Elements of Modern X-ray Physics

Des McMorrow
London Centre for Nanotechnology
University College London

About this course

"To explain the physics underlying the production and exploitation of X-rays with emphasis on application in condensed matter and materials physics"

1. Sources of X-rays
2. X-rays and their interaction with matter: scattering
3. Refraction and absorption of X-rays
4. X-ray imaging

X-rays and their interaction with matter

1. Cross-sections and scattering lengths
2. Semi-classical description of elastic scattering

- Thomson scattering
- Resonant scattering
- Relationship between scattering, refraction and absorption

3. Compton scattering

- Kinematics
- Klein-Nishina cross-section

4. Quantum mechanical treatment

- Non-resonant magnetic scattering
- Resonant scattering from multipoles

X-ray Magnetic Scattering

(1972) X-ray Magnetic Scattering

Tube source: Counts per 4 hours!

NiO, de Bergevin and Brunel (1972)
(1985) First Synchrotron Studies

Holmium, Gibbs et al. (1985)

(1985) First Resonant Scattering

Nickel, Namikawa (1985)

Scattering Cross-sections

Quite generally we expect

$$
I_{S C}=\Phi_{0} \times \Delta \Omega \times \text { Scattering efficiency factor }=\Phi_{0} \times \Delta \Omega \times\left(\frac{d \sigma}{d \Omega}\right)
$$

This defines the Differential Cross - section

$$
\left(\frac{d \sigma}{d \Omega}\right)=\frac{\text { Number of particles scattered per second into detector }}{\text { Incident Flux } \times \text { Detector solid Angle }}=\frac{I_{S C}}{\Phi_{0} \Delta \Omega}
$$

The Total Cross - section is obtained by integrating over all solid angle

$$
\sigma=\int\left(\frac{d \sigma}{d \Omega}\right) d \Omega
$$

This Partial Differential Cross - section

$$
\left(\frac{d \sigma}{d \Omega d E_{f}}\right)=\frac{\text { Particles scattered per second into detector in energy window } d E_{f}}{\text { Incident Flux } \times \text { Detector solid Angle } \times d E_{f}}
$$

Photons: Basic Properties and Interactions

Photon

Charge:	0	0
Mass:	0	$1.675 \times 10^{-27} \mathrm{Kg}$
Spin:	1	$1 / 2$
Magnetic Moment:	0	$-1.913 \mu_{\mathrm{N}}$

Scattering lengths:

Sensitivity to
Structure:

$$
r_{0}=2.82 \times 10^{-5} \AA
$$

(E field photon and e)

Neutron

$$
\begin{gathered}
1.675 \times 10^{-27} \mathrm{Kg} \\
1 / 2 \\
-1.913 \mu_{\mathrm{N}}
\end{gathered}
$$

Scattering of an electromagnetic wave

Semi-classical treatment

Poynting Vector: $\mathbf{S}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B} \Rightarrow \mathrm{S}=c \varepsilon_{0} \mathrm{E}^{2}$

Units: Energy/s/unit area

Radiation from an accelerating charge

Electric dipole radiation
(a)

(b)

$\mathrm{E}_{\text {rad }} \propto \frac{-e}{R} a_{X}\left(t^{\prime}\right) \sin \Psi \propto \frac{e}{R} a_{X}\left(t^{\prime}\right)\left(\hat{\varepsilon} \cdot \hat{\varepsilon}^{\prime}\right) \quad$ where $t^{\prime}=t-R / c$

The acceleration of the charge is given by
$a_{X}\left(t^{\prime}\right)=\frac{-e \mathrm{E}_{0} e^{-i \omega t^{\prime}}}{m}=\frac{-e}{m} \mathrm{E}_{i n} e^{i \omega(R / c)}=\frac{-e}{m} \mathrm{E}_{i n} e^{i k R}$ where $\mathrm{E}_{i n}=\mathrm{E}_{0} e^{-i \omega t}$

$$
\therefore \frac{\mathrm{E}_{r a d}(R, t)}{\mathrm{E}_{i n}} \propto\left(\frac{e^{2}}{m}\right) \frac{e^{i k R}}{R}\left(\hat{\varepsilon} \cdot \hat{\varepsilon}^{\prime}\right)
$$

$$
=-r_{0} \frac{e^{i k R}}{R}\left|\hat{\varepsilon} \cdot \hat{\varepsilon}^{\prime}\right| \quad \text { from exact treatment }
$$

$$
r_{0}=\left(\frac{e^{2}}{4 \pi \varepsilon_{0} m c^{2}}\right)=2.82 \times 10^{-15} m
$$

$$
\frac{d \sigma}{d \Omega}=\frac{\left|\mathrm{E}_{r a d}\right|^{2} R^{2}}{\left|\mathrm{E}_{i n}\right|^{2}}=r_{0}^{2}\left|\hat{\varepsilon} \cdot \hat{\varepsilon}^{\prime}\right|^{2}
$$

Thomson cross-section

Scattering from the charge of a single, unbound electron

Scattering length:

$$
-r_{0}
$$

phase shift of π on scattering (refractive index, $n<1$)

Polarization dependence:

$$
\frac{d \sigma}{d \Omega}=r_{0}^{2}\left|\hat{\varepsilon} \cdot \hat{\varepsilon}^{\prime}\right|^{2}=r_{0}^{2} P
$$

with

$$
P=\left|\hat{\varepsilon} \cdot \hat{\varepsilon}^{\prime}\right|^{2}= \begin{cases}\left|\hat{\sigma} \cdot \hat{\sigma}^{\prime}\right|^{2}=1 & \text { Synchrotron: vertical scattering } \\ \left|\hat{\pi} \cdot \hat{\pi}^{\prime}\right|^{2}=\cos ^{2}(2 \theta) & \text { Synchrotron: horizontal scattering } \\ \frac{1}{2}\left(1+\cos ^{2}(2 \theta)\right) & \text { Unpolarised source }\end{cases}
$$

