Economic Geology

Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red Chris porphyry Cu-Au deposit, Northern British Columbia, Canada --Manuscript Draft--

Manuscript Number:	SEG-D-18-00013R2
Full Title:	Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red Chris porphyry Cu-Au deposit, Northern British Columbia, Canada
Article Type:	Regular Paper
Corresponding Author:	Jing-Jing Zhu, Ph.D Laurentian University Sudbury, Ontario CANADA
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Laurentian University
Corresponding Author's Secondary Institution:	
First Author:	Jing-Jing Zhu, Ph.D
First Author Secondary Information:	
Order of Authors:	Jing-Jing Zhu, Ph.D
	Jeremy Peter Richards
	Chris Rees
	Robert Creaser
	Andrew DuFrane
	Andrew Locock
	Joseph Petrus
	Jürgen Lang
Order of Authors Secondary Information:	
Abstract:	The Red Chris porphyry Cu-Au deposit is located in the Stikinia island-arc terrane in northwest British Columbia. It is hosted by the Red Stock, which has four phases of porphyry intrusions: P1, P2E, P2L, and P3. New U-Pb dating of zircon shows that these intrusions were emplaced at 211.6 \pm 1.3 Ma (MSWD = 0.85), 206.0 \pm 1.2 Ma (MSWD = 1.5), 203.6 \pm 1.8 Ma (MSWD = 1.5), and 201.7 \pm 1.2 Ma (MSWD = 1.05), respectively. The ore-forming event at Red Chris was a short-lived event at 206.1 \pm 0.5 Ma (MSWD = 0.96; weighted average age of three Re-Os analyses), implying a duration of <1 m.y., as defined by the uncertainty range. This mineralization age coincides with the emplacement age of the P2E porphyry, and is consistent with cross-cutting relationships that suggest P2E was the main syn-mineralization intrusion. Zircons from P1 to P3 porphyry rocks have consistently high EuN/EuN* ratios (mostly > 0.4), indicating that their associated magmas were moderately oxidized. The magmatic water contents estimated from plagioclase and amphibole compositions suggest H2O contents of ~5 wt. %. Taken together, the P1 to P3 porphyries are interpreted to be moderately oxidized and hydrous. The four phases of porphyries are differentiated by sulfur and chlorine contents. The SO3 contents of igneous apatite microphenocrysts from the mineralization-related P2 porphyries are higher (P2E: 0.30 \pm 0.13 wt. %, n = 34; P2L: 0.29 \pm 0.18 wt. %, n = 100) than those from the pre-mineralization P1 (0.11 \pm 0.37 (n = 34) and post-mineralization P3 porphyries (0.03 \pm 0.01 wt. %, n = 13). The chlorine contents in apatite grains from the P2E and P2L porphyries are 1.18 \pm 0.37 (n = 34) and 1.47 \pm 0.28 wt. % (n = 100), also higher than those from P1 (0.51 \pm 0.3 wt. % Cl, n = 34) and P3 (0.02 \pm 0.02 wt. % Cl, n = 17). These results imply that the sulfur and chlorine

	contents of the P2E and P2L magmas were higher than in the P1 and P3 magmas, suggesting that elevated magmatic S-CI contents in the P2 porphyries may have been important for ore-formation. Although the process that caused the increase in sulfur and chlorine is not clear, reverse zoning seen in plagioclase phenocrysts from the P2 porphyry, and the occurrence of more mafic compositions in P2L suggest that recharge of the deeper magma chamber by a relatively S-CI-rich mafic magma may have	
	triggered the ore-forming hydrothermal event.	

Dear Editor,

Thank you again for giving us the opportunity to improve our paper entitled "Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red Chris porphyry Cu-Au deposit, Northern British Columbia, Canada" (ID: SEG-D-18-00013R1). Particularly, we appreciate the very careful review on this manuscript by the Associated Editor, David R. Cooke.

We agree with the comments by Dr. David Cooke and all the corresponding corrections have been done following his instructions. To facilitate review of our revised paper, the version with marked changes is given. We hope our manuscript could be accepted soon.

With thanks and regards,

Jing-Jing Zhu for the co-authors.

1 2		
3 4 5	1	Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red
6 7	2	Chris porphyry Cu-Au deposit, Northern British Columbia, Canada
8 9 10	3	Jing-Jing Zhu ^{1, 2, 3*} , Jeremy P. Richards ^{1, 2} , Chris Rees ⁴ , Robert Creaser ² , S. Andrew
11 12	4	DuFrane ² , Andrew Locock ² , Joseph A. Petrus ¹ , and Jürgen Lang ²
13 14 15	5	¹ Harquail School of Earth Sciences, Laurentian University, 935 Ramsey Lake Road,
16 17	6	Sudbury, ON, Canada P3E 2C6
18 19 20	7	² Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton,
21 22	8	Alberta, Canada T6G 2E3
23 24 25	9	³ State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese
26 27 28 29	10	Academy of Sciences, Guiyang 550081, PR China
30 31	11	⁴ Imperial Metals Corporation, 200-580 Hornby Street, Vancouver, B.C., Canada V6C
32 33 34	12	<i>3B6</i>
35 36 37 38	13	*Corresponding author e-mail: <u>jzhu4@laurentian.ca</u> ; zhujingjing-1103@163.com
39 40	14	Abstract
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	15	The Red Chris porphyry Cu-Au deposit is located in the Stikinia island-arc terrane in
	16	northwest British Columbia. It is hosted by the Red Stock, which has four phases of
	17	porphyry intrusions: P1, P2E, P2L, and P3. New U-Pb dating of zircon shows that these
	18	intrusions were emplaced at 211.6 \pm 1.3 Ma (MSWD = 0.85), 206.0 \pm 1.2 Ma (MSWD =
	19	1.5), 203.6 ± 1.8 Ma (MSWD = 1.5), and 201.7 ± 1.2 Ma (MSWD = 1.05), respectively.
	20	The ore-forming event at Red Chris was a short-lived event at 206.1 ± 0.5 Ma (MSWD =
	21	0.96; weighted average age of three Re-Os analyses), implying a duration of <1 m.y., as
58 59 60 61 62 63	22	defined by the uncertainty range. This mineralization age coincides with the emplacement
64		1

age of the P2E porphyry, and is consistent with cross-cutting relationships that suggest
P2E was the main syn-mineralization intrusion.

Zircons from P1 to P3 porphyry rocks have consistently high Eu_N/Eu_N^* ratios (mostly > 0.4), indicating that their associated magmas were moderately oxidized. The magmatic water contents estimated from plagioclase and amphibole compositions suggest H₂O contents of ~5 wt. %. Taken together, the P1 to P3 porphyries are interpreted to be moderately oxidized and hydrous.

30 The four phases of porphyries are differentiated by sulfur and chlorine contents. The

31 SO₃ contents of igneous apatite microphenocrysts from the mineralization-related P2

32 porphyries are higher (P2E: 0.30 ± 0.13 wt. %, n = 34; P2L: 0.29 ± 0.18 wt. %, n = 100)

than those from the pre-mineralization P1 (0.11 \pm 0.03 wt. %, n = 34) and post-

mineralization P3 porphyries $(0.03 \pm 0.01 \text{ wt. }\%, n = 13)$. The chlorine contents in apatite

grains from the P2E and P2L porphyries are 1.18 ± 0.37 (n = 34) and 1.47 ± 0.28 wt. %

36 (n = 100), also higher than those from P1 (0.51 \pm 0.3 wt. % Cl, n = 34) and P3 (0.02 \pm

37 0.02 wt. % Cl, n = 17). These results imply that the sulfur and chlorine contents of the

38 P2E and P2L magmas were higher than in the P1 and P3 magmas, suggesting that

39 elevated magmatic S-Cl contents in the P2 porphyries may have been important for ore-

40 formation. Although the process that caused the increase in sulfur and chlorine is not

41 clear, reverse zoning seen in plagioclase phenocrysts from the P2 porphyry, and the

42 occurrence of more mafic compositions in P2L suggest that recharge of the deeper

43 magma chamber by a relatively S-Cl-rich mafic magma may have triggered the ore-

44 forming hydrothermal event.

Introduction

Compared to the relatively long-lived magmatic systems represented by a composite batholith (up to 10 m.y.; Matzel et al., 2006; Walker et al., 2007; Harris et al., 2008; Schaltegger et al., 2009; Paterson et al., 2011; Rezeau et al., 2016), the life spans of porphyry magmatic-hydrothermal ore-forming events are much shorter, probably on the order of several hundred thousand years (up to 1 m.y.; Cathles et al., 1997; Hayba and Ingebritsen, 1997; Masterman et al., 2004; von Quadt et al., 2011; Weis et al., 2012; Chiaradia et al., 2013; Correa et al., 2016; Li et al., 2017). In many large magmatic systems, porphyry formation occurs at a relatively late stage in the system's evolution (Creasey, 1977; Titley and Beane, 1981; Candela, 1992; Richards, 2003; Rohrlach and Loucks, 2005; Yang et al., 2009; Correa et al., 2016). Although the multiple phases of porphyry stocks are commonly broadly cogenetic, they may be derived from packets of magma that evolved at different crustal levels over the history of the larger magmatic system (Annen et al., 2006). Understanding why ore-formation is only associated with a specific intrusive suite within these broader systems, and at discrete, commonly singular times, is a focus of this study.

It is recognized that magmas with high sulfur (>1000 ppm), chlorine (>3000 ppm),
and water (>4 wt. %) contents as well as relatively high oxidation states (higher than the
fayalite-magnetite-quartz buffer, ΔFMQ, by 1–2 log *f*O₂ units) are fertile for the
generation of magmatic-hydrothermal porphyry Cu deposits (Burnham, 1979; Candela,
1992; Richards, 2003, 2009, 2011, 2015; Wallace, 2005; Chambefort et al., 2008; Simon
and Ripley, 2011; Chiaradia et al., 2012; Loucks, 2014; Hou et al., 2015; Lu et al., 2015,
2016; Chelle-Michou and Chiaradia, 2017). These ingredients are essential for the

transport of Cu (and Au) both in the magma (Zajacz et al., 2012) and in exsolved high
temperature, SO₂-rich, saline magmatic fluids (Candela and Holland, 1984; Zajacz et al.,
2011). However, whereas many magmas achieve such compositions, ore formation is a
relatively rare and discrete event in such systems.

Various mechanisms have been proposed that might trigger an ore forming event from a fertile magma source, including recharge of the magma chamber by hot, sulfur-rich melts (Hattori, 1993; Keith et al., 1997; Larocque et al., 2000; Hattori and Keith, 2001; Halter et al., 2005; Stern et al., 2007; Nadeau et al., 2010, 2016; Wilkinson, 2013; Tapster et al., 2016; Zhang and Audétat, 2017), fluxing by sulfur gases (Blundy et al., 2015), or increasing the water and oxidation state of magmas during long-term fractionation in deep magma chambers (Ballard et al., 2002; Wang et al., 2014a, 2014b; Dilles et al., 2015; Lu et al., 2015, 2016). The Red Chris porphyry Cu-Au deposit provides an opportunity to test these hypotheses, because ore-formation occurred at a discrete and relatively late stage in the ~10 m.y. history of the associated magmatic system.

The Red Chris deposit is located in northwest British Columbia, and contains measured and indicated resources of 1,035 million metric tonnes of ore grading 0.35% Cu and 0.35 g/t Au (Gillstrom et al., 2012). Pre-, syn-, and post-mineralization porphyry intrusions have been recognized based on detailed core logging and petrographic work (Rees et al., 2015), with mineralization occurring in a singular episode during this magmatic history. In this paper, we present detailed geochronological and geochemical data for the porphyry phases at Red Chris, and show that they have similar bulk compositions, including all being relatively hydrous and oxidized. However, the syn-

92	mineralization porphyry is characterized by plagioclase with reverse zoning and apatite
93	with relatively high sulfur and chlorine contents. We interpret these data to indicate that
94	high magmatic S and Cl contents, in addition to high H ₂ O contents and oxidation state,
95	were critical for Cu-Au ore-formation at Red Chris. We speculate that there was an
96	injection of relatively mafic (hotter, and more S- and Cl-rich) but cogenetic magma into
97	the mid-upper crustal source magma chamber approximately coincident with
98	emplacement of the syn-mineralization porphyry.
99	
100	Geological Setting
101	Red Chris is situated within the island-arc terrane of Stikinia in the Intermontane Belt
102	of the Canadian Cordillera of British Columbia (Fig. 1; Monger and Irving, 1980; Nelson
103	and Colpron, 2007; Nelson et al., 2013). Stikinia consists primarily of Mesozoic arc-
104	related igneous and sedimentary rocks, formed in response to subduction processes prior
105	to accretion to the ancestral North American margin in the Middle Jurassic (Gabrielse,
106	1991; Ricketts et al., 1992; Lang et al., 1995; Mihalynuk et al., 2004; Nelson and Colpron,
107	2007; Logan and Mihalynuk, 2014). In northwestern Stikinia, arc assemblages comprise
108	the Middle to Late Triassic Stuhini Group, unconformably overlain by Late Triassic and
109	Early to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group (Fig. 2;
110	Brown et al., 1991; Gabrielse, 1991; Marsden and Thorkelson, 1992; Dostal et al., 1999;
111	Gagnon et al., 2012; Nelson et al., 2013; Logan and Mihalynuk, 2014). The Hazelton
112	Group is overlain by sedimentary rocks of the syn- to post-accretion Middle Jurassic to
113	Early Cretaceous Bowser Lake Group.

Several porphyry Cu±Au±Mo deposits occur in the region, hosted by Late Triassic to Early Jurassic arc-related plutons (Fig. 1), including Red Chris which formed in the Late Triassic Red Stock. Collectively, these regional intrusions have ages ranging from ~222 Ma to ~180 Ma, recording much of the pre-accretionary history of Stikinia (Lang et al., 1995; McMillan et al., 1995; Scott et al., 2008; Nelson et al., 2013; Logan and Mihalynuk, 2014). A significant percentage of the known porphyry Cu deposits, including Red Chris, formed during a 6-m.y. pulse of magmatism between 206 and 200 Ma, with compositions ranging from calc-alkaline to strongly alkaline (Lang et al., 1995; McMillan et al., 1995; Nelson et al., 2013; Bissig and Cooke, 2014; Logan and Mihalynuk, 2014; Micko et al., 2014; Pass et al., 2014). Geology of the Red Chris Cu-Au deposit The Red Chris Cu-Au deposit was discovered in the 1950s and explored intermittently in subsequent decades, with mining beginning in 2015 (Ash et al., 1995, 1996; Newell and Peatfield, 1995; Baker et al., 1997; Gillstrom et al., 2012; Rees et al., 2015). The deposit is hosted by the Red Stock, which is the largest of a suite of Late Triassic to Early Jurassic stocks and dikes that intrude the Stuhini Group in the district (Fig. 2; Friedman and Ash, 1997; Rees et al., 2015). The stock is tabular, elongate in an east to northeast direction, and approximately 6.5 km long by 300 to 1500 m wide (Fig. 2; Ash et al., 1995; Baker et al., 1997; Gillstrom et al., 2012). It has a steep northern contact against Stuhini Group country rocks, but its southeastern margin against Hazelton and Bowser Lake Group strata is poorly exposed, and has locally been truncated by the NE-

trending, steeply SE-dipping South Boundary fault (Fig. 2). This fault, and the East zone
fault within the stock, probably reflect a long-lived and deep structure which guided the
emplacement of the intrusions, mineralization, and subsequent deformation of the Red
Stock.

The Red Stock is a composite intrusion consisting of several phases of porphyritic diorite to quartz monzonite. Mineralogically, the rocks consist of medium- to coarse-grained amphibole, plagioclase, and minor biotite phenocrysts, with K-feldspar, plagioclase, and quartz in the groundmass. Based on compositional and textural differences and crosscutting relationships, Rees et al. (2015) identified four distinct porphyry phases, P1, P2, P3, and P4. The P1 porphyry is a pre-mineralization leucodiorite which accounts for the main volume of the Red Stock, and is distinguished by sparse anhedral to subhedral amphibole ($\sim 10\%$) and abundant plagioclase (30–40) vol. %) phenocrysts with lengths up to 4 mm. The groundmass is composed of finegrained plagioclase and minor quartz (Fig. 3A).

The P2 porphyry is a syn-mineralization quartz monzonite intrusion which is largely unexposed at surface but is observed in drill core to have intruded P1 at depth. It has been subdivided by Rees et al. (2015) into early (P2E), intermediate (P2I), and late (P2L) phases based on vein truncations and chilled margins. The P2 porphyries are generally characterized by tabular subhedral to euhedral amphibole (10–15 vol. %) and plagioclase (35–50 vol. %) phenocrysts. The amphibole crystals are mostly euhedral and larger than in P1, with lengths up to 10 mm. The groundmass comprises K-feldspar, plagioclase, and quartz. In this paper, the P2 subphases are simplified to an early stage (P2E; Fig. 3B) and late stage porphyry (P2L, probably corresponding to P2I and P2L of Rees et al., 2015;

Fig. 3C). The P2E porphyry has a crowded plagioclase texture with slightly smaller
amphibole phenocrysts than P2L. In contrast, the P2L porphyry is relatively fresh and
occurs only as small dikes (Fig. 4).

The post-mineralization P3 monzonite porphyry is much less abundant. It is texturally similar to the P2L porphyry with abundant amphibole phenocrysts (15-20 vol. %), but is distinguished by the absence of quartz in the groundmass, which is mainly composed of K-feldspar and plagioclase (Fig. 3D). Although no crosscutting relationships between the P3 and P2L porphyries have been found, the zircon U-Pb dating results (see below) confirm that P3 is younger. The P4 porphyry occurs as rare dikes and is typified by sparse fine-grained amphibole phenocrysts (Rees et al., 2015). No P4 samples were included in this study.

Several younger basaltic to andesitic dikes with sparse amphibole phenocrysts cut the
Red Stock and the Stuhini Group host rocks (Figs. 3E and F). They postdate the
porphyry-stage Cu-Au mineralization (Baker et al., 1997; Rees et al., 2015), but are
mildly to strongly altered (Figs. 3E and F) and are crosscut by late quartz-calcite-pyrite
veins.

175 Hydrothermal alteration

Alteration at Red Chris has been described previously by Baker et al. (1997),
Gillstrom et al. (2012), Norris (2012) and Rees et al. (2015). The alteration assemblages
are typical of calc-alkaline porphyry Cu systems (Lowell and Guilbert, 1970; Seedorff et
al., 2005; Sillitoe, 2010), and consists of early stage potassic alteration, overprinted by
chlorite–sericite, sericitic (phyllic), intermediate argillic, and minor late stage propylitic

alteration (see paragenetic diagram in Rees et al., 2015). Potassic alteration is expressed
by replacement of amphibole phenocrysts by secondary biotite, plagioclase replaced or
rimmed by secondary K-feldspar, and by K-feldspar veins (Figs. 3B and 5A–C). It is best
preserved in the deeper levels of the deposit where it is spatially associated with the synmineralization P2E porphyry; however it locally extends into pre-mineralization P1
porphyry wall rocks (Fig. 4). The P2L and P3 porphyries were only weakly affected by
potassic alteration (Rees et al., 2015).

Chlorite–sericite alteration is characterized by chlorite replacing secondary biotite
(Fig. 5C) and sericite replacing feldspar (Fig. 5D). At shallower levels in the system,
potassic alteration is completely overprinted by phyllic and intermediate argillic
alteration (Gillstrom et al., 2012), characterized by sericite after plagioclase (phyllic; Fig.
5D), and illite and kaolinite (intermediate argillic; Norris, 2012). This lower temperature
alteration overprint affects all the porphyry phases, but is less pervasive at depth.

Propylitic alteration at Red Chris is mainly observed as minor chlorite and epidote in
the outer part of the Red Stock, and extends for 100 to 200 m into the Stuhini volcanic
country rocks (Gillstrom et al., 2012; Norris, 2012; Rees et al., 2015).

197 Vein styles and mineralization

Detailed descriptions of vein styles at Red Chris have been given by Norris (2012)
and Rees et al. (2015). A-type quartz veins (Gustafson and Hunt, 1975) and stockworks
are associated with potassic alteration and host the bulk of the copper-gold mineralization.
These veins are most intensely developed around the apex of the principal P2 porphyry
body, but extend for hundreds of metres into the P1 wall rocks. Typical A veins contain

K-feldspar, biotite, chalcopyrite, bornite, and magnetite, with K-feldspar alteration halos (Figs. 5A–B and G). Copper sulfides also occur as disseminations in the host porphyry. Bornite is more abundant in the apex of P2E, and progressively decreases outwards where chalcopyrite is the dominant Cu-sulfide (Norris, 2012; Rees et al., 2015). At shallower depths in the preserved system, early bornite was sulfidized to chalcopyrite, and pyrite becomes increasingly dominant. Rees et al. (2015) delineated a high-sulfur contour (>4% S) in section above which total sulfide (dominantly pyrite) ranges from 4 to 10%. Microscopic native gold and electrum occur as inclusions in bornite (Rees et al., 2015). The grades of Cu and Au are positively correlated with quartz vein density (Gillstrom et al., 2012). In high-grade zones at depth (e.g., 4.12 % Cu and 8.83 g/t Au in hole 09-350 from 540 to 692.5 m down-hole depth), vein abundance exceeds 80 vol. % in sheeted arrays (Fig. 5G; Rees et al., 2015). B- and D-type veins (Gustafson and Hunt, 1975) are relatively minor at Red Chris, and host only minor amounts of Cu sulfides. B quartz veins are characterized by relatively straight margins with sulfide centerlines (pyrite and minor chalcopyrite, and locally molybdenite; Fig. 5E). Pyritic D veins have variable widths (1 to 10 mm; Fig. 5F). Carbonate and minor chlorite veins cut all the earlier veins and are generally barren (Norris, 2012). **Sampling and Analytical Methods** Samples of the P1, P2E, P2L, and P3 porphyries were collected from drill core, and descriptions and locations are listed in Digital Appendix Table A1; sampled drill hole

locations are also shown on Figure 2. Fourteen least-altered samples of the porphyry

intrusions and three samples of late basaltic to andesitic dikes were selected for whole-

rock geochemical analysis. Eight of these samples were selected for determination of NdSr isotopes. Three samples of quartz-carbonate-pyrite-molybdenite-chalcopyrite veins
(Fig. 5H) were collected for Re-Os dating. Four samples of the P1 (RC13-40), P2E
(RC13-107), P2L (RC13-33), and P3 (RC13-78) intrusions were selected for zircon U-Pb
dating, Hf isotopic, and trace element analyses. Details of analytical methods are
provided in Appendix 1.

