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We consider a discrete-time random walk where the random increment at time stept depends on the full
history of the process. We calculate exactly the mean and variance of the position and discuss its dependence
on the initial condition and on the memory parameterp. At a critical valuepc

s1d=1/2 where memory effects
vanish there is a transition from a weakly localized regime[where the walker(elephant) returns to its starting
point] to an escape regime. Inside the escape regime there is a second critical value where the random walk
becomes superdiffusive. The probability distribution is shown to be governed by a non-Markovian Fokker-
Planck equation with hopping rates that depend both on time and on the starting position of the walk. On large
scales the memory organizes itself into an effective harmonic oscillator potential for the random walker with a
time-dependent spring constantk=s2p−1d / t. The solution of this problem is a Gaussian distribution with
time-dependent mean and variance which both depend on the initiation of the process.
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Memory effects in non-Markovian stochastic processes
are often incorporated heuristically on a coarse-grained scale
into time evolution equations for physical observables, re-
cently discussed in[1–3]. A fundamental concept of a non-
Markovian process is the continuous-time random walk in-
troduced some years ago[4]. This theory has numerous
important applications, studied for instance in[5] or recently
in [6]. A broad variety of examples in biology is analyzed in
[7]. Alternatively, one may derive a formally exact evolution
equation for an observable by a projection mechanism[8,9]
and then apply some approximation scheme for the solution
of the equation. Techniques of this type are used in the con-
text of diffusive dynamics where memory effects may lead to
anomalous diffusion or even localization. In recent studies
this has been demonstrated within a one-loop renormaliza-
tion group approach[10], by other analytical studies[11] and
confirmed by numerical methods[12]. A more fundamental
approach to anomalous diffusion based on a nonequilibrium
statistical description is already discussed in[13]. While very
successful both phenomenologically and in predicting inter-
esting new memory effects[14], two intrinsic shortcomings
of these traditional approaches deserve attention: There is no
quantitative control over the error induced by approxima-
tions, and the microscopic origin of the memory term is fre-
quently obscured. In particular, there is usually no simple
transition from an explicit and physically motivated non-
Markovian noise term to an associated non-Markovian evo-
lution equation for the probability density which is often
employed in the framework described above[15]. It is the
aim of this paper to skirt these problems in the investigation
of memory effects in diffusive motion by first defining a
simple “microscopic” non-Markovian stochastic dynamics

for the random walk on lattice scale, then passing to an evo-
lution equation for the probability distribution(in formal
analogy to passing to a Fokker-Planck equation(FPE) in the
case of Markov processes) and finally coarse graining by
taking the limit of large space and time scales. As the result
we get a FPE with a time-dependent drift term. Recently
stochastic processes leading to FPE with time-dependent co-
efficients, are discussed by several authors[18–20]. In view
of those more heuristic approaches our model yields a more
microscopic foundation for a special realization of a FPE
with a time-dependent term.

Specifically we are interested in conditions under which
an unbounded memory can induce qualitative changes in the
distribution of the position as compared to the Markovian
case with Gaussian distribution on large space and time
scales. It is well known from the self-avoiding walk(which
is a rare example for a random walk with unbounded
memory where detailed exact results are known[16,17] ) that
the memory of the previously visited sites changes the scal-
ing behavior of the distribution and leads to a superdiffusive
mean square displacement. Here we investigate how a very
different unbounded memory affects the random walk statis-
tics andinducesa transition to superdiffusive behavior. For
definiteness and simplicity of notation we mainly consider a
one-dimensional random walkXtPZ on the infinite lattice.
The random walk starts at some specific pointX0 at time t0
=0 and has a complete memory of its whole history. In allu-
sion to the traditional saying that elephants can always re-
member, we shall refer to the random walker as elephant. In
each discrete time step the elephant moves one step to the
right or left, respectively(simple random walk), so the sto-
chastic evolution equation is given by

Xt+1 = Xt + st+1, s1d

wherest+1= ±1 is a random variable. The memory consists
of the set of random variablesst8 at previous time steps
which the elephant remembers as follows:
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sD1d At time t+1 a numbert8 from the seth1,2, . . . ,tj is
chosen randomly with uniform probability 1/t.

