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Abstract.

This paper first summarizes the foundations of stochastic calculus via regulariza-

tion and constructs through this procedure Itô and Stratonovich integrals. In the

second part, a survey and new results are presented in relation with finite quadratic

variation processes, Dirichlet and weak Dirichlet processes.
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1 Introduction

Stochastic integration via regularization is a technique of integration developed in

a series of papers by the authors starting from [45], continued in [46, 47, 48, 49, 44]

and later carried out by other authors, among them [50, 11, 12, 54, 53, 55, 57, 16,

15, 17, 18, 23]. Among some recent applications to finance, we refer for instance to

[31, 4].
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This approach constitutes a counterpart of a discretization approach initiated by

Föllmer ( [19]) and continued by many authors, see for instance [2, 21, 14, 13, 10, 22].

The two theories run parallel and, at the axiomatic level, almost all the results

we obtained via regularization can essentially be translated in the language of dis-

cretization.

The advantage of using regularization lies in the fact that this approach is natural

and relatively simple, and can easily be connected with other approaches. We list

now some typical features of the stochastic calculus via regularization.

• Two fundamental notions are the quadratic variation of a process, see Defini-

tion 2.3 and forward integral, see Definition 2.1. Calculus via regularization is

first of all a calculus related to finite quadratic variation processes, see section

4. A novelty of the paper is a new construction of Itô integral with respect to

continuous semimartingales based on forward integrals, see Section 3. Clas-

sical calculus will appear as a particular case of calculus via regularization.

Let the integrator be a classical Brownian motion W and the integrand an

adapted process H such that
∫ T

0
H2
t dt < ∞ a.s., where a.s. means almost

surely. We will show that the forward integral
∫ ·

0 Hd
−W coincides with Itô

integral
∫ ·

0
HdW , see section 3.5. On the other hand, the discretization ap-

proach constitues a sort of Riemann-Stieltjes type integral and only allows

integration of processes that are not too irregular, see Remark 3.34. This

fact is slightly alleviated using McShane type integrators, see the lines below

Remark 3.34.

• The calculus via regularization constitutes a bridge between non causal and

causal calculus operating through substitution formulae, see subsection 3.6.

A precise link between our forward integration and the one given by the

theory of enlargement of filtrations may be given, see [46]. Our integrals can

be connected to the well-known Skorohod type integrals, see again [46].

• With the help of symmetric integrals a calculus with respect to processes

having a higher variation than 2 may be developed. For instance the fractional

Brownian motion is the prototype of such processes.

• This stochastic calculus constitutes some kind of barrier separating the pure

pathwise calculus in the sense of T. Lyons and coauthors, see e.g. [35, 34, 30,

27], and any stochastic calculus taking into account an underlying probability.

see Section Section 6.

This paper will essentially focuse on the first point.
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The paper is organized as follows. First, in Section 2, we recall the basic definitions

and properties of forward, backward, symmetric integrals and covariations. The

related definitions and properties do not need a particular effort for justification.

A significant example is Young integral, see [56]. In Section 3 we redefine Itô

integrals in the spirit of integrals via regularization and we prove some typical

properties. We essentially define Itô integrals as forward integrals in a subclass and

we prolongate through functional analysis methods. Section 4 is devoted to finite

quadratic variation processes. In particular we establish C1-stability properties

and Itô type formula of C2-type. Section 5 provides some survey material with

new results related to the class of weak Dirichlet processes introduced by [11] with

later developments discussed by [23, 7]. Considerations about Itô formulae under

C1-conditions are discussed as well.

2 Stochastic integration via regularization

2.1 Definitions and fundamental properties

In this paper T will be a fixed positive real number. Let f be a real continuous

function defined either on [0, T ] or R+. We will convene that it will be prolongated

using the same symbol to the real line, setting

f(t) =

{

f(0) if t ≤ 0

f(T ) if t > T.
(2.1)

Let (Xt)t≥0 be a continuous process and (Yt)t≥0 be a process with paths in L1
loc(R+),

i.e. for any a > 0,

∫ a

0

|Yt|dt <∞ a.s.

Our generalized stochastic integrals and covariations will be defined through a regu-

larization procedure. More precisely, let I−(ε, Y, dX) (resp. I+(ε, Y, dX), I0(ε, Y, dX)

and C(ε, Y,X)) be the ε-forward integral (resp. ε-backward integral, ε-symmetric

integral and ε-covariation).

I−(ε, Y, dX)(t) =

∫ t

0

Y (s)
X(s+ ε) −X(s)

ε
ds; t ≥ 0, (2.2)

I+(ε, Y, dX)(t) =

∫ t

0

Y (s)
X(s) −X((s− ε)+)

ε
ds; t ≥ 0, (2.3)

I0(ε, Y, dX)(t) =

∫ t

0

Y (s)
X(s+ ε) −X((s− ε)+)

2ε
ds; t ≥ 0, (2.4)
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C(ε,X, Y )(t) =

∫ t

0

(

X(s+ ε) −X(s)
)(

Y (s+ ε) − Y (s)
)

ε
ds; t ≥ 0. (2.5)

Observe that previous integral processes are all continuous.

Definition 2.1 1) A family of processes (H
(ε)
t )t∈[0,T ] is said to converge to (Ht)t∈[0,T ]

in the ucp sense, if sup
0≤t≤T

|H
(ε)
t −Ht| goes to 0 in probability, as ε→ 0.

2) Provided that the corresponding limits exist in the ucp sense, we introduce the

following integrals and covariations by the following formulae

a) Forward integral :

∫ t

0

Y d−X = lim
ε→0+

I−(ε, Y, dX)(t).

b) Backward integral :

∫ t

0

Y d+X = lim
ε→0+

I+(ε, Y, dX)(t).

c) Symmetric integral :

∫ t

0

Y d◦X = lim
ε→0+

I◦(ε, Y, dX)(t).

d) Covariation : [X,Y ]t = lim
ε→0+

C(ε,X, Y )(t). When X = Y we often

denote [X ] = [X,X ].

Remark 2.2 Let X,X ′, Y, Y ′ be some processes with X,X ′ being continuous and

Y, Y ′ with paths in L1
loc(R+). ⋆ will be a symbol in {−,+◦}.

1. (X,Y ) 7→
∫ ·

0
Y d⋆X and (X,Y ) 7→ [X,Y ] are bilinear operations.

2. The covariation of continuous processes is a symmetric operation.

3. When it exists, [X ] is an increasing process.

4. Let τ a random time. Then [Xτ , Xτ ]t = [X,X ]t∧τ and

∫ t

0

Y 1[0,τ ]d
⋆X =

∫ t

0

Y d⋆Xτ =

∫ t

0

Y τd⋆Xτ =

∫ t∧τ

0

Y d⋆X,

where Xτ is the process X stopped at time τ defined by Xτ
t = Xt∧τ .

5. Given ξ, η be two fixed r.v., we have

∫ ·

0

(ξYs)d
⋆(ηXs) = ξη

∫ ·

0

Ysd
⋆Xs.

6. Integrals via regularization also have the following localization property. Sup-

pose that Xt = X ′
t, Yt = Y ′

t , ∀t ∈ [0, T ] on some subset Ω0 of Ω. Then

1Ω0

∫ t

0

Ysd
⋆Xs = 1Ω0

∫ t

0

Y ′
sd
⋆X ′

s, t ∈ [0, T ].
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7. If Y is an elementary process of the type Yt =

N
∑

i=1

Ai1Ii
, where Ai are random

variables and (Ii) a family of real intervals with end-points ai < bi, then

∫ t

0

Ysd
⋆Xs =

N
∑

i=1

Ai(Xbi∧t −Xai∧t).

Definition 2.3 1) If [X ] exists, X is said to be finite quadratic variation

process. [X ] is called quadratic variation of X. .

2) If [X ] = 0, X is called zero quadratic variation process.

3) A vector (X1, . . . , Xn) of continuous processes is said to have all its mutual

covariations if [X i, Xj] exists for every 1 ≤ i, j ≤ n.

We will also use the terminology bracket instead of covariation.

Remark 2.4 1) If (X1, . . . , Xn) has all its mutual covariations, then we have

[X i +Xj , X i +Xj] = [X i, X i] + 2[X i, Xj] + [Xj , Xj]. (2.6)

From the previous equality, it follows that [X i, Xj] is the difference of two in-

creasing processes therefore it has bounded variation; consequently the bracket

is a classical integrator in the Lebesgue-Stieltjes sense.

2) Relation (2.6) holds as soon as three brackets among the four exist. More

generally an identity of the type I1 + · · ·+ In = 0 has the following meaning:

if n − 1 terms among the Ij exist, the remaining one also makes sense and

the identity holds true.

3) We will see later, in Remark 5.19, that there exist processes X and Y such that

[X,Y ] exist but has no finite variation process; in particular (X,Y ) does not

have all its mutual brackets.

The properties below can be established in a elementary way exploiting the defini-

tion of integrals via regularization.

Proposition 2.5 Let X = (Xt)t≥0 be a continuous process and Y = (Yt)t≥0 be a

process with paths in L1
loc(R+). Then

1) [X,Y ]t =

∫ t

0

Y d+X −

∫ t

0

Y d−X.

2)

∫ t

0

Y d◦X =
1

2

(
∫ t

0

Y d+X +

∫ t

0

Y d−X

)

.
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3) Time reversal. We set X̂t = X(T−t), t ∈ [0, T ]. Then we have

1.

∫ t

0

Y d±X = −

∫ T

T−t

Ŷ d∓X̂, 0 ≤ t ≤ T ;

2.

∫ t

0

Y d◦X = −

∫ T

T−t

Ŷ d◦X̂, 0 ≤ t ≤ T ;

3. [X̂, Ŷ ]t = [X,Y ]T − [X,Y ]T−t, 0 ≤ t ≤ T .

4) Integration by parts. If Y is continuous we have

XtYt = X0Y0 +

∫ t

0

Xd−Y +

∫ t

0

Y d+X

= X0Y0 +

∫ t

0

Xd−Y +

∫ t

0

Y d−X + [X,Y ]t.