233 Electron microprobe analyses

Primary igneous minerals such as plagioclase and amphibole in the porphyry rocks are widely altered to K-feldspar, sericite, and chlorite (Figs. 3A–B and 5C–D). However, a few least-altered samples of the P2E, P2L, and P3 porphyries contained unaltered plagioclase and amphibole grains. In addition, igneous apatite grains were typically preserved as inclusions within plagioclase and amphibole phenocrysts. Compared with hydrothermal apatite (acicular crystals intergrown with other hydrothermal minerals such as quartz, sericite, chlorite, and sulfides), igneous apatite grains typically showed stubby prismatic habits, as described by Richards et al. (2017). Detailed analytical methods are described in Appendix 1.

Re-Os molybdenite dating

Three samples of molybdenite from quartz-carbonate-pyrite-molybdenite-chalcopyrite veins were collected from the Gully zone (RC13-88 and RC13-103), and the East zone (RC13-82; Digital Appendix Table A1; Fig. 2). A molybdenite mineral separate was produced for each sample by metal-free crushing followed by gravity and magnetic

249	concentration methods. Dating was conducted at the Canadian Centre for Isotopic
250	Microanalysis at the University of Alberta, Canada, using methods described in
251	Appendix 1.
252	
253	Geochronological Results
254	Zircon U-Pb ages of the Red Stock
255	Zircon U-Pb results are presented in Digital Appendix Table A2 and illustrated in
256	Figure 6; all ages are illustrated and reported with 2σ errors. All the zircons show
257	oscillatory zoning under BSE imaging. Sample RC13-40 was collected from P1
258	leucodiorite porphyry (Digital Appendix Table A1). Analyzed zircon grains form a
259	tightly clustered age population, mostly with low common lead contents. Except for one
260	inherited or xenocryst zircon (apparent 206 Pb/ 238 U age = 261 ± 12 Ma), the twenty-seven
261	grains yielded an intercept age of 211.6 ± 1.3 Ma (MSWD = 0.85; Fig. 6A), similar to the
262	weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 211.8 ± 1.3 Ma (MSWD = 0.8).
263	Sample RC13-107 was collected from P2E quartz monzonite porphyry (Digital
264	Appendix Table A1). One xenocrystic zircon grain yielded an older age (apparent
265	206 Pb/ 238 U age = 316 ± 10 Ma), but the other twenty-nine zircons contained low amounts
266	of common lead and intersected the concordia line at 206.0 ± 1.2 Ma (MSWD = 1.5; Fig.
267	6B), in good agreement with the weighted mean 206 Pb/ 238 U age of 205.9 ± 1.5 Ma
268	(MSWD = 1.5).
269	Sample RC13-33 was collected from P2L quartz monzonite porphyry (Digital
270	Appendix Table A1). Two xenocryst grains were found among thirty-one analyzed
271	zircons, with ${}^{206}\text{Pb}/{}^{238}\text{U}$ ages of 298 ± 16 Ma and 441 ± 13 Ma. The remaining twenty-

nine zircon grains had low common lead contents and yielded an intercept age of $203.6 \pm$ 1.8 Ma (MSWD = 1.5; Fig. 6C), similar to the weighted mean ²⁰⁶Pb/²³⁸U age of 203.3 ± 1.5 Ma (MSWD = 1.04).

Sample RC13-78 was collected from P3 monzonite porphyry (Digital Appendix Table A1). Thirty-two zircons with low common lead contents yielded an intercept age of 201.7 ± 1.2 Ma (MSWD = 1.05; Fig. 6D), and a weighted mean ²⁰⁶Pb/²³⁸U age of 201.6 ± 1.2 Ma (MSWD = 1.04).

All of the zircons have magmatic textures, and the intercept ages above are interpreted to be the crystallization ages of the individual intrusions. The ages are consistent with crosscutting relationships described by Rees et al. (2015), and define a 10 m.y. span of magmatism from 211.6 ± 1.3 Ma (P1) to 201.7 ± 1.2 Ma (P3). The relative ages of the two samples of syn-mineralization P2 porphyry are consistent with crosscutting relationships, but the dates (P2E: 206.0 ± 1.2 Ma; P2L: 203.6 ± 1.8 Ma) overlap within the 2σ uncertainty. Hence the apparent 2.4 m.y. age difference is not statistically robust, and their true ages may in fact be closer as suggested by their close relationship with ore mineral paragenesis.

Re-Os molybdenite ages

The Re-Os model ages for three samples are shown in Table 1. They have relatively high rhenium contents ranging from 497.8 to 1771 ppm, with common ¹⁸⁷Os of 1078 to 3821 ppb. Although the three samples are from two different mineralization zones (i.e., East and Gully zones; Fig. 2), they yielded indistinguishable model ages within uncertainty: 206.5 \pm 0.8 Ma, 205.7 \pm 0.9 Ma, and 205.9 \pm 1.1 Ma (\pm 2 s.d.). The small

295	grain size of the molybdenite (< 1 mm) minimizes the risk of decoupling between Re and
296	¹⁸⁷ Os in these samples (caused by diffusion: Selby and Creaser, 2004). The results
297	yielded a weighted average age for all three samples of 206.1 \pm 0.5 Ma (95% confidence
298	level with $MSWD = 0.96$; Fig. 7). This age is consistent with the age of the syn-
299	mineralization P2E porphyry (206.0 \pm 1.2 Ma).
300	
301	Geochemical and Isotopic Results
302	Whole-rock major and trace elements
303	Whole-rock major and trace element compositions for fourteen samples of the Red
304	Stock and three basaltic-andesitic dike samples are listed in Table 2. All the P1 to P3
305	porphyry intrusions have relatively homogeneous major element compositions, but have
306	moderate to high loss-on-ignition values (LOI: 2.3 to 10.9%) reflecting varying degrees
307	of potassic and sericitic alteration. On an LOI-free basis, they are mostly intermediate
308	composition (SiO ₂ = 56.71–63.16 wt. %; Digital Appendix Table A3), and straddle the
309	boundary between granodiorite (diorite) and syenite on a Zr/Ti versus Nb/Y diagram (Fig.
310	8). The late basaltic–andesitic dikes have distinct compositions, and plot in the field of
311	diorite and gabbro on Figure 8. On Harker-type diagrams of SiO2 versus selected major
312	elements, the alkali elements (K ₂ O and Na ₂ O; Figs. 9A–B) show significant scatter,
313	likely due to hydrothermal alteration, as confirmed by a rough correlation between alkali
314	contents and LOI. However, other elements such as Fe ₂ O ₃ , MgO, TiO ₂ , and Al ₂ O ₃ show
315	roughly correlated trends with SiO ₂ (Figs. 9E–F), suggesting a broadly cogenetic suite,
316	with the exception of the late basaltic to andesitic dikes, which do not plot on the same
317	trends for K ₂ O and TiO ₂ .

318	On primitive mantle-normalized extended trace element and chondrite-normalized
319	rare earth element (REE) diagrams (Figs. 10A-B), the porphyritic rocks show largely
320	indistinguishable patterns consistent with typical subduction-related igneous rocks
321	(Hawkesworth et al., 1993; Pearce, 1996), characterized by large-ion lithophile element
322	(LILEs: Rb, Ba, Th, U, K) and light rare earth element enrichments (LREE), low
323	concentrations of high field strength elements (HFSE: Nb, Ta, Zr, Hf, and Ti), relative
324	depletions in compatible elements and middle to heavy rare earth elements (MREE,
325	HREE; La/Yb = 8.9 ± 1.7 , n = 14), and flat to listric-shaped patterns from MREE to
326	HREE. Such listric patterns likely reflect amphibole fractionation from hydrous magmas,
327	and are an indication of magma fertility for porphyry ore formation (Richards and
328	Kerrich, 2007). Most samples have flat or slightly positive Eu anomalies with Eu_N/Eu_N^*
329	of 1.1 ± 0.15 (n = 14; Fig. 10B), also likely reflecting amphibole fractionation and lack of
330	plagioclase fractionation.
550	plagiociase mactionation.
331	Three samples of late basaltic to andesitic dikes show distinct trace element patterns,
331	Three samples of late basaltic to andesitic dikes show distinct trace element patterns,
331 332	Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are
331 332 333	Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are clearly not cogenetic with the earlier porphyries.
331 332 333 334	Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are clearly not cogenetic with the earlier porphyries. Excluding two samples with high Sr values that may reflect calcite veining, the
331 332 333 334 335	Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are clearly not cogenetic with the earlier porphyries. Excluding two samples with high Sr values that may reflect calcite veining, the porphyries have relatively high Sr/Y (53 \pm 23, n = 12) and V/Sc ratios (9.0 \pm 0.9, n = 14),
 331 332 333 334 335 336 	Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are clearly not cogenetic with the earlier porphyries. Excluding two samples with high Sr values that may reflect calcite veining, the porphyries have relatively high Sr/Y (53 ± 23 , n = 12) and V/Sc ratios (9.0 ± 0.9 , n = 14), which overlap the range of fertile rocks for porphyry formation (Richards and Kerrich,
 331 332 333 334 335 336 337 	Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are clearly not cogenetic with the earlier porphyries. Excluding two samples with high Sr values that may reflect calcite veining, the porphyries have relatively high Sr/Y (53 ± 23 , n = 12) and V/Sc ratios (9.0 ± 0.9 , n = 14), which overlap the range of fertile rocks for porphyry formation (Richards and Kerrich,
 331 332 333 334 335 336 337 338 	Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are clearly not cogenetic with the earlier porphyries. Excluding two samples with high Sr values that may reflect calcite veining, the porphyries have relatively high Sr/Y (53 ± 23 , n = 12) and V/Sc ratios (9.0 ± 0.9 , n = 14), which overlap the range of fertile rocks for porphyry formation (Richards and Kerrich, 2007; Loucks, 2013, 2014).
 331 332 333 334 335 336 337 338 	Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are clearly not cogenetic with the earlier porphyries. Excluding two samples with high Sr values that may reflect calcite veining, the porphyries have relatively high Sr/Y (53 ± 23 , n = 12) and V/Sc ratios (9.0 ± 0.9 , n = 14), which overlap the range of fertile rocks for porphyry formation (Richards and Kerrich, 2007; Loucks, 2013, 2014).

Nd and Sr isotopic compositions of the porphyritic rocks are very homogeneous (Table 4 and Fig. 11). They show a narrow range of initial Sr isotopic ratios from 0.7042 to $0.7047 (({}^{87}\text{Sr}/{}^{86}\text{Sr})_t = 0.7044 \pm 0.0002, n = 8)$, with relatively high $\mathcal{E}_{Nd}(t)$ values from 2.4 to 3.6 (average = $+3.1 \pm 0.4$, n = 8), consistent with a mantle source with minor crustal contamination. The single-stage Nd model ages (T_{DM1}) calculated following the methods of Goldstein et al. (1984) range from 0.74 to 0.88 Ga (average = 0.80 ± 0.05 Ga, n = 8), and are indistinguishable for the different porphyry phases. Two basaltic-andesitic dike samples show slightly lower Sr isotopic ratios ($({}^{87}Sr/{}^{86}Sr)_t = 0.7042$ and 0.7043) and higher $\mathcal{E}_{Nd}(t)$ ratios (+3.5 and +3.9) than the porphyry rocks (Fig. 11). Zircon Hf isotopes Zircon Hf isotopic results are listed in Digital Appendix Table A4, and illustrated in Figure 12. The four zircon samples from porphyritic rocks show indistinguishable Hf isotopic compositions and single-stage Hf model ages of 375 ± 52 Ma (range = 264-527Ma, n = 56), with relatively high $\mathcal{E}_{Hf}(t)$ values of 12.0 ± 0.4 (weighted mean value, 95%)

confidence level; range = 8.1-14.8, n = 56). These data suggest that the porphyries shared a common primitive mantle source, consistent with their island arc origin.

Amphibole, Plagioclase, Zircon, and Apatite Compositions

The compositions of amphibole, plagioclase, zircon, and apatite from samples of least-altered porphyritic rocks are listed in Digital Appendix Tables A5, A6, A7, and A8, respectively. Based on these analyses, water and sulfur contents as well as oxygen

fugacity of the magma have been estimated qualitatively and quantitatively.

Amphibole compositions

Amphibole compositions can be used to estimate magmatic oxidation state, crystallization temperatures and pressures, as well as water contents (e.g., Ridolfi et al., 2010; Zhang et al., 2012; Wang et al., 2014b). However, fresh amphibole grains were only observed in the P2E and P2L porphyries. All of the analyzed grains are calcic amphiboles, and two generations of amphibole were recognized in both P2E and P2L. Early stage grains occur as phenocrysts and are characterized by higher Al contents (range = 9.35-12.86 and 8.79-13.46 wt. % Al₂O₃ for P2E and P2L, respectively; Digital Appendix Table A5); they are mostly classified as magnesio-ferri-hornblende and magnesio-hastingsite (including potassic-magnesio-hastingsite; Fig. 13A). The late stage grains were developed in the groundmass or as recrystallized phenocrysts, typified by lower Al concentrations (range = 1.62-4.76 and 4.33-7.53 wt. % Al₂O₃ for P2E and P2L, respectively; Digital Appendix Table A5). They are classified as magnesio-ferri-hornblende or rare actinolite (Fig. 13A). The early stage amphibole grains are intergrown with plagioclase phenocrysts (Fig. 14), and igneous apatite crystals occur as inclusions within amphibole (Fig. 14B). This indicates that these three minerals are broadly coeval. The crystallization temperature, magmatic water contents, and oxygen fugacities were estimated for the two stages of amphiboles using the spreadsheet of Ridolfi et al. (2010), and the crystallization pressures were calculated following the equation of Mutch et al. (2016). The Al-in-hornblende geobarometer used is applicable to granitoids that contain amphibole, plagioclase, quartz, and alkali feldspar, broadly consistent with the mineral assemblage within P2 porphyry rocks. The calculated results are listed in Digital Appendix Table A5 and illustrated in Figure 13 (B–C).

386	Amphibole phenocrysts from the P2E and P2L porphyry samples have similar
387	compositions, with calculated crystallization pressures from 3.5 to 6.7 kbar (average =
388	4.6 ± 0.8 kbar, n = 51), temperatures from 855 to 983 °C (average = 900 ± 30 °C, n = 51),
389	Δ FMQ values from 0.5 to 1.8 (average = 1.1 ± 0.3, n = 51), and H ₂ O contents in melts
390	from 4.0 to 6.1 wt. % (average = 5.1 ± 0.4 wt. %, n = 51).
391	Late stage (low-Al) amphiboles in P2E porphyry samples yielded crystallization
392	pressures from 0.6 to 1.4 kbar (average = 1.1 ± 0.3 kbar, n = 12), temperatures from 637°
393	to 774 °C (average = 719 ± 34 °C, n =12), Δ FMQ values from 2.6 to 3.3 (average = 3 ±
394	0.2, n =12), and magmatic water contents from 3.6 to 5.1 wt. % (average = 4 ± 0.4 Ma, n
395	= 12). Low-Al amphibole grains from P2L samples yielded slightly higher crystallization
396	pressures (2.0 \pm 0.4 MPa; range = 1.3–2.6 kbar, n = 8) and temperatures (800 \pm 24 °C;
397	range = 751–800 °C, n = 8), slightly lower Δ FMQ values (2.4 ± 0.3; range = 1.1–2.9, n =
398	8), but similar H ₂ O contents (4.0 ± 0.2 ; range = $3.7-4.4$, n = 8) to those calculated for
399	P2E.
400	There are clear trends of increasing oxidation state and decreasing crystallization
401	pressures, temperatures, and magmatic water contents from early to late stage amphiboles
402	in both P2E and P2L porphyries (Figs. 13B–D). These trends are consistent with the
403	high-Al amphibole phenocrysts having crystallized at depth before final crystallization of
404	the magma (and low-Al amphibole) after emplacement at shallow levels (e.g., Rutherford
405	and Devine, 2003). The decreasing magmatic water contents might be attributed to
406	degassing during ascent and crystallization, which can also result in a small increase in
407	oxygen fugacity (Mathez, 1984; Candela, 1986; Burgisser and Scaillet, 2007; Zimmer et
400	al 2010; Ball and Simon 2011; Billes et al 2015)

408 al., 2010; Bell and Simon, 2011; Dilles et al., 2015).

Plagioclase compositions

Plagioclase phenocrysts from all P1 porphyry samples studied have been altered, but partially unaltered phenocrysts were found in some P2 and P3 porphyry samples. Analyses with $K_2O > 1$ wt. % are interpreted to reflect potassic alteration and have been excluded. Plagioclase grains from the P2E porphyry (sample RC13-13) are classified as oligoclase ($\geq An_{17}$) to labradorite ($\leq An_{70}$), with an average anorthite (An) content of 44 ± 12 mol % (n = 28). Nearly all these crystals exhibited reverse zoning in An content, with compositional ranges up to ~16 mol %, and FeO contents that correlate positively with X_{An} values (Digital Appendix Table A6; Fig. 14A). Plagioclase grains from the P2L porphyry (samples RC13-26 and RC13-33) have compositions similar to P2E (An mol % = 48 ± 5 , n = 38), and also show reverse zoning with amplitudes up to ~19 mol % An that correlate with FeO contents (Fig. 14B). Such reverse zoning with positive An-FeO correlations were observed both in partially altered (i.e., sericite alteration; Fig. 14A) and relatively fresh plagioclase crystals (Fig. 14B), indicating that it was not likely to have been generated by hydrothermal alterations. In contrast, plagioclase grains from the P3 porphyry (RC13-78) display relatively uniform An compositions (An mol $\% = 51 \pm 5$, n = 37), with no clear zoning in X_{An} and FeO (Fig. 14C). Plagioclase compositions (An proportions) are very sensitive to dissolved water content and temperature of the melt, and thus can be used as a hygrometer if corrected for temperature (Mathez, 1973; Lange, 2009; Waters and Lange, 2015). We used apatite

430 saturation temperatures (AST) following the formula of Piccoli and Candela (1994) to

calculate magma temperatures for P2 and P3 samples (Table 4; Digital Appendix Table

A3). The whole-rock SiO_2 and P_2O_5 values were assumed to approximate the melt contents at the time of crystallization, although this assumption can be challenged (Piccoli and Candela, 1994, 2002). Nevertheless, the calculated temperatures are reasonable for magmas of intermediate, hydrous composition, and are also in agreement with the estimated crystallization temperatures of early stage amphibole (Digital Appendix Table A5): 932 °C for P2E (RC13-13), 892 °C (RC13-26) and 905 °C (RC13-33) for P2L, and 928 °C for P3 (RC13-78; Table 4). The updated spreadsheet of Waters and Lange (2015) has been used to calculate magmatic water contents (Digital Appendix Table A9). The calculated values are relatively uniform and indistinguishable between the different porphyry phases: 5.2 ± 0.2 (n = 28) for P2E, 5.5 ± 0.2 (n = 38) for P2L, and 5.1 ± 0.1 wt. % (n = 37) for P3. For the P2E and P2L porphyries, the magmatic water contents calculated from plagioclase and early stage amphibole compositions agree well with each other (Digital Appendix Tables A5 and A8). *Zircon trace element compositions* Twenty trace element spot analyses were obtained for zircons from samples of P1 to P3 porphyries (Digital Appendix Table A7; Fig. 15). It is common to encounter small mineral inclusions, especially of apatite, titanite, in zircon during LA-ICP-MS analyses

451 (e.g., Lu et al., 2016). We have taken Ca > 200 ppm or La > 0.3 ppm as an indication of

452 apatite contamination, and Ti > 20 ppm to reflect titanite contamination, and such data

454 and elevated HREE contents, with small negative Eu and strongly positive Ce anomalies

were excluded (Digital Appendix Table A7). The remaining analyses have low LREE

455	(Fig. 15). These REE patterns and total contents ($\Sigma REE = 351-1125$ ppm), as well as
456	Th/U ratios above 0.1 (0.26–0.63) (Digital Appendix Table A7) are typical of igneous
457	zircons from relatively oxidized magmas (Hoskin and Schaltegger, 2003).
458	Zircon crystals from the P1 to P3 porphyries show slightly different calculated Ti-in-
459	zircon temperatures and Eu anomalies $(Eu_N/Eu_N^* = Eu_N/(Sm_N \times Gd_N)^{0.5}$; Fig. 16; Digital
460	Appendix Table A7). Titanium-in-zircon temperatures were calculated using the equation
461	of Ferry and Watson (2007), where it is assumed that $\log a_{SiO2} = 1$ because of the
462	existence of quartz in the host porphyries, and log $a_{TiO2} = 0.7$ due to the presence of
463	titanite (a common accessory mineral in these rocks). Zircon crystals from the P2E
464	porphyry (sample RC13-107) have the highest calculated temperatures (average of 760 \pm
465	29 °C; range = 723° - 819° C, n = 14) with relatively uniform Eu _N /Eu _N [*] values from 0.5 to
466	0.7 (average = 0.6 ± 0.1 ; n = 14). Zircon crystals from the P3 porphyry (sample RC13-78)
467	show the lowest calculated temperatures (average = 726 ± 24 °C; range = 693° -758°C, n
468	= 18) and lowest Eu_N/Eu_N^* ratios (0.5 ± 0.1; range = 0.3–0.6, n = 18). Zircon crystals
469	from the P1 and P2L porphyries have intermediate calculated temperatures (P1: 736 \pm
470	26 °C, range = 699°–810 °C, n = 16; P2L: 730 ± 24 °C, range = 705°–795°C, n = 17),
471	and a similar wide range of Eu_N/Eu_N^* values (P1: 0.3–1.0, average = 0.6 ± 0.2; P2L: 0.3–
472	0.9, average = 0.6 ± 0.1).
473	Trace element compositions in zircon are sensitive to magmatic water content and
474	oxygen fugacity, and have been used to distinguish between fertile and infertile suites in
475	porphyry Cu ± Au ± Mo systems (Ballard et al., 2002; Liang et al., 2006; Qiu et al., 2014;
476	Wang et al., 2014b; Dilles et al., 2015; Shen et al., 2015; Lu et al., 2016; Xu et al., 2016;

477 Loader et al., 2017). In hydrous magmas, early plagioclase crystallization is suppressed

(Moore and Carmichael, 1998), leading to no pronounced depletion of Eu in melts (Eu²⁺ substitutes for Ca^{2+} in plagioclase). On the other hand, in oxidized magmas, Eu is predominantly present as Eu³⁺ and is partitioned into zircon along with other REE (Ballard et al., 2002; Hoskin and Schaltegger, 2003; Trail et al., 2011; Dilles et al., 2015). Therefore, the small negative Eu anomalies in zircon samples (as indicated by Eu_N/Eu_N^* ratios >0.3 and mostly > 0.4; Fig. 16A), and slightly positive anomalies in whole rocks (Fig. 10) indicate relatively high magmatic water contents and/or oxidation states (Ballard et al., 2002; Dilles et al., 2015; Lu et al., 2016). Ballard et al. (2002) defined the zircon Ce^{4+}/Ce^{3+} ratio as an indicator of magmatic oxidation state. However, Dilles et al. (2015) and Lu et al. (2016) argue that these values are difficult to estimate accurately because the abundances of the adjacent elements, La and Pr, which are used as a baseline to calculate the magnitude of the Ce anomaly, are low and close to the analytical detection limit. Confirming this reservation, Ce^{4+}/Ce^{3+} ratios and fO_2 values calculated for our samples using the equation of Trail et al. (2011)

492 yielded unrealistic and widely variable Δ FMQ values (-9 to +5).