Total scattering cross-section:

$$
\left.\sigma_{T}=\int \frac{d \sigma}{d \Omega} d \Omega=\left.4 \pi r_{0}^{2}\langle | \hat{\varepsilon} \cdot \hat{\varepsilon}^{\prime}\right|^{2}\right\rangle=4 \pi r_{0}^{2} \frac{2}{3}
$$

$$
\sigma_{T}=\left(\frac{8 \pi}{3}\right) r_{0}^{2}
$$

Diffraction: Two point scatterers

Definition of the scattering vector

Diffraction: Two point scatterers

Amplitude and intensity of scattered beam

Scattered wave from origin:

$$
\psi_{1}(\mathbf{x})=A e^{i k^{\prime} \cdot \mathbf{x}}
$$

Scattered wave from \mathbf{r} :

$$
\psi_{2}(\mathbf{x})=A e^{i k^{\prime} \times} e^{i \boldsymbol{Q} \mathbf{r}}
$$

Total amplitude: $\quad \psi_{\mathrm{t}}=\psi_{1}(\mathbf{x})+\psi_{2}(\mathbf{x})=A e^{i \mathbf{K}^{\prime} \mathbf{x}}+A e^{i \mathbf{k}^{\prime} \mathbf{x}} e^{i \mathbf{Q} \mathbf{r}}$
Intensity: $\quad I=\left|\psi_{\mathrm{t}}\right|^{2}=\psi_{\mathrm{t}} \psi_{t}^{*}=2 A^{2}(1+\cos (\mathbf{Q} \cdot \mathbf{r}))$
Scattering triangle

Scattering from an atom

unbound electrons

Discrete system: scattering amplitude $A(\mathbf{Q})=-r_{0} \sum_{j} e^{i \mathbf{Q} \cdot \mathbf{r}_{j}}$
Continuous system: $\quad A(\mathbf{Q})=-r_{0} \int \rho(\mathbf{r}) d \mathbf{r} e^{i \mathbf{Q} \cdot \mathbf{r}} \quad \rho(\mathbf{r}):$ number density of scatterers

X-rays

Atomic form factor defined by $\quad f^{0}(\mathbf{Q})=\int \rho(\mathbf{r}) d \mathbf{r} e^{i \mathbf{Q} \cdot \mathbf{r}}$

$$
\begin{aligned}
& f^{0}(\mathbf{Q}) \rightarrow \mathrm{Z} \text { as } \mathrm{Q} \rightarrow 0 \\
& f^{0}(\mathbf{Q}) \rightarrow 0 \text { as } \mathrm{Q} \rightarrow \infty
\end{aligned}
$$

Formally, the atomic form factor is the Fourier transform of the atomic electron density Example: 1s hydrogenic wave function

$$
\psi_{1 \mathrm{~s}}(r)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a} \Rightarrow f_{1 s}^{0}(Q)=\frac{1}{\left(1+(Q a / 2)^{2}\right)^{2}} \quad \text { with } a=a_{0} / Z
$$

Neutrons

For neutrons $\quad \rho(\mathbf{r})=\delta(\mathbf{r}) \quad$ and $\int \delta(\mathbf{r}) d \mathbf{r} e^{i \mathbf{Q} \cdot \mathbf{r}}=1$
X-ray charge scattering: decrease of scattering intensity with increasing \mathbf{Q} Neutron nuclear scattering: no decrease

Atomic form factor of Hydrogen-Like Atom

Scattering cross-section from a crystal

Laue condition

For lattice sum: $\sum_{\mathbf{R}_{n}}^{\text {latice }} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}$ large number of terms means cancellation unless special condition is fulfilled where they all add up. This condition requires that

$$
\mathbf{Q} \cdot \mathbf{R}_{n}=2 \pi \times \text { integer }
$$

This condition is met if $\mathbf{Q}=\mathbf{G}$ a reciprocal lattice vector since
$\mathbf{R}_{n}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$ and $\mathbf{G}=h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}$ where the primitive reciprocal lattice vectors are defined by $\mathbf{a}_{i} \cdot \mathbf{a}_{j}^{*}=2 \pi \delta_{i j} \Rightarrow \mathbf{G} \cdot \mathbf{R}_{n}=2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)$
All unit cells therefore scatter in phase when

$$
\mathbf{Q}=\mathbf{G} \quad \text { Laue condition }
$$

Can show that

$$
\left|\sum_{\mathbf{R}_{n}}^{\text {latice }} e^{i \cdot \mathbf{R}_{n}}\right|^{2}=N v_{c}^{*} \sum_{\mathbf{G}} \delta(\mathbf{Q}-\mathbf{G})
$$

Thus

$$
\left(\frac{d \sigma}{d \Omega}\right)^{\text {Crystal }}=N v_{c}^{*} \sum_{\mathbf{G}}|F(\mathbf{Q})|^{2} \delta(\mathbf{Q}-\mathbf{G})
$$

Unit cell structure factor

$$
F^{x-r a y s}(\mathbf{Q})=r_{0} \sum_{\mathbf{r}_{j}}^{\text {unit cell }} P f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \quad F^{\text {neutrons }}(\mathbf{Q})=\sum_{\mathbf{r}_{j}}^{\text {unit cell }} b_{j} e^{i \mathbf{Q} \cdot \mathbf{r}_{j}}
$$

X-ray Resonant Scattering

Dispersion corrections
From electrons bound in atoms expect:

$$
f(\mathbf{Q}, \omega)=f^{0}(\mathbf{Q})+f^{\prime}(\omega)+i f^{\prime \prime}(\omega)
$$

