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Bob van de Water*

Abstract

Introduction: Insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes.

Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor

(ER) signaling and via its action upstream of the epidermal growth factor receptor and human epidermal growth

factor receptor 2. Yet, the direct role of IGF-1R signaling itself in antiestrogen resistance remains obscure. In the

present study, we sought to elucidate whether antiestrogen resistance is induced directly by IGF-1R signaling in

response to its ligand IGF-1 stimulation.

Methods: A breast cancer cell line ectopically expressing human wild-type IGF-1R, MCF7/IGF-1R, was established

by retroviral transduction and colony selection. Cellular antiestrogen sensitivity was evaluated under estrogen-

depleted two-dimensional (2D) and 3D culture conditions. Functional activities of the key IGF-1R signaling

components in antiestrogen resistance were assessed by specific kinase inhibitor compounds and small interfering

RNA.

Results: Ectopic expression of IGF-1R in ER-positive MCF7 human breast cancer cells enhanced IGF-1R tyrosine

kinase signaling in response to IGF-1 ligand stimulation. The elevated IGF-1R signaling rendered MCF7/IGF-1R cells

highly resistant to the antiestrogens tamoxifen and fulvestrant. This antiestrogen-resistant phenotype involved

mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol

3-kinase/protein kinase B pathways downstream of the IGF-1R signaling hub and was independent of ER signaling.

Intriguingly, a MAPK/ERK-dependent agonistic behavior of tamoxifen at low doses was triggered in the presence of

IGF-1, showing a mild promitogenic effect and increasing ER transcriptional activity.

Conclusions: Our data provide evidence that the IGF-1/IGF-1R signaling axis may play a causal role in antiestrogen

resistance of breast cancer cells, despite continuous suppression of ER transcriptional function by antiestrogens.

Introduction

Acquisition of antiestrogen resistance is a common

impediment in endocrine therapy for estrogen receptor

(ER)-positive breast cancer. It is therefore imperative to

understand the underlying mechanisms of resistance to

identify novel therapeutic targets for treatment of resis-

tant breast cancers.

The molecular mechanisms of antiestrogen resistance

are intricate. The canonical ER pathway responds to

estrogen to initiate a series of cell growth events via ER

cofactors, cell cycle regulators, cell survival and apopto-

sis mediators [1-4]. Compelling evidence from clinical

and experimental settings links antiestrogen resistance

to elevated signaling of receptor tyrosine kinases (RTKs)

such as the members of the epidermal growth factor

receptor (EGFR) family, EGFR and human epidermal

growth factor receptor 2 (HER2) [1-4]. Altered expres-

sion and activation of EGFR/HER2 and their key down-

stream signaling components, mitogen-activated protein
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kinase/extracellular signal-regulated kinase (MAPK/

ERK) and phosphatidylinositol 3-kinase/protein kinase B

(PI3K/Akt), can elicit antiestrogen resistance, either

through phosphorylation of ER, such as at Ser167 by

EGFR/Akt and at Ser118 by HER2/ERK to increase ER

DNA binding and ER coactivator interaction, or via

other independent pathways, such as upregulated antia-

poptotic machinery of B-cell lymphoma 2 (Bcl-2) and B-

cell lymphoma extra large (Bcl-xL) [1,4-7]. Furthermore,

high EGFR/HER2 RTK signaling not only may promote

de novo and acquired antiestrogen resistance but also

may signal in an ER-independent manner, thereby pro-

moting cell proliferation in its own right [1,4-7]. Signal-

ing networks assembled by RTKs are therefore critical

contributors to the development of breast cancer resis-

tance to antiestrogens.

In addition to EGFR/HER2, there is increasing evi-

dence for the involvement of the insulin-like growth fac-

tor 1 (IGF-1) receptor (IGF-1R) in antiestrogen

resistance. IGF-1R, as part of the large class of RTKs, is

now considered a potential cellular oncogene that plays

a key role in various cellular processes, such as prolif-

eration, survival, transformation, differentiation as well

as cell-cell and cell-substrate interactions [8,9]. In breast

neoplastic cell lines, expression of IGF-1R is a funda-

mental prerequisite for a malignant phenotype, poten-

tially facilitating cell survival and metastasis [8,10-12].

Clinically, IGF-1R is commonly overexpressed in pri-

mary breast tumors [13,14] and phosphorylated in all

breast cancer subtypes, correlating with poor survival

[15]. In ER-positive breast cancer cells, IGF-1R and ERa

are often coexpressed and respond to the synergistic

action of estrogen and IGF-1 signaling, leading to cross-

talk between the ER and IGF-1R pathways [16,17]. In

tamoxifen-resistant breast cancer cells, IGF-1R is upre-

gulated [18-20] and acts upstream of estrogen-activated

EGFR [21,22]. Moreover, IGF-1R confers resistance by

forming a heterodimer with HER2, allowing HER2 sig-

naling to resume in the presence of trastuzumab [23].

While the accumulating data just described show that

IGF-1R operates through signaling cross-talk with estro-

gen-ER signaling and EGFR/HER2 regulatory pathways

in antiestrogen-resistant breast cancer cells, the ER-

independent role of IGF-1R signaling in antiestrogen

resistance is poorly understood [1,4].

To elucidate the direct role of IGF-1R signaling in

breast cancer antiestrogen resistance, we established an

ER-positive human breast cancer cell line ectopically

expressing human wild-type IGF-1R, MCF7/IGF-1R, with

elevated IGF-1R tyrosine kinase activity. In the present

study, we demonstrate that while MCF7/IGF-1R cells

remain antiestrogen-responsive, IGF-1 ligand stimulation

induces rapid and sustained IGF-1R/MAPK/PI3K signal-

ing and directly causes an ERa-independent resistance to

the antiestrogens tamoxifen and fulvestrant (FUL) in

two-dimensional (2D) as well as 3D culture. In addition,

tamoxifen at low doses functions as an agonist in IGF-1-

stimulated MCF7/IGF-1R cells, further increasing IGF-1-

dependent proliferation. Our results indicate that IGF-1R

signaling can be a single determinant for antiestrogen

efficacy and hence suggest that IGF-1R and the key com-

ponents involved in the IGF-1R signaling network are

potential targets in combined antiestrogen therapy.