494 Apatite compositions

The SO₃, Cl, and F analyses of igneous apatites are listed in Digital Appendix Table A8 and illustrated in Figures 17 and 18. The results show that igneous apatites from the P2 porphyries have higher sulfur and chlorine concentrations than those from P1 and P3 rocks. The high SO₃ contents in apatites from the P2 porphyries (P2E: 0.11 to 0.8 wt. % SO₃, average = 0.30 ± 0.13 wt. %, n = 34; P2L: 0.07 to 1.2 wt. % SO₃, average = $0.29 \pm$ 0.18 wt. %, n = 100) are similar to values from global porphyry Cu deposits (Streck and

Dilles, 1998; Imai, 2002; Li et al., 2012; Pan et al., 2016; Richards et al., 2017). In comparison, apatite crystals from the P1 porphyry (RC13-39) have lower sulfur contents $(0.05 \text{ to } 0.19 \text{ wt. } \% \text{ SO}_3; \text{ average} = 0.11 \pm 0.03 \text{ wt. } \%, n = 34)$, whereas those from the P3 porphyry (RC13-78) have the lowest sulfur concentrations (from 0.05 wt. % to below the analytical detection limit of SO₃; average of analyses above limit of detection = $0.03 \pm$ 0.01, n = 13). Although the ranges for P1 and P2L porphyries overlap at their outer limits, a t-test shows that the two populations are significantly different (t = 5.87, p = 0). Similarly, the Cl contents in apatite crystals from P1 and P3 porphyries are significantly lower (0.51 \pm 0.3 wt. %, n = 34, and 0.1 \pm 0.06 wt. %, n = 17, respectively) compared to values from the P2 porphyries (P2E: 1.18 ± 0.37 wt. %, n = 34; P2L: $1.47 \pm$ 0.28 wt. %, n = 100). There is a rough positive correlation between sulfur and chlorine contents of apatites from the four porphyries (Fig. 18A), with relatively constant molar S/Cl ratios (P1: 0.13 ± 0.08 , n = 34; P2E: 0.13 ± 0.08 , n = 34; P2L: 0.10 ± 0.14 , n =100; P3: 0.16 ± 0.09 , n = 13; Table 4). Detailed analyses also show that single apatite crystals are commonly zoned in sulfur, with decreasing core-to-rim SO₃ contents (and small decreases in Cl; Fig. 17C), possibly reflecting progressive degassing of SO₂ (and Cl) from the melt during crystallization (Richards et al., 2017). Fluorine contents in apatites from the P1 and P3 porphyries are similar (P1: $3.64 \pm$ 0.48 wt. %, n = 34; P3: 3.6 ± 0.4 , n = 17) and distinctly higher than in the P2E (2.33 \pm 0.29 wt. %, n = 34) and P2L (2.32 ± 0.23 wt. %, n = 100) porphyries. Some hydrothermal apatite grains were also analyzed for comparison with igneous grains, and they show wide variations in sulfur and chlorine content (Digital Appendix Table A8), as observed by other researchers (e.g., Li et al., 2012; Richards et al., 2017).

524	The sulfur partition coefficient between apatite and melt is jointly controlled by
525	temperature, oxygen fugacity, and the S content in the silicate melt (Peng et al., 1997;
526	Parat and Holtz, 2005; Parat et al., 2011; Webster and Piccoli, 2015; Konecke et al.,
527	2017a, b), and no formula currently exists to accurately calculate magmatic sulfur
528	concentrations from apatite SO3 contents. However, two semi-quantitative formulae can
529	be used to estimate relative magmatic S content (Peng et al., 1997; Parat et al., 2011).
530	Using the equation of Peng et al. (1997), the magmas related to the P2E and P2L
531	porphyry intrusions are calculated to have sulfur concentrations of 0.03 \pm 0.01 wt. % (n =
532	34) and 0.02 \pm 0.01 wt. % (n = 100), significantly higher than the corresponding S
533	contents for P1 (0.010 \pm 0.003 wt. % S, n = 34) and P3 magmas (0.003 \pm 0.001 wt. % S,
534	n = 13; Table 4). The results calculated by the method of Parat et al. (2011) are more
535	variable, and yielded lower absolute values than those from Peng et al. (1997). However,
536	they also support the conclusion that the P2E and P2L magmas had significantly higher
537	sulfur contents than the P1 and P3 magmas (Table 4).
538	The chlorine partition coefficient between apatite and melt is a complex function of
539	magma composition and Cl concentration in the melt (Zhu and Sverjensky, 1991; Piccolli
540	and Candela, 1994; Mathez and Webster, 2005; Webster et al., 2009; Chelle-Michou and
541	Chiaradia, 2017). Mathez and Webster (2005) proposed a value of 0.8 as the partition
542	coefficient (mass ratio) between apatite and basaltic melt (51.1 wt. $\%$ SiO ₂). Based on
543	this semi-quantitative equation (and recognizing that these magmas were not basaltic), we
544	estimate Cl concentrations in the P2E and P2L magmas of 1.48 ± 0.46 wt.% (n = 34) and
545	1.83 ± 0.34 wt.% (n = 100), respectively, significantly higher than for P1 (0.63 ± 0.38)
546	wt.%, n = 34) and P3 (0.12 ± 0.07 wt.%; Table 4).

Discussion

549 Magmatic duration and timing of ore formation at Red Chris

Four phases of the Red Stock, P1, P2E, P2L, and P3, have been dated at 211.6 ± 1.3 Ma, 206.0 ± 1.2 Ma, 203.6 ± 1.8 Ma, and 201.7 ± 1.2 Ma, respectively, spanning a period of ~10 m.y. (Fig. 6; Digital Appendix Table A2). These ages are consistent with crosscutting relationships described by Rees et al. (2015). Re-Os dating of molybdenite intergrown with chalcopyrite in quartz veins yielded a weighted mean age of 206.1 ± 0.5 Ma (Fig. 7), reflecting the timing of mineralization and in good agreement with the emplacement age of the mineralized P2E quartz monzonite porphyry. Ore formation occurred at a relatively late stage in the ~10 m.y. evolution of the Red Stock, and over a relatively brief period time (<1 m.y., as defined by the uncertainty on the average of three Re-Os analyses). This relatively late and short duration of mineralization is similar to the timing observed in many other porphyry deposits (e.g., Cathles et al., 1997; Masterman et al., 2004; von Quadt et al., 2011; Chiaradia et al., 2013; Correa et al., 2016; Li et al., 2017).

The age of mineralization at ~206 Ma is contemporaneous with the major pulse of mineralization in the Stikine and Quesnel terranes, representing a particularly fertile preaccretionary magmatic event (Nelson and Colpron, 2007; Nelson et al., 2013; Logan and Mihalynuk, 2014).

Igneous geochemistry and petrogenesis

569	Whole-rock major and trace element compositions of P1 to P3 porphyry rocks are
570	almost identical to each other, and show characteristics of subduction-related magmatic
571	rocks with high LILE and low HFSE concentrations (Figs. 9 and 10; Hawkesworth et al.,
572	1993; Pearce, 1996). The high Sr/Y ratios (53 \pm 23, n = 12) and slightly positive Eu
573	anomalies (Eu _n /Eu _n [*] = 1.1 ± 0.15 ; n =14) indicate the suppression of plagioclase
574	crystallization and early crystallization of amphibole from hydrous and oxidized magmas
575	(Richards and Kerrich, 2007; Loucks, 2014). Rees et al. (2015) concluded from their
576	analysis of petrochemistry that the Red Stock evolved from subalkaline (P1, P2) to
577	marginally alkaline (P3), and classified the overall system as high-K calc-alkalic.
578	All the porphyritic rocks from P1 to P3 show mantle-like, relatively low (⁸⁷ Sr/ ⁸⁶ Sr) _t
579	(0.7044 ± 0.0002) and high $\mathcal{E}_{Nd}(t)$ (+3.1 ± 0.4) values, and similar single-stage Nd model
580	ages (0.80 \pm 0.05 Ga). Zircon crystals from these rocks yield positive zircon $\mathcal{E}_{Hf}(t)$ values
581	(+8.1 to +14.8) and single-stage Hf model ages of 375 ± 52 Ma (Figs. 11 and 12). These
582	data indicate minimal involvement of ancient crustal components in the petrogenesis of
583	these magmas, as observed for other Mesozoic igneous rocks in the Stikine terrane, and
584	are consistent with an oceanic island arc setting (Samson et al., 1989; Logan and
585	Mihalynuk, 2014).
586	Late basaltic to andesitic dikes have similar Nd–Sr isotopic compositions to the
587	porphyritic rocks, but show distinct trace element and REE patterns, and lower Sr/Y and

588 La/Yb ratios, suggesting that they are not cogenetic.

0 Oxygen fugacity and sulfur-chlorine-water contents of the porphyry magmas

591	Magmatic oxidation state, and sulfur, chlorine, and water contents are fundamental
592	factors for the formation of porphyry Cu deposits (e.g., Burnham, 1979; Candela, 1992;
593	Richards, 2003; Loucks, 2014). It is difficult to measure the original magmatic oxidation
594	state in altered plutonic rocks, but normalized Ce and Eu anomalies in zircons can be
595	used to provide qualitative estimates (Ballard et al., 2002; Dilles et al., 2015; Lu et al.,
596	2016). Zircon grains from the P1 to P3 porphyries display large positive Ce and small
597	negative Eu anomalies (Eu _N /Eu _N [*] mostly > 0.4; Figs. 15 and 16), similar to zircons from
598	other mineralized porphyry systems worldwide (Wang et al., 2014b; Dilles et al., 2015;
599	Lu et al., 2016). These data are also consistent with estimates of magmatic oxidation state
600	from early stage amphibole phenocrysts from the P2E and P2L porphyries, which yielded
601	Δ FMQ values of 1.5 ± 0.2 (n = 7) and 1.1 ± 0.3 (n = 44). Consequently, we conclude that
602	the four phases of magma in the Red Stock were all at least moderately oxidized.
603	It is similarly difficult to estimate original magmatic water contents from altered
604	plutonic rocks. However, the presence of amphibole phenocrysts in the P1 to P3
605	porphyries suggest that the magmas contained at least 4 wt. $\%$ H ₂ O (Burnham, 1979,
606	Naney, 1983; Merzbacher and Eggler, 1984; Rutherford and Devine, 1988; Ridolfi et al.,
607	2010). This observation is supported by: (1) high whole-rock Sr/Y ratios (53 \pm 23, n =
608	12), which reflect the suppression of plagioclase relative to amphibole crystallization
609	under hydrous conditions (Moore and Carmichael, 1998; Richards and Kerrich, 2007); (2)
610	high $10000 \times (Eu_N/Eu_N^*)/Y$ (>1) and low Dy/Yb (<0.3) ratios in zircons (Digital Appendix
611	Table A7; Lu et al., 2016); (3) high whole-rock V/Sc ratios $(9.0 \pm 0.9, n = 14)$ (Loucks,
612	2014); and (4) estimates of magmatic water content from plagioclase phenocryst
613	compositions, which indicate values of ~5 wt.% H_2O .

The compositions of igneous apatite inclusions in plagioclase and amphibole phenocrysts have been used to estimate magmatic sulfur and chlorine contents. The results suggest that apatite microphenocrysts from the P2E and P2L porphyries had higher S and Cl contents than for P1 and P3 (Fig. 18). The SO₃ contents in apatite are controlled by both magmatic sulfur concentration and oxidation state (Peng et al., 1997; Parat and Holtz, 2005; Webster and Piccoli, 2015). Sulfur occurs in the apatite structure mainly as S⁶⁺ and its content will increase in relatively oxidized environments (Boyce et al., 2010; Parat et al., 2011; Konecke et al., 2017b). The magmas associated with the four porphyry phases at Red Chris were all moderately oxidized, and therefore the differences in apatite sulfur content likely mainly reflect variations in the sulfur fugacity in the associated melts. The data indicate that the P2E and P2L porphyry magmas contained significantly higher S contents than the P1 and P3 magmas (Fig. 18). Models used to estimate magmatic sulfur content in equilibrium with apatite (Peng et al., 1997) are not strictly accurate because of uncertainties in the details of exchange reactions (Streck and Dilles, 1998; Mao et al., 2016) but are expected to be correct in relative terms. Our data yield higher values for the P2E and P2L porphyries (0.02–0.03 wt. % S) compared to estimates for P1 (0.01 wt. % S) and P3 (0.003 wt. % S). Consequently, we conclude that the syn-mineral porphyry (P2E and P2L) magmas were more S-rich than the pre-mineralization P1 and especially the post-mineralization P3 porphyry magmas. Similarly, the magmatic Cl contents calculated from apatite compositions in the P2E and P2L porphyries are also higher than in the P1 and P3 porphyries, whereas F contents are lower (Table 4). Volatile species such as S, Cl, and F are differentially affected by degassing during ascent and crystallization of magmas: S and Cl will be preferentially

637	lost to the vapor phase relative to F (Webster et al., 2014; Stock et al., 2016), leading to
638	high F/Cl and F/S ratios in degassed magmas. The data shown in Figure 18 suggest that
639	the P2E and P2L were S-Cl-rich, whereas the P1 and P3 were S-Cl-poor but enriched in F.
640	These differences could reflect either loss of volatiles from the source magma
641	chamber (presumed to be an underlying batholith) prior to emplacement of the P1 and P3
642	magmas but not in the case of P2, or conversely addition of a volatile phase or a volatile-
643	rich magma to the magma chamber immediately prior to emplacement of P2. Volatile
644	loss is expected to be a general condition of upper crustal magma emplacement, and this
645	may well be a factor contributing to the low Cl/F ratios in the late P3 magmas, as well as
646	the negatively correlated trend for F and Cl in P1. The P2 magma was emplaced after P1,
647	and so might be expected to be similarly degassed if this represents a comagmatic
648	sequence. However, the 6–8 m.y. age difference between P1 (211.6 \pm 1.3 Ma) and P2
649	(P2E: 206.0 \pm 1.2 Ma; P2L: 203.6 \pm 1.8 Ma) indicates that P1 and P2 are not directly
650	comagmatic. One explanation is that the P2 event represents a pulse of S-Cl-rich magma
651	injected at a relatively late stage into the mid-crustal magma reservoir, leading to a pulse
652	of fluid exsolution and injection of P2 magma into the shallower level Red Stock, where
653	syn-P2, quartz-vein hosted mineralization formed the Red Chris Cu-Au deposit. The
654	post-mineralization P3 (201.7 \pm 1.2 Ma) and P4 porphyries may represent the final stages
655	of intrusive activity emanating from the now degassed underlying magma chamber.
656	Although both P2E and P2L porphyries are S-Cl-rich, apatites from P2L are
657	marginally the most enriched. Samples of P2L are also the most mafic (SiO ₂ -poor) in the
658	suite, and it is therefore tempting to speculate that the source magma chamber was
659	recharged with more mafic, S-Cl-H ₂ O-rich magma during the P2 stage. The solubility of

S and Cl is higher in oxidized mafic magmas compared to felsic melts (> 1000 ppm S and > 3000 ppm Cl; Carmichael and Ghiorso, 1986; Webster, 1997; Webster et al., 1999; Hattori and Keith, 2001; Jugo et al., 2005; Jugo, 2009; Chelle-Michou and Chiaradia, 2017). Therefore, a key step in porphyry ore formation at Red Chris may have been recharge of the batholithic system by a less evolved, although broadly cogenetic, magma (cf. Hattori and Keith, 2001; Steinberger et al., 2013; Large et al., 2018). Support for this recharge model is provided by high magmatic temperatures calculated from zircon grains from some P2 samples (Fig. 16), and reverse zoning observed in plagioclase phenocrysts from the P2E and P2L porphyries, but which is not observed in P3 (Fig. 14C). In detail, zircons from the P2E porphyry show the highest Tiin-zircon temperatures and Eu_N/Eu_N^{*} values, and P3 the lowest values. This might reflect an influx of higher temperature melt during the evolution of the P2E magma, and greater degrees of plagioclase fractionation from the late P3 magma. The compositional ranges of up to ~19 mol % An for plagioclase are higher than the upper limit caused by chemical diffusion (~10 mol % An; Pearce and Kolisnik, 1990). Furthermore, these reverse zoning patterns are matched by FeO contents in the phenocrysts (Figs. 14A and 14B), which suggests that the zonation reflects changes in magma composition (as opposed to simply changes in pressure, temperature, or water content; Ginibre and Wörner, 2007; Lange, 2009; Ustunisik et al., 2014; Waters and Lange, 2015). We therefore interpret these changes to reflect late-stage (rim) growth from a more mafic magma that mixed into a more evolved resident magma. Conclusions

Zircon U-Pb ages indicate that the Red Stock was emplaced over a period of ~ 10 m.y. $(211.6 \pm 1.3 \text{ Ma}, 206.0 \pm 1.2 \text{ Ma}, 203.6 \pm 1.8 \text{ Ma}, \text{ and } 201.7 \pm 1.2 \text{ Ma}$ for the P1, P2E, P2L, and P3 porphyries, respectively). The ore-forming event at Red Chris occurred relatively late in this magmatic history, synchronous with P2E at 206.1 ± 0.5 Ma, and over a short period of <1 m.y. (as constrained by the error on the average of three Re-Os analyses). The four phases of porphyry and their related magmas were chemically fairly homogeneous and isotopically primitive, consistent with an island arc origin. The magmas were all moderately oxidized and hydrous (~5 wt. H₂O), but the P2 magmas had distinctly higher S and Cl contents. Combined with evidence for reverse zonation in plagioclase phenocrysts from P2 porphyries, and more mafic compositions in P2L, we suggest that the deeper source magma chamber was recharged at the time of emplacement of the P2 porphyries by injection of a more mafic S-Cl-rich magma. This recharge process may have triggered ore formation by causing voluminous exsolution of metalliferous hydrothermal fluids. Acknowledgements This research was funded by a Collaborative Research and Development Grant from Natural Sciences and Engineering Research Council of Canada and the Red Chris Development Company Ltd. (RCDC) to JPR, and a post-doctoral fellowship from China Scholarship Council, University of Alberta, and Institute of Geochemistry, Chinese

- Academy of Sciences to JJZ. RCDC provided access to the Red Chris mine by Jürgen
- Lang to collect samples from drill core in 2014. Prof. Zhaochu Hu from China University
- of Geosciences at Wuhan, China is thanked for help with in-situ zircon LA-ICP-MS Hf

isotope analyses, which was funded by the National Natural Science Foundation Project of China (41673049 and 41303040), and the National Key Research and Development Program of China (2016YFC0600503) to JJZ. We particularly thank Steve Robertson and ^cLyn Anglin from RCDC for support of this project. We thank David Cooke and Adam Bath for constructive reviews of the manuscript. References Annen, C., Blundy, J., and Sparks, R., 2006, The genesis of intermediate and silicic magmas in deep crustal hot zones: Journal of Petrology, v. 47, p. 505–539. Ash, C.H., Fraser, T.M., Blanchflower, J.D. and Thurston, B.G., 1995, Tatogga Lake project, north western British Columbia (104H/11, 12); in Geological Field work 1994, BC Ministry of Energy, Mines and Petroleum Resources, Paper 1995-1, p. 343–358. Ash, C.H., Stinson, P.K., and Macdonald, R.W.J., 1996, Geology of the Todagin plateau and Kinaskan Lake area, northwestern British Columbia (104H/12, 104G/9): B.C. Ministry of Energy, Mines and Petroleum Resources Paper 1996-1, p. 155–174. Baker, T., Ash, C., and Thompson, J., 1997, Geological setting and characteristics of the Red Chris porphyry copper-gold deposit, northwestern British Columbia: Exploration Mining Geology, v. 6, p. 297–316. Ballard, J. R., Palin, M. J., and Campbell, I. H., 2002, Relative oxidation states of magmas inferred from Ce^(IV)/Ce^(III) in zircon: application to porphyry copper deposits of northern Chile: Contributions to Mineralogy and Petrology, v. 144, p. 347-364. Bath, A. B., Cooke, D. R., Friedman, R. M., Faure, K., Kamenetsky, V. S., Tosdal, R. M., and Berry, R. F., 2014, Mineralization, U-Pb geochronology, and stable isotope geochemistry of the lower main zone of the Lorraine deposit, north-central British Columbia: a replacement-style alkalic Cu-Au porphyry: Economic Geology, v. 109, p. 979-1004. Bell, A. S., and Simon, A., 2011, Experimental evidence for the alteration of the Fe³⁺/ Σ Fe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles: Geology, v. 39, p. 499–502. Bissig, T., and Cooke, D. R., 2014, Introduction to the special issue devoted to alkalic porphyry Cu-Au and epithermal Au Deposits: Economic Geology, v. 109, p. 819–825.