Forced, damped oscillator model

$$
\ddot{x}+\Gamma \dot{x}+\omega_{r}^{2} x=-\left(\frac{e E_{0}}{m}\right) e^{-i \omega t} \Rightarrow x(t)=\left(-\frac{e}{m}\right) \frac{\mathrm{E}_{0} e^{-i \omega t}}{\left(\omega_{0}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$

$$
f_{s}^{\prime}=\frac{\omega_{0}^{2}\left(\omega^{2}-\omega_{0}^{2}\right)}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+(\omega \Gamma)^{2}} f_{s}^{\prime}=-\frac{-\omega_{0}^{2} \omega \Gamma}{\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Dispersion corrections

Resonant scattering in crystallography

Breakdown of Friedel's Law
Non-resonant

$$
\begin{gathered}
A(Q)=f_{1}^{0}+f_{2}^{0} e^{i Q x} \\
\Rightarrow I(Q)=\left(f_{1}^{0}\right)^{2}+\left(f_{2}^{0}\right)^{2}+2 f_{1}^{0} f_{2}^{0} \cos (Q x) \\
\therefore I(Q)=I(-Q)
\end{gathered}
$$

Resonant

$$
\begin{gathered}
f_{1}=f_{1}^{0}+f_{1}^{\prime}+i f_{1}^{\prime \prime} \equiv r_{1} e^{i \phi_{1}} \\
A(Q)=r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
\Rightarrow I(Q)=r_{1}^{2}+r_{2}^{2}+2 f_{1}^{0} f_{2}^{0} \cos \left(Q x-\phi_{1}+\phi_{2}\right) \\
\cos \left(Q x-\phi_{1}+\phi_{2}\right) \neq \cos \left(-Q x-\phi_{1}+\phi_{2}\right)
\end{gathered}
$$

$$
\therefore I(Q) \neq I(-Q)
$$

Dispersion corrections reveal absolute atomic configurations: route to solution of phase problem, enables MAD, SAD, etc.

Relationship between scattering and refraction

Electric field $\mathbf{E}(t)=>\mathbf{P}(t)$ (electric dipole/V)

$$
\mathbf{P}(t)=\varepsilon_{0} \chi \mathbf{E}(t)=\left(\varepsilon-\varepsilon_{0}\right) \mathbf{E}(t)
$$

where

$$
\begin{aligned}
\mathrm{P}(t)= & \frac{-N e x(t)}{V}=-\rho e x(t)=-\rho e\left(-\frac{e}{m}\right) \frac{\mathrm{E}_{0} e^{-i \omega t}}{\left(\omega_{0}^{2}-\omega^{2}-i \omega \Gamma\right)} \\
& \Rightarrow \frac{\mathrm{P}(t)}{\mathrm{E}(t)}=\varepsilon-\varepsilon_{0}=\left(\frac{e^{2} \rho}{m}\right) \frac{1}{\left(\omega_{0}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

The refractive index is defined by

$$
\begin{gathered}
n^{2}=\frac{c^{2}}{v^{2}}=\frac{\varepsilon}{\varepsilon_{0}} \\
\Rightarrow n^{2}=1+\left(\frac{e^{2} \rho}{\varepsilon_{0} m}\right) \frac{1}{\left(\omega_{0}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{gathered}
$$

For X-rays, $\omega \gg \omega_{0} \gg \Gamma$

$$
n \approx 1-\frac{1}{2}\left(\frac{e^{2} \rho}{\varepsilon_{0} m \omega^{2}}\right)=1-\frac{2 \pi \rho r_{0}}{k^{2}}
$$

$$
n \approx 1-\delta+i \beta \quad \text { Since } \rho=\rho_{a} f(0)
$$

$$
\delta=\frac{2 \pi \rho_{a} r_{0}\left(f^{0}(0)+f^{\prime}(\hbar \omega)\right)}{k^{2}} \quad \beta=-\frac{2 \pi \rho_{a} r_{0} f^{\prime \prime}(\hbar \omega)}{k^{2}}
$$

Relationship between scattering and refraction

Resonant scattering
$f(Q, \hbar \omega)=f^{0}(Q)+f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)$
Rayleigh scattering Visible light

Refractive index

$$
\begin{gathered}
n=1-\delta+i \beta \\
\delta=\left(f^{0}(0)+f^{\prime}\right) \frac{2 \pi \rho_{a} r_{0}}{k^{2}} \\
\beta=-f^{\prime \prime}\left(\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\right)
\end{gathered}
$$

Scattering and refraction: different ways of understanding the same phenomena

Relationship scattering, refraction and absorption

Absorption coefficient μ defined by $I=I_{0} e^{-\mu z}$ and absorption cross-section $\sigma_{a}=\mu / \rho_{a}$

$$
f^{\prime \prime}=-\left(\frac{k^{2}}{2 \pi \rho_{a} r_{0}}\right) \frac{\mu}{2 k}=-\left(\frac{k}{4 \pi r_{0}}\right) \sigma_{a}
$$

Absorption is proportional to the imaginary part of the forward scattering amplitude (Optical Theorem)

Compton scattering

Kinematics

Kinematics of Compton scattering

Consider a photon incident along the x direction scattering off of a stationary electron. After the scattering event the photon is deflected by an angle ψ in the $x-y$ plane, while the electron moves at an angle ϕ. The momenta and energy before and after the scattering event may be written as
Initial Final

Momenta $\quad\binom{\hbar \mathrm{k}_{i}}{0} \equiv\binom{\chi_{i}}{0} \quad\binom{\chi_{f} \cos \psi-\gamma_{f} \beta_{f} \cos \phi}{\chi_{f} \sin \psi-\gamma_{f} \beta_{f} \sin \phi}$
Energy
$\chi_{i}+1$
$\chi_{f}+\gamma_{f}$
where $\chi_{i(f)}=h \nu_{i(f)} / m c^{2}$, etc.
Conservation of momentum implies that:

$$
\begin{aligned}
\chi_{i} & =\chi_{f} \cos \psi-\gamma_{f} \beta_{f} \cos \phi & & \text { x-component } \\
0 & =\chi_{f} \sin \psi-\gamma_{f} \beta_{f} \sin \phi & & y \text {-component }
\end{aligned}
$$