Materials and methods

Antibodies and reagents

Antibodies to rabbit anti-phospho-IGF-1Rb (Tyr1131),

anti-phospho-IGF-1Rb (Tyr1135/Tyr1136), anti-ERK1/2,

anti-phospho-ERK1/2 (Thr202/Tyr204), anti-Akt and

anti-phospho-Akt (Ser473) (Cell Signaling Technology

Danvers, MA, USA), mouse anti-IGF-1Rb and rabbit anti-

ERa (Santa Cruz Biotechnology, Santa Cruz, CA, USA),

and mouse antitubulin (Sigma-Aldrich, St. Louis, MO,

USA) were commercially purchased. Conjugated second-

ary antibodies included Alexa Fluor 488 antimouse (Jack-

son ImmunoResearch, West Grove, PA, USA), antimouse

horseradish peroxidase (HRP) and antirabbit HRP (Jack-

son ImmunoResearch, West Grove, PA, USA), and anti-

rabbit alkaline phosphatase (AP) (Tropix Western-

SuperStar™ Immunodetection System; Applied Biosys-

tems, Foster, CA, USA). Human IGF-1 (Sigma-Aldrich)

was prepared in sterile H2O (100 μg/mL). The estrogen

compound 17b-estradiol (E2) and the antiestrogens 4-

hydroxytamoxifen (4-OH-TAM) and FUL (Sigma-Aldrich)

were dissolved in dimethyl sulfoxide (DMSO) to 1 mM

stock concentration. The IGF-1R inhibitor BMS-536924

and dual PI3K/mammalian target of rapamycin (mTOR)

inhibitor BEZ235 (Selleck Chemicals LLC Houston, TX,

USA) and the mitogen-activated protein kinase kinase

(MEK) inhibitor U0126 (Promega, Madison, WI, USA),

were prepared in DMSO at 10 mM stock concentration.

Cell culture, retrovirus production and establishment of

IGF-1R stably overexpressing human breast cancer cell

line

MCF7 cells (American Type Culture Collection, Mana-

ssas, VA, USA) were cultured in RPMI 1640 medium

(Gibco, Invitrogen, Carlsbad, CA, USA) supplemented

with 10% fetal bovine serum (FBS) and 100 U/mL peni-

cillin-streptomycin (Invitrogen). The retroviral vector

pMSCV-neo-IGF-1R containing neomycin resistance

gene and expressing human wild-type IGF-1R cDNA

was provided by Dr. R. Baserga [24]. IGF-1R-encoding

retroviruses were produced by transfection of pMSCV-

neo-IGF-1R into Phoenix Amphotropic packaging cells

as previously described [25]. MCF7 cells were infected

with freshly harvested retroviral supernatant. Two days

later infected cells were selected by using 400 μg/mL
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neomycin. To establish individual positive clones from

single cells, the neomycin selected cells were further

subjected to limiting dilution in 96-well plates for two-

week colony selection. To rule out clonal artefacts, we

picked up the wells containing three to five individual

positive clones and collected and expanded the multiple

clones to generate stable MCF7/IGF-1R cells.

IGF-1 stimulative exposure

Cells were placed in six-or twelve-well plates at 60% to

70% confluence in regular growth medium. The next day

cells were starved overnight with 1% FBS medium. Fol-

lowing an additional two-hour serum deprivation with

serum-free medium (SFM), cells were exposed to IGF-1

at a given dose and for a given time course, which was

directly followed by cell lysis. To inhibit IGF-1-stimulated

signaling, cells were pretreated with a kinase inhibitor in

SFM for two hours prior to IGF-1 exposure.

Cell drug treatments

Cells were seeded with 10,000 cells/well in 96-well

plates and incubated overnight. Prior to drug treat-

ments, cells were starved for two days in phenol red-

free RPMI 1640 medium (Gibco) supplemented with 5%

charcoal/dextran-stripped FBS (CDFBS) (HyClone

Laboratories, Thermo Scientific, Logan, UT, USA)

devoid of steroid hormones. Starved cells were then sub-

jected to individual or combined drug treatments in tri-

plicate and allowed to proliferate for four days.

Sulforhodamine B colorimetric assay determining cell

proliferation

A sulforhodamine B (SRB) colorimetric assay [26,27] was

used to determine cell proliferation that occurred in

given drug treatments. In short, drug-treated cells in 96-

well plates were fixed with 30 μL of 50% trichloroacetic

acid directly added to 100 μL of assay medium per well

for 1 hour at 4°C on a shaker, gently washed five times

with tap water and air-dried. Fixed cells were stained

with 60 μL of 0.4% SRB (dissolved in 1% acetic acid) at

room temperature on a shaker for 30 minutes to allow

the SRB to bind to protein, rinsed five times with 1%

acetic acid to remove unbound dye and then air-dried.

Subsequently, the protein-bound SRB in each well was

solubilized with 200 μL of 10 mM Tris base solution (pH

> 10) for 10 minutes on a plate shaker and measured for

its absorbance at 510 nm with a FLUOstar OPTIMA

plate reader (BMG LABTECH, Offenburg, Germany).

The SRB absorbance values at 510 nm are thus indicative

of cell proliferation in response to drug treatments.

3D culture

In addition to the SRB assay, a modified 3D culture was

established to further examine cellular responses to

growth factor IGF-1 stimulation and drug treatments.

Briefly, a 96-well plate was coated with 30 μL/well of

100% Matrigel (354230, BD Matrigel™ Basement Mem-

brane Matrix Growth Factor Reduced; BD Biosciences,

Franklin Lakes, NJ, USA) at 37°C for 45 minutes. Single

cells (10,000 cells/well) were suspended in 120 μL of star-

ving medium (phenol red-free RPMI 1640) containing 2%

soluble Matrigel and 5% CDFBS (instead of complete

medium) in which E2 was depleted, and the cells were

then seeded on top of coating Matrigel. For given treat-

ments, the concentrations of the drugs were adjusted for

the total volume of 150 μL. Fresh medium was added

every three or four days. After two weeks of culturing on

Matrigel, the cells were fixed and stained with 3.7% for-

maldehyde in phosphate-buffered saline (PBS) containing

0.2% Triton X-100, 0.25 μM rhodamine phalloidin

(Sigma) and 1 μg/mL Hoechst blue dye. Confocal ima-

ging of 3D cell culture was performed with a Nikon

ECLIPSE TE2000-E (Nikon Instruments, Tokyo, Japan).