5) Kunita-Watanabe inequality. If X and Y are finite quadratic variation

processes we have

|[X,Y ]| ≤
{

[X ] [Y ]
}1/2

6) If X is a finite quadratic variation process and Y is a zero quadratic variation

process then (X,Y ) has all its mutual brackets and [X,Y ] = 0.

7) Let X be a bounded variation process and Y be a process with locally bounded

paths, and at most countable discontinuities. Then

a)

∫ t

0

Y d+X =

∫ t

0

Y d−X =

∫ t

0

Y dX, where

∫ t

0

Y dX denotes Lebesgue-

Stieltjes integral.

b) [X,Y ] = 0. In particular a bounded variation and continuous process is

a zero quadratic variation process.

8) Let X be an absolutely continuous process and Y be a process with locally

bounded paths. Then

∫ t

0

Y d+X =

∫ t

0

Y d−X =

∫ t

0

Y X ′ds.

Remark 2.6 If Y has more than countable discontinuities then previous point 7)

may fail. Take for instance Y = 1suppdV, where V is a strictly increasing continuous

function such that V ′(t) = 0 a.e. (almost everywhere) with respect to Lebesgue

measure. Then Y = 0 Lebesgue a.e., and Y = 1, dV a.e. Consequently

∫ t

0

Y dV = t, I−(ε, Y, dV )(t) = 0

∫ t

0

Y d−V = 0.

6



Remark 2.7 Point 2) of Proposition 2.5 states that the symmetric integral is the

average of the forward and backward integrals.

Proof (of Proposition 2.5). Points 1), 2), 3), 4) follow immediately from the

definition. For illustration, we only prove 3); operating a change of variable u =

T − s, we obtain

∫ t

0

Ys
Xs −X(s−ε)+

ε
ds = −

∫ T

T−t

Ŷu
X̂u+ε − X̂u

ε
du, 0 ≤ t ≤ T.

Since X is continuous, we can take the limit of both members and the result follows.

5) follows by Cauchy-Schwarz inequality which says that

1

ε

∣

∣

∣

∣

∫ t

0

(Xs+ε −Xs) (Ys+ε − Ys)ds

∣

∣

∣

∣

≤

{

1

ε

∫ t

0

(Xs+ε −Xs)
2ds

1

ε

∫ t

0

(Ys+ε − Ys)
2ds

}

1
2

.

6) is a consequence of 5).

7) Using Fubini, we have

1

ε

∫ t

0

Ys(Xs+ε −Xs)ds =
1

ε

∫ t

0

ds Ys

∫ s+ε

s

dXu

=

∫ t+ε

0

dXu
1

ε

∫ u∧t

(u−ε)∨0

Ysds.

Since Y has at most countable jumps,
1

ε

∫ u

(u−ε)∨0

Ysds → Yu, d|X | a.e. where |X |

denotes the total variation of X . Since t → Yt is locally bounded, then Lebesgue

convergence theorem implies that

∫ t

0

Y d−X =

∫ t

0

Y dX .

The fact that

∫ t

0

Y d+X =

∫ t

0

Y dX follows similarly.

b) is a consequence of point 1).

8) can be reached using similar elementary integration properties.

2.2 Young integral in a simplified framework

In this section we will consider the integral defined by Young ([56]) in 1936, and

implemented in the stochastic framework by Bertoin, see [3]. Here we will restrict
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ourselves to the case that integrand and integrator are Hölder continuous processes.

As a result, that integral will be shown to coincide with the forward but also with

backward and symmetric integral.

Definition 2.8 1. Let Cα be the set of Hölder continuous functions defined on

[0, T ] with index α > 0. Recall that f : [0, T ] 7→ R belongs to Cα if

Nα(f) := sup
0≤s,t≤T

|f(t) − f(s)|

|t− s|α
<∞.

2. Let X,Y : [0, T ] 7→ R be two functions of class C1, then the Young integral

of Y on [a, b] ⊂ [0, T ], with respect to X is defined as :

∫ b

a

Y d(y)X :=

∫ b

a

Y (t)X ′(t)dt, 0 ≤ a ≤ b ≤ T.

To extend Young integral to Hölder functions we need some estimate of

∫ T

0

Y d(y)X

in terms of Hölder norms of X and Y . More precisely let X and Y as in Definition

2.8 above; then in [14], it is proved:

∣

∣

∫ T

a

(Y − Y (a))d(y)dX
∣

∣ ≤ CρT
1+ρNα(X)Nβ(Y ), 0 ≤ a ≤ T. (2.7)

where α, β > 0, α+ β > 1, ρ ∈]0, α+ β − 1[, and Cρ is a universal constant.

Proposition 2.9 1. The map (X,Y ) ∈ C1([0, T ]) × C1([0, T ]) 7→

∫ ·

0

Y d(y)X

taking its values in Cα, can be continuously extended to a bilinear map from

Cα×Cβ to Cα. The value of this extension at point (X,Y ) ∈ Cα×Cβ will still

be denoted

∫ ·

0

Y d(y)X and is called the Young integral of Y with respect to

X.

2. Inequality (2.7) is still valid for any X ∈ Cα and Y ∈ Cβ.

Proof. 1. Let X,Y be of class C1([0, T ]) and

F (t) =

∫ t

0

Y d(y)X =

∫ t

0

Y (s)X ′(s)ds, t ∈ [0, T ].

For any a, b ∈ [0, T ], a < b, we have

F (b) − F (a) =

∫ b

a

(

Y (t) − Y (a)
)

d(y)X + Y (a)
(

X(b) −X(a)
)

.
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Then (2.7) implies

|F (b)−F (a)| ≤ Cρ(b−a)
1+ρNα(X)Nβ(Y )+ sup

0≤t≤T
|Y (t)| Nα(X)(b−a)α. (2.8)

Consequently F ∈ Cα.

Then the map (X,Y ) ∈ C1([0, T ]) × C1([0, T ]) 7→

∫ ·

0

Y d(y)X being bilinear, may

be extended to a continuous bilinear map from Cα × Cβ to Cα.

2. is a consequence of point 1.

Before discussing the relation between Young integral and integrals via regulariza-

tion, we provide an useful technical result.

Lemma 2.10 Let 0 < γ′ < γ ≤ 1, ε > 0. With Z in Cγ we associate

Zε(t) =
1

ε

∫ t

0

(

Z(u+ ε) − Z(u)
)

du, t ∈ [0, T ].

Then Zε converges to Z in Cγ
′

, as ε→ 0.

Proof of Lemma 2.10.

Zε(t) =
1

ε

∫ t

0

(

Z(u+ ε) − Z(u)
)

du =
1

ε

∫ t+ε

t

Z(u)du−
1

ε

∫ ε

0

Z(u)du,

for any 0 ≤ t ≤ T .

Setting ∆ε(t) = Zε(t) − Z(t), we get

∆ε(t) − ∆ε(s) =
1

ε

∫ t+ε

t

Z(u)du− Z(t) −
1

ε

∫ s+ε

s

Z(u)du+ Z(s)

=
1

ε

∫ t+ε

t

(

Z(u) − Z(t)
)

du −
1

ε

∫ s+ε

s

(

Z(u) − Z(s)
)

du,

where 0 ≤ s ≤ t ≤ T .

a) Suppose 0 ≤ s < s+ ε < t. Previous inequality implies

|∆ε(t) − ∆ε(s)| ≤
1

ε

∫ t+ε

t

∣

∣Z(u) − Z(t)
∣

∣du +
1

ε

∫ s+ε

s

∣

∣Z(u) − Z(s)
∣

∣du.

Since Z ∈ Cγ , then

|∆ε(t) − ∆ε(s)| ≤
Nγ(Z)

ε

(

∫ t+ε

t

(u− t)γdu+

∫ s+ε

s

(u− s)γdu
)

≤
2Nγ(Z)

γ + 1
εγ .
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But ε < t− s, consequently

|∆ε(t) − ∆ε(s)| ≤
2Nγ(Z)

γ + 1
)εγ−γ

′

|t− s|γ
′

. (2.9)

b) We now investigate the case 0 ≤ s < t < s + ε. The difference ∆ε(t) − ∆ε(s)

may be decomposed as follows :

∆ε(t) − ∆ε(s) =
1

ε

∫ t+ε

s+ε

(

Z(u) − Z(s+ ε)
)

du−
1

ε

∫ t

s

(

Z(u) − Z(s)
)

du

+
t− s

ε

(

Z(s+ ε) − Z(s)
)

+ Z(s) − Z(t).

Proceeding as in previous step and using the inequality 0 < t− s < ε, we obtain

|∆ε(t) − ∆ε(s)| ≤ Nγ(Z)
( 2

γ + 1

(t− s)γ+1

ε
+
t− s

ε1−γ
+ (t− s)γ

)

≤ 2Nγ(Z)
γ + 2

γ + 1
εγ−γ

′

|t− s|γ
′

.

At this point, the above inequality and (2.9) directly imply that Nγ′(Zε − Z) ≤

Cεγ−γ
′

and the claim is finally established.

In the sequel of this section X and Y will denote stochastic processes.

Remark 2.11 If X and Y have a.s. Hölder continuous paths respectively of order

α and β with α > 0, β > 0 and α+β > 1. Then one can easily prove that [X,Y ] = 0.

Proposition 2.12 Let X,Y be two real processes indexed by [0, T ] whose paths are

respectively a.s. in Cα and Cβ, with α > 0, β > 0 and α + β > 1. Then for

any symbol ⋆ ∈ {+,−, ◦} the integral

∫ ·

0

Y d⋆X coincides with the Young integral
∫ ·

0

Y d(y)X.

Proof of Proposition 2.12.

We establish that the forward integral coincides with the Young integral. The

equality concerning the two other integrals is a consequence of Proposition 2.5 1.,

2. and Remark 2.11.

By additivity we can suppose, without lost generality, that Y (0) = 0.