Blundy, J., Mavrogenes, J., Tattitch, B., Sparks, S., and Gilmer, A., 2015, Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs: Nature Geoscience, v. 8, p. 235-240. Boyce, J. W., Liu, Y., Rossman, G. R., Guan, Y., Eiler, J. M., Stolper, E. M., and Taylor, L. A., 2010, Lunar apatite with terrestrial volatile abundances: Nature, v. 466, p. 466. Brown, D. A., Logan, J. M., Gunning, M. H., Orchard, M. J., and Bamber, W. E., 1991, Stratigraphic evolution of the Paleozoic Stikine assemblage in the Stikine and Iskut rivers area, northwestern British Columbia: Canadian Journal of Earth Sciences, v. 28, p. 958-972. Brown, P., and Kahlert, B., 1986, Geology and mineralization of the Red Mountain porphyry molybdenum deposit, south-central Yukon: Canadian Institute of Mining and Metallurgy, Special Volume 37, p. 288–297. Burgisser, A., and Scaillet, B., 2007, Redox evolution of a degassing magma rising to the surface: Nature, v. 445, p. 194–197. Burnham, C.W., 1979, Magmas and hydrothermal fluids, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, 2nd ed.: New York, John Wiley and Sons, p. 71–136. Byrne, K., and Tosdal, R. M., 2014, Genesis of the Late Triassic southwest zone breccia-hosted alkalic porphyry Cu-Au deposit, Galore Creek, British Columbia, Canada: Economic Geology, v. 109, p. 915–938. Candela, P. A., 1986, The evolution of aqueous vapor from silicate melts: effect on oxygen fugacity: Geochimica et Cosmochimica Acta, v. 50, p. 1205-1211. Candela, P. A., 1992, Controls on ore metal ratios in granite-related ore systems: an experimental and computational approach: Transactions of the Royal Society of Edinburgh, Earth Sciences, v. 83, p. 317–326. Candela, P.A., and Holland, H.D., 1984, The partitioning of copper and molybdenum between silicate melts and aqueous fluids: Geochimica et Cosmochimica Acta, v. 48, p. 373-380. Carmichael, I. S., and Ghiorso, M. S., 1986, Oxidation-reduction relations in basic magma: a case for homogeneous equilibria: Earth and Planetary Science Letters, v. 78, p. 200–210. Cathles, L. M., Erendi, A., and Barrie, T., 1997, How long can a hydrothermal system be sustained by a single intrusive event?: Economic Geology, v. 92, p. 766–771 Chambefort, I., Dilles, J. H., and Kent, A. J. R., 2008, Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits: Geology, v. 36, p. 719–722.

1		
2 3		
4	773	Chelle-Michou, C., and Chiaradia, M., 2017, Amphibole and apatite insights into the
5 6	774	evolution and mass balance of Cl and S in magmas associated with porphyry copper
7 8	775	deposits: Contributions to Mineralogy and Petrology, v. 172, 105, doi:
° 9	776	https://doi.org/10.1007/s00410-017-1417-2
10 11	777	Chiaradia, M., Ulianov, A., Kouzmanov, K., and Beate, B., 2012, Why large porphyry Cu
12	778	deposits like high Sr/Y magmas?: Scientific reports, v. 2, 685.
13 14	779	Chiaradia, M., Schaltegger, U., Spikings, R., Wotzlaw, JF., and Ovtcharova, M., 2013,
15	780	How accurately can we date the duration of magmatic-hydrothermal events in
16 17	781	porphyry systems?—An invited paper: Economic Geology, v. 108, p. 565–584.
18	782	Correa, K. J., Rabbia, O. M., Hernández, L. B., Selby, D., and Astengo, M., 2016, The
19 20	783	timing of magmatism and ore formation in the El Abra porphyry copper deposit,
21	784	northern Chile: implications for long-lived multiple-event magmatic-hydrothermal
22 23	785	porphyry Systems: Economic Geology, v. 111, p. 1–28.
24	786	Creasey, S., 1977, Intrusives associated with porphyry copper deposits: Bulletin of the
25 26	787	Geological Society of Malaysia, v. 9, p. 51–66.
27	788	Devine, F. A. M., Chamberlain, C. M., Davies, A. G. S., Friedman, R., and Baxter, P.,
28 29	789	2014, Geology and district-scale setting of tilted alkalic porphyry Cu-Au
30	790	mineralization at the Lorraine deposit, British Columbia: Economic Geology, v. 109, p.
31 32	791	939–977.
33	792	Dilles, J. H., Kent, A. J., Wooden, J. L., Tosdal, R. M., Koleszar, A., Lee, R. G., and
34 35	793	Farmer, L. P., 2015, Zircon compositional evidence for sulfur-degassing from ore-
36 37	794	forming arc magmas: Economic Geology, v. 110, p. 241-251.
38	795	Dostal, J., Gale, V., and Church, B., 1999, Upper Triassic Takla Group volcanic rocks,
39 40	796	Stikine Terrane, north-central British Columbia: geochemistry, petrogenesis, and
41	797	tectonic implications: Canadian Journal of Earth Sciences, v. 36, p. 1483–1494.
42 43	798	Duuring, P., Rowins, S. M., McKinley, B. S. M., Dickinson, J. M., Diakow, L. J., Kim,
44	799	YS., and Creaser, R. A., 2009, Magmatic and structural controls on porphyry-style
45 46	800	Cu-Au-Mo mineralization at Kemess South, Toodoggone District of British
47	801	Columbia, Canada: Mineralium Deposita, v. 44, p. 435–462.
48 49	802	Ferry, J., and Watson, E., 2007, New thermodynamic models and revised calibrations for
50	803	the Ti-in-zircon and Zr-in-rutile thermometers: Contributions to Mineralogy and
51 52	804	Petrology, v. 154, p. 429–437.
53	805	Friedman, R.M., and Ash, C.H., 1997, U-Pb age of intrusions related to porphyry Cu-Au
54 55	806	mineralization in the Tatogga Lake area, northwestern British Columbia: B.C.
56	807	Ministry of Employment and Investment Paper 1997-1, p. 291-297.
57 58	808	Gabrielse, H., 1991, Late Paleozoic and Mesozoic terrane interactions in north-central
59	809	British Columbia: Canadian Journal of Earth Sciences, v. 28, p. 947–957.
60 61		
62		
63		34

1 2		
3 4	810	Gagnon, JF., Barresi, T., Waldron, J. W., Nelson, J., Poulton, T., and Cordey, F., 2012,
5 6	811	Stratigraphy of the upper Hazelton Group and the Jurassic evolution of the Stikine
7	812	terrane, British Columbia 1 1 ESS Contribution 20120051: Canadian Journal of Earth
8 9	813	Sciences, v. 49, p. 1027–1052.
10	814	Gillstrom, G., Anand, R., Robertson, S., and Sterling, P., 2012, 2012 technical report on
11 12	815	the Red Chris copper-gold project, for Imperial Metals Corp (Amended and Restated
13 14	816	at 2015). https://www.imperialmetals.com/assets/docs/red-chris-43-101-report-sept-
14	817	30-2015.pdf.
16 17	818	Ginibre, C., and Wörner, G., 2007, Variable parent magmas and recharge regimes of the
18	819	Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase:
19 20	820	Lithos, v. 98, p. 118–140.
21	821	Goldstein, S., O'Nions, R., and Hamilton, P., 1984, A Sm-Nd isotopic study of
22 23	822	atmospheric dusts and particulates from major river systems: Earth and planetary
24	823	Science letters, v. 70, p. 221–236.
25 26	824	Gustafson, L.B., and Hunt, J.P., 1975, The porphyry copper deposit at El Salvador, Chile:
27 28	825	Economic Geology, v. 70, p. 857–912.
28 29	826	Halter, W. E., Heinrich, C. A., and Pettke, T., 2005, Magma evolution and the formation
30 31	827	of porphyry Cu-Au ore fluids: evidence from silicate and sulfide melt inclusions:
32	828	Mineralium Deposita, v. 39, p. 845–863.
33 34	829	Harris, A. C., Dunlap, W. J., Reiners, P. W., Allen, C. M., Cooke, D. R., White, N. C.,
35	830	Campbell, I. H., and Golding, S. D., 2008, Multimillion year thermal history of a
36 37	831	porphyry copper deposit: application of U-Pb, ⁴⁰ Ar/ ³⁹ Ar and (U-Th)/He chronometers,
38	832	Bajo de la Alumbrera copper–gold deposit, Argentina: Mineralium Deposita, v. 43, p.
39 40	833	295–314.
41 42	834	Hattori, K., 1993, High-sulfur magma, a product of fluid discharge from underlying
42 43	835	mafic magma: evidence from Mount Pinatubo, Philippines: Geology, v. 21, p. 1083-
44 45	836	1086.
45	837	Hattori, K. H., and Keith, J. D., 2001, Contribution of mafic melt to porphyry copper
47 48	838	mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon,
49	839	Utah, USA: Mineralium Deposita, v. 36, p. 799–806.
50 51	840	Hawkesworth, C., Gallagher, K., Hergt, J., and McDermott, F., 1993, Mantle and slab
52	841	contributions in arc magmas: Annual Review of Earth and Planetary Sciences, v. 21, p.
53 54	842	175–204.
55	843	Hayba, D. O., and Ingebritsen, S. E., 1997, Multiphase groundwater flow near cooling
56 57	844	plutons: Journal of Geophysical Research, v. 102, p. 235–252.
58	845	Hoskin, P. W., and Schaltegger, U., 2003, The composition of zircon and igneous and
59 60	846	metamorphic petrogenesis: Reviews in mineralogy and geochemistry, v. 53, p. 27-62.
61 62		
63		35
64 65		

1 2		
3 4	847	Hou, Z., Yang, Z., Lu, Y., Kemp, A., Zheng, Y., Li, Q., Tang, J., Yang, Z., and Duan, L.,
5 6	848	2015, A genetic linkage between subduction-and collision-related porphyry Cu
7	849	deposits in continental collision zones: Geology, v. 43, p. 247–250.
8 9	850	Imai, A., 2002, Metallogenesis of porphyry Cu deposits of the western Luzon arc,
10	851	Philippines: K-Ar ages, SO ₃ Contents of microphenocrystic apatite and significance of
11 12	852	intrusive rocks: Resource Geology, v. 52, p. 147–161.
13 14	853	Jago, C. P., Tosdal, R. M., Cooke, D. R., and Harris, A. C., 2014, Vertical and lateral
15	854	variation of mineralogy and chemistry in the Early Jurassic Mt. Milligan alkalic
16 17	855	porphyry Au-Cu deposit, British Columbia, Canada: Economic Geology, v. 109, p.
18	856	1005–1033.
19 20	857	Jugo, P. J., Luth, R. W., and Richards, J. P., 2005, Experimental data on the speciation of
21	858	sulfur as a function of oxygen fugacity in basaltic melts: Geochimica et
22 23	859	Cosmochimica Acta, v. 69, p. 497–503.
24	860	Jugo, P. J., 2009, Sulfur content at sulfide saturation in oxidized magmas: Geology, v. 37,
25 26	861	p. 415–418.
27 28	862	Keith, J., Whitney, J., Hattori, K., Ballantyne, G., Christiansen, E., Barr, D., Cannan, T.,
29	863	and Hook, C., 1997, The role of magmatic sulfides and mafic alkaline magmas in the
30 31	864	Bingham and Tintic mining districts, Utah: Journal of Petrology, v. 38, p. 1679–1690.
32	865	Konecke, B. A., Fiege, A., Simon, A. C., and Holtz, F., 2017a, Cryptic metasomatism
33 34	866	during late-stage lunar magmatism implicated by sulfur in apatite: Geology, p. 739–
35	867	742.
36 37	868	Konecke, B. A., Fiege, A., Simon, A. C., Parat, F., and Stechern, A., 2017b, Co-
38	869	variability of S^{6+} , S^{4+} , and S^{2-} in apatite as a function of oxidation state: Implications
39 40	870	for a new oxybarometer: American Mineralogist, v. 102, p. 548–557.
41 42	871	Lang, J. R., Lueck, B., Mortensen, J. K., Russell, J. K., Stanley, C. R., and Thompson, J.
42 43	872	F., 1995, Triassic-Jurassic silica-undersaturated and silica-saturated alkalic intrusions
44 45	873	in the Cordillera of British Columbia: Implications for arc magmatism: Geology, v. 23,
46	874	p. 451–454.
47 48	875	Lange, R. A., Frey, H. M., and Hector, J., 2009, A thermodynamic model for the
49	876	plagioclase-liquid hygrometer/thermometer: American Mineralogist, v. 94, p. 494–506.
50 51	877	Large, S.J.E., von Quadt, A., Wotzlaw, JF., Guillong, M., and Heinrich, C.A., 2018,
52	878	Magma evolution leading to porphyry Au-Cu mineralization at the Ok Tedi Deposit,
53 54	879	Papua New Guinea: trace element geochemistry and high-precision geochronology of
55	880	igneous zircon: Economic Geology, v. 113, p. 39–61.
56 57	881	Larocque, A. C., Stimac, J. A., Keith, J. D., and Huminicki, M. A., 2000, Evidence for
58 59	882	open-system behavior in immiscible Fe–S–O liquids in silicate magmas: implications
60		
61 62		
63		36
64		30

for contributions of metals and sulfur to ore-forming fluids: The Canadian Mineralogist, v. 38, p. 1233–1249. Li, J., Li, G., Qin, K., Xiao, B., Chen, L., and Zhao, J., 2012, Mineralogy and mineral chemistry of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco arc, northern Tibet: Resource Geology, v. 62, p. 19-41. Li, Y., Selby, D., Feely, M., Costanzo, A., and Li, X.-H., 2017, Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet: Mineralium Deposita, v.52, p. 137-158. Liang, H.-Y., Campbell, I. H., Allen, C., Sun, W.-D., Liu, C.-Q., Yu, H.-X., Xie, Y.-W., and Zhang, Y.-Q., 2006, Zircon Ce⁴⁺/Ce³⁺ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet: Mineralium Deposita, v. 41, p. 152-159. Loader, M. A., Wilkinson, J. J., and Armstrong, R. N., 2017, The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility: Earth and Planetary Science Letters, v. 472, p. 107-119. Loucks, R.R., 2013, Distinctive composition and genesis of copper ore-forming arc magmas: Goldschmidt Conference 2013 Abstracts: Mineralogical Magazine, v. 77, p. 1642. Locock, A. J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations: Computers & Geosciences, v. 62, p. 1-11. Logan, J. M., and Mihalynuk, M. G., 2014, Tectonic controls on Early Mesozoic paired alkaline porphyry deposit belts (Cu-Au ± Ag-Pt-Pd-Mo) within the Canadian Cordillera: Economic Geology, v. 109, p. 827-858. Loucks, R., 2014, Distinctive composition of copper-ore-forming arc magmas: Australian Journal of Earth Sciences, v. 61, p. 5–16. Lowell, J. D., and Guilbert, J. M., 1970, Lateral and vertical alteration-mineralization zoning in porphyry ore deposits: Economic Geology, v. 65, p. 373-408. Lu, Y.-J., Loucks, R. R., Fiorentini, M. L., Yang, Z.-M., and Hou, Z.-Q., 2015, Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet: Geology, v.43, p. 583–586. Lu, Y.-J., Loucks, R. R., Fiorentini, M., McCuaig, T. C., Evans, N. J., Yang, Z.-M., Hou, Z.-Q., Kirkland, C. L., Parra-Avila, L. A., and Kobussen, A., 2016, Zircon compositions as a pathfinder for Cu±Mo±Au deposits: Society of Economic Geologists Special Publication, v. 19, p. 329–347. Mao, M., Rukhlov, A. S., Rowins, S. M., Spence, J., and Coogan, L. A., 2016, Apatite trace element compositions: A robust new tool for mineral exploration: Economic Geology, v. 111, p. 1187–1222.

1		
2		
3 4	020	Maradan II. and Tharkelson D. I. 1002 Capitany of the Hazelton valuence halt in
5	920	Marsden, H., and Thorkelson, D. J., 1992, Geology of the Hazelton volcanic belt in British Columbia: implications for the Early to Middle Jurgesia evolution of Stilinia:
6 7	921 922	British Columbia: implications for the Early to Middle Jurassic evolution of Stikinia: Tectonics, v. 11, p. 1266–1287.
7 8	922 923	Masterman, G. J., Cooke, D. R., Berry, R. F., Clark, A. H., Archibald, D. A., Mathur, R.,
9 10		Walshe, J. L., and Durán, M., 2004, ⁴⁰ Ar/ ³⁹ Ar and Re-Os geochronology of porphyry
11	924 925	copper-molybdenum deposits and related copper-silver veins in the Collahuasi district,
12 13	925 926	northern Chile: Economic Geology, v. 99, p. 673–690.
14 15	920 927	Mathez, E. A., 1973, Refinement of the Kudo-Weill plagioclase thermometer and its
16	927	application to basaltic rocks: Contributions to Mineralogy and Petrology, v. 41, p. 61–
17 18	928 929	72.
19	929 930	Mathez, E.A., 1984, Influence of degassing on oxidation-states of basaltic magmas:
20 21	931	Nature, v. 310, p. 371–375.
22	932	Mathez, E. A., and Webster, J. D., 2005, Partitioning behavior of chlorine and fluorine in
23 24	933	the system apatite-silicate melt-fluid: Geochimica et Cosmochimica Acta, v. 69, p.
25	934	1275–1286.
26 27	935	Matzel, J. E., Bowring, S. A., and Miller, R. B., 2006, Time scales of pluton construction
28	936	at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions,
29 30	937	North Cascades, Washington: Geological Society of America Bulletin, v. 118, p.
31	938	1412–1430.
32 33	939	McMillan, W.J., Thompson, J.F.H., Hart, C.J.R., and Johnston, S.T., 1995, Regional
34 35	940	geological and tectonic setting of porphyry deposits in British Columbia and Yukon
36	941	Territory: Canadian Institute of Mining, Metallurgy and Petroleum Special Volume 46,
37 38	942	p. 40–57.
39	943	Merzbacher, C., and Eggler, D.H., 1984, A magmatic geohygrometer: Application to
40 41	944	Mount St. Helens and other dacitic magmas: Geology, v. 12, p. 587–590.
42	945	Micko, J., Tosdal, R. M., Bissig, T., Chamberlain, C. M., and Simpson, K. A., 2014,
43 44	946	Hydrothermal alteration and mineralization of the Galore Creek alkalic Cu-Au
45	947	porphyry deposit, northwestern British Columbia, Canada: Economic Geology, v. 109,
46 47	948	p. 891–914.
48	949	Mihalynuk, M., Erdmer, P., Ghent, E., Cordey, F., Archibald, D., Friedman, R., and
49 50	950	Johannson, G., 2004, Coherent French Range blueschist: Subduction to exhumation
51 52	951	in< 2.5 my?: Geological Society of America Bulletin, v. 116, p. 910–922.
53	952	Monger, J. W. H., and Irving, E., 1980, Northward displacement of north-central British
54 55	953	Columbia: Nature, v. 285, p. 289–294.
56	954	Moore, G., and Carmichael, I., 1998, The hydrous phase equilibria (to 3 kbar) of an
57 58	955	andesite and basaltic andesite from western Mexico: constraints on water content and
59		
60 61		
62		
63 64		38
65		

conditions of phenocryst growth: Contributions to Mineralogy and Petrology, v. 130, p. 304-319. Mortensen, J.K., Ghosh, D.K., and Ferri, F., 1995, U-Pb geochronology of intrusive rocks associated with copper-gold porphyry deposits in the Canadian Cordillera: Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, p. 142–158. Mutch, E., Blundy, J., Tattitch, B., Cooper, F., and Brooker, R., 2016, An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer: Contributions to Mineralogy and Petrology, v. 171, 85, doi: 10.1007/s00410-016-1298-9 Myers, J. t., and Eugster, H., 1983, The system Fe-Si-O: Oxygen buffer calibrations to 1,500 K: Contributions to Mineralogy and Petrology, v. 82, p. 75–90. Nadeau, O., Williams-Jones, A. E., and Stix, J., 2010, Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids: Nature Geoscience, v. 3, p. 501-505. Nadeau, O., Stix, J., and Williams-Jones, A. E., 2016, Links between arc volcanoes and porphyry-epithermal ore deposits: Geology, v. 44, p. 11–14. Naney, M. T., 1983, Phase equilibria of rock-forming ferromagnesian silicates in granitic systems: American Journal of Science, v. 283, p. 993–1033. Nelson, J., and Colpron, M., 2007, Tectonics and metallogeny of the British Columbia, Yukon and Alaskan Cordillera, 1.8 Ga to the present: Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, v. 5, p. 755–791. Nelson, J., Colpron, M., and Israel, S., 2013, The Cordillera of British Columbia, Yukon, and Alaska: Tectonics and metallogeny: Society of Economic Geologists Special Publication, v. 17, p. 53–109. Newell, J.M., and Peatfield, G.R., 1995, The Red Chris porphyry copper-gold deposit: Canadian Institute of Mining and Metallurgy Special Volume 46, p. 674-688. Norris, J.R., 2012, Evolution of alteration and mineralization at the Red Chris Cu-Au porphyry deposit East zone, northwestern British Columbia, Canada: M.Sc. thesis, Vancouver, Canada, University of British Columbia, 194 p. Pan, L.-C., Hu, R.-Z., Wang, X.-S., Bi, X.-W., Zhu, J.-J., and Li, C., 2016, Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China: Lithos, v. 254–255, p. 118-130.