Cell lysis and Western blot analysis

To prepare cell lysates for Western blot analysis, cells

were washed three times with ice-cold PBS and lysed on

ice for 30 minutes with lysis buffer (50 mM Tris, pH

7.5, 150 mM NaCl, 2 mM ethylenediaminetetraacetic

acid, 0.1% sodium dodecyl sulfate (SDS), 1% Nonidet P-

40 and 1% deoxycholic acid) freshly supplemented with

100-fold diluted protease inhibitor cocktail (P8340-ML;

Sigma-Aldrich). Harvested lysate supernatant was mea-

sured for cellular protein concentration using the

BCA™ Protein Assay Kit (Thermo Scientific, Rockford,

IL, USA). A quantity of 30 μg/lane total protein were

separated by SDS-polyacrylamide gel electrophoresis on

7.5% acrylamide gel and electrophoretically transferred

to polyvinylidene fluoride membrane (Millipore, Biller-

ica, MA, USA). Prior to primary antibody probe, mem-

brane was blocked for 1 hour at room temperature with

5% bovine serum albumin (BSA) in Tris-buffered saline

Tween 20 (TBST) buffer (100 mM Tris, pH 7.4, 500

mM NaCl, 0.05% Tween 20) or with I-Block buffer

(Tropix, Applied Biosystems). Phospho-IGF-1Rb

(Tyr1131) and phospho-ERK1/2 (Thr202/Tyr204) were

probed in 5% BSA-TBST buffer, whereas phospho-IGF-

1Rb (Tyr1135/Tyr1136) and phospho-Akt (Ser473) were

probed in I-Block buffer. HRP-or AP-conjugated sec-

ondary antibody incubation was performed in 5% BSA-

TBST or I-Block buffer, corresponding to the primary

antibodies used. Protein bands were visualized by using

the ECL Plus method (GE Healthcare, Little Chalfont,

Buckinghamshire, UK), after which the membrane was

scanned by using a Typhoon 9400 imager (GE Health-

care) or a Tropix Western-SuperStar™ procedure

(Applied Biosystems) by placing the membrane in con-

tact with standard X-ray film (GE Healthcare).

Zhang et al. Breast Cancer Research 2011, 13:R52

http://breast-cancer-research.com/content/13/3/R52

Page 3 of 16



Immunofluorescence staining

Cells seeded onto coverslips were washed once with PBS,

fixed with 80% acetone in H2O and then blocked with 5%

normal goat serum in PBS containing 0.05% Tween 20.

Expression of IGF-1R was detected by mouse monoclonal

antibody against IGF-1Rb and labeled with Alexa Fluor

488 antimouse antibody. Nuclear DNA was stained with

4’,6-diamidino-2-phenylindole. The stained cells were

visualized under a fluorescence microscope (Nikon

Eclipse E600; Nikon Instruments) at a × 60 lens objective.

Small interfering RNA transfection

To silence target genes in cells, 50 nM SMARTpool

siRNA mix (Dharmacon Technologies, Thermo Scienti-

fic, Lafayette, CO, USA) was delivered into 15,000 cells/

well in 96-well plates by using a standard transfection

method with DharmaFECT 4 transfection reagent

(Dharmacon Technologies) according to the manufac-

turer’s instructions. After 24 hours, the small interfering

RNA (siRNA) transfection mixture was replaced with

complete medium or with 5% CDFBS starving medium

if drug treatment and SRB proliferation assay were

included. Cells were kept in culture for one more day

before analysis of knockdown or further treatment.

Estrogen responsive element-luciferase reporter assay

Cells were resuspended in antibiotic-free culture med-

ium, and 40,000 cells/well were seeded into 48-well

plates. By use of Lipofectamine PLUS reagent (Invitro-

gen), cells were transiently transfected with 0.16 μg of

the estrogen response element (ERE)-thymidine kinase-

luciferase plasmid kindly provided by Dr. R. Michalides

[28]. After three hours, cells were starved with 5%

CDFBS medium for two days. Following 12-hour treat-

ments as indicated, cells were washed once with PBS

and lysed with 1 × passive lysis buffer (Dual-Luciferase

Assay Kit; Promega). ERE-luciferase activity was mea-

sured using a luminometer (CentroXS3 LB 960; Berthold

Technologies, Bad Wildbad, Germany).

Statistical analysis

Each average SRB absorbance value was derived from

triplicate samples. Statistical analyses of all experimental

data were performed using a two-sided Student’s t-test.

Significance was set at P < 0.05.

Results

Ectopic IGF-1R expression in MCF7/IGF-1R cells enhances

IGF-1R tyrosine kinase activity upon IGF-1 ligand

stimulation

To establish a breast cancer cell line stably overexpres-

sing IGF-1R, human MCF7 breast cancer cells were ret-

rovirally transduced with a pMSCV-neo-IGF-1R vector

and subjected to single-cloning selection following

limiting dilution. The established MCF7/IGF-1R cell line

stably expressed ectopic IGF-1R (Figure 1a), with

expression approximately 10-fold that of parental MCF7

cells (Figure 1b). The proliferative response of MCF7/

IGF-1R cells to IGF-1 (half-maximal effective concentra-

tion (EC50) = 2.4 ng/mL) was increased compared to

MCF7 cells (EC50 = 16.0 ng/mL) (Figure 1c).

IGF-1R contains a triple tyrosine cluster in the kinase

domain, Tyr1131, Tyr1135 and Tyr1136, which is

required for full kinase activation of IGF-1R [29]. To

demonstrate IGF-1R autoactivation by ligand binding,

time course (Figure 1b) and dose range exposures to

IGF-1 (Figure 1d) were performed. Triple tyrosine IGF-

1R phosphorylation was initiated rapidly and sustained

for long time periods, reaching maximal levels at 100

ng/mL IGF-1. Overall, MCF7/IGF-1R cells displayed

stronger IGF-1R autophosphorylation than parental

MCF7 cells, indicating that MCF7/IGF-1R cells gained

elevated intrinsic IGF-1R tyrosine kinase activity, which

is necessary for the activation of the IGF-1-stimulated

downstream signaling cascades.

IGF-1R signal transduction involves several major

phosphorylation cascades, including the MAPK and

PI3K pathways [30,31]. To confirm canonical IGF-1R

signal transduction in the cell lines used, the activity of

the downstream kinases ERK and Akt was determined.

Concurrently with IGF-1R autophosphorylation, both

ERK and Akt kinases became phosphorylated in parallel

(Figure 1b). While maximal Akt phosphorylation was

induced to a similar degree, maximal ERK phosphoryla-

tion was clearly higher in MCF7/IGF-1R cells than in

MCF7 cells (Figures 1b and 1d), appearing to be consis-

tent with IGF-1R phosphorylation levels. These data

indicate that the MAPK/ERK and PI3K/Akt signal trans-

duction cascades are induced via ligand-activated IGF-

1R kinase activity, with increased MAPK/ERK signaling

in the MCF7/IGF-1R cells.

Of note, equal levels of ERa were detected in both

MCF7 and MCF7/IGF-1R cells (Figure 1b), indicating

that overexpression and activation of IGF-1R does not

influence ERa expression in the MCF7/IGF-1R cell

model.