We set

∆ε(t) :=

∫ t

0

Y d(y)X −

∫ t

0

Y dXε.
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where

Xε(t) =
1

ε

∫ t

0

(

X(u+ ε) −X(u)
)

du, t ∈ [0, T ].

Since t 7→ Xε(t) is of class C1([0, T ]), then

∫ t

0

Y dXε is equal to the Young integral
∫ t

0

Y d(y)Xε and therefore

∆ε(t) =

∫ t

0

Y d(y)
(

X −Xε

)

.

Let α′ such that : 0 < α′ < α and α′ + β > 1. Applying inequality (2.7) we obtain

sup
0≤t≤T

|∆ε(t)| ≤ CρT
1+ρNα′(X −Xε)Nβ(Y ), ρ ∈]0, α′ + β − 1[.

Lemma 2.10 with Z = X and γ = α directly implies that ∆ε(t) goes to 0, uniformly

a.s. on [0, T ], as ε→ 0, concluding the proof of the Proposition.

3 Itô integrals and related topics

In this section we propose an alternative construction of Itô integral with respect to

a local martingale, based on calculus via regularization. Our approach is inspired

by McKean ([36]), section 2.1.

3.1 Some reminders on martingales theory

In this subsection, we recall basic notions related to martingale theory, essentially

without proofs, except when they help the reader. For detailed complements, see

[29], chap. 1., in particular for definition of adapted and progressively measurable

processes.

Let (Ft)t≥0 be a filtration on the probability space (Ω,F , P ) satisfying the usual

conditions, see Definition 2.25, chap. 1 in [29].

An adapted process (Mt) of integrable random variables, i.e. verifying E(|Mt|) <

∞, ∀t ≥ 0 is:

• an (Ft)-martingale if E(Mt|Fs) = Ms, ∀t ≥ s;

• a (Ft)- submartingale if E(Mt|Fs) ≥Ms, ∀t ≥ s

In this paper, all the submartingales (and therefore martingales) will be supposed

to be continuous.
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Remark 3.1 From that definition, we can deduce that if (Mt)t≥0 is a martingale,

then E(Mt) = E(M0), ∀t ≥ 0. If (Mt)t≥0 is a supermartingale (resp. submartin-

gale) then t −→ E(Mt) is decreasing (resp. increasing).

Definition 3.2 A process X is said to be square integrable if E(X2
t ) < ∞, for

any t ≥ 0.

When one speaks of a martingale, without σ field specification, one refers to the

natural filtration.

Definition 3.3 1. A (continuous) process (Xt)t≥0, is called (Ft)-local mar-

tingale (resp. local submartingale) if there is an increasing sequence (τn)

of stopping times such that Xτn1τn>0 is an (Ft)-martingale (resp. submartin-

gale) and lim
n→∞

τn = +∞ a.s.

Remark 3.4 • A martingale is a local martingale. A bounded local martingale

is a martingale.

• The set of local martingales is a vector algebra.

• If M is an (Ft)- local martingale, τ is a stopping time, then M τ is again an

(Ft)- local martingale.

• If M0 is bounded, it is possible to choose a localizing sequence (τn) such that

M τn is bounded.

Definition 3.5 A process S is called (continuous) (Ft)-semimartingale if it is

the sum of an (Ft)- local martingale and an (Ft)-adapted continuous finite variation

process.

A basic decomposition in stochastic analysis is the following.

Theorem 3.6 (Doob decomposition of a submartingale)

Let X be a (Ft)-local submartingale. Then, there is an (Ft)-local martingale M

and an adapted, continuous, and finite variation process V (such that V0 = 0) with

X = M + V . The decomposition is unique.

Definition 3.7 Let M be an (Ft)-local martingale. We denote by < M > the

bounded variation process intervening in the Doob decomposition of local submartin-

gale M2. In particular M2− < M > is an (Ft)-local martingale.
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In Corollary 3.20, we will prove that < M > coincides with [M,M ], so that the

oblique bracket < M > does not depend on the underlying filtration.

Corollary 3.8 Let M be an (Ft)−local martingale vanishing at zero, with < M >=

0. Then M is identically zero.

Proof. Due to stopping properties, we may suppose that M is bounded. Hence

Remark 3.4 implies that M2 is a bounded martingale and so E[M2
t ] = E[M2

0 ] = 0.

Consequently, for any t ≥ 0, Mt = 0 a.s. Since M is a continuous process, then a.s.,

Mt = 0, ∀t ≥ 0.

The following result will be needed in section 3.2.

Lemma 3.9 Let (Mn
t∈[0,T ]) be a sequence of (Ft) local martingales such that Mn

0 =

0 and < Mn >T converges to < M >T in probability as n → ∞. Then Mn → 0

ucp, when n→ ∞..

Proof. The proof is based on the following inequality stated in [29], Problem 5.25

Chap. 1, which holds for any (Ft)-local martingale (Mt) such that M0 = 0:

P
(

sup
0≤u≤t

|Mu| ≥ λ
)

≤ P
(

< M >t≥ δ
)

+
1

λ2
E

[

δ∧ < M >t
]

, (3.10)

for any t ≥ 0, λ, δ > 0.

3.2 The Itô integral

Let M be an (Ft)-local martingale. We construct here the Itô integral with respect

to M using stochastic calculus via regularization. We will proceed in two steps.

First we define the Itô integral
∫ ·

0 HdM for a smooth integrand process H as the

forward integral
∫ ·

0
Hd−M . Secondly, we extend H 7→

∫ ·

0
HdM with the help of

functional analysis arguments. We remark that the classical theory of Itô integrals

first defines the integral of simple step processes H , see Remark 3.14, for details.

We first observe that the forward integral of a process H of class C1 is well defined

because Proposition 2.5 4), 7) imply that

∫ t

0

Hd−M = HtMt−H0M0−

∫ t

0

Md+H = HtMt−H0M0−

∫ t

0

MsH
′
sds. (3.11)

We denote C the vector algebra of adapted processes whose paths are of class C0.

This linear space, equipped with the metrizable topology which governs the ucp

13



convergence, is an F−space. For the definition and properties of F−spaces, see [9],

chapter 2.1. We remark that the set Mloc of continuous (Ft)-local martingales is a

closed linear subspace of C, see for instance [23].

We denote by C1 the subspace of C of processes whose paths are a.s. of class C1.

The next crucial observation is the following.

Lemma 3.10 If H is an adapted process in C1 then
(∫ ·

0
Hd−M

)

is an (Ft)-local

martingale whose quadratic variation is given by

<

∫ ·

0

Hd−M >t=<

∫ ·

0

H2
sd < M >s .

Proof. We only sketch the proof. We restrict ourselves to prove that if M is a

local martingale then Y =

∫ ·

0

Hd−M is a local martingale.

Using localization, we can suppose that H,H ′ and M are bounded processes.

Let 0 ≤ s < t. Since H is of class C1, then Ht = Hs +

∫ t

s

H ′
udu. Therefore (3.11)

implies

Yt = HsMt −H0M0 −

∫ s

0

MuH
′
udu+

∫ t

s

(Mt −Mu)H
′
udu. (3.12)

Let u ∈ [s, t], then

E
[

(Mt −Mu)H
′
u|Fs

]

= E
[

E
(

Mt −Mu)H
′
u|Fu

]∣

∣Fs

]

= 0.

Consequently, taking the conditional expectation with respect to Fs in (3.12) yields

to

E
[

Yt|Fs
]

= HsMs −H0M0 −

∫ s

0

MuH
′
udu = Ys.

Using similar arguments we can check that Y 2 −

∫ ·

0

H2d < M > is a martingale.

The previous lemma allows to extend the map H 7→
∫ t

0
Hd−M . Let L2(d < M >)

be the set of progressively measurable processes such that

∫ T

0

H2d < M ><∞ a.s. (3.13)

L2(d < M >) is an F -space with respect to the metrizable topology d2: (Hn)

converges to H when n → ∞ if
∫ T

0
(Hn

s −Hs)
2d < M >s→ 0 in probability, when

n→ ∞.

Let Λ : C1 → Mloc be the map defined by ΛH =
∫ ·

0
Hd−M .

14



Lemma 3.11 If C1 (resp. Mloc) is equipped with d2 (resp. the ucp topology) then

Λ is continuous.

Proof. Let Hk be a sequence of processes in C1, converging to 0 when k → ∞,

according to d2. We set Nk =
∫ ·

0
Hkd−M . Lemma 3.10 implies that < Nk >T

converges to 0 in probability. Finally Lemma 3.9 concludes the proof.

We can now easily define the Itô integral. Since C1 is dense in L2(d < M >), with

respect to d2, Lemma 3.11 and standard functional analysis arguments imply that

Λ can be uniquely and continuously extended to L2(d < M >).

Definition 3.12 If H belongs to L2(d < M >), then we denote by
∫ ·

0
HdM := ΛH

and we call it the Itô integral of H with respect to M .

Proposition 3.13 If H in L2(d < M >), then (
∫ ·

0 HdM) is an (Ft)-local martin-

gale with bracket

<

∫ ·

0

HdM >=

∫ ·

0

H2d < M > . (3.14)

Proof. Let H ∈ L2(d < M >). From Definition 3.12, (
∫ ·

0 HdM) is an (Ft)-local

martingale. It remains to prove that (3.14).

Since H belongs to L2(d < M >), then there exists a sequence (Hn) of elements in

C1, such that Hn → H in L2(d < M >).

Let us introduce Nn =

∫ ·

0

HndM and N ′
n = N2

n− < Nn >.

Therefore Nn → N , ucp, n→ ∞ and < Nn >=

∫ ·

0

H2
nd < M >.

The stochastic Dini lemma (see Lemma 3.1 in [49]) implies that

∫ ·

0

H2
nd < M >

goes to

∫ ·

0

H2d < M > in the ucp sense, as n → ∞. Therefore N ′
n converges with

respect to the ucp topology, to the local martingale N2 −

∫ ·

0

H2d < M >, n→ ∞.

This actually proves (3.14).