Squaring and adding the above equations to eliminate the scattering angle ϕ of the electron yields

$$
\gamma_{f}^{2}=1+\left(\chi_{i}-\chi_{f}\right)^{2}+2 \chi_{i} \chi_{f}(1-\cos \psi)
$$

while from the conservation of energy we have

$$
\gamma_{f}^{2}=1+\left(\chi_{i}-\chi_{f}\right)^{2}+2\left(\chi_{i}-\chi_{f}\right)
$$

By comparing the two expressions for γ_{f}^{2} we obtain

$$
\frac{\chi_{i}}{\chi_{f}}=1+\chi_{i}(1-\cos \psi)
$$

or using the fact that $\chi=\lambda_{C} k$

$$
\begin{equation*}
\frac{\mathrm{k}_{i}}{\mathrm{k}_{f}}=1+\lambda_{\mathrm{C}} \mathrm{k}_{i}(1-\cos \psi)=\frac{\mathcal{E}_{i}}{\mathcal{E}_{f}}=\frac{\lambda_{f}}{\lambda_{i}} \tag{1}
\end{equation*}
$$

Compton scattering

Klein-Nishina Cross-section

$$
\left.\frac{d \sigma}{d \Omega}=\frac{r_{0}^{2}}{2}\left(\frac{\mathcal{E}^{\prime}}{\mathcal{E}}\right)^{2}\left[\left(1+\cos ^{2} \psi\right)+\frac{\mathcal{E}-\mathcal{E}^{\prime}}{m c^{2}}(1-\cos \psi)\right]\right]
$$

When $\mathcal{E} \ll m c^{2}\left(\Rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{E}\right)$ or $\psi \rightarrow 0$ we recover the
Thomson scattering formula

$$
\frac{d \sigma}{d \Omega}=\frac{r_{0}^{2}}{2}\left(1+\cos ^{2} \psi\right)
$$

X-rays and their interaction with matter

Adapted from de Bergevin and Brunel, 1981

Quantum mechanical description of scattering

Theoretical Framework

Task is to determine the differential cross-section:

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\frac{\text { Number of particles scattered per second into detector }}{\text { Incident Flux } \times \text { Detector solid Angle }} \\
& =\frac{W}{\Phi_{0}(\Delta \Omega)}
\end{aligned}
$$

The transition rate probability W to 2 nd order

$$
\left.W=\frac{2 \pi}{\hbar}\left|\langle f| H_{I}\right| i\right\rangle+\left.\sum_{n} \frac{\langle f| H_{I}|n\rangle\langle n| H_{I}|i\rangle}{\mathcal{E}_{i}-\mathcal{E}_{n}}\right|^{2} \rho\left(\mathcal{E}_{f}\right)
$$

Interaction Hamiltonian H_{l} : describes interaction between radiation and target

Density of final states

$$
\rho\left(\mathcal{E}_{f}\right) d \mathcal{E}_{f}=\rho\left(\mathbf{k}_{f}\right) d \mathbf{k}_{f}
$$

Box normalisation implies

$$
\begin{aligned}
& \rho\left(\mathcal{E}_{f}\right) d \mathcal{E}_{f}=\rho\left(\mathrm{k}_{f}\right) \mathrm{k}_{f}^{2} \Delta \Omega d \mathrm{k}_{f} \\
& \therefore \quad \rho\left(E_{f}\right)=\frac{V}{(2 \pi)^{3}} \mathrm{k}_{f}^{2} \Delta \Omega \frac{d \mathrm{k}_{f}}{d \mathcal{E}_{f}}
\end{aligned}
$$

To first order

$$
\left.\left(\frac{d \sigma}{d \Omega}\right)=\frac{1}{\Phi_{0}} \frac{2 \pi}{\hbar}\left|\langle f| H_{I}\right| i\right\rangle\left.\right|^{2} \frac{V}{(2 \pi)^{3}} \mathrm{k}_{f}^{2} \frac{d \mathrm{k}_{f}}{d \mathcal{E}_{f}}
$$

Quantum mechanical description of scattering

Theoretical Framework

$$
\left.\left(\frac{d \sigma}{d \Omega}\right)=\frac{1}{\Phi_{0}} \frac{2 \pi}{\hbar}\left|\langle f| H_{I}\right| i\right\rangle\left.\right|^{2} \frac{V}{(2 \pi)^{3}} \mathrm{k}_{f}^{2} \frac{d \mathrm{k}_{f}}{d \mathcal{E}_{f}}
$$

For photons, $\Phi_{0}=c / V$ and $E=\hbar c k$

$$
\begin{gathered}
\left.\left(\frac{d \sigma}{d \Omega}\right)=\frac{V}{c} \frac{2 \pi}{\hbar}\left|\langle f| H_{I}\right| i\right\rangle\left.\right|^{2} \frac{V}{(2 \pi)^{3}} \frac{\mathcal{E}_{f}^{2}}{(\hbar c)^{2}} \frac{1}{\hbar c} \\
\left.\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{V}{2 \pi}\right)^{2} \frac{\mathcal{E}_{f}^{2}}{\hbar^{4} c^{4}}\left|\langle f| H_{I}\right| i\right\rangle\left.\right|^{2}
\end{gathered}
$$

which for elastic scattering becomes

$$
\left.\left(\frac{d \sigma}{d \Omega}\right)_{\text {elassic }}=\left(\frac{V}{2 \pi}\right)^{2} \frac{1}{\hbar^{4} c^{4}} \int \mathcal{E}_{f}^{2}\left|\langle f| H_{I}\right| i\right\rangle\left.\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}\right) d \mathcal{E}
$$