High levels of IGF-1R signaling render MCF7/IGF-1R cells

resistant to the antiestrogens tamoxifen and fulvestrant

Next, we evaluated the sensitivity of MCF7/IGF-1R cells

to E2 and the antiestrogens 4-OH-TAM and FUL.

MCF7/IGF-1R cells were responsive to proliferative

effects of E2 (EC50 = 5 × 10-11 M) (Additional file 1),

similar to parental MCF7 cells. The proliferation

induced by E2 (1 nM) in both cell types was antago-

nized by 4-OH-TAM and FUL (IC50 = 4 × 10-8 M) (Fig-

ure 2), indicating that ectopic IGF-1R expression in

MCF7/IGF-1R cells does not affect ERa responses.
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To address whether IGF-1 stimulation affects MCF7/

IGF-1R cellular sensitivity to antiestrogens, cells were

treated with a concentration range of 4-OH-TAM (Fig-

ure 2a) or FUL (Figure 2b) in combination with E2 (1

nM), IGF-1 (100 ng/mL) or a combination of E2 and

IGF-1 as indicated. While 4-OH-TAM and FUL at 10-6

M completely blocked E2-induced proliferation, IGF-1

stimulation desensitized MCF7/IGF-1R cells to the

antiproliferative effects of 4-OH-TAM and FUL, sus-

taining proliferation level similar to that induced by

IGF-1 alone and close to that induced by the IGF-1

and E2 co-treatment. IGF-1 stimulation also led to

partial resistance of MCF7 cells to the antiestrogens at

10-6 M, but it was much less significant than that of

MCF7/IGF-1R cells. Together, these results indicate

that enhanced IGF-1R signaling upon IGF-1 stimula-

tion directly renders MCF7/IGF-1R cells insensitive to

4-OH-TAM and FUL, leading to strong antiestrogen

resistance.

IGF-1R signaling induces antiestrogen resistance of MCF7/

IGF-1R cells in an ER-independent manner

4-OH-TAM and FUL regulate ER function differently.

4-OH-TAM is a competitive E2 antagonist and blocks

ER transcriptional activity [32], whereas FUL antago-

nizes E2 and degrades ER protein [33]. This differential

Figure 1 Characterization of insulin-like growth factor 1 receptor overexpression, autophosphorylation, signaling transduction and

proliferation of MCF7/insulin-like growth factor 1 receptor cells in response to insulin-like growth factor 1. (a) Immunofluorescence

showing insulin-like growth factor 1 receptor (IGF-1R) overexpression in MCF7/IGF-1R cells compared to parental MCF7 cells. IGF-1R was probed

with mouse monoclonal antibody against IGF-1Rb (green). Cell nuclei were stained with 4’,6-diamidino-2-phenylindole (blue). Original

magnification, × 60. (b) IGF-1R autophosphorylation and signal transduction in time course exposure to IGF-1 (100 ng/mL) for 1, 5, 10, 30 and 60

minutes. ERa, estrogen receptor. (c) Proliferative response of MCF7 versus MCF7/IGF-1R cells to IGF-1 stimulation at the dose ranges indicated.

Sulforhodamine B (SRB) absorbance values (optical density (OD) 510 nm) are representative of three independent experiments. Data are

expressed as means ± SD. (d) IGF-1R autoactivation and signal transduction to IGF-1 exposure at various dose levels (1, 3, 10, 33 and 100 ng/mL)

for two hours. Total IGF-1R levels were detected by IGF-1Rb antibody at 97 kDa. IGF-1R triple tyrosine phosphorylation was determined by using

phospho-IGF-1Rb (Tyr1131) and phospho-IGF-1Rb (Tyr1135/Tyr1136) rabbit antibodies. Phosphorylated extracellular signal-regulated kinase (p-ERK)

and phosphorylated protein kinase B (p-Akt) were determined by using p-ERK1/2 and p-Akt antibodies, respectively. The status of the estrogen

receptor (ER) was detected by rabbit anti-ERa antibody. Tubulin was detected as a control for protein loading.
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ER regulation by 4-OH-TAM and FUL was equal in

both MCF7 and MCF7/IGF-1R cells. 4-OH-TAM did

not affect ERa expression, while FUL decreased ERa

protein levels (Figure 3a).

To investigate whether tamoxifen resistance of MCF7/

IGF-1R cells is related to ER function, we silenced ERa

by siRNA transfection, reaching > 80% knockdown of

ERa (Figure 3b). Compared to siRNA control (siCtrl),

ERa silencing (siERa) significantly inhibited prolifera-

tion by E2 (65% to 70%; P < 0.01) (Figure 3c), but not

by IGF-1 either alone or in cotreatment with E2 plus 4-

OH-TAM (1 μM) (Figure 3d). In addition, the ERE-luci-

ferase assay showed that IGF-1 did not affect ERE-

mediated transcription (Figure 3e). While E2 led to a

high level of ERE-mediated transcription, 4-OH-TAM

sustained its antagonistic action on E2 and suppressed

ER transcriptional ability in the presence of IGF-1 (Fig-

ure 3e). Furthermore, mRNA expression analysis

demonstrated that IGF-1 stimulation did not signifi-

cantly interfere with the expression of ER target genes,

for instance, the known E2-responsive genes CXCL12

(chemokine (C-X-C motif) ligand 12; also named stro-

mal cell-derived factor 1) and FOXC1 (forkhead box C1)

[34,35]. The induction of both CXCL12 (Additional file

2a) and FOXC1 (Additional file 2b) gene expression in

response to E2 was significantly inhibited by 4-OH-

TAM antagonistic activity in either the absence or the

presence of IGF-1.

Figure 2 Antiestrogen resistance of MCF7/IGF-1R cells is induced by high level of IGF-1R signaling. (a) Proliferative behavior of MCF7

versus MCF7/IGF-1R cells in response to 4-hydroxytamoxifen (TAM) in the dose range indicated in combination with estrogen 17b-estradiol (E2)

(1 nM), IGF-1 (100 ng/mL) or E2 (1 nM) plus IGF-1 (100 ng/mL). Dimethyl sulfoxide (DMSO) was used as a control. (b) Proliferative behavior of

MCF7/IGF-1R versus MCF7 cells in response to fulvestrant (FUL) with the same dose range and treatments as were used for TAM. Each treatment

was carried out in triplicate. SRB absorbance values are representative of three independent experiments. Data are expressed as means ± SD.
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These results suggest that IGF-1R signal-mediated

antiestrogen resistance in MCF7/IGF-1R cells does not

involve ERa-dependent processes. IGF-1-stimulated pro-

liferation may run parallel to E2-induced proliferation

and therefore is not inhibited by the antiestrogens 4-

OH-TAM and FUL.