sD2d st+1 is determined stochastically by the rule

st+1 = st8 with probability p and = −st8 with 1 − p.

s2d

At the first time stept=1 the process is initiated as follows:
sD3d The elephant starting atX0 moves to the right with

probability q and to the left with probability 1−q, i.e.,

s1 = 1 with probabiltyq and = − 1 with 1 −q.

s3d

It is obvious from the definition that

Xt = X0 + o
t8=1

t

st8. s4d

The question is to which extent the memory of the history
influences the distribution of the particle position. For
p,1/2 the elephant behaves metaphorically speaking like a
dedicated(but not very stringent) reformer: At each step he
is preferentially doing the opposite of what he(randomly)
remembers to have been decided in the past. Forp.1/2 the
elephant is a more traditional type; he preferentially sticks to
his former decision. Notice that three special cases of our
model are trivial:(i) In the borderline casep=1/2 thechoice
of st+1 is ±1 with equal probability, no matter what the his-
tory was. Hence one has the standard Markovian random
walk, which converges to Brownian motion on large scales.
In this case the initial parameterq plays only a marginal role
with no macroscopic significance.(ii ) In the limiting case
p=1 the dynamics become essentially deterministic. Given
the first decision(which is random), the elephant moves with
probability 1 (ballistically) always one step in the same di-
rection as in the first move. Hence the first step is macro-
scopically relevant.(iii ) For q=1/2 themean position of the
elephant is zero for allp. Nevertheless the distribution ofXt
depends nontrivially onp.

To study the mean positionkXtl we first note that given
the previous historyhs1, . . . ,stj one has the conditional
probability that the incrementst+1 takes the values= ±1

Pfst+1 = sus1, . . . ,stg =
1

2t
o
k=1

t

f1 + s2p − 1dsksg for t ù 1.

s5d

This follows from the definitionssD1d, sD2d of the process.
For t=0 we get in accordance with rulesD3d

Pfs1 = sg =
1

2
f1 + s2q − 1dsg. s6d

Thus for tù1 the conditional mean increment is given by

kst+1us1 . . . stl = o
s=±1

sPfst+1 = sus1, . . . ,stg

=
2p − 1

t
sXt − X0d. s7d

These relations form the basis of the subsequent analysis of
the process. Below we shall frequently use the shifted param-
eters

a = 2p − 1, b = 2q − 1, s8d

which are in the rangef−1,1g. Negativea corresponds to the
“reformer,” positive a parametrizes the “traditionalist”ele-
phant. The effectively memoryless Markovian case isa=0.
From(7) the conventional mean value(obtained by summing
over all previous realizations of the process) is given by

kst+1l =
a

t
skXtl − X0d, s9d

and gives rise to the recursion for the mean displacement
kxtl=kXtl−X0

kxt+1l = S1 +
a

t
Dkxtl for t ù 1. s10d

For the first time step one haskx1l=ks1l=2q−1=b. The so-
lution of (10) is obtained by iteration

kxtl = ks1l
Gst + ad

Gsa + 1dGstd
,

b

Gsa + 1d
ta for t @ 1.

s11d

For a,0 (reformer) the mean displacement vanishes for
larget algebraically, the elephant stays on average essentially
where it started. Fora.0 (traditionalist) the mean displace-
ment increases indefinitely, albeit with decreasing velocity.
The direction of the escape from the starting position is de-
termined by the first(random) decision. If the first move is
positive, the average direction of motion is to the right. Oth-
erwise the elephant moves on average to the left. At the
transition pointac

s1d=0 the mean displacement is independent
of time, as is known for the usual Markovian random walk.
Recursion relations for higher-order moments also follow
straightforwardly from(5). They obey recursions of the form

Mt+1 = f t + gt Mt for t ù 1, s12d

where Mt is some moment andf t ,gt are known functions,
related to lower moments. The general solution of(12) is
given by