Quantizing the Radiation Field

Classical energy of electromagnetic field (free space)

$$
\mathcal{E}_{r a d}=\varepsilon_{0} \int_{V} \boldsymbol{E} \cdot \boldsymbol{E} d \boldsymbol{r} \quad \text { with } \boldsymbol{E}=-\frac{\partial \boldsymbol{A}}{\partial t}
$$

Most general form for Vector potential \boldsymbol{A} is as a Fourier series, of which one term is:

$$
\boldsymbol{A}(r, t)=A_{0} \hat{\varepsilon}\left[a_{k} \mathrm{e}^{i(k \cdot r-\omega t)}+a_{k}^{*} \mathrm{e}^{-i(k \cdot r-\omega t)}\right]
$$

Therefore

$$
\mathcal{E}_{\text {rad }}=2 \varepsilon_{0} \omega^{2} A_{0}^{2} a_{k}^{*} a_{k} V=\hbar \omega a_{k}^{*} a_{k} \quad \text { if } A_{0}=\sqrt{\frac{\hbar}{2 \varepsilon_{0} \omega V}}
$$

c.f. Harmonic Oscillator

$$
\mathcal{E}_{\text {sho }}=\hbar \omega\left(a_{k}^{\dagger} a_{k}+\frac{1}{2}\right)
$$

Suggests radiation field is quantised like an harmonic oscillator with

$$
\begin{gathered}
a_{\mathbf{k}}|n\rangle=\sqrt{\mathrm{n}}|\mathrm{n}-1\rangle \quad \text { and } \quad a_{\mathbf{k}}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \\
A(r, t)=\sum_{u} \sum_{k} \sqrt{\frac{\hbar}{2 \varepsilon_{0} \omega V}} \hat{\varepsilon}_{u}\left[a_{u, k} \mathrm{e}^{i(k \cdot r-\omega t)}+a_{u, k}^{\dagger} \mathrm{e}^{-i(k \cdot r-\omega t)}\right]
\end{gathered}
$$

Vector potential is LINEAR in photon annihilation and creation operators

X-ray Scattering: Interaction Hamiltonian

Single Electron in an electromagnetic field (ignore magnetic degrees of freedom to start with):

$$
H_{0}=\frac{p^{2}}{2 m}+V
$$

Canonical momentum $\boldsymbol{p} \rightarrow \boldsymbol{p}+e \boldsymbol{A}$ with $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ and $\boldsymbol{E}=-\nabla \boldsymbol{\phi}-\dot{\boldsymbol{A}}$

$$
H_{0} \rightarrow H_{0}+\frac{e \boldsymbol{A} \cdot \boldsymbol{p}}{m}+\frac{e^{2} A^{2}}{2 m} \Rightarrow H_{I}=\underbrace{\left(\frac{e^{2}}{2 m}\right) A^{2}}_{H_{1}}+\underbrace{\left(\frac{e}{m}\right) \boldsymbol{A} \cdot \boldsymbol{p}}_{H_{2}}
$$

Non-magnetic, Non-resonant scattering

$$
\begin{gathered}
\text { 1st order : } \quad W=\left.\frac{2 \pi}{\hbar}\left\langle\langle f| H_{I} \mid i\right\rangle\right|^{2} \rho\left(\mathcal{E}_{f}\right) \\
H_{I}=\left(\frac{e^{2}}{2 m}\right) A^{2}+\left(\frac{e}{m}\right) \boldsymbol{A} \cdot \boldsymbol{p}
\end{gathered}
$$

Thomson (Charge) Scattering

$$
\begin{gathered}
\left\langle a ; \boldsymbol{k}^{\prime}, \beta\right|\left(\frac{e^{2}}{2 m}\right) A^{2}|a ; \boldsymbol{k}, \alpha\rangle=\left\langle\boldsymbol{k}^{\prime}, \beta\right|\left(\frac{e^{2}}{2 m}\right) A^{2}|\boldsymbol{k}, \alpha\rangle=\left(\frac{e^{2} \hbar}{2 m \varepsilon_{0} V \omega}\right) \hat{\varepsilon}_{\alpha, k} \hat{\varepsilon}_{\beta, k} \\
\left(\frac{d \sigma}{d \Omega}\right)^{C h a r g e}=\frac{W}{\Phi_{0}(\Delta \Omega)}=r_{0}^{2}\left|\hat{\varepsilon}^{\prime} \cdot \hat{\varepsilon}\right|^{2}
\end{gathered}
$$

Differential cross-section for an array of atoms

$$
\left(\frac{d \sigma}{d \Omega}\right)=r_{0}^{2}\left(\hat{\varepsilon}^{\prime} \cdot \hat{\varepsilon}\right)\left|\sum_{s} f_{s}^{0}(Q) \mathrm{e}^{i \boldsymbol{Q} \cdot \boldsymbol{R}_{s}}\right|^{2}
$$

$f_{s}^{0}(Q)$ is the atomic form factor and $r_{0}=\left(\frac{e^{2}}{4 \pi \varepsilon_{0} m c^{2}}\right)=2.82 \times 10^{-5} \AA$

Polarization factor refers to E field may be written as

$$
\left(\hat{\varepsilon}^{\prime} \cdot \hat{\varepsilon}\right) \rightarrow \begin{array}{c|cc}
& \hat{\varepsilon}_{\perp} \equiv \sigma & \hat{\varepsilon}_{\| \mid} \equiv \pi \\
\hline \hat{\varepsilon}_{\perp}^{\prime} \equiv \sigma^{\prime} & 1 & 0 \\
\hat{\varepsilon}_{\| \mid}^{\prime} \equiv \pi^{\prime} & 0 & \cos 2 \theta
\end{array}
$$