1 2		
3 4		
5	992	Parat, F., and Holtz, F., 2005, Sulfur partition coefficient between apatite and rhyolite:
6 7	993 994	the role of bulk S content: Contributions to Mineralogy and Petrology, v. 150, p. 643–651.
8	994 995	Parat, F., Holtz, F., and Klügel, A., 2011, S-rich apatite-hosted glass inclusions in
9 10	995 996	xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline
11	990 997	magmas: Contributions to Mineralogy and Petrology, v. 162, p. 463–478.
12 13	997 998	Pass, H. E., Cooke, D. R., Davidson, G., Maas, R., Dipple, G., Rees, C., Ferreira, L.,
14		
15 16	999 1000	Taylor, C., and Deyell, C. L., 2014, Isotope geochemistry of the northeast zone, Mount Pollov alkalia Cu. Au. Ag norphyry deposit. British Columbia: A case for
17 18	1000	Mount Polley alkalic Cu-Au-Ag porphyry deposit, British Columbia: A case for
10 19	1001	carbonate assimilation: Economic Geology, v. 109, p. 859–890.
20	1002	Patchett, P., Gehrels, G. E., and Isachsen, C., 1998, Nd isotopic characteristics of
21 22	1003	metamorphic and plutonic rocks of the Coast Mountains near Prince Rupert, British
23 24	1004	Columbia: Canadian Journal of Earth Sciences, v. 35, p. 556–561.
25	1005	Paterson, S. R., Okaya, D., Memeti, V., Economos, R., and Miller, R. B., 2011, Magma
26 27	1006	addition and flux calculations of incrementally constructed magma chambers in
28	1007	continental margin arcs: Combined field, geochronologic, and thermal modeling
29 30	1008	studies: Geosphere, v. 7, p. 1439–1468.
31	1009	Pearce, T. H., and Kolisnik, A. M., 1990, Observations of plagioclase zoning using
32 33	1010	interference imaging: Earth-Science Reviews, v. 29, p. 9–26.
34	1011	Pearce, J., 1996, Sources and settings of granitic rocks: Episodes, v. 19, p. 120–125.
35 36	1012	Peng, G., Luhr, J. F., and McGee, J. J., 1997, Factors controlling sulfur concentrations in
37	1013	volcanic apatite: American Mineralogist, v. 82, p. 1210–1224.
38 39	1014	Piccoli, P., and Candela, P., 1994, Apatite in felsic rocks; a model for the estimation of
40	1015	initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne
41 42	1016	Intrusive Suite (Sierra Nevada Batholith) magmas: American Journal of Science, v.
43	1017	294, p. 92–135. Disseli P. M. and Candela P. A. 2002. Anotita in improve systems: Paviews in
44 45	1018	Piccoli, P. M., and Candela, P. A., 2002, Apatite in igneous systems: Reviews in
46	1019	Mineralogy and Geochemistry, v. 48, p. 255–292.
47 48	1020	Pilet, S., Baker, M. B., Müntener, O., and Stolper, E. M., 2011, Monte Carlo simulations
49 50	1021	of metasomatic enrichment in the lithosphere and implications for the source of alkaling baseless Journal of Petrology x_1 52, p_1 1415, 1442
50 51	1022	alkaline basalts: Journal of Petrology, v. 52, p. 1415–1442.
52 52	1023	Qiu, JT., Li, PJ., Santosh, M., and Yu, XQ., 2014, Magma oxygen fugacities of
53 54	1024	granitoids in the Xiaoqinling area, central China: implications for regional tectonic
55 56	1025	setting: Neues Jahrbuch für Mineralogie-Abhandlungen (Journal of Mineralogy and
57	1026	Geochemistry), v. 191, p. 317–329.
58 59	1027	Rees, C., Riedell, K. B., Proffett, J. M., Macpherson, J., and Robertson, S., 2015, The
59 60	1028	Red Chris porphyry copper-gold deposit, Northern British Columbia, Canada: Igneous
61 62		
63		40
64 65		+0

phases, alteration, and controls of mineralization: Economic Geology, v. 110, p. 857-888. Rezeau, H., Moritz, R., Wotzlaw, J.-F., Tayan, R., Melkonyan, R., Ulianov, A., Selby, D., d'Abzac, F.-X., and Stern, R. A., 2016, Temporal and genetic link between incremental pluton assembly and pulsed porphyry Cu-Mo formation in accretionary orogens: Geology, v. 44, p. 627-630. Richards, J. P., 2003, Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation: Economic Geology, v. 98, p. 1515–1533. Richards, J. P., 2009, Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere: Geology, v. 37, p. 247–250. Richards, J.P., 2011, Magmatic to hydrothermal metal fluxes in convergent and collided margins: Ore Geology Reviews, v. 40, p. 1–26. Richards, J. P., 2015, The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny: Lithos, v. 233, p. 27-45. Richards, J. P., and Kerrich, R., 2007, Special Paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis: Economic Geology, v. 102, p. 537-576. Richards, J. P., López, G. P., Zhu, J.-J., Creaser, R. A., Locock, A. J., and Mumin, A. H., 2017, Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry $Cu \pm Mo \pm Au$ and intrusion-related iron oxide Cu-Au deposits in northern Chile: Economic Geology, v. 112, p. 295-318. Ricketts, B. D., Evenchick, C. A., Anderson, R. G., and Murphy, D. C., 1992, Bowser basin, northern British Columbia: Constraints on the timing of initial subsidence and Stikinia-North America terrane interactions: Geology, v. 20, p. 1119–1122. Ridolfi, F., Renzulli, A., and Puerini, M., 2010, Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes: Contributions to Mineralogy and Petrology, v. 160, p. 45-66. Rohrlach, B.D., and Loucks, R.R., 2005, Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines, in Porter, T.M., ed., Super porphyry copper and gold deposits: A global perspective: PGC Publishing, Adelaide, South Australia, v. 2, p. 369–407. Rutherford, M.J., and Devine, J.D., 1988, The May 18, 1980, eruption of Mount St. Helens. 3. Stability and chemistry of amphibole in the magma chamber: Journal of Geophysical Research, v. 93, p. 11,949–11,959.

- Rutherford, M. J., and Devine, J. D., 2003, Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995-2002 Soufriere Hills magma: Journal of Petrology, v. 44, p. 1433–1453. Samson, S. D., McClelland, W. C., Patchett, P. J., Gehrels, G. E., and Anderson, R. G., 1989, Evidence from neodymium isotopes for mantle contributions to Phanerozoic crustal genesis in the Canadian Cordillera: Nature, v. 337, p. 705-709. Samson, S. D., Patchett, P. J., McClelland, W. C., and Gehrels, G. E., 1991, Nd and Sr isotopic constraints on the petrogenesis of the west side of the northern Coast Mountains batholith, Alaskan and Canadian Cordillera: Canadian Journal of Earth Sciences, v. 28, p. 939–946. Schaltegger, U., Brack, P., Ovtcharova, M., Peytcheva, I., Schoene, B., Stracke, A., Marocchi, M., and Bargossi, G. M., 2009, Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy): Earth and Planetary Science Letters, v. 286, p. 208–218. Scott, J.E., Richards, J.P., Heaman, L.M., Creaser, R.A., and Salazar, G.S., 2008, The Schaft Creek porphyry Cu-Mo-(Au) deposit, Northwestern British Columbia: Exploration and Mining Geology, v. 17, p. 163–196. Seedorff, E., Dilles, J., Proffett, J., Einaudi, M., Zurcher, L., Stavast, W., Johnson, D., and Barton, M., 2005, Porphyry deposits: Characteristics and origin of hypogene features: Economic Geology 100th anniversary volume, v. 29, p. 251–298. Selby, D., and Creaser, R. A., 2004, Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite: Geochimica et Cosmochimica Acta, v. 68, p. 3897-3908. Shen, P., Hattori, K., Pan, H., Jackson, S., and Seitmuratova, E., 2015, Oxidation condition and metal fertility of granitic magmas: zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt: Economic Geology, v. 110, p. 1861-1878. Sillitoe, R., 2010, Porphyry copper systems: Economic Geology, v. 105, p. 3-41. Simon, A. C., and Ripley, E. M., 2011, The role of magmatic sulfur in the formation of ore deposits: Reviews in Mineralogy and Geochemistry, v. 73, p. 513–578. Steinberger, I., Hinks, D., Driesner, T., and Heinrich, C.A., 2013, Source plutons driving porphyry copper ore formation: combining geomagnetic data, thermal constraints, and chemical mass balance to quantify the magma chamber beneath the Bingham Canyon deposit: Economic Geology, v. 108, p. 605-624.

1 2		
3 4	1101	Stern, C. R., Funk, J. A., Skewes, M. A., and Arévalo, A., 2007, Magmatic anhydrite in
5 6	1102	plutonic rocks at the El Teniente Cu-Mo deposit, Chile, and the role of sulfur-and
7	1103	copper-rich magmas in its formation: Economic geology, v. 102, p. 1335–1344.
8 9	1104	Stock, M. J., Humphreys, M. C. S., Smith, V. C., Isaia, R., and Pyle, D. M., 2016, Late-
10	1105	stage volatile saturation as a potential trigger for explosive volcanic eruptions: Nature
11 12	1106	Geosciences, v. 9, p. 249–254.
13 14	1107	Streck, M. J., and Dilles, J. H., 1998, Sulfur evolution of oxidized arc magmas as
14 15	1108	recorded in apatite from a porphyry copper batholith: Geology, v. 26, p. 523–526.
16 17	1109	Sun, SS., and McDonough, W., 1989, Chemical and isotopic systematics of oceanic
18	1110	basalts: implications for mantle composition and processes: Geological Society,
19 20	1111	London, Special Publications, v. 42, p. 313–345.
21	1112	Tapster, S., Condon, D., Naden, J., Noble, S., Petterson, M., Roberts, N., Saunders, A.,
22 23	1113	and Smith, D. J., 2016, Rapid thermal rejuvenation of high-crystallinity magma linked
24	1114	to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect,
25 26	1115	Solomon Islands: Earth and Planetary Science Letters, v. 442, p. 206–217.
27	1116	Taseko Mines Limited, 2013, Gibraltar reserves and resources at December 31, 2012:
28 29	1117	Taseko Mines Limited Report, www.tasekomines.com/gibraltar/ID540174.
30	1118	Titley, S.R., and Beane, R.E., 1981, Porphyry copper deposits, Part 1. Geologic settings,
31 32	1119	petrology, and tectogenesis: Economic Geology 75 TH Anniversary Volume, p. 214–
33	1120	235.
34 35	1121	Trail, D., Watson, E. B., and Tailby, N. D., 2011, The oxidation state of Hadean magmas
36 37	1122	and implications for early Earth/'s atmosphere: Nature, v. 480, p. 79-82.
38	1123	Ustunisik, G., Kilinc, A., and Nielsen, R. L., 2014, New insights into the processes
39 40	1124	controlling compositional zoning in plagioclase: Lithos, v. 200, p. 80-93.
41	1125	Von Quadt, A., Erni, M., Martinek, K., Moll, M., Peytcheva, I., and Heinrich, C. A., 2011,
42 43	1126	Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal
44	1127	systems: Geology, v. 39, p. 731–734.
45 46	1128	Walker Jr, B. A., Miller, C. F., Lowery Claiborne, L., Wooden, J. L., and Miller, J. S.,
47	1129	2007, Geology and geochronology of the Spirit Mountain batholith, southern Nevada:
48 49	1130	Implications for timescales and physical processes of batholith construction: Journal
50	1131	of Volcanology and Geothermal Research, v. 167, p. 239–262.
51 52	1132	Wallace, P. J., 2005, Volatiles in subduction zone magmas: concentrations and fluxes
53	1133	based on melt inclusion and volcanic gas data: Journal of Volcanology and
54 55	1134	Geothermal Research, v. 140, p. 217–240.
56 57	1135	Wang, R., Richards, J. P., Hou, Z., Yang, Z., and DuFrane, S. A., 2014a, Increased
58	1136	magmatic water content—the key to Oligo-Miocene porphyry Cu-Mo ± Au formation
59 60	1137	in the Eastern Gangdese Belt, Tibet: Economic Geology, v. 109, p. 1315–1339.
61		
62 63		
64		43

1 2		
3 4	1138	Wang, R., Richards, J. P., Hou, Zq., Yang, Zm., Gou, Zb., and DuFrane, S. A., 2014b,
5 6	1139	Increasing magmatic oxidation state from Paleocene to Miocene in the Eastern
7	1140	Gangdese Belt, Tibet: Implication for collision-related porphyry Cu-Mo \pm Au
8 9	1141	mineralization: Economic Geology, v. 109, p. 1943–1965.
10	1142	Waters, L. E., and Lange, R. A., 2015, An updated calibration of the plagioclase-liquid
11 12	1143	hygrometer-thermometer applicable to basalts through rhyolites: American
13 14	1144	Mineralogist, v. 100, p. 2172–2184.
15	1145	Webster, J. D., 1997, Chloride solubility in felsic melts and the role of chloride in
16 17	1146	magmatic degassing: Journal of Petrology, v. 38, p. 1793–1807.
18	1147	Webster, J. D., Kinzler, R. J., and Mathez, E. A., 1999, Chloride and water solubility in
19 20	1148	basalt and andesite melts and implications for magmatic degassing: Geochimica et
21	1149	Cosmochimica Acta, v. 63, p. 729–738.
22 23	1150	Webster, J. D., Tappen, C. M., and Mandeville, C. W., 2009, Partitioning behavior of
24	1151	chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200
25 26	1152	MPa: Geochimica et Cosmochimica Acta, v. 73, p. 559–581.
27	1153	Webster, J., Goldoff, B., Sintoni, M., Shimizu, N., and De Vivo, B., 2014, C-O-H-Cl-
28 29	1154	S-F volatile solubilities, partitioning, and mixing in phonolitic-trachytic melts and
30	1155	aqueous-carbonic vapor ± saline liquid at 200 MPa: Journal of Petrology, v. 55, p.
31 32	1156	2217-2248.
33 34	1157	Webster, J. D., and Piccoli, P. M., 2015, Magmatic apatite: A powerful, yet deceptive,
35	1158	mineral: Elements, v. 11, p. 177–182.
36 37	1159	Weis, P., Driesner, T., and Heinrich, C., 2012, Porphyry-copper ore shells form at stable
38	1160	pressure-temperature fronts within dynamic fluid plumes: Science, v. 338, p. 1613-
39 40	1161	1616.
41	1162	Wilkinson, J. J., 2013, Triggers for the formation of porphyry ore deposits in magmatic
42 43	1163	arcs: Nature Geoscience, v. 6, p. 917–925.
44	1164	Winchester, J.A., and Floyd, P.A., 1977, Geochemical discrimination of different magma
45 46	1165	series and their differentiation products using immobile elements: Chemical Geology,
47	1166	v. 20, p. 325–343.
48 49	1167	Xu, L., Bi, X., Hu, R., Qi, Y., Tang, Y., Wang, X., and Zhu, J., 2016, Redox states and
50	1168	genesis of magmas associated with intra-continental porphyry Cu-Au mineralization
51 52	1169	within the Jinshajiang–Red River alkaline igneous belt, SW China: Ore Geology
53 54	1170	Reviews, v. 73, Part 2, p. 330–345.
54 55	1171	Yang, Z., Hou, Z., White, N. C., Chang, Z., Li, Z., and Song, Y., 2009, Geology of the
56 57	1172	post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet: Ore Geology
58	1173	Reviews, v. 36, p. 133–159.
59 60		
61		
62 63		
64		44
65		

1 2		
3 4	1174	Zajacz, Z., Seo, J.H., Candela, P.A., Piccoli, P.M., and Tossell, J.A., 2011, The solubility
5 6	1175	of copper in high-temperature magmatic vapors: A quest for the significance of
7	1176	various chloride and sulfide complexes: Geochimica et Cosmochimica Acta, v. 75, p.
8 9	1177	2811–2827.
10	1178	Zajacz, Z., Candela, P.A., Piccoli, P.M., Wälle, M., and Sanchez-Valle, C., 2012, Gold
11 12	1179	and copper in volatile saturated mafic to intermediate magmas: Solubilities,
13 14	1180	partitioning, and implications for ore deposit formation: Geochimica et Cosmochimica
14 15	1181	Acta, v. 91, p. 140–159.
16 17	1182	Zhang, C., Holtz, F., Ma, C., Wolff, P. E., and Li, X., 2012, Tracing the evolution and
18	1183	distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case
19 20	1184	study from the Liujiawa pluton (Dabie orogen, China): Contributions to Mineralogy
21	1185	and Petrology, v. 164, p. 859–879.
22 23	1186	Zhang, D., and Audétat, A., 2017, What caused the formation of the giant Bingham
24	1187	Canyon porphyry Cu-Mo-Au deposit? Insights from melt Inclusions and magmatic
25 26	1188	sulfides: Economic Geology, v. 112, p. 221–244.
27	1189	Zimmer, M.M., Plank, T., Hauri, E.H., Yogodzinski, G.M., Stelling, P., Larsen, J., Singer,
28 29	1190	B., Jicha, B., Mandeville, C., and Nye, C.J., 2010, The role of water in generating the
30	1191	calc-alkaline trend: New volatile data for Aleutian magmas and a new Tholeiitic Index:
31 32	1192	Journal of Petrology, v. 51, p. 2411–2444.
33	1193	Zhu, C., and Sverjensky, D. A., 1991, Partitioning of F-Cl-OH between minerals and
34 35	1194	hydrothermal fluids: Geochimica et Cosmochimica Acta, v. 55, p. 1837–1858.
36 37		
38		
39 40		
40		
42 43		
44		
45 46		
40 47		
48 49		
49 50		
51 52		
53		
54 55		
56		
57 58		
59		
60 61		
62		
63 64		45
64 65		

Figure Captions

Fig. 1. Major terranes in the south of the Canadian Cordillera, showing Triassic to Jurassic magmatic belts and major associated porphyry deposits in the Stikine and Quesnel terranes (modified from Nelson and Colpron, 2007; Nelson et al., 2013; original graphics file provided by Joanne Nelson, British Columbia Geological Survey of Canada). The age of the Red Chris deposit is from this study (Table 1), and the ages for the other porphyry deposits are from Brown and Kahlert (1986; Red Mountain), Mortensen et al. (1995; Mt. Polley), Scott et al. (2008; Schaft Creek), Duuring et al. (2009; Kemess South), Taseko Mines Limited (2013; Gibraltar), Bath et al. (2014; Lorraine), Byrne and Tosdal (2014; Galore Creek), Devine et al. (2014; Lorraine), Logan and Mihalynuk (2014; Highland Valley, Copper Mountaine, Afton/Ajax, and Brenda), and Jago et al. (2014; Mt. Milligan). Fig. 2. Simplified geological map of the Red Stock and Red Chris Cu-Au deposit, showing the main mineralized zoned (named) and the locations of sampled drill holes (modified from Rees et al., 2015). Universal Transverse Mercator coordinates are based on the WGS84 datum. Fig. 3. Hand specimen photographs of samples of the P1, P2E, P2L, and P3 porphyry intrusions, and two late basaltic to andesitic dikes. (A) P1 porphyry with anhedral to

subhedral altered amphibole and plagioclase phenocrysts, crosscut by pyrite-quartz veins

(sample RC13-35). (B) P2E porphyry showing crowded texture with chloritized

amphibole and plagioclase phenocrysts; plagioclase grains are rimmed or replaced by

secondary K-feldspar. The brick-red color is due to fine-grained hematite (sample RC13-107). (C) P2L porphyry composed of abundant fresh amphibole and plagioclase phenocrysts, with quartz in the groundmass (sample RC13-32). (D) The P3 porphyry is similar to P2L, but is distinguished by the absence of quartz in the groundmass (sample RC13-78). (E) Andesitic dike with anhedral to subhedral amphibole phenocrysts, crosscut by a small calcite vein (sample RC13-62). (F) Basaltic dike with chloritized amphibole phenocrysts (sample RC13-106). See Digital Appendix Table A1 for sample locations. Fig. 4. West-southwest-east-northeast cross section A-A', and north-northwest-south-southwest cross section B-B' (location of sections shown in Fig. 2), modified from Gillstrom et al. (2012) and Rees et al. (2015). Copper equivalent-grade zones, drill holes, and the boundary between potassic and post-potassic zones are shown: Cu equivalent (%) = Cu (%) + 0.486 × Au (g/t). Fig. 5. Hand specimen photographs and photomicrographs of alteration and vein minerals. (A, B) P2E porphyry (samples RC13-81 and RC13-75) with potassic alteration and A-type quartz veins comprising magnetite, secondary K-feldspar, and disseminated bornite and pyrite. Potassic alteration is characterized by secondary K-feldspar veins and selvedges around A-veins. Late unmineralized carbonate veins cut the A veins. (C) Amphibole phenocryst altered to secondary biotite, which has then been altered to chlorite, reflecting potassic alteration overprinted by chlorite-sericite alteration (plane-polarized transmitted light; P2E: sample RC13-30). (D) Plagioclase phenocryst partially overprinted by sericite (cross-polarized transmitted light; P2E porphyry: sample RC13-

1241	11). (E) B-type quartz veins with centerline pyrite in P2L porphyry (sample RC13-44). (F)
1242	Pyritic D vein in P1 porphyry (sample RC13-40). (G) High-grade ore in sheeted A-type
1243	quartz-chalcopyrite-K-feldspar veins (sample RC13-31 in P2E porphyry). (H) Quartz-
1244	carbonate-pyrite-molybdenite-chalcopyrite vein in P2E porphyry (reflected light; sample
1245	RC13-88). Abbreviations: Amp = amphibole; Bi = biotite; Bn = bornite; Cbn = carbonate;
1246	Chl = chlorite; Cpy = chalcopyrite; Kfs = K-feldspar; Mo = molybdenite; Mt = magnetite;
1247	Pl = plagioclase; Py = pyrite; Qtz = quartz. See Digital Appendix Table A1 for sample
1248	locations.
1249	
1250	Fig. 6. Zircon U–Pb Tera-Wasserburg concordia diagrams for (A) P1, (B) P2E, (C) P2L,
1251	and (D) P3 porphyry samples dated by LA-MC-ICP-MS. Uncertainty ellipses and
1252	calculated ages are shown at 2σ .
1253	
1254	Fig. 7. Weighted mean Re-Os model age of three molybdenite vein samples from the Red
1255	Chris Cu-Au deposit.
1256	
1257	Fig. 8. Zr/Ti vs. Nb/Y discrimination diagram (Winchester and Floyd, 1977) for porphyry
1258	and basaltic-andesitic dike samples from Red Chris.
1259	
1260	Fig. 9. Selected whole-rock major element variation diagrams for porphyry and basaltic-
1261	andesitic dike samples from Red Chris: (A) K ₂ O, (B) Na ₂ O, (C) TiO ₂ , (D) Al ₂ O ₃ , (E)
1262	total Fe ₂ O ₃ , and (F) MgO vs. SiO ₂ .
1263	

Fig. 10. (A) Primitive mantle-normalized trace element, and (B) chondrite-normalized rare earth element diagrams for porphyry and basaltic-andesitic dike samples from Red Chris. The normalization values for primitive mantle chondrite are from from Sun and McDonough (1989).

