problem of load balancing also naturally lives in the U S .

Also note that since the matrix Dq is purely emperical, that is it evolves during

the course of the simulation, the control problem associated with coordinating

the simulation update is formalizable in terms of the trajectories of Dq as a

function of the update actions.

7 Achievable Simulatability

Suppose we are given a simulation system Cs with n objects implemented on

some physical or formal machine Cc (a computer). Assume that we need to

know whether this computer is able to handle the integration of the system for

the time interval Ts (model time) within some pre-specified time interval TR
(real time). In other words; Cc needs to be updated TM time units model time,

within TR time units real time.

Without any loss of generality we assume that Cc is a sequential machine.

Further assume that si is the number of cpu cycles it takes to update the simplest
object, Si, and that 7; is the (real) time of one cpu cycle. The minimal number

of cpu cycles to update CS is therefor nsi and

(20) r,i, = ns;q

therefore defines the minimal (real) time it takes to update the whole systems

.Es once.

therefor defines the maximal (real) rate by which .E, can be updates. If we

assume that the largest time increment (model time) allowed in each update of

the system is At then

T M N = -
At

defines the minimal number of system (Cs) updates to be done to complete the

task.

The minimal number of updates left to be done at (real) time t is therefore

Q(t)
Qrnin(t) = nsi(N - -) 7a (23)

where Q(t) is defined as the total number of updates performed by the machine

at any given timet (recall the definition of Q in the universal simulator in section

Thus, an on-line (optimistic) estimate of whether the desired integration can

be accomplished within the specified time frame of TR time units, real time, can
therefore be found through a comparison of the current, minimum update rate

needed to complete the task

(6))-

and the maximal, real time, rate by which CC can be updates (recall (21)).

If Rneeded >
able on CC.

at any time t then the system is not achievably simulat-

This follows directly of the definition of Rneeded and &az.

8 Computability and Simulatability

Consider the iterated map

Z (t + 1) = 2 (t) + c , (251

where z and c are complex numbers (see for instance [SI). It can be shown that

for most c the location of the closure of the unstable equilibrium set, the Julia

set, for this mapping is non-computable where computation is defined over the

real numbers [2] [3]. This means that it is non-decidable whether a given point in

the complex plane is a member in the Julia set. Note that it is the observational
function 02, that decides membership in a set with certain properties, that is

non-computable.

The above mapping is obviously simulatable and the Julia sets are also ob-

viously emergent S2 structures for this mapping. Thus, this example shows a

simulatable system with non-computable emergent properties. The concepts of

simulatability and computability are distinct for the purposes of the discussion

here.

9 Conclusion

We have demonstrated that the foremost property of simulation is its ability to

produce emergence. A simulation is an emergence engine. It is a representational

mechanism that is distinguished by its capacity to generate relations that are

not explicitly encoded. This ability enables us to study complicated dynamical

properties which are otherwise intractable.

A system may be non-simulatable for certain (model, update) pairs pairs, but

simulatable for other (model, update) pairs. Only when the update distributes

over the ensemble of objects is a system simulatable.
We have defined and discussed the notion of a universal simulator and shown

how the scheduling problem as well as the problem of load balancing naturally
lives in this machine. Using the universal simulator we have shown that for any

given set of model formulations of the interacting objects that constitute the

system, together with a given update functional, it is possible in a finite num-
ber of operations to determine whether a system is simulatable or not. This is

equivalent to a diagonal form of a corrosponding object update dependency Ja-

cobian. This machine is also a useful practical device as an indicator for whether

a system is (achievable) simulatable or not given a physical or formal machine

(computer) where the simulation is implemented.

We have also demonstrated that a system may be sirnulatable, but have non-
computable, emergent properties and thus the concepts of computability and

simulatability are thus distinct for the purposes of the discussion here.

..
*.

Acknowledgments

We would like to thank Nils Baas and Kai Nagel for constructive comments on
earlier versions of the text as well as the many people at LANL and at SFI who

have helped clarify our first ideas on the topic. It has been a long process.

References

1. N.A. Baas. Emergence, hierarchies and hyperstructures. Artificial Life III, pro-
ceedings, ed. C. G. Langton, Santa Fe Institute Studies in the Sciences of Complez-
ity /Addison- Wesley, New York, XVII:515-537, 1994.

2. L. Blum. Lectures on a theory of computation and complexity over the re& (or
an arbitrary ring). l;ectures in Complex Systems, SFI Studies in the Sciences of
Complexity/ Addison- Wesley, New York, 11147, 1989.

3. L. Blum, M. Shub, and S. Smale. On the theory of computation and complexity
over the real numbers: Np completness, recursive functions and universal machines.
Bull. Amer. Math. SOC, 21(1):146, 1989.

4. U. Frisch, 3. Hasslacher, and Y. Pomeau. Lattice-gas automata for the navier-
stokes equation. Physical Review Letters, Vol 56:1505-1508, 1986.

5. B. Hasslacher. Discrete fluids. Los Alamos Science, Special Issue (15):175-217,
1987.

6. D.R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, Vol 7, No. 3:404-425, 1985.

7. B. Lubachevsky and A.Weiss. An analysis of rollback-based simdation. ACM
Transactions on Programming Languages and Systems, Vol. 1, No. 2:154-193,1991.

8. B.B. Mandelbrot. The fractal geometry of nature. W.H. Freeman, New York, 1983.
9. K. Nagel and S. Rasmussen. Traffic at the edge of chaos. Artificial Life IV, pro-

ceedings, eds. R.A. Brooks and P. Maes/MlT Press, Cambridge Massachusetts,
pages 222-235, 1994.

10. C.H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.
11. S. Rasmussen and J.R. Smith. Lattice polymer automata. Ber. Bunsengs. Phys,

Chern., 98 (No. 3):1185-1193, 1994.

This article was processed using the GTEX macro package with LLNCS style