Interaction Hamiltonian

X-ray Magnetic Scattering

Single Electron in an electromagnetic field :

$$
H_{0}=\frac{p^{2}}{2 m}+V
$$

Canonical momentum $\boldsymbol{p} \rightarrow \boldsymbol{p}+e \boldsymbol{A}$ with $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ and $\boldsymbol{E}=-\nabla \phi-\dot{\boldsymbol{A}}$
$+$
Zeeman Interaction :

$$
H_{Z}=g \mu_{B} \boldsymbol{s} \cdot \boldsymbol{B}=\frac{e \hbar}{m} \boldsymbol{s} \cdot \nabla \times \boldsymbol{A}
$$

$+$
Spin-Orbit Interaction :

$$
\begin{aligned}
H_{s o} & =-\frac{1}{2} \boldsymbol{m} \cdot \boldsymbol{B}=\frac{1}{2} g \mu_{B} \boldsymbol{s} \cdot \frac{\boldsymbol{E} \times \boldsymbol{v}}{c^{2}}=\frac{e \hbar}{2 m^{2} c^{2}} \boldsymbol{s} \cdot \boldsymbol{E} \times \boldsymbol{p}=\left(\frac{e \hbar}{2 m^{2} c^{2}}\right) \boldsymbol{s} \cdot(-\nabla \boldsymbol{\phi}-\dot{\boldsymbol{A}}) \times(\boldsymbol{p}+e \boldsymbol{A}) \\
& \approx-\left(\frac{e^{2} \hbar}{2 m^{2} c^{2}}\right) \boldsymbol{s} \cdot(\dot{\boldsymbol{A}} \times \boldsymbol{A})
\end{aligned}
$$

$$
H_{I}=\underbrace{\left(\frac{e^{2}}{2 m}\right) A^{2}}_{H_{1}}+\underbrace{\left(\frac{e}{m}\right) \boldsymbol{A} \cdot \boldsymbol{p}}_{H_{2}}+\underbrace{\left(\frac{e \hbar}{m}\right) \boldsymbol{s} \cdot \nabla \times \boldsymbol{A}}_{H_{3}}-\underbrace{\left(\frac{e^{2} \hbar}{2 m^{2} c^{2}}\right) \boldsymbol{s} \cdot(\dot{\boldsymbol{A}} \times \boldsymbol{A})}_{H_{4}}
$$

Non-resonant Magnetic Scattering

Initial
la; $\mathbf{k}, \alpha>$ la; $\mathbf{k}^{\prime}, \beta>$

1st order:

$$
H_{I}=\left(\frac{e^{2}}{2 m}\right) A^{2}+\left(\frac{e}{m}\right) \boldsymbol{A} \cdot \boldsymbol{p}+\left(\frac{e \hbar}{m}\right) \boldsymbol{s} \cdot \nabla \times \boldsymbol{A}-\left(\frac{e^{2} \hbar}{2 m^{2} c^{2}}\right) \boldsymbol{s} \cdot(\dot{\boldsymbol{A}} \times \boldsymbol{A})
$$

2nd order:

$$
H_{I}=\left(\frac{e^{2}}{2 m}\right) A^{2}+\left(\frac{e}{m}\right) \boldsymbol{A} \cdot \boldsymbol{p}+\left(\frac{e \hbar}{m}\right) \boldsymbol{s} \cdot \nabla \times \boldsymbol{A}-\left(\frac{e^{2} \hbar}{2 m^{2} c^{2}}\right) \boldsymbol{s} \cdot(\dot{\boldsymbol{A}} \times \boldsymbol{A})
$$

Summary: $1^{\text {st }}$ Order Scattering Processes

Thomson scattering

$$
H_{I}=\left(\frac{e^{2}}{2 m}\right) A^{2}-\left(\frac{e^{2} \hbar}{2 m^{2} c^{2}}\right) \boldsymbol{s} \cdot(\dot{\boldsymbol{A}} \times \boldsymbol{A})
$$

$$
\left\langle a ; \boldsymbol{k}^{\prime}, \beta\right|\left(\frac{e^{2}}{2 m}\right) A^{2}|a ; \boldsymbol{k}, \alpha\rangle=\left\langle\boldsymbol{k}^{\prime}, \beta\right|\left(\frac{e^{2}}{2 m}\right) A^{2}|\boldsymbol{k}, \alpha\rangle=\left(\frac{e^{2} \hbar}{2 m \varepsilon_{0} V \omega}\right) \hat{\varepsilon}_{\alpha, \boldsymbol{k}} \cdot \hat{\varepsilon}_{\beta, k^{\prime}}
$$

$$
\left(\frac{d \sigma}{d \Omega}\right)^{\text {Charge }}=\frac{W}{\Phi_{0}(\Delta \Omega)}=r_{0}^{2}\left|\hat{\varepsilon}^{\prime} \cdot \hat{\varepsilon}\right|^{2}
$$

Magnetic scattering

$$
\begin{gathered}
\left\langle a ; \boldsymbol{k}^{\prime}, \beta\right|-\left(\frac{e^{2} \hbar}{2 m^{2} c^{2}}\right) s \cdot(\dot{\boldsymbol{A}} \times \boldsymbol{A})|a ; \boldsymbol{k}, \alpha\rangle=i\left(\frac{e^{2} \hbar^{2}}{2 m^{2} V c^{2} \varepsilon}\right)\langle s\rangle\left(\hat{\varepsilon}_{\alpha, k} \times \hat{\varepsilon}_{\beta, k^{\prime}}\right) \\
\left(\frac{d \sigma}{d \Omega}\right)^{\text {Magnetic }}=r_{0}^{2}\left(\frac{\hbar \omega}{m c^{2}}\right)^{2}\left|\hat{\varepsilon}^{\prime} \times \hat{\varepsilon}\right|^{2}\langle\boldsymbol{s}\rangle^{2}
\end{gathered}
$$