Remark 3.14 1. We recall that whenever H ∈ C1

∫ ·

0

HdM =

∫ ·

0

Hd−M.

This property will be generalized in Propositions 3.16 and 3.33.
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2. We emphasize that Itô stochastic integration based on adapted simple step

processes and our method, finally, lead to the same object.

If H is of the type Y 1]a,b] where Y is an Fa measurable random variable,

it is possible to show that
∫ t

0
HdM = Y (Mt∧b − Mt∧a) Since the class of

elementary processes obtained by linear combination of previous processes is

dense in L2(d < M >) and the map Λ is continuous, then
∫ ·

0
HdM equals

the classical Itô integral.

In Proposition 3.15 below we state the chain rule property.

Proposition 3.15 Let (Mt, t ≥ 0) be an (Ft)-local martingale, (Ht, t ≥ 0) be in

L2(d < M >), N :=

∫ ·

0

HsdMs and (Kt, t ≥ 0) be a (Ft)-progressively measurable

process such that

∫ T

0

(HsKs)
2d < M >s<∞ a.s.. Then

∫ t

0

KsdNs =

∫ t

0

HsKsdMs, 0 ≤ t ≤ T. (3.15)

Proof. Since the map Λ : H ∈ L2(d < M >) 7→
∫ ·

0 HdM is continuous, it is

sufficient to prove (3.15) for H and K of class C1.

For simplicity we suppose M0 = H0 = K0 = 0.

We have
∫ t

0

KdN =

∫ t

0

(Nt −Nu)K
′
udu,

and

Nt −Nu =

∫ t

0

(Mt −Mv)H
′
vdv −

∫ u

0

(Mu −Mv)H
′
vdv

= (Mt −Mu)Hu +

∫ t

u

(Mt −Mv)H
′
vdv,

where 0 ≤ u ≤ t.

Using Fubini theorem we get

∫ t

0

KdN =

∫ t

0

(Mt−Mu)(K
′
uHu+KuH

′
u)du =

∫ t

0

(Mt−Mu)(HK)′udu =

∫ t

0

HKdM.

3.3 Connections with calculus via regularizations

Next Proposition will show that, under suitable conditions, the Itô integral corre-

sponds to forward integral.
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Proposition 3.16 Let X be an (Ft)-local martingale and suppose that (Ht) is

adapted and has a left limit at each point. Then

∫ ·

0

Hsd
−Xs =

∫ ·

0

Hs−dXs. In

particular if H is càdlàg then

∫ ·

0

Hsd
−Xs =

∫ ·

0

HsdXs.

Proof. For simplicity we suppose that H is continuous. Since s 7→

∫ s

s−ε

Hudu is

of class C1, then

∫ t

0

(1

ε

∫ s

s−ε

Hudu
)

dXs =

∫ t

0

(1

ε

∫ s

s−ε

Hudu
)

d−Xs

= Xt

(1

ε

∫ t

t−ε

Hudu
)

−H0X0 −
1

ε

∫ t

0

(Hs −Hs−ε)Xsds.

We modify the second integral in the right-hand side as follows

−

∫ t

0

(Hs −Hs−ε)Xsds =

∫ t

0

Hs(Xs+ε −Xs)ds−

∫ t

t−ε

HsXs+εds

+ H0

∫ ε

0

Xsds.

Consequently

∫ t

0

(1

ε

∫ s

s−ε

Hudu
)

dXs =
1

ε

∫ t

0

Hs(Xs+ε −Xs)ds+Rε(t), (3.16)

where

Rε(t) = Xt

(1

ε

∫ t

t−ε

Hsds
)

−
1

ε

∫ t

t−ε

HsXs+εds+H0

(

1

ε

∫ ε

0

Xsds−X0

)

(3.17)

=
1

ε

∫ t

t−ε

Hs(Xt −Xs+ε)ds+H0

(

1

ε

∫ ε

0

Xsds−X0

)

Since Rε → 0, ucp, as ε→ 0 and the mapH 7→
1

ε

∫ ·

·−ε

Hsds is a continuous operator

from L2(d < M >) to itself, therefore

∫ ·

0

Hsd
−Xs and

∫ ·

0

HsdXs coincide.

Remark 3.17 Let H be a progressively measurable process. As the proof of Propo-

sition 3.16 shows, the conclusion of this proposition is still valid as soon as it is

only supposed that, a.s. Ht = Ht−, d < M >· a.e.

When the integrator is a Brownian motion W , we will see in Theorem 3.33 below

that forward integral coincides with the Itô integral for any integrand in L2(d <
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W >). This is no longer true when the integrator is a general semimartingale.

The following example provides a martingale (Mt) and a deterministic integrand h

such that both Itô integral

∫ t

0

hdM and forward integral

∫ t

0

hd−M exist, but are

different.

Example 3.18 Let ψ : [0,∞[7→ R such that ψ(0) = 0, ψ is strictly increasing, and

ψ′(t) = 0 a.e. (with respect to the Lebesgue measure). Let (Mt) be the process:

Mt = Wψ(t), t ≥ 0, and h be the indicator function of the support of the positive

measure dψ. Since W 2
t −t is a martingale, < W >t= t. Clearly (Mt) is a martingale

and < M >t= ψ(t), t ≥ 0. Observe that h = 0 a.e. with respect to Lebesgue

measure. Then

∫ ·

0

h(s)
M(s+ ε) −M(s)

ε
ds = 0 and so

∫ ·

0

hd−M = 0.

On the other hand, h = 1, dψ a.e., implies

∫ t

0

hdM = Mt, t ≥ 0.

Remark 3.19 A significant result of classical stochastic calculus is Bichteler-Dellacherie

theorem, see [42] Th. 22, Section III.7. In the regularization approach, an analogous

property occurs: if the forward integral exists for a rich class of adapted integrands,

then the integrator is forced to be a semimartingale. More precisely we recall the

significant statement of [46], Proposition 1.2.

Let (Xt, t ≥ 0) be an (Ft)-adapted and continuous process such that for any càdlàg,

bounded and adapted process (Ht), the forward integral

∫ ·

0

Hd−X exists. Then (Xt)

is a (Ft)-semimartingale.

From Proposition 3.16 we deduce the relation between oblique and square bracket.

Corollary 3.20 Let M be an (Ft)-local martingale. Then < M >= [M ] and

M2
t = M2

0 + 2

∫ t

0

Md−M+ < M >t . (3.18)

Proof. The proof of (3.18) is very simple and is based on the following identity

(Ms+ε −Ms)
2 = M2

s+ε −M2
s − 2Ms(Ms+ε −Ms).

Integrating on [0, t] leads to

1

ε

∫ t

0

(Ms+ε −Ms)
2ds =

1

ε

∫ t

0

M2
s+εds−

1

ε

∫ t

0

M2
s ds−

2

ε

∫ t

0

Ms(Ms+ε −Ms)ds

=
1

ε

∫ t+ε

t

M2
s ds−

1

ε

∫ ε

0

M2
s ds−

2

ε

∫ t

0

Ms(Ms+ε −Ms)ds.
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Therefore if we take the limit ε→ 0, we obtain

[M ]t = M2
t −M2

0 − 2

∫ t

0

Msd
−Ms.

Since t 7→ Mt is continuous, the forward integral

∫ ·

0

M−
d M coincides with the

corresponding Itô integral. Consequently M2
t −M2

0 − [M ]t is a local martingale.

This proves both [M ] =< M > and (3.18).

Corollary 3.21 Let M,M ′ be two (Ft)-local martingales. Then (M,M ′) has all

its mutual covariations.

Proof. Since M,M ′ and M +M ′ are continuous local martingales, Corollary 3.20

directly implies that they are finite quadratic variation processes. The bilinearity

property of the covariation implies directly that [M,M ′] exists and equals

1

2
([M +M ′] − [M ] − [M ′]).

Proposition 3.22 Let M and M ′ be two (Ft)-local martingales, H and H ′ be two

progressively measurable processes such that
∫ ·

0

H2d < M ><∞,

∫ ·

0

H2d < M ′ ><∞.

Then

[

∫ ·

0

HdM,

∫ ·

0

H ′dM ′]t =

∫ t

0

HH ′d[M,M ′]t.

Next proposition provides a simple example of two processes (Mt) and (Yt) such

that [M,Y ] exists even though the vector (M,Y ) has no mutual covariation.

Proposition 3.23 Let (Mt) be an continuous (Ft)-local martingale, (Yt) a càdlàg

and an (Ft)-adapted process. If M and Y are independent then [M,Y ] = 0.

Proof. Let Y be the σ-field generated by (Yt). We denote (M̃t) the smallest

filtration satisfying the usual conditions and containing (Ft) and Y (i.e. σ(Ms, s ≤

t) ∨ Y ⊂ M̃t, ∀t ≥ 0).

It is not difficult to show that (Mt) is also an (M̃t)-martingale.

Thanks to Proposition 2.5 1., it is sufficient to prove that

∫ t

0

Y d−M =

∫ t

0

Y d+M. (3.19)
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Proposition 3.16 implies that the left member coincides with the (Mt)- Itô integral
∫ t

0 Y dM .

For simplicity we suppose in the sequel that Y is continuous, and M0 = 0. We

proceed as in the proof of Proposition 3.16. Since s 7→

∫ s+ε

s

Yudu is of class C1,

then

∫ t

0

(1

ε

∫ s+ε

s

Yudu
)

d−Ms = Mt

(1

ε

∫ s+ε

s

Yudu
)

−
1

ε

∫ t

0

(Ys+ε − Ys)Msds.

Since process Y is independent of (Mt), then the forward integral in the left-hand

side above is actually an Itô integral. Therefore, taking the limit ε → 0 and using

Proposition 3.16, we get

∫ t

0

Y dM =

∫ t

0

Y d−M = YtMt −

∫ t

0

Md−Y.

According to point 4) of Proposition 2.5, the right member of the previous identity

is equal to

∫ t

0

Y d+M . This proves (3.19).

3.4 The semimartingale case

We begin this section by proving a technical lemma which implies that the decom-

position of a semimartingale is unique.