IGF-1R signaling involves the MAPK/ERK and PI3K/Akt

pathways to mediate antiestrogen resistance of MCF7/

IGF-1R cells

Activation of IGF-1R signaling upon IGF-1 exposure led

to downstream ERK and Akt phosphorylation (Figures

1b and 1c). To evaluate the role of these kinase

Figure 3 IGF-1R signal-induced antiestrogen resistance in MCF7/IGF-1R cells is independent of ER status. (a) Differential ER levels in

response to antiestrogens TAM and FUL. Cells were treated with 100 nM TAM or FUL for three days following two-day starvation. (-), untreated.

(b) Knockdown of ER expression by small interfering RNA (siRNA). (c) Effect of ERa knockdown by siRNA on cell proliferation in response to TAM

(1 μM), E2 (1 nM) or E2 (1 nM) plus TAM (1 μM). siCtrl, siRNA control; siERa, siRNA ERa; **P < 0.01. (d) Effect of ERa knockdown on cell

proliferation in response to IGF-1 (100 ng/mL), IGF-1 (100 ng/mL) plus TAM (1 μM) or a combination of IGF-1 (100 ng/mL), E2 (1 nM) and TAM (1

μM). SRB proliferation OD values were normalized to the control DMSO. Data are representative of three individual experiments. Data are

expressed as means ± SD. (e) Estrogen response element (ERE)-dependent luciferase (Luc) activity of MCF7/IGF-1R cells in the presence of TAM

(1 μM), E2 (1 nM), E2 (1 nM) plus TAM (1 μM) and a combination of IGF-1 (100 ng/mL), E2 (1 nM) and TAM (1 μM). Luciferase activity was

normalized to DMSO control. Three individual ERE-luciferase assays were performed. Error bars represent ± SD.
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pathways in IGF-1R signal-induced antiestrogen resis-

tance in MCF7/IGF-1R cells, we first used several speci-

fic kinase inhibitors, including the IGF-1R inhibitor

BMS-536924 [36], the MEK inhibitor U0126 [37] and

the PI3K inhibitor BEZ235 [38]. BMS-536924 efficiently

blocked IGF-1R autophosphorylation by IGF-1 stimula-

tion and downstream phosphorylation of both ERK and

Akt by IGF-1R signal transduction (Figure 4a). U0126

(10 μM) largely inhibited ERK phosphorylation without

interfering with activation of either IGF-1R or Akt.

BEZ235 (1 μM) completely blocked Akt phosphoryla-

tion, leaving IGF-1R and ERK signaling intact (Figure

4a). These results suggest that, indeed, ERK and Akt are

downstream from IGF-1R signaling in a linear fashion.

Next, the engagement of the ERK and Akt pathways in

IGF-1R signal-mediated antiestrogen resistance in

MCF7/IGF-1R cells was examined by use of the respec-

tive kinase inhibitors (Figures 4b and 4c). IGF-1 stimula-

tion increased MCF7/IGF-1R proliferation by 60% to

64% (P < 0.001) over the cotreatment of 4-OH-TAM or

FUL (1 μM) with E2, whereas this IGF-1-promoted anti-

estrogen resistance was significantly abrogated by BMS-

536924, U0126 and BEZ235 equivalently to their inhibi-

tory effects on relative kinase phosphorylation.

The key components involved in the PI3K/Akt and

MAPK/ERK pathways have been well defined [39]. Using

several other specific kinase inhibitors (Figure 5a) and tar-

geting siRNA (Figure 5b and Additional file 3), we further

Figure 4 Involvement of mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt

in IGF-1R signal-mediated antiestrogen resistance of MCF7/IGF-1R cells. (a) Inhibitory effects of kinase inhibitors on IGF-1R autoactivation

and its signaling transduction. (b) Inhibitory effects of kinase inhibitors on tamoxifen resistance of MCF7/IGF-1R cells in response to TAM (1 μM)

individually or combined with E2 (1 nM) and IGF-1 (100 ng/mL) as indicated. (c) Inhibitory effects of kinase inhibitors on FUL resistance of MCF7/

IGF-1R cells in response to FUL (1 μM) individually or combined with E2 (1 nM) and IGF-1 (100 ng/mL) as indicated. (-), no kinase inhibitor. SRB

absorbance values are representative of three independent experiments. Error bars represent ± SD. ***P < 0.001.
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Figure 5 The key IGF-1R signaling components in the regulation of TAM resistance of MCF7/IGF-1R cells. (a) Selected kinase inhibitors

inhibiting IGF-1R signal-mediated TAM resistance. (b) Selected siRNA targeting genes (as named) involved in IGF-1R signal-mediated TAM

resistance. Concentrations used: TAM (1 μM), E2 (1 nM) and IGF-1 (100 ng/mL). (-), no kinase inhibitor. siCtrl, nontargeting siRNA. Results are

representative of duplicate experiments. Data are expressed as means ± SD. *P < 0.05. **P < 0.01. ***P < 0.001. (c) MetaCore Pathway Analysis

showing the functional activities of the key players (dashed circles) in IGF-1R signal-mediated TAM resistance. Fold changes in cell proliferation as

the result of inhibition of selected kinase inhibitors or knockdown of target genes are given in Additional file 3. 1, experiment 1 (exp 1) with

kinase inhibitors. 2, experiment 2 (exp 2) with siRNA. Red bar, increase in proliferation. Blue bar, decrease in proliferation.
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delineated the functional activities of the known PI3K/Akt

and MAPK/ERK components in the 4-OH-TAM resis-

tance of MCF7/IGF-1R cells and positioned them in the

IGF-1R signaling map (Figure 5c, dashed circles) by using

MetaCore Pathway Analysis software (GeneGo, St. Joseph,

MI, USA) according to fold changes in proliferation (Addi-

tional file 3 Table S1). As expected, inhibition of IGF-1R

by either kinase inhibitor or siRNA silencing blocked IGF-

1-stimulated proliferation (Figure 5c, exp 1 and 2, blue

bars). Insulin receptor substrate 1 (IRS-1), which is known

to be phosphorylated by autoactivated IGF-1R upon ligand

binding, was shown to be involved in IGF-1R-mediated 4-

OH-TAM resistance (Figure 5c, exp 2, blue bar). Kinase

inhibitors blocking the signaling of the MAPK/ERK and

PI3K/Akt pathways led to overall inhibition of prolifera-

tion (Figure 5c, blue bars in exp 1). Silencing of the major

MAPK/ERK and PI3K/Akt kinases c-Raf-1 (Raf1), ERK2

(MAPK1), PI3K cat class A (PIK3CA), Akt (AKT1), mTOR

(FRAP1) and p70 S6 kinase 1 (RPS6KB1) largely abrogated

IGF-1-induced 4-OH-TAM resistance (Figure 5c, exp 2,

blue bars). The PI3K negative regulators PI3K reg class IA

(PI3KR1) and phosphatase and tensin homolog (PTEN)

greatly increased proliferation when knocked down (Figure

5c, exp 2, red bars), further indicating the role of the PI3K

pathway in the 4-OH-TAM resistance of MCF7/IGF-1R

cells. In a novel way, our results reveal that, when targeted

by siRNA, phosphoinositide-dependent kinase (PDK)