Fig. 11. $E_{Nd}(t)$ vs. initial ⁸⁷Sr/⁸⁶Sr ratios for porphyry and basaltic–andesitic dike samples from Red Chris, calculated at t = 200 Ma. All the samples fall in the field of Mesozoic igneous rocks in the Stikine island arc terrane, clearly different from the Late Cretaceous to Eocene plutons in the Northern Coast Plutonic Complex, which were derived from evolved crust. The depleted MORB mantle field is from Pilet et al. (2011); the Stikinia Mesozoic igneous rock field is from Samson et al. (1989); the Northern Coast Plutonic Complex field is from Samson et al. (1991) and Patchett et al. (1998); all data are re-calculated at 200 Ma.

Fig. 12. Histogram and relative probability curve for zircon $\mathcal{E}_{Hf}(t)$ values from (A) P1, (B) P2E, (C) P2L, and (D) P3 porphyry samples.

Fig. 13. Classification diagram and plots of oxidation state, temperature, pressure, and magmatic water content estimated from amphibole compositions from P2E and P2L

porphyry samples at Red Chris. A. $^{C}(Al^{VI} + Fe^{3+} + 2Ti^{4+})$ (apfu) vs. $^{A}(Na^{+} + K^{+})$ (apfu). B.

 Δ FMQ vs. temperature. C. Δ FMQ vs. pressure. D. Δ FMQ vs. magmatic water content.

The classification diagram for calcic amphibole is given by the Excel spreadsheet of

1286	Locock (2014), and the superscript C and A represent C and A cations following the
1287	general amphibole formula ($AB_2C_5T_8O_{22}W_2$), respectively. Note that potassic-magnesio-
1288	hastingsite is included in the field of magnesio-hastingsite. ΔFMQ values, temperatures,
1289	and magmatic water content were calculated from the spreadsheet of Ridolfi et al. (2010).
1290	Amphibole crystallization pressures were calculated using the equation of Mutch et al.
1291	(2016). The Δ FMQ values were calculated following the equation of Myers and Eugster
1292	(1983): $\log fO_2 = -24,441.9/T$ (K) + 8.290 (± 0.167). Abbreviation: apfu = atoms per
1293	formula unit.
1294	
1295	Fig. 14. Photomicrographs (cross-polarized transmitted light), Backscattered eelectron
1296	(BSE) images, and electron microprobe analysis profiles for FeO and anorthite proportion
1297	(X_{An}) for representative plagioclase crystals from the P2E, P2L, and P3 porphyries at Red
1298	Chris. Red circles on photomicrographs and white circles on BSE images denote the
1299	analyzed spots. The error bars for X_{An} and FeO analyses are smaller than the size of the
1300	symbols. Abbreviations: Amp = amphibole; Ap = apatite; Pl = plagioclase; Ser = sericite.
1301	
1302	Fig. 15. Chondrite-normalized REE patterns for zircons from (A) P1, (B), P2E, (C) P2L,
1303	and (D) P3 porphyry samples from Red Chris. Normalization values are from Sun and
1304	McDonough (1989).
1305	
1306	Fig. 16. Zircon Eu_N/Eu_N^* vs. temperature diagram. Eu_N/Eu_N^* is the europium anomaly,
1307	calculated as $Eu_N/Eu_N^* = Eu_N/(Sm_N \times Gd_N)^{0.5}$, using the chondrite normalization values

of Sun and McDonough (1989). Oxidized suites have zircon Eu_N/Eu_N^* values >0.4 (Dilles et al., 2015). Fig. 17. Backscattered electron images of apatite crystals in samples from (A) P1 (RC13-39), (B) P2E (RC13-107), (C) P2L (RC13-33), and (D) P3 (RC13-78). Concentrations of SO₃ and Cl in apatite crystals are shown in wt. % (SO₃/Cl); red circles represent the analyzed spots. Higher concentrations are observed in apatites from P2E and P2L; some apatite microphenocrysts from P2 porphyries show zoning from SO₃-Cl-rich cores to SO₃-Cl-poorer rims (C). Fig. 18. Plots of (A) S, and (B) F vs. Cl contents for apatite microphenocrysts from P1 to P3 porphyry samples at Red Chris. Abbreviation: apfu = atoms per formula unit. Data from Digital Appendix Table A8.

ŧ

1 2		
3 4 5	1	Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red
6 7	2	Chris porphyry Cu-Au deposit, Northern British Columbia, Canada
8 9 10	3	Jing-Jing Zhu ^{1, 2, 3*} , Jeremy P. Richards ^{1, 2} , Chris Rees ⁴ , Robert Creaser ² , S. Andrew
11 12	4	DuFrane ² , Andrew Locock ² , Joseph A. Petrus ¹ , and Jürgen Lang ²
13 14	5	¹ Harquail School of Earth Sciences, Laurentian University, 935 Ramsey Lake Road,
15 16 17	6	Sudbury, ON, Canada P3E 2C6
18 19	7	² Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton,
20 21 22	8	Alberta, Canada T6G 2E3
23 24 25 26	9	³ State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese
20 27 28	10	Academy of Sciences, Guiyang 550081, PR China
29 30 31	11	⁴ Imperial Metals Corporation, 200-580 Hornby Street, Vancouver, B.C., Canada V6C
32 33	12	<i>3B6</i>
34 35 36 37	13	*Corresponding author e-mail: <u>jzhu4@laurentian.ca</u> ; zhujingjing-1103@163.com
38 39 40	14	Abstract
41 42 43	15	The Red Chris porphyry Cu-Au deposit is located in the Stikinia island-arc terrane in
44 45	16	northwest British Columbia, <u>. it It</u> is hosted by the Red Stock, which has four phases of
46 47	17	porphyry intrusions: P1, P2E, P2L, and P3. New U-Pb dating of zircon shows that these
48 49 50	18	intrusions were emplaced at 211.6 \pm 1.3 Ma (MSWD = 0.85), 206.0 \pm 1.2 Ma (MSWD =
51 52	19	1.5), 203.6 ± 1.8 Ma (MSWD = 1.5), and 201.7 ± 1.2 Ma (MSWD = 1.05), respectively.
53 54 55	20	The ore-forming event at Red Chris was a short-lived event at 206.1 ± 0.5 Ma (MSWD =
56 57	21	0.96; weighted average age of three Re-Os analyses), implying a duration of <1 m.y., as
58 59 60 61 62	22	defined by the uncertainty range. This mineralization age coincides with the emplacement

age of the P2E porphyry, and is consistent with cross-cutting relationships that suggest
P2E was the main syn-mineralization intrusion.

Zircons from P1 to P3 porphyry rocks have consistently high Eu_N/Eu_N^* ratios (mostly > 0.4), indicating that their associated magmas were moderately oxidized. The magmatic water contents estimated from plagioclase and amphibole compositions suggest H₂O contents of ~5 wt. %. Taken together, the P1 to P3 porphyries are interpreted to be moderately oxidized and hydrous.

30 The four phases of porphyries are differentiated by sulfur and chlorine contents. The

31 SO₃ contents of igneous apatite microphenocrysts from the mineralization-related P2

32 porphyries are higher (P2E: 0.30 ± 0.13 wt. %, n = 34; P2L: 0.29 ± 0.18 wt. %, n = 100)

than those from the pre-mineralization P1 (0.11 \pm 0.03 wt. %, n = 34) and post-

mineralization P3 porphyries $(0.03 \pm 0.01 \text{ wt. }\%, n = 13)$. The chlorine contents in apatite

grains from the P2E and P2L porphyries are 1.18 ± 0.37 (n = 34) and 1.47 ± 0.28 wt. %

36 (n = 100), also higher than those from P1 (0.51 \pm 0.3 wt. % Cl, n = 34) and P3 (0.02 \pm

37 0.02 wt. % Cl, n = 17). These results imply that the sulfur and chlorine contents of the

38 P2E and P2L magmas were higher than in the P1 and P3 magmas, suggesting that

39 elevated magmatic S-Cl contents in the P2 porphyries may have been important for ore-

40 formation. Although the process that caused the increase in sulfur and chlorine is not

41 clear, reverse zoning seen in plagioclase phenocrysts from the P2 porphyry, and the

42 occurrence of more mafic compositions in P2L suggest that recharge of the deeper

43 magma chamber by a relatively S-Cl-rich mafic magma may have triggered the ore-

44 forming hydrothermal event.

46	Introduction
47	Compared to the relatively long-lived magmatic systems represented by a composite
48	batholith (up to 10 m.y.; Matzel et al., 2006; Walker et al., 2007; Harris et al., 2008;
49	Schaltegger et al., 2009; Paterson et al., 2011; Rezeau et al., 2016), the life spans of
50	porphyry magmatic-hydrothermal ore-forming events are much shorter, probably on the
51	order of several 10 ⁵ -hundred thousand years (up to 1 m.y.; Cathles et al., 1997; Hayba
52	and Ingebritsen, 1997; Masterman et al., 2004; von Quadt et al., 2011; Weis et al., 2012;
53	Chiaradia et al., 2013; Correa et al., 2016; Li et al., 2017). In many large magmatic
54	systems, porphyry formation occurs at a relatively late stage in the system's evolution
55	(Creasey, 1977; Titley and Beane, 1981; Candela, 1992; Richards, 2003; Rohrlach and
56	Loucks, 2005; Yang et al., 2009; Correa et al., 2016).
57	Although the multiple phases of porphyry stocks are commonly broadly cogenetic,
58	they may be derived from packets of magma that evolved at different crustal levels over
59	the history of the larger magmatic system (Annen et al., 2006). Understanding why ore-
60	formation is only associated with a specific intrusive suite within these broader systems,
61	and at discrete, commonly singular times, is a focus of this study.
62	It is recognized that magmas with high sulfur (>1000 ppm), chlorine (>3000 ppm),
63	and water (>4 wt. %) contents as well as relatively high oxidation states (higher than the
64	fayalite-magnetite-quartz buffer, Δ FMQ, by 1–2 log fO_2 units) are fertile for the
65	generation of magmatic-hydrothermal porphyry Cu deposits (Burnham, 1979; Candela,
66	1992; Richards, 2003, 2009, 2011, 2015; Wallace, 2005; Chambefort et al., 2008; Simon
67	and Ripley, 2011; Chiaradia et al., 2012; Loucks, 2014; Hou et al., 2015; Lu et al., 2015,
68	2016; Chelle-Michou and Chiaradia, 2017). These ingredients are essential for the

transport of Cu (and Au) both in the magma (Zajacz et al., 2012) and in exsolved high
temperature, SO₂-rich, saline magmatic fluids (Candela and Holland, 1984; Zajacz et al.,
2011). However, whereas many magmas achieve such compositions, ore formation is a
relatively rare and discrete event in such systems.

Various mechanisms have been proposed that might trigger an ore forming event from a fertile magma source, including recharge of the magma chamber by hot, sulfur-rich melts (Hattori, 1993; Keith et al., 1997; Larocque et al., 2000; Hattori and Keith, 2001; Halter et al., 2005; Stern et al., 2007; Nadeau et al., 2010, 2016; Wilkinson, 2013; Tapster et al., 2016; Zhang and Audétat, 2017), fluxing by sulfur gases (Blundy et al., 2015), or increasing the water and oxidation state of magmas during long-term fractionation in deep magma chambers (Ballard et al., 2002; Wang et al., 2014a, 2014b; Dilles et al., 2015; Lu et al., 2015, 2016). The Red Chris porphyry Cu-Au deposit provides an opportunity to test these hypotheses, because ore-formation occurred at a discrete and relatively late stage in the ~10 m.y. history of the associated magmatic system.

The Red Chris deposit is located in northwest British Columbia, and contains measured and indicated resources of 1,035 million metric tonnes of ore grading 0.35% Cu and 0.35 g/t Au (Gillstrom et al., 2012). Pre-, syn-, and post-mineralization porphyry intrusions have been recognized based on detailed core logging and petrographic work (Rees et al., 2015), with mineralization occurring in a singular episode during this magmatic history. In this paper, we present detailed geochronological and geochemical data for the porphyry phases at Red Chris, and show that they have similar bulk compositions, including all being relatively hydrous and oxidized. However, the syn-

92	mineralization porphyry is characterized by plagioclase with reverse zoning and apatite
93	with relatively high sulfur and chlorine contents. We interpret these data to indicate that
94	high magmatic S and Cl contents, in addition to high H ₂ O contents and oxidation state,
95	were critical for Cu-Au ore-formation at Red Chris. We speculate that there was an
96	injection of relatively mafic (hotter, and more S- and Cl-rich) but cogenetic magma into
97	the mid-upper crustal source magma chamber approximately coincident with
98	emplacement of the syn-mineralization porphyry.
99	
100	Geological Setting
101	Red Chris is situated within the island-arc terrane of Stikinia in the Intermontane Belt
102	of the Canadian Cordillera of British Columbia (Fig. 1; Monger and Irving, 1980; Nelson
103	and Colpron, 2007; Nelson et al., 2013). Stikinia consists primarily of Mesozoic arc-
104	related igneous and sedimentary rocks, formed in response to subduction processes prior
105	to accretion to the ancestral North American margin in the Middle Jurassic (Gabrielse,
106	1991; Ricketts et al., 1992; Lang et al., 1995; Mihalynuk et al., 2004; Nelson and Colpron,
107	2007; Logan and Mihalynuk, 2014). In northwestern Stikinia, arc assemblages comprise
108	the Middle to Late Triassic Stuhini Group, unconformably overlain by Late Triassic and
109	Early to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group (Fig. 2;
110	Brown et al., 1991; Gabrielse, 1991; Marsden and Thorkelson, 1992; Dostal et al., 1999;
111	Gagnon et al., 2012; Nelson et al., 2013; Logan and Mihalynuk, 2014). The Hazelton
112	Group is overlain by sedimentary rocks of the syn- to post-accretion Middle Jurassic to
113	Early Cretaceous Bowser Lake Group.

Several porphyry Cu±Au±Mo deposits occur in the region, hosted by Late Triassic to Early Jurassic arc-related plutons (Fig. 1), including Red Chris which formed in the Late Triassic Red Stock. Collectively, these regional intrusions have ages ranging from ~222 Ma to ~180 Ma, recording much of the pre-accretionary history of Stikinia (Lang et al., 1995; McMillan et al., 1995; Scott et al., 2008; Nelson et al., 2013; Logan and Mihalynuk, 2014). A significant percentage of the known porphyry Cu deposits, including Red Chris, formed during a 6-m.y. pulse of magmatism between 206 and 200 Ma, with compositions ranging from calc-alkaline to strongly alkaline (Lang et al., 1995; McMillan et al., 1995; Nelson et al., 2013; Bissig and Cooke, 2014; Logan and Mihalynuk, 2014; Micko et al., 2014; Pass et al., 2014). Geology of the Red Chris Cu-Au deposit The Red Chris Cu-Au deposit was discovered in the 1950s and explored intermittently in subsequent decades, with mining beginning in 2015 (Ash et al., 1995, 1996; Newell and Peatfield, 1995; Baker et al., 1997; Gillstrom et al., 2012; Rees et al., 2015). The deposit is hosted by the Red Stock, which is the largest of a suite of Late Triassic to Early Jurassic stocks and dikes that intrude the Stuhini Group in the district (Fig. 2; Friedman and Ash, 1997; Rees et al., 2015). The stock is tabular, elongate in an east to northeast direction, and approximately 6.5 km long by 300 to 1500 m wide (Fig. 2; Ash et al., 1995; Baker et al., 1997; Gillstrom et al., 2012). It has a steep northern contact against Stuhini Group country rocks, but its southeastern margin against Hazelton and Bowser Lake Group strata is poorly exposed, and has locally been truncated by the NE-

trending, steeply SE-dipping South Boundary fault (Fig. 2). This fault, and the East zone
fault within the stock, probably reflect a long-lived and deep structure which guided the
emplacement of the intrusions, mineralization, and subsequent deformation of the Red
Stock.

The Red Stock is a composite intrusion consisting of several phases of porphyritic diorite to quartz monzonite. Mineralogically, the rocks consist of medium- to coarse-grained amphibole, plagioclase, and minor biotite phenocrysts, with K-feldspar, plagioclase, and quartz in the groundmass. Based on compositional and textural differences and crosscutting relationships, Rees et al. (2015) identified four distinct porphyry phases, P1, P2, P3, and P4. The P1 porphyry is a pre-mineralization leucodiorite which accounts for the main volume of the Red Stock, and is distinguished by sparse anhedral to subhedral amphibole ($\sim 10\%$) and abundant plagioclase (30–40) vol. %) phenocrysts with lengths up to 4 mm. The groundmass is composed of finegrained plagioclase and minor quartz (Fig. 3A).

The P2 porphyry is a syn-mineralization quartz monzonite intrusion which is largely unexposed at surface but is observed in drill core to have intruded P1 at depth. It has been subdivided by Rees et al. (2015) into early (P2E), intermediate (P2I), and late (P2L) phases based on vein truncations and chilled margins. The P2 porphyries are generally characterized by tabular subhedral to euhedral amphibole (10–15 vol. %) and plagioclase (35–50 vol. %) phenocrysts. The amphibole crystals are mostly euhedral and larger than in P1, with lengths up to 10 mm. The groundmass comprises K-feldspar, plagioclase, and quartz. In this paper, the P2 subphases are simplified to an early stage (P2E; Fig. 3B) and late stage porphyry (P2L, probably corresponding to P2I and P2L of Rees et al., 2015;

Fig. 3C). The P2E porphyry has a crowded plagioclase texture with slightly smaller
amphibole phenocrysts than P2L. In contrast, the P2L porphyry is relatively fresh and
occurs only as small dikes (Fig. 4).

The post-mineralization P3 monzonite porphyry is much less abundant. It is texturally similar to the P2L porphyry with abundant amphibole phenocrysts (15–20 vol. %), but is distinguished by the absence of quartz in the groundmass, which is mainly composed of K-feldspar and plagioclase (Fig. 3D). Although no crosscutting relationships between the P3 and P2L porphyries have been found, the zircon U-Pb dating results (see below) confirm that P3 is younger. The P4 porphyry occurs as rare dikes and is typified by sparse fine-grained amphibole phenocrysts (Rees et al., 2015). No P4 samples were included in this study.

Several younger basaltic to andesitic dikes with sparse amphibole phenocrysts cut the
Red Stock and the Stuhini Group host rocks (Figs. 3E and F). They postdate the
porphyry-stage Cu-Au mineralization (Baker et al., 1997; Rees et al., 2015), but are
mildly to strongly altered (Figs. 3E and F) and are crosscut by late quartz-calcite-pyrite
veins.

175 Hydrothermal alteration

176 <u>Alteration at Red Chris has been described previously by Baker et al. (1997)</u>,

177 <u>Gillstrom et al. (2012), Norris (2012) and Rees et al. (2015). The alteration assemblages</u>

178 are typical of calc-alkaline porphyry Cu systems (Lowell and Guilbert, 1970; Seedorff et

al., 2005; Sillitoe, 2010), and consists of early stage potassic alteration, overprinted by

180 <u>chlorite–sericite, sericitic (phyllic), intermediate argillic, and minor late stage propylitic</u>

181	alteration (see paragenetic diagram in Rees et al., 2015) Alteration at Red Chris is typical
182	of calc alkaline porphyry Cu systems (Lowell and Guilbert, 1970; Seedorff et al., 2005;
183	Sillitoe, 2010), and consists of early stage potassic alteration, overprinted by chlorite-
184	sericite, sericitic (phyllic), intermediate argillic, and minor late stage propylitic alteration
185	(see paragenetic diagram in figure 13 of Rees et al., 2015; Baker et al., 1997; Gillstrom et
186	al., 2012; Norris, 2012). Potassic alteration is expressed by replacement of amphibole
187	phenocrysts by secondary biotite, plagioclase replaced or rimmed by secondary K-
188	feldspar, and by K-feldspar veins (Figs. 3B and 5A-C). It is best preserved in the deeper
189	levels of the deposit where it is spatially associated with the syn-mineralization P2E
190	porphyry; however it locally extends into pre-mineralization P1 porphyry wall rocks (Fig.
191	4). The P2L and P3 porphyries are were only weakly affected by potassic alteration (Rees
192	et al., 2015).