-Magnetic scattering is weaker than charge by $\left(\hbar \omega / \mathrm{mc}^{2}\right)^{2} \sim 0.0001$ at 10 keV
-Scattering cross-section is proportional to $<s>^{2}=>$ Magnetic crystallography -Magnetic scattering has a distinctive polarization dependence

Total non-resonant magnetic cross-section

Unique ability to separate spin and orbital moments

Magnetic scattering lengh

$$
f^{m a g}(\boldsymbol{Q})=i r_{0}\left(\frac{\hbar \omega}{m c^{2}}\right)\left[\frac{1}{2} \boldsymbol{L}(\boldsymbol{Q}) \cdot A^{\prime \prime}+\boldsymbol{S}(\boldsymbol{Q}) \cdot B\right]
$$

$\boldsymbol{L}(\boldsymbol{Q})$ and $\boldsymbol{S}(\boldsymbol{Q})$ are Fourier transforms of the atomic and spin magnetization densities $A^{\prime \prime}$ and B contain the dependence on $\boldsymbol{k}, \boldsymbol{k}^{\prime}, \hat{\varepsilon}$ and $\hat{\varepsilon}^{\prime}$

$$
f^{m a g}(\boldsymbol{Q})=i r_{0}\left(\frac{\hbar \omega}{m c^{2}}\right) \times
$$

	$\hat{\varepsilon}_{\perp} \equiv \sigma$	$\hat{\varepsilon}_{\\| 1} \equiv \pi$
$\hat{\varepsilon}_{\perp}^{\prime}$	$\sin 2 \theta S_{2}$	$-2 \sin ^{2} \theta\left[\left(L_{1}+S_{1}\right) \cos \theta-S_{3} \sin \theta\right]$
$\hat{\varepsilon}_{\\| \mid}^{\prime}$	$2 \sin ^{2} \theta\left[\left(L_{1}+S_{1}\right) \cos \theta-S_{3} \sin \theta\right]$	$\sin 2 \theta\left[2 \sin ^{2} \theta L_{2}+S_{2}\right]$

Example: scattering from a magnetic spiral

Assume for clarity that

$$
\langle\boldsymbol{L}>=0 \text { and } \boldsymbol{S}=\mathrm{S}(\cos (\mathrm{qa} \ell), \sin (\mathrm{qa} \ell))
$$

and that experiment is done with σ polarized light and no analyser

$$
f^{m a g}(\boldsymbol{Q})=i r_{0}\left(\frac{\hbar \omega}{m c^{2}}\right) \frac{S}{2} \sum_{\ell} e^{i(Q \pm q) a \ell} \times \begin{array}{c|cc}
& \hat{\varepsilon}_{\perp} \equiv \sigma & \hat{\varepsilon}_{\|} \equiv \pi \\
\hline \hat{\varepsilon}_{\perp}^{\prime} & \pm i \sin 2 \theta & -2 \sin ^{2} \theta \cos \theta \\
\hat{\varepsilon}_{\|}^{\prime} & 2 \sin ^{2} \theta \cos \theta & \pm i \sin 2 \theta
\end{array}
$$

$$
\left(\frac{d \sigma}{d \Omega}\right)^{\text {Magnetic }}=r_{0}^{2}\left(\frac{\hbar \omega}{m c^{2}}\right)^{2} \frac{S^{2}}{4} \sin ^{2} 2 \theta\left(1+\sin ^{2} \theta\right)\left(\frac{2 \pi}{a}\right) \sum_{G} \delta(Q-G \pm q)
$$

Experimental considerations

-High flux beamline
-Tunable photon energy, 1-15 keV -Well defined incident polarization - Versatile diffractometer
-Azimuthal degree of freedom
-Polarization analysis

First Synchrotron Radiation Studies of Magnetism

Non-Resonant Magnetic scattering from Holmium
Gibbs, Moncton, D’Amico, Bohr and Grier (1985)
Synchrotron Source: Counts per 20s

Advantages of Non-resonant X-ray Magnetic Scattering
-High-resolution technique (Phase transitions)
-Separation of orbital and spin magnetization densities

- Highly focussed beams (Small samples)

Non-resonant X-ray magnetic scattering study of non-collinear order using circularly polarized X-rays

Imaging the electric field control of magnetism in multiferroic TbMnO_{3}

PRL 102, 237205 (2009)
PHYSICAL REVIEW LETTERS
Circularly Polarized X Rays as a Probe of Noncollinear Magnetic Order in Multiferroic TbMnO $\mathbf{3}_{3}$
F. Fabrizi, ${ }^{1,2}$ H. C. Walker, ${ }^{1,2, *}$ L. Paolasini, ${ }^{1}$ F. de Bergevin, ${ }^{1}$ A. T. Boothroyd, ${ }^{3}$ D. Prabhakaran, ${ }^{3}$ and D. F. McMorrow ${ }^{2}$

Magnetic Control of Ferroelectric Polarization
Kimura et al. Nature (2004)

Pbmn
Mn: bar 1
Tb: m

Magnetic inversion symmetry breaking and ferroelectricity in TbMnO_{3}

Kenzelmann et al. PRL (2005)

Neutron Scattering
$\mathrm{q}_{\mathrm{Mn}}=\binom{0}{\mathrm{q}}$ A-type Fourier components

$$
\begin{aligned}
\Gamma_{3}: \mathrm{m}_{3}[\mathrm{Mn}] & =\left(\begin{array}{lll}
0.0 & 2.9 & 0.0
\end{array}\right) \mu_{\mathrm{B}} \\
\mathrm{~m}_{3}[\mathrm{~Tb}] & =\left(\begin{array}{lll}
0.0 & 0.0 & 0.0
\end{array}\right) \mu_{\mathrm{B}}
\end{aligned}
$$

$\Gamma_{3}: \mathrm{m}_{3}[\mathrm{Mn}]=\left(\begin{array}{lll}0 & 3.9 & 0\end{array}\right) \mu_{\mathrm{B}} \quad \Gamma_{2}: \mathrm{m}_{2}[\mathrm{Mn}]=(002.8) \mu_{\mathrm{B}}$

$$
\mathrm{m}_{3}[\mathrm{~Tb}]=\left(\begin{array}{llll}
0 & 0 & 0
\end{array}\right) \mu_{\mathrm{B}} \quad \mathrm{~m}_{2}[\mathrm{~Tb}]=\left(\begin{array}{lll}
1.2 & 0 & 0
\end{array}\right) \mu_{\mathrm{B}}
$$

Phase between band c components not fixed by experiment

Ferroelectricity from magnetic Frustration!