(PDPK1) and p90Rsk (RPS6KA2), which are known posi-

tive regulators of transcription factor CREB1 (cyclic ade-

nosine monophosphate-responsive element binding

protein 1), decreased cell proliferation (Figure 5c, exp 2,

blue bars), whereas inhibitor of nuclear factor �B kinase

subunit (IKK) (CHUK) and glycogen synthase kinase 3

(GSK3) (GSK3B), which are known inhibitors of transcrip-

tion factors NF-�B and c-Myc, significantly increased cell

proliferation (Figure 5c, exp 2, red bars). In addition, silen-

cing of apoptosis signal-regulating kinase 1 (ASK1)

(MAP3K5), which is negatively regulated by IGF-1R phos-

phorylation to prevent apoptosis, enhanced cell prolifera-

tion (Figure 5c, exp 2, red bars).

Together, our results confirm that IGF-1R signaling

incites multiple downstream cascades in which the key

MAPK/ERK and PI3K/Akt components constitute the

central signaling nodes that regulate IGF-1/IGF-1R sig-

nal-mediated proliferation and antiestrogen resistance in

MCF7/IGF-1R cells.

Tamoxifen resistance of IGF-1-stimulated MCF7/IGF-1R

cells is induced in 3D culture

Next, we further investigated the effect of IGF-1 sti-

mulation on MCF7/IGF-1R 4-OH-TAM resistance in

a more structurally and physiologically relevant con-

text by use of a modified 3D culture. Both parental

MCF7 (Figure 6a) and MCF7/IGF-1R cells (Figure 6b)

Figure 6 Three-dimensional responses of MCF7/IGF-1R cells to TAM (1 μM), E2 and IGF-1. Compared to parental MCF7 cells (a), MCF7/IGF-

1R cells (b) in three-dimensional (3D) culture formed bigger acini in response to IGF-1 stimulation and displayed significant TAM resistance when

treated with TAM (1 μM) + E2 + IGF-1, which was removable by kinase inhibitors BMS-536924, U0126 and BEZ235 (c). Cells (10,000/well) were

seeded in 96-well plates. Acini were formed on 100% Matrigel and cultured for 14 days in starving medium containing 2% Matrigel and 5%

charcoal/dextran-stripped fetal bovine serum with the treatments as indicated. Concentrations used: TAM (1 μM), E2 (1 nM) and IGF-1 (100 ng/

mL). Confocal image original magnification, × 20. Red, rhodamine phalloidin (actin). Blue, Hoechst blue stain. Results are representative of two

individual experiments.
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were responsive to E2 or IGF-1 by forming acini on

Matrigel, but the response was significantly larger in

MCF7/IGF-1R cells with altered acinar morphogenesis

(zoom images at bottom of Figures 6a and 6b). 4-OH-

TAM effectively blocked E2-induced acini in both cell

types (4-OH-TAM + E2). However, addition of IGF-1

(4-OH-TAM + E2 + IGF-1) overcame the antiproli-

ferative effects of 4-OH-TAM and allowed acini

growth of MCF7/IGF-1R cells but not MCF7 cells,

demonstrating IGF-1-stimulated 4-OH-TAM resis-

tance of MCF7/IGF-1R cells in 3D culture. Similarly

to the SRB 2D assay, inhibition of IGF-1R/ERK/Akt

signaling by respective kinase inhibitors restored 4-

OH-TAM sensitivity of MCF7/IGF-1R cells in 3D cul-

ture (Figure 6c).

At low concentrations, tamoxifen displays an agonistic

behavior in IGF-1-stimulated MCF7/IGF-1R cells

We have demonstrated that IGF-1 treatment of MCF7/

IGF-1R cells overruled the antiproliferative effect of

tamoxifen (at 1 μM). However, we also note that at low

concentrations of 4-OH-TAM, an increase in prolifera-

tion was triggered on top of IGF-1-driven proliferation

(Figure 2a), suggesting a potential role for enhanced

intrinsic IGF-1R signaling in tamoxifen resistance. To

investigate to what extent IGF-1R signaling causes this

4-OH-TAM agonistic effect, cells were coexposed to 4-

OH-TAM in doses of 10, 33 or 100 ng/mL IGF-1,

which were shown to cause different levels of sustained

receptor and downstream signaling activation (Figure

1d). Consistently, IGF-1 promoted a 4-OH-TAM promi-

togenic effect in MCF7/IGF-1R cells but not in MCF7

cells, with the highest potential occurring at 4-OH-

TAM 10-9 to 10-8 M (Figure 7a). This 4-OH-TAM pro-

mitogenic effect was most strongly induced by IGF-1

between 33 and 100 ng/mL, concentrations which were

shown to induce maximal IGF-1R signaling (Figure 1d).

As expected, at 10 nM 4-OH-TAM, a marginal antag-

onistic effect was observed to block E2 (1 nM)-mediated

proliferation (Figure 7b) and ERE-luciferase activity (Fig-

ure 7c) in both MCF7 and MCF7/IGF-1R cells. Interest-

ingly, 10 nM 4-OH-TAM provided a mild promitogenic

effect, increasing IGF-1-dependent proliferation (17% to

27%; P < 0.05) (Figure 7d) and ERE-mediated ER tran-

scriptional activity in MCF7/IGF-1R cells (P < 0.05)

(Figure 7e), whereas it remained inhibitory in parental

MCF7 cells (15% to 20%; P < 0.05) (Figures 7d and 7e).

These agonistic effects were not observed for FUL.

To further evaluate whether ERa is functionally

required for this 4-OH-TAM agonistic switch in MCF7/

IGF-1R cells, siRNA ERa knockdown experiments were

performed. In siRNA control (siCrtrl) conditions, 10 nM

4-OH-TAM maintained a promitogenic effect on IGF-1-

stimulated MCF7/IGF-1R cells (18% to 25%; P < 0.05),

but ERa knockdown (siERa) eliminated the proliferation

increase induced by 10 nM 4-OH-TAM (Figure 7f).