Lemma 3.24 Let (Mt, t ≥ 0) be a (Ft)-local martingale with bounded variation.

Then (Mt) is constant.

Proof. Since M has bounded variation, then Proposition 2.5, 7) implies that

[M ] = 0. Consequently Corollaries 3.8 and 3.20 imply that Mt = M0, t ≥ 0.

It is now easy to define stochastic integration with respect to continuous semi-

martingales.

Definition 3.25 Let (Xt, t ≥ 0) be a (Ft)-semimartingale with canonical decom-

position X = M + V , where M (resp. V ) is a continuous, (Ft)-local martingale

(resp. bounded variation), continuous and (Ft)-adapted process vanishing at 0. Let

(Ht, t ≥ 0) be an (Ft)-progressively measurable process, satisfying

∫ T

0

H2
sd[M,M ]s <∞, and

∫ T

0

|Hs|d‖V ‖s <∞, (3.20)
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where ‖V ‖t is the total variation of V over [0, t].

We set
∫ t

0

HsdXs =

∫ t

0

HsdMs +

∫ t

0

HsdVs, 0 ≤ t ≤ T.

Remark 3.26 1. In previous definition, integral with respect to M (resp. V )

is an Itô-type (resp. Stieltjes-type) integral.

2. It is clear that

∫ ·

0

HsdXs is again a continuous (Ft)-semimartingale, with

martingale part

∫ ·

0

HsdMs and bounded variation component

∫ ·

0

HsdVs.

Once we have introduced stochastic integrals with respect to continuous semimartin-

gales, it is easy to define Stratonovich integrals.

Definition 3.27 Let (Xt, t ≥ 0) be a (Ft)-semimartingale and (Yt, t ≥ 0) be a (Ft)-

progressively measurable process. The Stratonovich integral of Y with respect to

X is defined as follows

∫ t

0

Ys ◦ dXs =

∫ t

0

YsdXs +
1

2
[Y,X ]t; t ≥ 0, (3.21)

if [Y,X ] and
∫ ·

0 YsdXs exist.

Remark 3.28 1. Recall that conditions of type (3.20) ensure existence of the

stochastic integral with respect to X.

2. If (Xt) and (Yt) are (Ft)-semimartingales, then
∫ ·

0
Ys◦dXs exists and is called

Fisk-Stratonovich integral.

3. Suppose that (Xt) is an (Ft)-semimartingale and (Yt) is a left continuous

and (Ft)-adapted process such that [Y,X ] exists. We already have observed

(see Proposition 3.16) that

∫ ·

0

YsdXs coincides with

∫ ·

0

Ysd
−Xs. Proposition

2.5 1) and 2) imply that the Stratonovich integral

∫ ·

0

Ys ◦ dXs is equal to the

symmetric integral

∫ ·

0

Ysd
◦Xs.

At this point we can easily identify the covariation of two semimartingales.

Proposition 3.29 Let Si = M i + V i two (Ft)-semimartingales, i = 1, 2, where

M i are local martingales and V i bounded variation processes. We have [S1, S2] =

[M1,M2].
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Proof. The result follows directly from Corollary 3.21, Proposition 2.5 7), and

the bilinearity of the covariation.

Corollary 3.30 Let S1, S2 be two (Ft)- semimartingales such that their martingale

parts are independent. Then [S1, S2] = 0.

Proof. It follows from Proposition 3.23.

Proposition 3.16 can be generalized as follows.

Proposition 3.31 LetX be an (Ft)-semimartingale and suppose that (Ht) is adapted,

with left limits at each point. Then

∫ ·

0

Hsd
−Xs =

∫ ·

0

Hs−dXs. If H is càdlàg then
∫ ·

0

Hd−X =

∫ ·

0

HdX.

Remark 3.32 1. Forward integral generalizes not only the classical Itô integral

but also the integral issued from the enlargement of filtrations theory, see

e.g. [28]. Let (Ft) and (Gt) be two filtrations fulfilling usual conditions with

Ft ⊂ Gt, for any t. Let X be a (Ft)-semimartingale with decomposition

M + V , M being a continuous (Ft)-local martingale and V a continuous

with bounded variation (Ft)-adapted process. Let H be a càdlàg bounded

(Ft)-adapted process. According to Proposition 3.31, the (Ft)-Itô integral
∫ ·

0 HdX equals the (Gt)-Itô integral and it coincides with the forward integral
∫ ·

0
Hd−X.

2. The result stated above is wrong when H has no left limits at each point.

Using a tricky example in [41], it is possible to exhibit two filtrations (FX
t )

and (Gt) with FX
t ⊂ Gt for each t ≥ 0, a bounded and (FX

t )-progressively

measurable process H, such that
∫ ·

0
Hd−X equals the (FX

t )-Itô integral but

differs from the (Gt)-Itô integral. More precisely we have.

(a) X is a 3-dimensional Bessel process with natural filtration (FX
t ) and

decomposition

Xt = Wt +

∫ t

0

1

Xs
ds, (3.22)

where W is an (FX
t )-Brownian motion,

(b) X is an (Gt)-semimartingale with decomposition M + V ,

(c) H is (FX
t )-progressively measurable process,
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(d) Ht(ω) = 1 for almost all dt⊗ dP (t, ω) ∈ [0, T ]× Ω,

(e) βt =
∫ t

0
HdX is an (Gt)-Brownian motion.

Property (d) implies that I−(ε,H, dX) = I−(ε, 1, dX) so that
∫ t

0 Hd
−X =

Xt. The (FX
t )-Itô integral

∫ t

0
HdX equals

∫ t

0
HdW +

∫ t

0
Hs

Xs

ds. Theorem 3.33

below and Proposition 2.5 8) imply that the previous integral coincides with
∫ t

0
Hd−X. Since a Bessel process cannot be equal to a Brownian motion, the

(Gt)-Itô integral
∫ t

0 HdX differs from the (FX
t )-Itô integral

∫ t

0 HdX.

According to ii), [X ]t = [W ]t = t; therefore M is an (Gt)-Brownian motion.

Theorem 3.33 below say that
∫ ·

0 Hd
−M =

∫ ·

0 HdM ; the additivity of forward

integral and Itô integral imply that
∫ ·

0
Hd−V 6=

∫ ·

0
HdV . Consequently it

can be deduced from Proposition 2.5 7) a) that H is not a.s. with countable

discontinuities. This explains why the (Gt)-Itô integral
∫ t

0 HdX is different

from the (FX
t )-Itô integral

∫ t

0
HdX.

3.5 The Brownian case

In this section we will investigate the link between forward and Itô integration with

respect to a Brownian motion. In this section (Wt) will denote a (Ft)-Brownian

motion.

The main result of this subsection is the following.

Theorem 3.33 Let (Ht, t ≥ 0) be an (Ft)-progressively measurable process satisfy-

ing

∫ T

0

H2
sds <∞ a.s. Then the Itô integral

∫ ·

0

HsdWs coincides with the forward

integral

∫ ·

0

Hsd
−Ws.

Remark 3.34 1. We would like to illustrate the advantage of using regulariza-

tion instead of discretization ([19]) through the following example.

Let g be the indicator function of Q ∩ R+.

Let Π = {t0 = 0, t1, · · · , tN = T } be a subdivision of [0, T ] and

I(Π, g, dW )t :=
∑

i

g(ti)
(

W (ti+1 ∧ t) −W (ti ∧ t)
)

; 0 ≤ t ≤ T.

We remark that

I(Π, g, dW )t =

{

0 if Π ⊂ R \ Q

Wt if Π ⊂ Q.
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Therefore there is no canonical definition of

∫ t

0

gdW through discretization.

This is not surprising since g is not everywhere continuous and so is not

Riemann integrable. On the contrary, integration via regularization seems

drastically more adapted to define

∫ t

0

gd−W , for any g ∈ L2([0, T ]), since

this integral coincides with the classical Itô-Wiener integral.

2. In fact, the discretization approach admits several sophistications in the lit-

erature; a significant one is McShane stochastic integration, see [37] chap. 2

and 3. McShane makes use of the so called belated partition in the framework

of discretization approach. In such a case a class of non Riemann integrable

functions g can be integrated versus Brownian motion.

Proof (of Theorem 3.33) 1) Suppose first that H is moreover a continuous pro-

cess. Replacing X by W in (3.16) we get

∫ t

0

(1

ε

∫ s

s−ε

Hudu
)

dWs =
1

ε

∫ t

0

Hs(Ws+ε −Ws)ds+Rε(t), (3.23)

where the reminder term Rε(t) is given by (3.17).

Recall the maximal inequality ([51], chap. I.1): there exists a constant C such that

for any φ ∈ L2([0, T ]),

∫ T

0

(

sup
0<η<1

{1

η

∫ v

(v−η)+

φvdv
})2

du ≤ C

∫ T

0

φ2
vdv. (3.24)

2) We claim that (3.23) may be extended to progressively measurable processes

(Ht) satisfying

∫ ·

0

H2
sds <∞.

Let Hn
t = n

∫ t

t−1/n

Hudu, t ≥ 0.

It is clear that as n→ ∞

• for a.e. t, Hn
t converges to Ht,

• (Hn
t ) converges to (Ht) in L2(d < W >) (i.e.

∫ ·

0

(Hn
s −Hs)

2ds goes to 0 in

the ucp sense).

Since

<

∫ ·

0

(1

ε

∫ s

s−ε

Hudu
)

dWs >t=

∫ ·

0

(1

ε

∫ s

s−ε

Hudu
)2

ds,

then (3.24) and Lemma 3.9 imply that (3.23) and (3.17) are valid.
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Taking ε→ 0 in (3.23), and using once more (3.24) Lemma 3.9 prove Theorem 3.33.

3.6 Substitution formulae

We conclude Section 3, observing that our approach allows us to integrate non

adapted integrands in a context which is covered neither by Skorohod integration

theory nor by enlargement of filtrations. A class of examples is the following.