Production of circularly polarized X-rays

Perfect diamond crystals can act as I/4 wave phase retarder producing circularly polarised light

Batterman PRB (1992)

$e=7.5 \mathrm{keV}$: diamond thickness $=1200 \mathrm{~mm}$, Circular polarisation $\sim 98 \%$
$\mathrm{e}=6.15 \mathrm{keV}$: diamond thickness $=700 \mathrm{~mm}$, Circular polarisation $\sim 99 \%$
Handedness of circularly polarised light couples to handedness of chiral spin structures

Diffraction in Applied E\&H fields

Non-resonant magnetic scattering length:

$$
\begin{aligned}
f_{\hat{\sigma}^{\prime}} & \propto S_{b}^{M}+\epsilon \alpha \gamma S_{c}^{M}-i \beta \gamma S_{b}^{T} \\
f_{\hat{\star}^{\prime}} \propto & (\epsilon \beta \gamma)\left(S_{b}^{T}+L_{b}^{T}\right)+i\left(\epsilon S_{b}^{M}+\alpha \gamma S_{c}^{M}\right) \\
& \alpha= \pm 1 \text { : selects sign of T } \\
& \beta= \pm 1 \text { : selects sign of I } \\
& = \pm 1 \text { : selects rcp or Icp }
\end{aligned}
$$

Polarization analysis of the scattered beam

Circularly polarized light and cycloidal domains

LINEAR LIGHT : Same scattering cross-section for the two cycloidal domains
CIRCULAR LIGHT : Coupling between chirality of the magnetic structure and handedness of the circular light \rightarrow possible to discriminate
ex. : simple magnetic structure; non resonant scattering

$\xrightarrow{\text { circular right, }}$| monochiral |
| :--- |
| domain |

$\eta_{0} \rightarrow \eta_{0}+90^{\circ}$

circular left,
monochiral
domain

Reversing the polarisation =exchanging domains

Domain populations - A-type peak

- T=15 K i.e. in FE phase, field cooling -700 V
- E=7.5 keV
- A-type star of wave-vectors
- Measured in π ' channel

- All 4 intensities similar for linear polarization ($\pi-\pi$ ')
- $\quad I\left(\varepsilon_{\mathrm{c}}{ }^{+}-\pi^{\prime}\right) \neq \mathrm{I}\left(\varepsilon_{\mathrm{c}}{ }^{-}-\pi^{\prime}\right)$, complementary behaviour depending on $\pm \mathrm{T}$
- Demonstrates imbalance of cycloidal domains

Stokes scans to demonstrate domain reversibility for $\pm \mathrm{E}$

Comparison with Kenzelmann model

- Dashed lines for Kenzelmann model - IC structure with cycloidal ordering of Mn spins rotating in $b c$ plane + Tb moment along a
- Unsatisfactory agreement with data

New magnetic structure model

- Additional Tb spin moment component along b
- Plus Tb orbital moment equal in size to spin component

Cycloidal domains

Domain 1
 P

Domain 2

- Projection of domains in bc plane with newly determined longitudinal component of Tb moment
- E>0 field cooling $\rightarrow 96 \pm 3$ \% Domain 1
- $\mathrm{E}<0$ field cooling $\rightarrow 93 \pm 2$ \% Domain 2
- Absolute measurement of sense of rotation (chirality)

X-ray absorption edges

Absorption coefficient μ defined by $I=I_{0} e^{-\mu z}$ In general x-ray scattering length is $f(Q, \hbar \omega)=f_{0}(Q)+f^{\prime}+i f^{\prime \prime}$

$$
f^{\prime \prime}=-\left(\frac{k^{2}}{2 \pi \rho_{a} r_{0}}\right) \frac{\mu}{2 k}
$$

X-ray Resonant Magnetic Scattering

"Interesting magnetic effects might occur near an absorption edge"Blume (1985)

(1985) First Resonant Scattering from a Ferromagnet

Large enhancement of XMRS at L edges of Holmium

- 100 fold increase when tuned to the L_{3} edge
-Two distinct types of transition are observed: one above and one below the edge
-Higher order satellites up to 4th order
-Polarization state changes with order
$1+$: rotated, $\sigma->\pi ’$
1-: unrotated, , $\sigma->\sigma^{\prime}$
- Signal disappears at T_{N}
-Peaks arise from transitions to bound states
1+: $2 p$-> 5d Dipole
1: $2 p$-> 4 f Quadrupole
XRMS is Born: A New Element and Electron Shell Sensitive Probe!

XRMS from Actinides

-107 fold increase when tuned to the M_{4} edge of U
-Magnetic peak ~1\% of Charge peak!
-Fit to sum of three coherent dipole oscillators
-Single Dipole transition at each edge: 3d->5f
-Polarization analysis: rotated $\sigma->\pi ’$

X-ray Dichroism

Preferential absorption of one of two orthogonal photon polarization state

(a) Simplified energy level diagram

(b) Normal XMCD geometry

Iron thin films, Chen et al. PRL (1995)