193 Chlorite–sericite alteration is characterized by chlorite replacing secondary biotite 194 (Fig. 5C) and sericite replacing feldspar (Fig. 5D). At shallower levels in the system, 195 potassic alteration is completely overprinted by phyllic and intermediate argillic 196 alteration (Gillstrom et al., 2012), characterized by sericite after plagioclase (phyllic; Fig. 197 5D), and illite and kaolinite (intermediate argillic; Norris, 2012). This lower temperature 198 alteration overprint affects all the porphyry phases, but is less pervasive at depth.

Propylitic alteration at Red Chris is mainly observed as minor chlorite and epidote in
the outer part of the Red Stock, and extends for 100 to 200 m into the Stuhini volcanic
country rocks (Gillstrom et al., 2012; Norris, 2012; Rees et al., 2015).

202 Vein styles and mineralization

Detailed descriptions of vein styles at Red Chris have been given by Norris (2012) and Rees et al. (2015). A-type quartz veins (Gustafson and Hunt, 1975) and stockworks are associated with potassic alteration and host the bulk of the copper-gold mineralization. These veins are most intensely developed around the apex of the principal P2 porphyry body, but extend for hundreds of metres into the P1 wall rocks (see figure 13 in Rees et al., 2015). Typical A veins contain K-feldspar, biotite, chalcopyrite, bornite, and magnetite, with K-feldspar alteration halos (Figs. 5A-B and G). Copper sulfides also occur as disseminations in the host porphyry. Bornite is more abundant in the apex of P2E, and progressively decreases outwards where chalcopyrite is the dominant Cusulfide (Norris, 2012; Rees et al., 2015). At shallower depths in the preserved system, early bornite was sulfidized to chalcopyrite, and pyrite becomes increasingly dominant. Rees et al. (2015) delineated a high-sulfur contour (>4% S) in section above which total sulfide (dominantly pyrite) ranges from 4 to 10%. Microscopic native gold and electrum occur as inclusions in bornite (Rees et al., 2015). The grades of Cu and Au are positively correlated with quartz vein density (Gillstrom et al., 2012). In high-grade zones at depth (e.g., 4.12 % Cu and 8.83 g/t Au in hole 09-350 from 540 to 692.5 m down-hole depth), vein abundance exceeds 80 vol. % in sheeted arrays (Fig. 5G; Rees et al., 2015). B- and D-type veins (Gustafson and Hunt, 1975) are relatively minor at Red Chris, and host only minor amounts of Cu sulfides. B quartz veins are characterized by

relatively straight margins with sulfide centerlines (pyrite and minor chalcopyrite, and
locally molybdenite; Fig. 5E). Pyritic D veins have variable widths (1 to 10 mm; Fig. 5F).
Carbonate and minor chlorite veins cut all the earlier veins and are generally barren

Carbonate and minor chlorite veins cut all the earlier veins and are generally barr(Norris, 2012).

Sampling and Analytical Methods

Samples of the P1, P2E, P2L, and P3 porphyries were collected from drill core, and descriptions and locations are listed in Digital Appendix Table A1; sampled drill hole locations are also shown on Figure 2. Fourteen least-altered samples of the porphyry intrusions and three samples of late basaltic to andesitic dikes were selected for whole-rock geochemical analysis. Eight of these samples were selected for determination of Nd-Sr isotopes. Three samples of quartz-carbonate-pyrite-molybdenite-chalcopyrite veins (Fig. 5H) were collected for Re-Os dating. Four samples of the P1 (RC13-40), P2E (RC13-107), P2L (RC13-33), and P3 (RC13-78) intrusions were selected for zircon U-Pb dating, Hf isotopic, and trace element analyses. Details of analytical methods are provided in Appendix 1. Electron microprobe analyses

Primary igneous minerals such as plagioclase and amphibole in the porphyry rocks are widely altered to K-feldspar, sericite, and chlorite (Figs. 3A–B and 5C–D). However, a few least-altered samples of the P2E, P2L, and P3 porphyries contained unaltered plagioclase and amphibole grains. In addition, igneous apatite grains were typically preserved as inclusions within plagioclase and amphibole phenocrysts. Compared with hydrothermal apatite (acicular crystals intergrown with other hydrothermal minerals such as quartz, sericite, chlorite, and sulfides), igneous apatite grains typically showed stubby prismatic habits, as described by Richards et al. (2017). Detailed analytical methods are described in Appendix 1.

Re-Os molybdenite dating

250	Three samples of molybdenite from quartz-carbonate-pyrite-molybdenite-chalcopyrite
251	veins were collected from the Gully zone (RC13-88 and RC13-103), and the East zone
252	(RC13-82; Digital Appendix Table A1; Fig. 2). A molybdenite mineral separate was
253	produced for each sample by metal-free crushing followed by gravity and magnetic
254	concentration methods. Dating was conducted at the Canadian Centre for Isotopic
255	Microanalysis at the University of Alberta, Canada, using methods described in
256	Appendix 1.
257	
258	Geochronological Results
259	Zircon U-Pb ages of the Red Stock
260	Zircon U-Pb results are presented in Digital Appendix Table A2 and illustrated in
261	Figure 6; all ages are illustrated and reported with 2σ errors. All the zircons show
262	oscillatory zoning under BSE imaging. Sample RC13-40 was collected from P1
263	leucodiorite porphyry (Digital Appendix Table A1). Analyzed zircon grains form a
264	tightly clustered age population, mostly with low common lead contents. Except for one
265	inherited or xenocryst zircon (apparent 206 Pb/ 238 U age = 261 ± 12 Ma), the twenty-seven
266	grains yielded an intercept age of 211.6 ± 1.3 Ma (MSWD = 0.85; Fig. 6A), similar to the
267	weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 211.8 ± 1.3 Ma (MSWD = 0.8).
268	Sample RC13-107 was collected from P2E quartz monzonite porphyry (Digital
269	Appendix Table A1). One xenocrystic zircon grain yielded an older age (apparent
270	206 Pb/ 238 U age = 316 ± 10 Ma), but the other twenty-nine zircons contained low amounts
271	of common lead and intersected the concordia line at 206.0 ± 1.2 Ma (MSWD = 1.5; Fig.

6B), in good agreement with the weighted mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 205.9 ± 1.5 Ma (MSWD = 1.5).

Sample RC13-33 was collected from P2L quartz monzonite porphyry (Digital Appendix Table A1). Two xenocryst grains were found among thirty-one analyzed zircons, with ${}^{206}Pb/{}^{238}U$ ages of 298 ± 16 Ma and 441 ± 13 Ma. The remaining twentynine zircon grains had low common lead contents and yielded an intercept age of 203.6 ± 1.8 Ma (MSWD = 1.5; Fig. 6C), similar to the weighted mean ${}^{206}Pb/{}^{238}U$ age of 203.3 ± 1.5 Ma (MSWD = 1.04).

Sample RC13-78 was collected from P3 monzonite porphyry (Digital Appendix Table A1). Thirty-two zircons with low common lead contents yielded an intercept age of 201.7 ± 1.2 Ma (MSWD = 1.05; Fig. 6D), and a weighted mean 206 Pb/ 238 U age of 201.6 ± 1.2 Ma (MSWD = 1.04).

All of the zircons have magmatic textures, and the intercept ages above are interpreted to be the crystallization ages of the individual intrusions. The ages are consistent with crosscutting relationships described by Rees et al. (2015), and define a 10 m.y. span of magmatism from 211.6 ± 1.3 Ma (P1) to 201.7 ± 1.2 Ma (P3). The relative ages of the two samples of syn-mineralization P2 porphyry are consistent with crosscutting relationships, but the dates (P2E: 206.0 ± 1.2 Ma; P2L: 203.6 ± 1.8 Ma) overlap within the 2σ uncertainty. Hence the apparent 2.4 m.y. age difference is not statistically robust, and their true ages may in fact be closer as suggested by their close relationship with ore mineral paragenesis.

Re-Os molybdenite ages

295	The Re-Os model ages for three samples are shown in Table 1. They have relatively
296	high rhenium contents ranging from 497.8 to 1771 ppm, with common ¹⁸⁷ Os of 1078 to
297	3821 ppb. Although the three samples are from two different mineralization zones (i.e.,
298	East and Gully zones; Fig. 2), they yielded indistinguishable model ages within
299	uncertainty: 206.5 ± 0.8 Ma, 205.7 ± 0.9 Ma, and 205.9 ± 1.1 Ma (± 2 s.d.). The small
300	grain size of the molybdenite (< 1 mm) minimizes the risk of decoupling between Re and
301	¹⁸⁷ Os in these samples (caused by diffusion: Selby and Creaser, 2004). The results
302	yielded a weighted average age for all three samples of 206.1 \pm 0.5 Ma (95% confidence
303	level with $MSWD = 0.96$; Fig. 7). This age is consistent with the age of the syn-
304	mineralization P2E porphyry (206.0 \pm 1.2 Ma).
305	
306	Geochemical and Isotopic Results
307	Whole-rock major and trace elements
307	Whole-rock major and trace elements
307 308	Whole-rock major and trace elements Whole-rock major and trace element compositions for fourteen samples of the Red
307 308 309	<i>Whole-rock major and trace elements</i> Whole-rock major and trace element compositions for fourteen samples of the Red Stock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3
307 308 309 310	Whole-rock major and trace elements Whole-rock major and trace element compositions for fourteen samples of the Red Stock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3 porphyry intrusions have relatively homogeneous major element compositions, but have
307 308 309 310 311	Whole-rock major and trace elements Whole-rock major and trace element compositions for fourteen samples of the Red Stock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3 porphyry intrusions have relatively homogeneous major element compositions, but have moderate to high loss-on-ignition values (LOI: 2.3 to 10.9%) reflecting varying degrees
307 308 309 310 311 312	Whole-rock major and trace elements Whole-rock major and trace element compositions for fourteen samples of the Red Stock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3 porphyry intrusions have relatively homogeneous major element compositions, but have moderate to high loss-on-ignition values (LOI: 2.3 to 10.9%) reflecting varying degrees of potassic and sericitic alteration. On an LOI-free basis, they are mostly intermediate
307 308 309 310 311 312 313	<i>Whole-rock major and trace elements</i> Whole-rock major and trace element compositions for fourteen samples of the Red Stock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3 porphyry intrusions have relatively homogeneous major element compositions, but have moderate to high loss-on-ignition values (LOI: 2.3 to 10.9%) reflecting varying degrees of potassic and sericitic alteration. On an LOI-free basis, they are mostly intermediate composition (SiO ₂ = 56.71–63.16 wt. %; Digital Appendix Table A3), and straddle the
307 308 309 310 311 312 313 314	Whole-rock major and trace elements Whole-rock major and trace element compositions for fourteen samples of the Red Stock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3 porphyry intrusions have relatively homogeneous major element compositions, but have moderate to high loss-on-ignition values (LOI: 2.3 to 10.9%) reflecting varying degrees of potassic and sericitic alteration. On an LOI-free basis, they are mostly intermediate composition (SiO ₂ = 56.71–63.16 wt. %; Digital Appendix Table A3), and straddle the boundary between granodiorite (diorite) and syenite on a Zr/Ti versus Nb/Y diagram (Fig.
 307 308 309 310 311 312 313 314 315 	Whole-rock major and trace elementsWhole-rock major and trace element compositions for fourteen samples of the RedStock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3porphyry intrusions have relatively homogeneous major element compositions, but havemoderate to high loss-on-ignition values (LOI: 2.3 to 10.9%) reflecting varying degreesof potassic and sericitic alteration. On an LOI-free basis, they are mostly intermediatecomposition (SiO2 = 56.71–63.16 wt. %; Digital Appendix Table A3), and straddle theboundary between granodiorite (diorite) and syenite on a Zr/Ti versus Nb/Y diagram (Fig.8). The late basaltic–andesitic dikes have distinct compositions, and plot in the field of

likely due to hydrothermal alteration, as confirmed by a rough correlation between alkali
contents and LOI. However, other elements such as Fe₂O₃, MgO, TiO₂, and Al₂O₃ show
roughly correlated trends with SiO₂ (Figs. 9E–F), suggesting a broadly cogenetic suite,
with the exception of the late basaltic to andesitic dikes, which do not plot on the same
trends for K₂O and TiO₂.

On primitive mantle-normalized extended trace element and chondrite-normalized rare earth element (REE) diagrams (Figs. 10A–B), the porphyritic rocks show largely indistinguishable patterns consistent with typical subduction-related igneous rocks (Hawkesworth et al., 1993; Pearce, 1996), characterized by large-ion lithophile element (LILEs: Rb, Ba, Th, U, K) and light rare earth element enrichments (LREE), low concentrations of high field strength elements (HFSE: Nb, Ta, Zr, Hf, and Ti), relative depletions in compatible elements and middle to heavy rare earth elements (MREE, HREE; La/Yb = 8.9 ± 1.7 , n = 14), and flat to listric-shaped patterns from MREE to HREE. Such listric patterns likely reflect amphibole fractionation from hydrous magmas, and are an indication of magma fertility for porphyry ore formation (Richards and Kerrich, 2007). Most samples have flat or slightly positive Eu anomalies with Eu_N/Eu_N^* of 1.1 ± 0.15 (n = 14; Fig. 10B), also likely reflecting amphibole fractionation and lack of plagioclase fractionation.

Three samples of late basaltic to andesitic dikes show distinct trace element patterns, especially for HFSE and REE, which are enriched relative to the porphyries; they are clearly not cogenetic with the earlier porphyries.

Excluding two samples with high Sr values that may reflect calcite veining, the porphyries have relatively high Sr/Y (53 ± 23 , n = 12) and V/Sc ratios (9.0 ± 0.9 , n = 14),

which overlap the range of fertile rocks for porphyry formation (Richards and Kerrich,
2007; Loucks, 2013, 2014).

344 Whole-rock Nd-Sr isotopes

Nd and Sr isotopic compositions of the porphyritic rocks are very homogeneous (Table 4 and Fig. 11). They show a narrow range of initial Sr isotopic ratios from 0.7042 to $0.7047 ((^{87}\text{Sr})_{t} = 0.7044 \pm 0.0002, n = 8)$, with relatively high $\mathcal{E}_{Nd}(t)$ values from 2.4 to 3.6 (average = $+3.1 \pm 0.4$, n = 8), consistent with a mantle source with minor crustal contamination. The single-stage Nd model ages (T_{DM1}) calculated following the methods of Goldstein et al. (1984) range from 0.74 to 0.88 Ga (average = 0.80 ± 0.05 Ga, n = 8), and are indistinguishable for the different porphyry phases. Two basaltic-andesitic dike samples show slightly lower Sr isotopic ratios ($({}^{87}Sr)/{}^{86}Sr)_t = 0.7042$ and 0.7043) and higher $\mathcal{E}_{Nd}(t)$ ratios (+3.5 and +3.9) than the porphyry rocks (Fig. 11).

354 Zircon Hf isotopes

Zircon Hf isotopic results are listed in Digital Appendix Table A4, and illustrated in Figure 12. The four zircon samples from porphyritic rocks show indistinguishable Hf isotopic compositions and single-stage Hf model ages of 375 ± 52 Ma (range = 264–527 Ma, n = 56), with relatively high $\mathcal{E}_{Hf}(t)$ values of 12.0 ± 0.4 (weighted mean value, 95% confidence level; range = 8.1-14.8, n = 56). These data suggest that the porphyries shared a common primitive mantle source, consistent with their island arc origin.

Amphibole, Plagioclase, Zircon, and Apatite Compositions

The compositions of amphibole, plagioclase, zircon, and apatite from samples of leastaltered porphyritic rocks are listed in Digital Appendix Tables A5, A6, A7, and A8, respectively. Based on these analyses, water and sulfur contents as well as oxygen fugacity of the magma have been estimated qualitatively and quantitatively.

Amphibole compositions

Amphibole compositions can be used to estimate magmatic oxidation state, crystallization temperatures and pressures, as well as water contents (e.g., Ridolfi et al., 2010; Zhang et al., 2012; Wang et al., 2014b). However, fresh amphibole grains were only observed in the P2E and P2L porphyries. All of the analyzed grains are calcic amphiboles, and two generations of amphibole were recognized in both P2E and P2L. Early stage grains occur as phenocrysts and are characterized by higher Al contents (range = 9.35-12.86 and 8.79-13.46 wt. % Al₂O₃ for P2E and P2L, respectively; Digital Appendix Table A5); they are mostly classified as magnesio-ferri-hornblende and magnesio-hastingsite (including potassic-magnesio-hastingsite; Fig. 13A). The late stage grains were developed in the groundmass or as recrystallized phenocrysts, typified by lower Al concentrations (range = 1.62-4.76 and 4.33-7.53 wt. % Al₂O₃ for P2E and P2L, respectively; Digital Appendix Table A5). They are classified as magnesio-ferri-hornblende or rare actinolite (Fig. 13A). The early stage amphibole grains are intergrown with plagioclase phenocrysts (Fig. 14), and igneous apatite crystals occur as inclusions within amphibole (Fig. 14B). This indicates that these three minerals are broadly coeval. The crystallization temperature, magmatic water contents, and oxygen fugacities were estimated for the two stages of amphiboles using the spreadsheet of Ridolfi et al. (2010),

and the crystallization pressures were calculated following the equation of Mutch et al. (2016). The Al-in-hornblende geobarometer used is applicable to granitoids that contain amphibole, plagioclase, quartz, and alkali feldspar, broadly consistent with the mineral assemblage within P2 porphyry rocks. The calculated results are listed in Digital Appendix Table A5 and illustrated in Figure 13 (B–C). Amphibole phenocrysts from the P2E and P2L porphyry samples have similar compositions, with calculated crystallization pressures from 3.5 to 6.7 kbar (average = 4.6 ± 0.8 kbar, n = 51), temperatures from 855 to 983 °C (average = 900 ± 30 °C, n = 51), Δ FMQ values from 0.5 to 1.8 (average = 1.1 ± 0.3, n = 51), and H₂O contents in melts from 4.0 to 6.1 wt. % (average = 5.1 ± 0.4 wt. %, n = 51). Late stage (low-Al) amphiboles in P2E porphyry samples yielded crystallization pressures from 0.6 to 1.4 kbar (average = 1.1 ± 0.3 kbar, n = 12), temperatures from 637° to 774 °C (average = 719 \pm 34 °C, n =12), Δ FMQ values from 2.6 to 3.3 (average = 3 \pm 0.2, n =12), and magmatic water contents from 3.6 to 5.1 wt. % (average = 4 ± 0.4 Ma, n = 12). Low-Al amphibole grains from P2L samples yielded slightly higher crystallization pressures $(2.0 \pm 0.4 \text{ MPa}; \text{ range} = 1.3 - 2.6 \text{ kbar}, n = 8)$ and temperatures $(800 \pm 24 \text{ }^{\circ}\text{C};$ range = 751-800 °C, n = 8), slightly lower Δ FMQ values (2.4 ± 0.3; range = 1.1–2.9, n = 8), but similar H₂O contents $(4.0 \pm 0.2; \text{ range} = 3.7-4.4, \text{ n} = 8)$ to those calculated for P2E. There are clear trends of increasing oxidation state and decreasing crystallization pressures, temperatures, and magmatic water contents from early to late stage amphiboles in both P2E and P2L porphyries (Figs. 13B–D). These trends are consistent with the high-Al amphibole phenocrysts having crystallized at depth before final crystallization of the magma (and low-Al amphibole) after emplacement at shallow levels (e.g., Rutherford
and Devine, 2003). The decreasing magmatic water contents might be attributed to
degassing during ascent and crystallization, which can also result in a small increase in
oxygen fugacity (Mathez, 1984; Candela, 1986; Burgisser and Scaillet, 2007; Zimmer et
al., 2010; Bell and Simon, 2011; Dilles et al., 2015).

Plagioclase compositions

Plagioclase phenocrysts from all P1 porphyry samples studied have been altered, but partially unaltered phenocrysts were found in some P2 and P3 porphyry samples. Analyses with $K_2O > 1$ wt. % are interpreted to reflect potassic alteration and have been excluded. Plagioclase grains from the P2E porphyry (sample RC13-13) are classified as oligoclase ($\geq An_{17}$) to labradorite ($\leq An_{70}$), with an average anorthite (An) content of 44 ± 12 mol % (n = 28). Nearly all these crystals exhibited reverse zoning in An content, with compositional ranges up to $\sim 16 \text{ mol } \%$, and FeO contents that correlate positively with X_{An} values (Digital Appendix Table A6; Fig. 14A). Plagioclase grains from the P2L porphyry (samples RC13-26 and RC13-33) have compositions similar to P2E (An mol % = 48 ± 5 , n = 38), and also show reverse zoning with amplitudes up to ~19 mol % An that correlate with FeO contents (Fig. 14B). Such reverse zoning with positive An-FeO correlations were observed both in partially altered (i.e., sericite alteration; Fig. 14A) and relatively fresh plagioclase crystals (Fig. 14B), indicating that it was not likely to have been generated by hydrothermal alterations. In contrast, plagioclase grains from the P3 porphyry (RC13-78) display relatively uniform An compositions (An mol $\% = 51 \pm 5$, n = 37), with no clear zoning in X_{An} and FeO (Fig. 14C).