Let (X(t, x), t ≥ 0, x ∈ Rd), (Y (t, x), t ≥ 0, x ∈ Rd) be two families of continuous

(Ft) semimartingales depending on a parameter x and (H(t, x), t ≥ 0, x ∈ Rd) (Ft)

progressively measurable processes depending on x. Let Z be a FT -measurable r.v.,

taking its values in Rd.

Under some minimal conditions of Garsia-Rodemich-Rumsey type, see for instance

[48, 49], we have
∫ t

0

H(s, Z) d−X(s, Z) =

∫ t

0

H(s, x) dX(s, x)
∣

∣

∣

x=Z
,

[X(·, Z), Y (·, Z)] = [X(·, x), Y (·, x)]
∣

∣

∣

x=Z
.

The first result is useful to prove existence results for SDE’s driven by a semimartin-

gale, with an anticipating initial condition.

It is significant to remark that previous substitution formulae create anticipating

calculus in a setting which is not covered by Malliavin non-causal calculus since

our integrators may be general semimartingales, while Skorohod integral applies

essentially for Gaussian integrators or eventually Poisson type processes. Note

that the usual causal Itô calculus may not be applied since (X(s, Z))s is not a

semimartingale, take for instance a r.v. Z such that FT = σ(Z).

4 Calculus for finite quadratic variation processes

4.1 Stability of the covariation

One basic tool of calculus via regularization states that the family of finite quadratic

variation processes is stable through C1 transformations.

Proposition 4.1 Let (X1, X2) be a vector of processes having all its mutual co-

variations, f, g ∈ C1(R). Then, [f(X1), g(X2)] exists and it is given by

[f(X1), g(X2)]t =

∫ t

0

f ′(X1
s )g

′(X2
s )d[X

1, X2]s
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Proof. Using polarization techniques (bilinearity arguments), it is enough to con-

sider the case X = X1 = X2 and f = g.

Using Taylor’s formula, we expand as follows

f(Xs+ε) − f(Xs) = f ′(Xs)(Xs+ε −Xs) +R(s, ε)(Xs+ε −Xs), s ≥ 0, ε > 0,

where R(s, ε) denotes here a generic process which converges in the ucp sense to 0,

when ε→ 0.

Since f ′ is unifomly continuous on each compact, this implies that

(f(Xs+ε) − f(Xs))
2

= f ′(Xs)
2(Xs+ε −Xs)

2 +R(s, ε)(Xs+ε −Xs)
2

Integrating from 0 to t, we get

1

ε

∫ t

0

(f(Xs+ε) − f(Xs))
2ds = I1(t, ε) + I2(t, ε)

where

I1(t, ε) =

∫ t

0

f ′(Xs)
2 (Xs+ε −Xs)

2

ε
ds,

I2(t, ε) =
1

ε

∫ t

0

R(s, ε)(Xs+ε −Xs)
2ds.

Clearly we have

sup
t≤T

|I2(t, ε)| ≤ sup
s≤T

|R(s, ε)|
1

ε

∫ T

0

(Xs+ε −Xs)
2ds.

Since [X ] exists then I2(·, ε)
ucp
−→ 0. The result will follow if we establish

1

ε

∫ ·

0

Ysdµε(s)
ucp
−→

∫ ·

0

Ysd[X,X ]s (4.1)

where µε(t) =
∫ t

0
ds
ε (Xs+ε −Xs)

2 and Y is a continuous process. It is not difficult

to verify that a.s., µε(dt) converges to d[X,Y ], when ε → 0. This finally implies

(4.1).

4.2 Itô formulae for finite quadratic variation processes

Even if all the Itô formulae that we will consider can be stated in the multidi-

mensional case, see for instance [48], we will only deal here with dimension 1. Let

X = (Xt)t≥0 be a continuous process.
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Proposition 4.2 Suppose that [X,X ] exists and let f ∈ C2(R). Then

∫ ·

0

f ′(X)d−X and

∫ ·

0

f ′(X)d+X exist. (4.2)

Moreover

a) f(Xt) = f(X0) +
∫ t

0 f
′(X)d∓X ± 1

2

∫ t

0 f
′′(Xs)d[X,X ]s,

b) f(Xt) = f(X0) +

∫ t

0

f ′(X)d∓X ±
1

2
[f ′(X), X ]t,

c) f(Xt) = f(X0) +

∫ t

0

f ′(X)d◦X.

Proof. c) follows from b) summing up + and −.

b) follows from a), since Proposition 4.1 implies that

[f ′(X), X ]t =

∫ t

0

f ′′(X)d[X,X ].

a) and (4.2) follow by similar methods as Proposition 4.1 proceeding this time with

Taylor expansion up to second order.

We emphasize that existence of the quadratic variation is closely connected with

existence of some related forward and backward integrals.

Lemma 4.3 Let X be a continuous process. Then [X,X ] exists ⇐⇒

∫ ·

0

Xd−X

exists ⇐⇒

∫ ·

0

Xd+X exists.

Proof. We start with identity

(Xs+ε −Xs)
2 = X2

s+ε −X2
s − 2Xs(Xs+ε −Xs). (4.3)

We observe that, when ε→ 0,

1

ε

∫ t

0

(X2
s+ε −X2

s )ds→ X2
t −X2

0 .

Integrating (4.3) from 0 to t and dividing by ε, we easily obtain the equivalence

between the two first assertions.

The equivalence between the first and the third one follows replacing ε, with −ε in

(4.3).

Lemma 4.3 admits the following generalization.
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Corollary 4.4 Let X be a continuous process. The following properties are equiv-

alent

a) [X,X ] exists;

b)

∫ ·

0

g(X)d−X exists ∀g ∈ C1;

c)

∫ ·

0

g(X)d+X exists ∀g ∈ C1.

Proof. The Itô formula stated in Proposition 4.2 1) implies a) ⇒ b). b) ⇒ a)

follows setting g(x) = x and using Lemma 4.3.

b) ⇔ c) because of Proposition 2.5 1) which states that

∫ ·

0

g(X)d+X =

∫ ·

0

g(X)d−X + [g(X), X ],

and Proposition 4.1 saying that [g(X), X ] exists.

Previous Itô formula becomes as follows in the case when X is a semimartingale.

Proposition 4.5 Let (St)t≥0 be a continuous (Ft)−semimartingale, f ∈ C2(R).

We have the following.

1.

f(St) = f(S0) +

∫ t

0

f ′(Su)dSu +
1

2

∫ t

0

f ′′(Su)d[S, S]u

2. Let (S0
t ) be another continuous (Ft)-semimartingale. The following integra-

tion by parts holds:

StS
0
t = S0S

0
0 +

∫ t

0

SudS
0
u +

∫ t

0

S0
udSu + [S, S0]t.

Proof. We recall that Itô and forward integrals coincide, see Proposition 3.16.

Therefore point 1. is a consequence of Proposition 4.2.

2. is a consequence of integration by parts formula Proposition 2.5 4).

4.3 Lévy area

4.8
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At Corollary 4.4, we have seen that
∫ t

0
g(X)d−X exists when X is a one-dimensional

finite quadratic variation process and g ∈ C1(R).

Let X is a two-dimensional so that X = (X1, X2) and has all its mutual covariations

and consider g ∈ C1(R2; R2). We naturally define, if it exists,

∫ t

0

g(X) · d−X = lim
ε→0+

I−(ε, g(X) · dX)(t),

where

I−(ε, g(X) · dX)(t) =

∫ t

0

g(X)(s) ·
X(s+ ε) −X(s)

ε
ds; 0 ≤ t ≤ T, (4.4)

and · denotes the scalar product in R2.

Formulating a 2-dimensional Itô formula of the same type as Proposition 4.2, it

is possible to show that
∫ t

0
g(X) · d−X exists if g = ∇u where u is a potential

of class C2. If g is a general C1(R2) function, we cannot expect in general that
∫ t

0
g(X) · d−X exists.

T. Lyons rough paths theory approach, see for instance [35, 34, 30, 27, 8] has

considered in detail the problem of the existence of integrals of the type
∫ t

0 g(X)·dX .

In this theory, the concept of Lévy area plays a significant role. Translating this in

our context one would say that the essential assumption is that X = (X1, X2) has

a Lévy area type process. This section will only make some basic observations on

that topic from the perspective of stochastic calculus via regularization.

Given two classical semimartingales S1, S2, the classical notion of Lévy area is given

by

L(S1, S2)t =

∫ t

0

S1dS2 −

∫ t

0

S2dS1,

where previous integrals are of Itô type.

Definition 4.6 Given two processes X and Y , we denote

L(X,Y )t = lim
ε→0+

∫ t

0

XsYs+ε −Xs+εYs

ε
ds.

where the limit is understood in the ucp sense. L(X,Y ) is called the Lévy area of

processes X and Y .

Remark 4.7 The following properties are easy to establish.

1. L(X,X) ≡ 0.
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2. The Lévy area is an antisymmetric operation, i.e.

L(X,Y ) = −L(Y,X).

Using the approximation of symmetric integral we can easily prove the following.

Proposition 4.8
∫ ·

0 Xd
◦Y exists if and only if L(X,Y ) exists. Moreover

2

∫ t

0

Xd◦Y = XtYt −X0Y0 + L(X,Y )t

Recalling the convention that an equality among three objects implies that at least

two among the three are defined, we have the following.

Proposition 4.9 1. L(X,Y )t =
∫ t

0
Xd◦Y −

∫ t

0
Y d◦X.

2. L(X,Y )t =
∫ t

0 Xd
−Y −

∫ t

0 Y d
−X.

Proof.

1. From Proposition 4.8 applied to X,Y and Y,X , and by antisymmetry of Lévy

area we have

2

∫ t

0

Xd◦Y = XtYt −X0Y0 + L(X,Y )t,

2

∫ t

0

Y d◦X = XtYt −X0Y0 − L(X,Y )t.

Taking the difference of the two lines, 1. follows.

2. follows from the definition of forward integrals.

Remark 4.10 If [X,Y ] exists, point 2. of Proposition 4.9 is a consequence of point

1. and of Proposition 2.5 1., 2.