These results imply that enhanced IGF-1R intrinsic

kinase activity triggered this switch of 4-OH-TAM (10

nM) from an ERa antiproliferative modulator into a

promitogenic modulator, indicating an agonistic effect

on ER.

Tamoxifen agonistic behavior in MCF7/IGF-1R cells can be

attributed to the MAPK/ERK pathway

We also investigated whether the agonistic behavior of

4-OH-TAM (10 nM) in IGF-1-stimulated MCF7/IGF-1R

cells is conferred via the ERK and Akt signaling path-

ways. Inhibition of IGF-1R signaling by BMS-536924

effected complete abrogation of IGF-1-stimulated prolif-

eration and 4-OH-TAM (10 nM) agonistic action (Fig-

ure 8a). While 1 μM U0126 inhibited neither

phosphorylation of ERK (Figure 4a) nor IGF-1-stimu-

lated proliferation, it did clearly attenuate tamoxifen

agonistic behavior (P < 0.01), with a subsequent compe-

tence in proliferative inhibition at 10 μM (Figure 8a).

IGF-1-stimulated proliferation was drastically restrained

by BEZ235 at either 1 or 10 μM (Figure 8a). Similar

inhibitory patterns by the kinase inhibitors were

observed in parental MCF7 cells, except for the 4-OH-

TAM (10 nM) promitogenic effect (Additional file 4a).

We noted that although the BEZ235 inhibitory effect

(even at 1 μM) was drastic, the 4-OH-TAM (10 nM)

agonistic action seemed not to be completely abolished

(Figure 8a). Therefore, further experiments with a lower

dose range of BEZ235 were performed. While IGF-1R

and ERK signaling remained unaffected in response to

IGF-1, the phosphorylation level of Akt was diminished

with an increase in the dose of BEZ235, largely at 0.1

μM and entirely at 0.5 μM (Figure 8b). Likewise, the cell

proliferation rate decreased correspondingly to Akt

phosphorylation levels, significantly dropping at 0.1 μM

BEZ235 (Figure 8c), which occurred similarly in parental

MCF7 cells (Additional file 4b). Intriguingly, the 4-OH-

TAM (10 nM) agonistic effect on MCF7/IGF-1R cells

appeared irreversible by BEZ235 (Figure 8c). These data

suggest that 4-OH-TAM (10 nM) agonist conversion

results from elevated intrinsic IGF-1R/MAPK/ERK sig-

naling in MCF7/IGF-1R cells.

Discussion

The underlying mechanisms for antiestrogen resistance

are multifactorial and poorly understood. Studies of

growth factor receptor-mediated resistance mechanisms

have mainly focused on the RTK signaling by EGFR and

HER2 [1,5,7,22,40]. Our data based on the MCF7/IGF-

1R cell model demonstrate that, more than just a modu-

latory role, IGF-1R conveys its own ligand receptor sig-

naling to drive resistance to tamoxifen and FUL. IGF-1R
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Figure 7 TAM (10 nM) acts as an agonist in MCF7/IGF-1R stimulated by IGF-1. (a) Dose dependence of TAM resistance on IGF-1. (b)

Antagonistic effect of 10 nM TAM on 1 nM E2-induced cell proliferation. (c) Antagonistic effect of 10 nM TAM on 1 nM E2-induced ERE-Luc

activity. (d) Agonistic effect of 10 nM TAM on 100 ng/mL IGF-1-stimulated MCF7/IGF-1R cells. (e) ERE-Luc activity induced by agonistic TAM (10

nM) in IGF-1-stimulated MCF7/IGF-1R cells. (f) ER dependence of agonistic effect of TAM (10 nM) in MCF7/IGF-1R cells. siCtrl, siRNA control; siERa,

siRNA ERa. Results are representative of three individual experiments. Luciferase activity was normalized to DMSO control. Error bars represent ±

SD. *P < 0.05.
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has been shown to facilitate breast cancer survival,

migration, invasion and metastasis [8-12]. Herein we

have shown that there is a causative mechanism of the

IGF-1/IGF-1R axis in the antiestrogen drug resistance of

breast cancer cells. IGF-1R signal-mediated tamoxifen

resistance in 3D culture indicates the likelihood that

these findings can be extended to the in vivo situation.

Clinical studies have revealed that phosphorylation of

IGF-1R is correlated with poor outcomes of breast can-

cers, whereas total IGF-1R level is not [15]. Our data

show that enhanced RTK activity of IGF-1R is required

for the antiestrogen-resistant phenotype of MCF7/IGF-

1R cells and that IGF-1R does not elicit antiresistance in

the presence of the IGF-1R inhibitor BMS-536924. We

propose that elevated IGF-1R signaling can be an impor-

tant element of breast cancer antiestrogen resistance.

Resistance to antiestrogens may occur de novo in

initial endocrine therapy or may be acquired later, after

an early response. Antiestrogen-resistant breast cancer

cells increase their utilization of nongenomic signaling

pathways, while genomic ER action seems less active,

since in most cases there is no loss of ER when resis-

tance to endocrine therapy develops [18,40-42]. Several

successive studies have shown that changes in ER levels

do not underlie antiestrogen resistance of breast cancers

[43-46]. Other studies have reported that overexpression

of IGF-1R or its major substrate, IRS-1, in ER-positive

breast cancer cells augments cell proliferation and

reduces estrogen growth dependence [47-49]. In addi-

tion, phosphorylation of IGF-1R in human breast can-

cers has no correlation with ER expression [15]. In

support of these findings, we have shown that overex-

pression and phosphorylation of IGF-1R in antiestrogen-

resistant MCF7/IGF-1R cells affected neither ER protein

levels nor their transcriptional activity in response to

estrogen and antiestrogens. In E2-depleted starving

Figure 8 TAM (10 nM) agonistic behavior in MCF7/IGF-1R cells is not inhibited by phosphatidylinositol 3-kinase/Akt inhibitor BEZ235.

(a) Inhibitory effects of kinase inhibitors BMS-536924, U0126 and BEZ235 on agonistic effect of TAM (10 nM) in the presence of IGF-1 (100 ng/

mL). **P < 0.01. (b) Inhibitory effects of phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor BEZ235 at various dose ranges on IGF-1R signaling. (c)

Agonistic behavior of TAM (10 nM) in response to BEZ235 kinase inhibitor. (-), no BEZ235. Results are representative of three independent

experiments. Data are expressed as means ± SD.
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medium, exposure of MCF7/IGF-1R cells to IGF-1 (100

ng/mL) abolished the E2 requirement for cell growth and

resulted in resistance to antiestrogens (1 μM). Impor-

tantly, ERa knockdown by siRNA did not alleviate IGF-

1R signal-mediated tamoxifen resistance in MCF7/IGF-

1R cells, and ERa degradation by FUL did not rescue the

resistant phenotype either. Furthermore, ERE reporter

assay and mRNA expression analysis demonstrated that

E2-induced ER transcriptional activity and expression of

the ER target genes CXCL12 and FOXC1 are inhibited by

4-OH-TAM in the presence or absence of IGF-1. Thus,

our data indicate that the IGF-1/IGF-1R signaling route

can incite antiestrogen resistance of MCF7/IGF-1R cells,

without cross-talk with the ERa pathway at the moment

of IGF-1 ligand stimulation. Therefore, we emphasize

that IGF-1R signaling may act as a crucial contributor to

antiestrogen resistance in breast cancer, independently of

E2 and regardless of ER status.