Mt = M1p
k=1

t−1

gk + o
n=1

t−1 F fn p
k=n+1

t−1

gkG , s13d

which is easily verified. In particular for the second moment
of the displacement one finds the recursion

kxt+1
2 l = 1 +S1 +

2a

t
Dkxt

2l. s14d

Using (13) it is solved by
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kxt
2l =

t

2a − 1
F Gst + 2ad

Gst + 1dGs2ad
− 1G . s15d

We first notice that the mean square displacement does not
depend on the initial decision parametrized byq since kx1

2l
=1 for anyq. Asymptotically one has

kxt
2l =

t

3 – 4p
, p , 3/4; kxt

2l = t ln t, p = 3/4;

kxt
2l =

t4p−2

s4p − 3dGs4p − 2d
, p . 3/4. s16d

Before discussing this result we remind the reader that the
displacementxt=Xt−X0 refers to the displacement from the
initial position, not to the displacement of the actual position
from its mean. Remarkably there is no qualitative change at
ac

s1d=0 where the transition to the escape regime occurs, yet
there are two distinct regimes inside the escape regime.

(1) For a,1/2 (corresponding top,3/4) the mean
square displacement increases asymptotically linearly in
time. Hence the localized regimea,ac

s1d=0 corresponds to
a weak localization in the sense that the initial mean dis-
placement vanishes for larget, but the variance increases
diffusively with a diffusion coefficientD=1/s6–8pd. In the
range 0øa,1/2 (corresponding to 1/2øp,3/4) the
mean displacement diverges(escape regime), but with an
exponenta,1/2. Therefore, the mean square displacement
is still larger than the square of the mean and the variance
kxt

2l−kxtl2 remains diffusive.
(2) For a.1/2 (corresponding top.3/4) the mean

square displacement increases stronger than linearly,t4p−2

and is of the same order as the square of the mean, but with
a different prefactor. Hence the variance becomes superdif-
fusive with an effective diffusion coefficient depending both
on time and onq.

(3) At the critical valueac
s2d=1/2 (corresponding top

=3/4) the right-hand side of(16) reduces toon=1
t t /n

, t ln t. The elephant is marginally superdiffusive.
The results of the previous section are sufficient for the

characterization of the large scale walk properties of the el-
ephant only if the incrementssn are independent random
variables, i.e., fora=0. In this case the central limit theorem
guarantees convergence of the distribution ofXt to a Gauss-
ian. In order to obtain information about the distribution for
aÞ0we consider the complex-valued characteristic function
Qtskd=keikxtl. Using (5) it obeys the equation

kQt+1skdl = cosk Qtskd +
a

t
sin k

d

dk
Qtskd. s17d

The Fourier transformPtsxd is the probability that the dis-
placement at timet takes the valuex. This is equal to the
conditional probabilityPsY,t uX0,0d that the positionX of
the elephant at timet equalsY=X0+x, given that it started at
X0 at t=0. From (17) we find a discrete evolution equation
formally analogous to the FPE for usual random walks,

PsY,t + 1uX0,0d =
1

2
F1 −

a

t
sY − X0 + 1dGPsY + 1,tuX0,0d

+
1

2
F1 +

a

t
sY − X0 − 1dGPsY − 1,tuX0,0d.

s18d

This equation(valid for tù1) may be interpreted in terms of
a time-inhomogeneous random walk which does not memo-
rize its full history, but only its initial position at timet=0. It
describes a hopping process where in each step the walker at
position Y hops to the right with probabilitypr =f1+asY
−X0d / tg /2 and to the left with probabilitypl =f1−asY
−X0d / tg /2, respectively. At first sight these stochastic dy-
namics look like a time-inhomogeneous Markov chain where
X0 is some parameter. However, we stress that in(18) the
quantityX0 is not a parameter, but the initial position of the
elephant. The hopping probabilities implicit in(18) are not
valid for an elephant starting at a position different fromX0
or which starts atX0 at a later timet.0. The non-Markovian
character of the dynamics is expressed in the fact that the
evolution equation(18) is different for each initial position;
see[15] for a general discussion of similar non-Markovian
evolution equations. The qualitative features of the elephant
which became apparent through the study of its mean posi-
tion are expressed in the hopping probabilitiespr,l. For posi-
tive a the local bias

bsx,td = pr − pl =
ax

t
s19d

is positive for positive displacement, hence the particle on
average escapes. On the other hand, for negativea, the bias
is opposite to the actual displacement, reminiscent of some
effective restoring force. This becomes very transparent in
the continuum limit(large displacementx and time t). In
terms ofx,t (18) takes the form