For a real valued process (Xt)t≥0, Lemma 4.3 says that

[X,X ] exists ⇔

∫ ·

0

Xd−X exists.

Given a vector of processes X = (X1, X2) we may ask wether the following state-

ment is true:
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(X1, X2) has all its mutual brackets if and only if

∫ ·

0

X id−Xj exists,

for i, j = 1, 2. In fact the answer is negative if the two-dimensional process X does

not have a Lévy area.

Remark 4.11 Let us suppose that (X1, X2) has all its mutual covariations. Let

∗ = ◦,−,+. The following are equivalent.

1. The Lévy area L(X1, X2) exists.

2.
∫ ·

0 X
id∗Xj exists for any i, j = 1, 2.

By Lemma 4.3, we first observe that
∫

X id◦X i exists since X i is a finite quadratic

variation process. In point 2. the equivalence between the cases ∗ = ◦,−,+ is

obvious using Proposition 2.5 1) 2). Equivalence between the existence of
∫ ·

0
X1d◦X2

and L(X1, X2) has already been established in Proposition 4.8.

5 Weak Dirichlet processes

5.1 Generalities

Weak Dirichlet processes constitute a natural generalization of Dirichlet processes,

which naturally extend semimartingales. Dirichlet processes have been considered

by many authors, see for instance [20, 2].

Let (Ft)t≥0 be a fixed filtration fulfilling the usual conditions. In the present section

5, (Wt) will denote a classical (Ft)-Brownian motion. We will remain for simplicity,

in the framework of continuous processes.

Definition 5.1 1. An (Ft)-Dirichlet process is the sum of an (Ft)- local mar-

tingale M plus a zero quadratic variation process A.

2. An (Ft)-weak Dirichlet process is the sum of a (Ft)- local martingale M

plus a process A such that [A,N ] = 0 for any continuous (Ft)- local martingale

N .

In both cases, we will suppose A0 = 0 a.s.

Remark 5.2 1. Process (At) in previous decomposition is an (Ft)-adapted pro-

cess.
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2. An (Ft)-semimartingale is an (Ft)-Dirichlet process.

The statement of the following proposition is essentially contained in [12].

Proposition 5.3 1. An (Ft)-Dirichlet process is an (Ft)-weak Dirichlet pro-

cess.

2. The decomposition M +A is unique.

Proof. Point 1. follows from Proposition 2.5 6).

Concerning point 2., let X be a weak Dirichlet process with decompositions X =

M1 + A1 = M2 + A2. Then 0 = M + A where M = M1 −M2, A = A1 − A2. We

evaluate the covariation of both members against M to obtain

0 = [M ] + [M,A1] − [M,A2] = [M ].

Since M0 = A0 = 0 and M is a local martingale, Corollary 3.8 gives M = 0.

The class of semimartingales with respect to a given filtration is known to be stable

with respect to C2 transformations, as Proposition 4.5 implies. Proposition 4.1 says

that finite quadratic variation processes are stable through C1 transformations.

It is possible to show that the class of weak Dirichlet processes with finite quadratic

variation (as well as Dirichlet processes) is stable with respect to the same type of

transformations.

We start with a result which is a slight improvement (in the continuous case) of a

result obtained by [7].

Proposition 5.4 Let X be a finite quadratic variation process which is (Ft)- weak

Dirichlet, f ∈ C1(R). Then f(X) is again weak Dirichlet.

Proof. Let X = M+A be the corresponding decomposition. We express f(Xt) =

Mf +Af where

M
f
t = f(X0) +

∫ t

0

f ′(X)dM, A
f
t = f(Xt) −M

f
t .

Let N be a local martingale. We have to show that [f(X) −Mf , N ] = 0.

By additivity of the covariation, and the definition of weak Dirichlet process, [X,N ] =

[M,N ] so that Proposition 4.1 implies that [f(X), N ]t =
∫ t

0
f ′(Xs)d[M,N ]s.

32



On the other hand, Proposition 3.22 gives

[Mf , N ]t =

∫ t

0

f ′(Xs)d[M,N ]s,

and the result follows.

Remark 5.5 1. If X is an a (Ft)- Dirichlet process, it can be proved similarly

that f(X) is an (Ft)- Dirichlet process, see for details [2] and [50].

2. The class of Lyons-Zheng processes introduced in [50] consitutes a natural

generalization of reversible semimartingales, see Definition 5.12. The authors

proved that this class is also stable through C1 transformation.

We also report a Girsanov type theorem established by [7] at least in a discretization

framework.

Proposition 5.6 Let X = (Xt)t∈[0,T ] be an (Ft)-weak Dirichlet process. Let Q

a probability equivalent to P on FT . Then X = (Xt)t∈[0,T ] is (Ft)-weak Dirichlet

process with respect to Q.

Proof. We set Dt = dQ
dP |Ft

. D is a positive local martingale.

Let L be the local martingale such that Dt = exp(Lt −
1
2 [L]t). Let X = M +A be

the corresponding decomposition. It is well-known that M̃ = M − [M,L] is a local

martingale under Q. So, X is a Q- weak Dirichlet process.

As mentioned earlier, Dirichlet processes are stable with respect to C1- transforma-

tions. In applications, in particular to control theory, one would need to know the

nature of process (u(t,Dt)) where u ∈ C0,1(R+ × R) and D is a Dirichlet process.

The following result was established in [23].

Proposition 5.7 Let (St) be a continuous (Ft)-weak Dirichlet process with finite

quadratic variation. Let u ∈ C0,1(R+ ×R). Then (u(t, St)) is a (Ft)-weak Dirichlet

process.

Remark 5.8 There is no reason for (u(t, St)) to be a finite quadratic variation

process since the dependence of u from the first argument t may be very rough. A

fortiori (u(t, St)) will not be Dirichlet. Consider for instance u only depending on

time, deterministic, with no finite quadratic variation.
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Examples of Dirichlet processes (respectively weak Dirichlet processes) arise directly

from classical Brownian motion W .

Example 5.9 Let f be of class C0(R), u ∈ C0,1(R+ × R).

1. If f is C1, then X = f(W ) is a (Ft)-Dirichlet process.

2. u(t,Wt) is an (Ft)-weak Dirichlet process wich in general is not Dirichlet.

3. f(W ) is not always a Dirichlet process, not even of finite quadratic variation

as shows Proposition 5.17.

Previous Example and Remark easily show that the class of (Ft)-Dirichlet processes

strictly include the class of (Ft)-semimartingales.

More sophisticated examples of weak Dirichlet processes may be found in the class

of the so called Volterra type processes, se e.g. [11, 12]

Example 5.10 Let (Nt)t≥0 be an (Ft)-local martingale, G : R+ × R+ × Ω −→ R

continuous random field such that G(t, ·) is (Fs)-adapted for any t. We set

Xt =

∫ t

0

G(t, s)dNs.

Then (Xt) is an (Ft)-weak Dirichlet process with decomposition M + A, where

Mt =

∫ t

0

G(s, s)dNs.

Suppose that [G(·, s1);G(·, s2)] exists for any s1, s2. With some additional technical

assumption, one can show that A is a finite quadratic variation process with

[A]t = 2

∫ t

0

(
∫ s2

0

[G(·, s1);G(·, s2)] ◦ dMs1

)

◦ dMs2 .

Previous iterated Stratonovich integral can be expressed as the sum C1(t) + C2(t)

where

C1(t) =

∫ t

0

[G(·, s);G(·, s)]d[M ]s,

C2(t) = 2

∫ t

0

(
∫ s2

0

[G(·, s1);G(·, s2)]dMs1

)

dMs2 .

Example 5.11 Suppose that N is a classical Brownian motion W and G(t, s) =

Bt−s where B is a Brownian motion for positive indices and 0 for negative ones;

we suppose B independent of W . Then [A] =

∫ t

0

(t− s)ds =
t2

2
.
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One significant motivation for considering Dirichlet (respectively weak Dirichlet)

processes comes from the study of generalized diffusion processes, typically solutions

of stochastic differential equations with distributional drift.

Such processes were investigated using stochastic calculus via regularization by

[17, 18]. We try to express here just a guiding idea. The following particular case

of such equations is motivated by random media modelization:

dXt = dWt + b′(Xt)dt, X0 = x0 (5.1)

where b is a continuous function.

b could be the realization of a continuous process, independent ofW , stopped outside

a finite interval.

We do not want to recall the precise sense of the solution of (5.1). In [17, 18] the

authors give a precise sense to a solution (in the distribution laws) and they show

existence and uniqueness for any initial conditions.

Here we can just convince the reader that the solution is a Dirichlet process. For

this we define the real function h of class C1 defined by

h(x) =

∫ x

0

e−b(y)dy.

We set σ0 = h′ ◦ h−1. We consider the unique solution in law of the equation

dYt = σ0(Yt)dWt, Y0 = h(x0)

which exists because of classical Stroock-Varadhan arguments ([52]); so Y is clearly

a semimartingale, so a Dirichlet process. The process X = h−1(Y ) is a Dirichlet

process since and h−1 is of class C1. If b were of class C1, (5.1) would be an ordinary

stochastic differential equation, and it could be shown that X is the unique solution

of that equation. In the actual case X will still be the solution of (5.1), considered

as generalized stochastic differential equation.

We consider now the case when the drift is time inhomogeneous as follows

dXt = dWt + ∂xb(t,Xt)dt,X0 = x0 (5.2)

where b : R+ × R → R is a continuous function of class C1 in time. Then it is

possible to define k : R+ × R → R of class C1 where the solution (Xt) of (5.2)

can be expressed as (k(t, Yt)) where Y is a semimartingale and k is of class C0,1.

In conclusion X will be a (Ft) weak Dirichlet process. For this and more general

situations, see [43].
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5.2 Itô formula under weak smoothness assumptions

In this section, we formulate and prove an Itô formula of C1 type. As for the C2

type Itô formula, next Theorem is stated in the one-dimensional framework in spite

of its validity in the multidimensional case.