We have determined that upon IGF-1 ligand stimula-

tion, IGF-1R conveys its signal via the MAPK/ERK and

PI3K/Akt pathways, the major downstream pathways

integrating signals from RTKs, to mediate antiestrogen

resistance in MCF7/IGF-1R cells. Blockage of either

pathway by various kinase inhibitors restores cell sensi-

tivity to the antiestrogens tamoxifen and FUL. Specific

siRNA silencing of IGF-1R’s substrate, IRS-1, and the

key MAPK/ERK and PI3K/Akt kinase components con-

firms their individual roles in the IGF-1R signal-

mediated 4-OH-TAM resistance of MCF7/IGF-1R cells

and implies roles for the oncogene PIK3CA, the tumor

suppressor PTEN, the apoptotic modulator ASK1

(MAP3K5) and transcription factor regulators such as

PDK (PDPK), p90Rsk (RPS6KA2), IKK (CHUK) and

GSK3 (GSK3B). These results suggest that targeting

either IGF-1R itself or downstream MAPK/ERK and

PI3K/Akt signaling components may resensitize breast

cancer cells to antiestrogen tamoxifen and FUL.

Tamoxifen can have both agonist and antagonist prop-

erties [18,50,51]. Herein we have shown that 4-OH-

TAM switches from an antagonist to an agonist in IGF-

1-stimulated MCF7/IGF-1R cells. Interestingly, this

effect was primarily observed at a low concentration of

4-OH-TAM (10 nM) and was associated with mild ERE-

mediated ER transcriptional activity. Knockdown of ERa

abrogated this agonistic effect of 4-OH-TAM. In addi-

tion, this agonistic 4-OH-TAM (10 nM)-promoted pro-

liferation appeared to be dependent on increased

MAPK/ERK signaling. Phosphorylation levels of ERKs

were increased in IGF-1-stimulated MCF7/IGF-1R cells,

significantly higher than those in parental MCF7 cells,

whereas Akt phosphorylation remained similar. These

results are congruent with those of an earlier study

which presented the same activation patterns of ERK

and Akt downstream of IGF-1/IGF-1R signaling [49].

Other studies have shown that in acquired tamoxifen-

resistant cells or MCF7/HER2 cells, enhanced EGFR and

HER2 expression increases MAPK/ERK signaling, lead-

ing to agonist activity of tamoxifen, but Akt remains at

equal levels [18,42,52-54]. Particularly in tamoxifen-

resistant cells, tamoxifen at 100 nM acts as an agonist

by increasing proliferation and even triggers ERK phos-

phorylation as quickly as E2 does [55]. Our data indicate

that the tamoxifen agonistic properties can be induced

by enhanced activation of IGF-1R signaling and suggest

that an increase in MAPK/ERK cascades downstream of

IGF-1R RTK signaling may be essential for tamoxifen

agonism at low concentrations.

Conclusions

Our findings using the MCF7/IGF-1R breast cancer cell

line model provide evidence that elevated IGF-1R signal-

ing determines the sensitivity of breast cancer cells to

antiestrogens and further define the role of the IGF-1/

IGF-1R axis in the pleiotropic mechanisms of breast

cancer antiestrogen resistance. The MCF7/IGF-1R cell

line represents a useful model for investigating the criti-

cal elements in IGF-1/IGF-1R-driven proliferation and

antiestrogen resistance.

Additional material

Additional file 1: Figure S1. Responsiveness of MCF7 versus MCF7/

insulin-like growth factor 1 receptor (IGF-1R) cells to 17b-estradiol
(E2). The sulforhodamine B (SRB) data shown are representative of three

individual experiments. Data are expressed as means ± SD.

Additional file 2: Figure S2. Expression levels of E2-responsive

genes CXCL12 and FOXC1 in the presence of tamoxifen, E2 and IGF-

1. For microarray analysis of gene expression, MCF7/IGF-1R cells were

seeded at 60% confluence in 6-cm plates and subjected to three-day

starvation in 5% charcoal/dextran-stripped fetal bovine serum medium

prior to treatments with 4-hydroxytamoxifen (TAM) (10 μM), E2 (10 nM)

and IGF-1 (100 ng/mL) as indicated. Each treatment was performed in

triplicate. After 6 hours of treatment, cells were harvested and total RNA

was extracted using an RNA isolation kit (Ambion, Inc., Austin, TX, USA).

RNA quality and integrity were assessed by using the Agilent 2100

Bioanalyzer System (Agilent Technologies, Santa Clara, CA, USA). The

Affymetrix 3’ IVT Express Kit (Affymetrix, Santa Clara, CA, USA) was used

to synthesize biotin-labeled cRNA, and this was hybridized to an

Affymetrix HG-U133 PM Array plate reader. Raw expression data were

obtained by probe summarization and background correction according

to the robust multiarray averaging method [56]. Median normalization of

raw expression data and identification of differentially expressed genes

using a random variance t-test was performed using BRB-ArrayTools [57]

version 4.1.0 Beta 2 Release (developed by Dr. Richard Simon and BRB-

ArrayTools Development Team members). Expression levels of the E2-

responsive genes CXCL12 and FOXC1 were normalized to their levels in

control and dimethyl sulfoxide-treated cells. Data are expressed as means

± SD.

Additional file 3: Table S1. Effects of various kinase inhibitors and siRNA

on IGF/E2/TAM-induced cell proliferation of MCF7/IGF-1R cells.

Additional file 4: Figure S3. (a) Inhibitory effects of kinase inhibitors

BMS-536924, U0126 and BEZ235 on MCF7 cells in response to TAM (10

nM) and IGF-1 (100 ng/mL) as indicated. (b) Inhibitory effects of kinase

inhibitor BEZ35 at a dose range on cell proliferation of MCF7 cells in

response to TAM (10 nM) and IGF-1 (100 ng/mL) as indicated. Original
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data are representative of three independent experiments. Data are

expressed as means ± SD.
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