] Psx,td
] t

=
1

2

]2

] x2Psx,td −
a

t

]

] x
fxPsx,tdg, t . 0 s20d

of a FPE for a Brownian particle in a harmonic oscillator
potential with spring constantk=a / t. The last relation is a
special case of more general FPE with time-dependent coef-
ficients that has been investigated in several papers[18–20].
Whereas the approach in those papers is phenomenologi-
cally, we demonstrate in the frame of a microscopic model
the origin of such FPE. From Eq.(20) one obtains recursion
relations for the moments of the distribution. Let us denote
the even and the odd moments by

anstd = kx2nl bnstd = kx2n+1l with n = 0,1,2, . . . .

s21d

Using Eq.(20) we obtain for the even moments

d

dt
anstd −

2na

t
anstd = ns2n − 1dan−1std, s22d

and a similar equation for the odd moments. In particular, we
have
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d

dt
kxl =

a

t
kxl s23d

with the solution

kxstdl = kxst0dlS t

t0
Da

; x̄std with t ù t0 . 0, s24d

in agreement with(11). Heret0 is the temporal cutoff scale,
reflecting the breakdown of the continuum approximation for
t→0. For second moment we find

kx2l = Dstd + x̄2std, s25d

with x̄std given by (24) and

Dstd = S t

t0
D2a

fkx2st0dl − x̄2st0dg +
t

2a − 1
FS t

t0
D2a−1

− 1G .

s26d

Since the initial distribution is assumed to be concentrated at
x0 the initial variance and so the first term in(26) vanishes.
Thus we can read off the effective diffusion coefficient

Dstd =
1

4a − 2
FS t

t0
D2a−1

− 1G s27d

of the elephant. In(22) one recognizes the recursion relations
for the moments of a Gaussian distribution. Indeed, one can
straightforwardly verify that

Psx,td =
1

Î4ptDstd
expH−

fx − x̄stdg2

4tDstd J s28d

solves the evolution equation(17) for the initial condition
dsY−X0d=dfx− x̄st0dg. The centered even moments

M2n = kfx − x̄stdg2nl = s2n − 1d ! ! f2tDstdgn, s29d

which satisfy the recursion relation(22) are given by the
usual expression for a Gaussian distribution.

The result can be generalized to thed-dimensional case
with a separate memory for each space direction. To this aim

the rulessD1d–sD3d are generalized accordingly. Equation
(4) is changed to an equation for ad-dimensional vector and
correspondingly the conditional probability(18) depends
also on thed-dimensional position vector. In the continuous
limit the evolution equation reads

] PsxW,td
] t

=
1

2
¹2PsxW,td −

a

t
¹ fxWPsxW,tdg. s30d

Based on that evolution equation we find also the equations
for the even and odd moments. In particular, the even mo-
ment anst ;dd=ksxW2dnl satisfies instead of Eq.(22) the equa-
tion

d

dt
anst;dd −

2na

t
anst;dd = nfd + 2sn − 1dgan−1st;dd. s31d

A solution of this equation that yields the even centered mo-
ments is

anst;dd =

GSd

2
+ nD

GSd

2
D f2tDstdgn. s32d

The odd momentsbn
bst ;dd=ksxW2dnxbl obey the equation

d

dt
bn

bst;dd −
s2n + 1da

t
bn

bst;dd = ns2n + ddbn−1
b st;dd s33d

for the odd moments of ad-dimensional Gaussian distribu-
tion.

Starting with a microscopic model of a random walk with
unbounded long-time memory(the “elephant”), we have cal-
culated the exact mean and variance, respectively, as well as
the single-time probability distribution for the position of the
elephant on large scales. Surprisingly the memory effects
incorporated in the probability distribution at timet amount
to a time-inhomogeneous random walk where only the initial
position and starting time play a role.
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