Let (St)t≥0 be a semimartingale and f ∈ C2. We recall the classical Itô formula, as

a particular case of Proposition 4.5: :

f(St) = f(S0) +

∫ t

0

f ′(Ss)dSs +
1

2

∫ t

0

f ′′(Ss)d[S, S]s.

Using Proposition 3.16 and Stratonovich integral Definition 3.27, we obtain

f(St) = f(S0) +

∫ t

0

f ′(Ss)dSs +
1

2
[f ′(S), S]t

(5.3)

= f(S0) +

∫ t

0

f ′(S) ◦ dS.

We observe that in formulae (5.3), only the first derivative of f appears. Besides,

we know that f(S) is a Dirichlet process if f ∈ C1(R).

At this point we may ask if formulae (5.3) remains valid when f is only ∈ C1(R)

only. A partial answer will be given in Theorem 5.13 below.

Definition 5.12 Let (St) be a continuous semimartingale. We set Ŝt = ST−t, t ∈

[0, T ], S is said to be a reversible semimartingale if (Ŝt)t∈[0,T ] is again a semi-

martingale.

Theorem 5.13 ([44]) Let S be a reversible semimartingale indexed by [0, T ] and

f ∈ C1(R). Then, we have

f(St) = f(S0) +

∫ t

0

f ′(S)dS +Rt

= f(S0) +

∫ t

0

f ′(S) ◦ dS.

where R = 1
2 [f ′(S), S].

Remark 5.14 After the pioneering work of [5], which expressed the remainder

term (Rt) with the help of generalized integral with respect to local time, two papers

appeared: [21] in the case of Brownian motion and [21] and [44] for multidimen-

sional reversible semimartingales. Later, an incredible amount of contributions on
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that topic have been published. The present paper cannot give precisely the content

of each paper. A non-exhaustive list of papers is given by [1, 13, 14, 22, 23, 38, 39].

Among the C1-type Itô formula in the framework of generalized Stratonovich integral

with respect to Lyons-Zheng processes, it is also important to quote [32, 33, 50].

Example 5.15 i) Classical (Ft)-Brownian motion W is a reversible semimar-

tigale, see for instance [21, 40, 18]. More precisely we have Ŵt = WT +

βt +

∫ t

0

Ŵs

T − s
ds, where β is a (Gt)-Brownian motion and (Gt) is the natural

filtration associated with Ŵt.

ii) Let (Xt) be the solution of the stochastic differential equation

dXt = σ(t,Xt)dWt + b(t,Xt)dt,

with σ, b : R × R → R Lipschitz with at most linear growth, σ ≥ c > 0.

Then (Xt) is a reversible semimartingale, see for instance [18]. Moreover if

f ∈ W
1,2
loc ,in [18] it is proved that (f(Xt)) is an (Ft)-Dirichlet process.

Proof (of Theorem 5.13). We use in an essential way the Banach-Steinhaus the-

orem for F - spaces, see for instance [9] chap. 2.1.

We define the following maps T±
ε going from the F - space C0(R) into the F - space

of continuous processes indexed by [0, T ] which is denoted by C([0, T ]) :

T−
ε g =

∫ ·

0

g(Ss)
Ss+ε − Ss

ε
ds,

T+
ε g =

∫ ·

0

g(Ss)
Ss − Ss−ε

ε
ds,

Those operators are linear and continuous. Moreover, for each g ∈ C0 we have

lim
ε→0

T−
ε g =

∫ ·

0

g(S)dS,

because of Proposition 3.16 which says that
∫ t

0
g(S)dS coincides with Itô’s integral.

Since Ŝ is a semimartingale, for the same reasons as above,

∫ T

T−t

g(Ŝ)d−Ŝ (5.4)

also exists and it equals Itô’s integral.

Using Proposition 2.5 3), it follows that

∫ ·

0

g(S)d+S also exists.
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Therefore Banach-Steinhaus theorem implies that

g 7→

∫ ·

0

g(S)d−S, g 7→

∫ ·

0

g(S)d+S,

and by additivity

g 7→ [g(S), S], g 7→

∫ ·

0

g(S)d◦S,

are continuous maps from C0(R) to C([0, T ]).

Let f ∈ C1(R), (ρε)ε>0 be a family of mollifiers converging to the Dirac measure

at zero. We set fε = f ⋆ ρε where ⋆ denotes convolution. Since fε is of class C2, by

the “smooth” Itô formula stated at Proposition 4.5 and Proposition 2.5 1) and 2),

we have

fε(St) = fε(S0) +

∫ t

0

f ′
ε(S)dS +

1

2
[f ′
ε(S), S],

fε(St) = fε(S0) +

∫ t

0

f ′
ε(S)d◦S

Since f ′
ε goes to f ′ in C0(R), we can take the limit term by term and

f(St) = f(S0) +

∫ t

0

f ′(S)dS +
1

2
[f ′(S), S],

(5.5)

f(St) = f(S0) +

∫ t

0

f ′(S)d◦S.

Remark 3.28 says that the previous symmetric integral is in fact a Stratonovich

integral.

Corollary 5.16 If (St)t∈[0,T ] be a reversible semimartingale and g ∈ C0(R), then

[g(S), S] exists and it is a zero quadratic variation process.

Proof. Let g ∈ C0(R) and let S = M + V be the decomposition of S as a sum

of a local martingale M and a finite variation process V , such that V0 = 0. Let

f ∈ C1(R) such that f ′ = g. We know that f(S) is a Dirichlet process with local

martingale part

M
f
t = f(S0) +

∫ t

0

g(S)dM.

Let Af be its zero quadratic variation component. Using Thereom 5.13, we have

A
f
t =

∫ t

0

g(S)dV +
1

2
[g(S), S].
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∫ ·

0
g(S)dV has finite variation, therefore it has zero quadratic variation; since Af is

also a zero finite quadratic variation process, the result follows immediately.

Proposition 5.17 Let g ∈ C0(R) such that g(W ) is a finite quadratic variation

process. Then g has bounded variation.

Proof. Suppose that g(W ) is of finite quadratic variation. We already know that

W is a reversible semimartingale. By Corollary 5.16, [W, g(W )] exists and it is

a zero quadratic variation process. Since [W ] exists, we deduce that (g(W ),W )

has all its mutual covariations. In particular [g(W ),W ] has bounded variation

because of Remark 2.4. Let f be such f ′ = g; Theorem 5.13 implies that f(W )

is a semimartingale. A celebrated result of Çinlar, Jacod, Protter and Sharpe, [6]

implies that f(W ) is a (Ft)-semimartingale if and only if f is difference of two

convex functions; this allow finally to conclude that g is of bounded variation.

Remark 5.18 Given two processes X and Y , the covariations [X ] and [X,Y ] may

exist even if Y is not of finite quadratic variation. In particular (X,Y ) may not

have all its mutual covariations. Consider for instance X = W , Y = g(W ) where

g is continuous but not of bounded variation and we apply Proposition 5.17.

Remark 5.19 ([21] In the case of S being a classical Brownian motion, it is

possible to see that Theorem 5.13 and Corollary 5.16 are valid respectively for

f ∈W
1,2
loc (R) and g ∈ L2

loc(R)

6 Final remarks

We conclude this paper with some considerations about calculus related to processes

having no quadratic variation. The reader can consult for this [12, 25, 26]. In [12]

one defines a notion of n− covariation [X1, . . . , Xn] of n processes X1, . . . , Xn and

the n-variation of a process X .

We recall some basic significant results related to those papers.

1. Given a process X having a 3- variation, it is possible to express an Itô

formula of the type

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)d
◦Xs −

1

12

∫ t

0

f (3)(Xs)d[X,X,X ]s.

Moreover one-dimensional stochastic differential equations driven by a strong

3-variation were considered in[12].
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2. Let B = BH a fractional Brownian motion with Hurst index H > 1
6 , f of

class C6. In [25, 26], it was shown that

f(Bt) = f(B0) +

∫ t

0

f ′(B)d◦B.

3. Other types of Itô formulae can be expressed when H is any number in ]0, 1[

using more sophisticated integrals via regularization, see [26].

4. In [24], the authors show that stochastic calculus via regularization is almost

pathwise. Suppose for instance that X is a semimartingale or a fractional

Brownian motion, with Hurst index H > 1
2 ; then its quadratic variation

[X ] is not only a limit of C(ε,X,X) ( see notation (2.5)) in the uniform

convergence in probability sense but also uniformly a.s.. Similarly if X is

semimartingale and Y is a suitable integrand, the Itô integral
∫ ·

0
Y dX is not

only limit of I−(ε, Y, dX), see (2.2) but also uniformly a.s.
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40



[8] Laure Coutin and Zhongmin Qian. Stochastic analysis, rough path analysis and

fractional Brownian motions. Probab. Theory Related Fields, 122(1):108–140,

2002.

[9] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part I. Wiley

Classics Library. John Wiley & Sons Inc., New York, 1988. General theory,

With the assistance of William G. Bade and Robert G. Bartle, Reprint of the

1958 original, A Wiley-Interscience Publication.

[10] Nathalie Eisenbaum. Integration with respect to local time. Potential Anal.,

13(4):303–328, 2000.

[11] Mohammed Errami and Francesco Russo. Covariation de convolution de mar-

tingales. C. R. Acad. Sci. Paris Sér. I Math., 326(5):601–606, 1998.

[12] Mohammed Errami and Francesco Russo. n-covariation, generalized Dirichlet

processes and calculus with respect to finite cubic variation processes. Stochas-

tic Process. Appl., 104(2):259–299, 2003.

[13] Mohammed Errami, Francesco Russo, and Pierre Vallois. Itô’s formula for
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[19] H. Föllmer. Calcul d’Itô sans probabilités. In Seminar on Probability, XV

(Univ. Strasbourg, Strasbourg, 1979/1980) (French), volume 850 of Lecture

Notes in Math., pages 143–150. Springer, Berlin, 1981.
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[21] Hans Föllmer, Philip Protter, and Albert N. Shiryaev. Quadratic covariation
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