432	Plagioclase compositions (An proportions) are very sensitive to dissolved water
433	content and temperature of the melt, and thus can be used as a hygrometer if corrected for
434	temperature (Mathez, 1973; Lange, 2009; Waters and Lange, 2015). We used apatite
435	saturation temperatures (AST) following the formula of Piccoli and Candela (1994) to
436	calculate magma temperatures for P2 and P3 samples (Table 4; Digital Appendix Table
437	A3). The whole-rock SiO_2 and P_2O_5 values were assumed to approximate the melt
438	contents at the time of crystallization, although this assumption can be challenged
439	(Piccoli and Candela, 1994, 2002). Nevertheless, the calculated temperatures are
440	reasonable for magmas of intermediate, hydrous composition, and are also in agreement
441	with the estimated crystallization temperatures of early stage amphibole (Digital
442	Appendix Table A5): 932 °C for P2E (RC13-13), 892 °C (RC13-26) and 905 °C (RC13-
443	33) for P2L, and 928 °C for P3 (RC13-78; Table 4).
444	The updated spreadsheet of Waters and Lange (2015) has been used to calculate
445	magmatic water contents (Digital Appendix Table A9). The calculated values are
446	relatively uniform and indistinguishable between the different porphyry phases: 5.2 ± 0.2
447	(n = 28) for P2E, 5.5 ± 0.2 $(n = 38)$ for P2L, and 5.1 ± 0.1 wt. % $(n = 37)$ for P3. For the
448	P2E and P2L porphyries, the magmatic water contents calculated from plagioclase and
449	early stage amphibole compositions agree well with each other (Digital Appendix Tables
450	A5 and A8).
451	
452	Zircon trace element compositions
453	Twenty trace element spot analyses were obtained for zircons from samples of P1 to
454	P3 porphyries (Digital Appendix Table A7; Fig. 15). It is common to encounter small

455	mineral inclusions, especially of apatite, titanite, in zircon during LA-ICP-MS analyses
456	(e.g., Lu et al., 2016). We have taken Ca > 200 ppm or La > 0.3 ppm as an indication of
457	apatite contamination, and Ti > 20 ppm to reflect titanite contamination, and such data
458	were excluded (Digital Appendix Table A7). The remaining analyses have low LREE
459	and elevated HREE contents, with small negative Eu and strongly positive Ce anomalies
460	(Fig. 15). These REE patterns and total contents ($\Sigma REE = 351-1125$ ppm), as well as
461	Th/U ratios above 0.1 (0.26–0.63) (Digital Appendix Table A7) are typical of igneous
462	zircons from relatively oxidized magmas (Hoskin and Schaltegger, 2003).
463	Zircon crystals from the P1 to P3 porphyries show slightly different calculated Ti-in-
464	zircon temperatures and Eu anomalies $(Eu_N/Eu_N^* = Eu_N/(Sm_N \times Gd_N)^{0.5};$ Fig. 16; Digital
465	Appendix Table A7). Titanium-in-zircon temperatures were calculated using the equation
466	of Ferry and Watson (2007), where it is assumed that $\log a_{SiO2} = 1$ because of the
467	existence of quartz in the host porphyries, and $\log a_{TiO2} = 0.7$ due to the presence of
468	titanite (a common accessory mineral in these rocks). Zircon crystals from the P2E
469	porphyry (sample RC13-107) have the highest calculated temperatures (average of 760 \pm
470	29 °C; range = 723°–819°C, n = 14) with relatively uniform Eu_N/Eu_N^* values from 0.5 to
471	0.7 (average = 0.6 ± 0.1 ; n = 14). Zircon crystals from the P3 porphyry (sample RC13-78)
472	show the lowest calculated temperatures (average = 726 ± 24 °C; range = 693° - 758° C, n
473	= 18) and lowest Eu_N/Eu_N^* ratios (0.5 ± 0.1; range = 0.3–0.6, n = 18). Zircon crystals
474	from the P1 and P2L porphyries have intermediate calculated temperatures (P1: 736 \pm
475	26 °C, range = 699°–810 °C, n = 16; P2L: 730 ± 24 °C, range = 705°–795°C, n = 17),
476	and a similar wide range of Eu_N/Eu_N^* values (P1: 0.3–1.0, average = 0.6 ± 0.2; P2L: 0.3–
477	0.9, average = 0.6 ± 0.1).

478	Trace element compositions in zircon are sensitive to magmatic water content and
479	oxygen fugacity, and have been used to distinguish between fertile and infertile suites in
480	porphyry Cu ± Au ± Mo systems (Ballard et al., 2002; Liang et al., 2006; Qiu et al., 2014;
481	Wang et al., 2014b; Dilles et al., 2015; Shen et al., 2015; Lu et al., 2016; Xu et al., 2016;
482	Loader et al., 2017). In hydrous magmas, early plagioclase crystallization is suppressed
483	(Moore and Carmichael, 1998), leading to no pronounced depletion of Eu in melts (Eu^{2+}
484	substitutes for Ca ²⁺ in plagioclase). On the other hand, in oxidized magmas, Eu is
485	predominantly present as Eu ³⁺ and is partitioned into zircon along with other REE
486	(Ballard et al., 2002; Hoskin and Schaltegger, 2003; Trail et al., 2011; Dilles et al., 2015).
487	Therefore, the small negative Eu anomalies in zircon samples (as indicated by $\mathrm{Eu}_{N}/\mathrm{Eu}_{N}^{*}$
488	ratios >0.3 and mostly > 0.4; Fig. 16A), and slightly positive anomalies in whole rocks
489	(Fig. 10) indicate relatively high magmatic water contents and/or oxidation states
490	(Ballard et al., 2002; Dilles et al., 2015; Lu et al., 2016).
491	Ballard et al. (2002) defined the zircon Ce^{4+}/Ce^{3+} ratio as an indicator of magmatic
492	oxidation state. However, Dilles et al. (2015) and Lu et al. (2016) argue that these values
493	are difficult to estimate accurately because the abundances of the adjacent elements, La
494	and Pr, which are used as a baseline to calculate the magnitude of the Ce anomaly, are
495	low and close to the analytical detection limit. Confirming this reservation, Ce ⁴⁺ /Ce ³⁺
496	ratios and fO_2 values calculated for our samples using the equation of Trail et al. (2011)
497	yielded unrealistic and widely variable Δ FMQ values (-9 to +5).
498	
400	Anatite compositions

Apatite compositions

500	The SO ₃ , Cl, and F analyses of igneous apatites are listed in Digital Appendix Table
501	A8 and illustrated in Figures 17 and 18. The results show that igneous apatites from the
502	P2 porphyries have higher sulfur and chlorine concentrations than those from P1 and P3
503	rocks. The high SO3 contents in apatites from the P2 porphyries (P2E: 0.11 to 0.8 wt. $\%$
504	SO ₃ , average = 0.30 ± 0.13 wt. %, n = 34; P2L: 0.07 to 1.2 wt. % SO ₃ , average = $0.29 \pm$
505	0.18 wt. %, $n = 100$) are similar to values from global porphyry Cu deposits (Streck and
506	Dilles, 1998; Imai, 2002; Li et al., 2012; Pan et al., 2016; Richards et al., 2017). In
507	comparison, apatite crystals from the P1 porphyry (RC13-39) have lower sulfur contents
508	(0.05 to 0.19 wt. % SO ₃ ; average = 0.11 ± 0.03 wt. %, n = 34), whereas those from the P3
509	porphyry (RC13-78) have the lowest sulfur concentrations (from 0.05 wt. $\%$ to below the
510	analytical detection limit of SO ₃ ; average of analyses above limit of detection = $0.03 \pm$
511	0.01, $n = 13$). Although the ranges for P1 and P2L porphyries overlap at their outer limits,
512	a t-test shows that the two populations are significantly different (t = 5.87 , p = 0).
513	Similarly, the Cl contents in apatite crystals from P1 and P3 porphyries are
514	significantly lower (0.51 \pm 0.3 wt. %, n = 34, and 0.1 \pm 0.06 wt. %, n = 17, respectively)
515	compared to values from the P2 porphyries (P2E: 1.18 ± 0.37 wt. %, n = 34; P2L: $1.47 \pm$
516	0.28 wt. %, $n = 100$). There is a rough positive correlation between sulfur and chlorine
517	contents of apatites from the four porphyries (Fig. 18A), with relatively constant molar
518	S/Cl ratios (P1: 0.13 \pm 0.08, n = 34; P2E: 0.13 \pm 0.08, n = 34; P2L: 0.10 \pm 0.14, n =100;
519	P3: 0.16 ± 0.09 , n =13; Table 4). Detailed analyses also show that single apatite crystals
520	are commonly zoned in sulfur, with decreasing core-to-rim SO3 contents (and small
521	decreases in Cl; Fig. 17C), possibly reflecting progressive degassing of SO ₂ (and Cl)
522	from the melt during crystallization (Richards et al., 2017).

523	Fluorine contents in apatites from the P1 and P3 porphyries are similar (P1: 3.64 \pm
524	0.48 wt. %, n = 34; P3: 3.6 \pm 0.4, n = 17) and distinctly higher than in the P2E (2.33 \pm
525	0.29 wt. %, n = 34) and P2L (2.32 \pm 0.23 wt. %, n = 100) porphyries.
526	Some hydrothermal apatite grains were also analyzed for comparison with igneous
527	grains, and they show wide variations in sulfur and chlorine content (Digital Appendix
528	Table A8), as observed by other researchers (e.g., Li et al., 2012; Richards et al., 2017).
529	The sulfur partition coefficient between apatite and melt is jointly controlled by
530	temperature, oxygen fugacity, and the S content in the silicate melt (Peng et al., 1997;
531	Parat and Holtz, 2005; Parat et al., 2011; Webster and Piccoli, 2015; Konecke et al.,
532	2017a, b), and no formula currently exists to accurately calculate magmatic sulfur
533	concentrations from apatite SO3 contents. However, two semi-quantitative formulae can
534	be used to estimate relative magmatic S content (Peng et al., 1997; Parat et al., 2011).
535	Using the equation of Peng et al. (1997), the magmas related to the P2E and P2L
536	porphyry intrusions are calculated to have sulfur concentrations of 0.03 \pm 0.01 wt. % (n =
537	34) and 0.02 \pm 0.01 wt. % (n = 100), significantly higher than the corresponding S
538	contents for P1 (0.010 \pm 0.003 wt. % S, n = 34) and P3 magmas (0.003 \pm 0.001 wt. % S,
539	n = 13; Table 4). The results calculated by the method of Parat et al. (2011) are more
540	variable, and yielded lower absolute values than those from Peng et al. (1997). However,
541	they also support the conclusion that the P2E and P2L magmas had significantly higher
542	sulfur contents than the P1 and P3 magmas (Table 4).
543	The chlorine partition coefficient between apatite and melt is a complex function of
544	magma composition and Cl concentration in the melt (Zhu and Sverjensky, 1991; Piccolli

546	Chiaradia, 2017). Mathez and Webster (2005) proposed a value of 0.8 as the partition
547	coefficient (mass ratio) between apatite and basaltic melt (51.1 wt. $\%$ SiO ₂). Based on
548	this semi-quantitative equation (and recognizing that these magmas were not basaltic), we
549	estimate Cl concentrations in the P2E and P2L magmas of 1.48 ± 0.46 wt.% (n = 34) and
550	1.83 ± 0.34 wt.% (n = 100), respectively, significantly higher than for P1 (0.63 ± 0.38)
551	wt.%, n = 34) and P3 (0.12 ± 0.07 wt.%; Table 4).
552	
553	Discussion
554	Magmatic duration and timing of ore formation at Red Chris
555	Four phases of the Red Stock, P1, P2E, P2L, and P3, have been dated at 211.6 ± 1.3
556	Ma, 206.0 ± 1.2 Ma, 203.6 ± 1.8 Ma, and 201.7 ± 1.2 Ma, respectively, spanning a period
557	of ~10 m.y. (Fig. 6; Digital Appendix Table A2). These ages are consistent with
558	crosscutting relationships described by Rees et al. (2015). Re-Os dating of molybdenite
559	intergrown with chalcopyrite in quartz veins yielded a weighted mean age of 206.1 ± 0.5
560	Ma (Fig. 7), reflecting the timing of mineralization and in good agreement with the
561	emplacement age of the mineralized P2E quartz monzonite porphyry. Ore formation
562	occurred at a relatively late stage in the ~10 m.y. evolution of the Red Stock, and over a
563	relatively brief period time (<1 m.y., as defined by the uncertainty on the average of three
564	Re-Os analyses). This relatively late and short duration of mineralization is similar to the
565	timing observed in many other porphyry deposits (e.g., Cathles et al., 1997; Masterman et
566	al., 2004; von Quadt et al., 2011; Chiaradia et al., 2013; Correa et al., 2016; Li et al.,
567	2017).

The age of mineralization at ~206 Ma is contemporaneous with the major pulse of mineralization in the Stikine and Quesnel terranes, representing a particularly fertile preaccretionary magmatic event (Nelson and Colpron, 2007; Nelson et al., 2013; Logan and Mihalynuk, 2014).

573 Igneous geochemistry and petrogenesis

Whole-rock major and trace element compositions of P1 to P3 porphyry rocks are almost identical to each other, and show characteristics of subduction-related magmatic rocks with high LILE and low HFSE concentrations (Figs. 9 and 10; Hawkesworth et al., 1993; Pearce, 1996). The high Sr/Y ratios $(53 \pm 23, n = 12)$ and slightly positive Eu anomalies (Eu_n/Eu_n^{*} = 1.1 ± 0.15 ; n =14) indicate the suppression of plagioclase crystallization and early crystallization of amphibole from hydrous and oxidized magmas (Richards and Kerrich, 2007; Loucks, 2014). Rees et al. (2015) concluded from their analysis of petrochemistry that the Red Stock evolved from subalkaline (P1, P2) to marginally alkaline (P3), and classified the overall system as high-K calc-alkalic. All the porphyritic rocks from P1 to P3 show mantle-like, relatively low (⁸⁷Sr/⁸⁶Sr)_t (0.7044 ± 0.0002) and high $\mathcal{E}_{Nd}(t)$ (+3.1 ± 0.4) values, and similar single-stage Nd model ages (0.80 \pm 0.05 Ga). Zircon crystals from these rocks yield positive zircon $\mathcal{E}_{Hf}(t)$ values (+8.1 to +14.8) and single-stage Hf model ages of 375 ± 52 Ma (Figs. 11 and 12). These data indicate minimal involvement of ancient crustal components in the petrogenesis of these magmas, as observed for other Mesozoic igneous rocks in the Stikine terrane, and are consistent with an oceanic island arc setting (Samson et al., 1989; Logan and Mihalynuk, 2014).

Late basaltic to andesitic dikes have similar Nd–Sr isotopic compositions to the
porphyritic rocks, but show distinct trace element and REE patterns, and lower Sr/Y and
La/Yb ratios, suggesting that they are not cogenetic.

Oxygen fugacity and sulfur-chlorine-water contents of the porphyry magmas

Magmatic oxidation state, and sulfur, chlorine, and water contents are fundamental factors for the formation of porphyry Cu deposits (e.g., Burnham, 1979; Candela, 1992; Richards, 2003; Loucks, 2014). It is difficult to measure the original magmatic oxidation state in altered plutonic rocks, but normalized Ce and Eu anomalies in zircons can be used to provide qualitative estimates (Ballard et al., 2002; Dilles et al., 2015; Lu et al., 2016). Zircon grains from the P1 to P3 porphyries display large positive Ce and small negative Eu anomalies (Eu_N/Eu_N^{*} mostly > 0.4; Figs. 15 and 16), similar to zircons from other mineralized porphyry systems worldwide (Wang et al., 2014b; Dilles et al., 2015; Lu et al., 2016). These data are also consistent with estimates of magmatic oxidation state from early stage amphibole phenocrysts from the P2E and P2L porphyries, which yielded Δ FMQ values of 1.5 ± 0.2 (n = 7) and 1.1 ± 0.3 (n = 44). Consequently, we conclude that the four phases of magma in the Red Stock were all at least moderately oxidized. It is similarly difficult to estimate original magmatic water contents from altered plutonic rocks. However, the presence of amphibole phenocrysts in the P1 to P3 porphyries suggest that the magmas contained at least 4 wt. % H₂O (Burnham, 1979, Naney, 1983; Merzbacher and Eggler, 1984; Rutherford and Devine, 1988; Ridolfi et al., 2010). This observation is supported by: (1) high whole-rock Sr/Y ratios (53 ± 23 , n = 12), which reflect the suppression of plagioclase relative to amphibole crystallization

under hydrous conditions (Moore and Carmichael, 1998; Richards and Kerrich, 2007); (2) high $10000 \times (Eu_N/Eu_N^*)/Y$ (>1) and low Dy/Yb (<0.3) ratios in zircons (Digital Appendix Table A7; Lu et al., 2016); (3) high whole-rock V/Sc ratios (9.0 ± 0.9, n = 14) (Loucks, 2014); and (4) estimates of magmatic water content from plagioclase phenocryst

618 compositions, which indicate values of \sim 5 wt.% H₂O.

The compositions of igneous apatite inclusions in plagioclase and amphibole phenocrysts have been used to estimate magmatic sulfur and chlorine contents. The results suggest that apatite microphenocrysts from the P2E and P2L porphyries had higher S and Cl contents than for P1 and P3 (Fig. 18). The SO₃ contents in apatite are controlled by both magmatic sulfur concentration and oxidation state (Peng et al., 1997; Parat and Holtz, 2005; Webster and Piccoli, 2015). Sulfur occurs in the apatite structure mainly as S⁶⁺ and its content will increase in relatively oxidized environments (Boyce et al., 2010; Parat et al., 2011; Konecke et al., 2017b). The magmas associated with the four porphyry phases at Red Chris were all moderately oxidized, and therefore the differences in apatite sulfur content likely mainly reflect variations in the sulfur fugacity in the associated melts. The data indicate that the P2E and P2L porphyry magmas contained significantly higher S contents than the P1 and P3 magmas (Fig. 18). Models used to estimate magmatic sulfur content in equilibrium with apatite (Peng et al., 1997) are not strictly accurate because of uncertainties in the details of exchange reactions (Streck and Dilles, 1998; Mao et al., 2016) but are expected to be correct in relative terms. Our data yield higher values for the P2E and P2L porphyries (0.02-0.03 wt. % S) compared to estimates for P1 (0.01 wt. % S) and P3 (0.003 wt. % S). Consequently, we conclude that

the syn-mineral porphyry (P2E and P2L) magmas were more S-rich than the pre-mineralization P1 and especially the post-mineralization P3 porphyry magmas. Similarly, the magmatic Cl contents calculated from apatite compositions in the P2E and P2L porphyries are also higher than in the P1 and P3 porphyries, whereas F contents are lower (Table 4). Volatile species such as S, Cl, and F are differentially affected by degassing during ascent and crystallization of magmas: S and Cl will be preferentially lost to the vapor phase relative to F (Webster et al., 2014; Stock et al., 2016), leading to high F/Cl and F/S ratios in degassed magmas. The data shown in Figure 18 suggest that the P2E and P2L were S-Cl-rich, whereas the P1 and P3 were S-Cl-poor but enriched in F. These differences could reflect either loss of volatiles from the source magma chamber (presumed to be an underlying batholith) prior to emplacement of the P1 and P3 magmas but not in the case of P2, or conversely addition of a volatile phase or a volatile-rich magma to the magma chamber immediately prior to emplacement of P2. Volatile loss is expected to be a general condition of upper crustal magma emplacement, and this may well be a factor contributing to the low Cl/F ratios in the late P3 magmas, as well as the negatively correlated trend for F and Cl in P1. The P2 magma was emplaced after P1, and so might be expected to be similarly degassed if this represents a comagmatic sequence. However, the 6–8 m.y. age difference between P1 (211.6 \pm 1.3 Ma) and P2 (P2E: 206.0 ± 1.2 Ma; P2L: 203.6 ± 1.8 Ma) indicates that P1 and P2 are not directly comagmatic. One explanation is that the P2 event represents a pulse of S-Cl-rich magma injected at a relatively late stage into the mid-crustal magma reservoir, leading to a pulse of fluid exsolution and injection of P2 magma into the shallower level Red Stock, where syn-P2, quartz-vein hosted mineralization formed the Red Chris Cu-Au deposit. The

659	post-mineralization P3 (201.7 \pm 1.2 Ma) and P4 porphyries may represent the final stages
660	of intrusive activity emanating from the now degassed underlying magma chamber.
661	Although both P2E and P2L porphyries are S-Cl-rich, apatites from P2L are
662	marginally the most enriched. Samples of P2L are also the most mafic (SiO ₂ -poor) in the
663	suite, and it is therefore tempting to speculate that the source magma chamber was
664	recharged with more mafic, S-Cl-H ₂ O-rich magma during the P2 stage. The solubility of
665	S and Cl is higher in oxidized mafic magmas compared to felsic melts (> 1000 ppm S
666	and > 3000 ppm Cl; Carmichael and Ghiorso, 1986; Webster, 1997; Webster et al., 1999;
667	Hattori and Keith, 2001; Jugo et al., 2005; Jugo, 2009; Chelle-Michou and Chiaradia,
668	2017). Therefore, a key step in porphyry ore formation at Red Chris may have been
669	recharge of the batholithic system by a less evolved, although broadly cogenetic, magma
670	(cf. Hattori and Keith, 2001; Steinberger et al., 2013; Large et al., 2018).
671	Support for this recharge model is provided by high magmatic temperatures
672	calculated from zircon grains from some P2 samples (Fig. 16), and reverse zoning
673	observed in plagioclase phenocrysts from the P2E and P2L porphyries, but which is not
674	observed in P3 (Fig. 14C). In detail, zircons from the P2E porphyry show the highest Ti-
675	in-zircon temperatures and Eu_N/Eu_N^* values, and P3 the lowest values. This might reflect
676	an influx of higher temperature melt during the evolution of the P2E magma, and greater
677	degrees of plagioclase fractionation from the late P3 magma. The compositional ranges
678	of up to ~19 mol % An for plagioclase are higher than the upper limit caused by chemical
679	diffusion (~10 mol % An; Pearce and Kolisnik, 1990). Furthermore, these reverse zoning
680	patterns are matched by FeO contents in the phenocrysts (Figs. 14A and 14B), which
681	suggests that the zonation reflects changes in magma composition (as opposed to simply

changes in pressure, temperature, or water content; Ginibre and Wörner, 2007; Lange, 2009; Ustunisik et al., 2014; Waters and Lange, 2015). We therefore interpret these changes to reflect late-stage (rim) growth from a more mafic magma that mixed into a more evolved resident magma. Conclusions Zircon U-Pb ages indicate that the Red Stock was emplaced over a period of ~10 m.y. $(211.6 \pm 1.3 \text{ Ma}, 206.0 \pm 1.2 \text{ Ma}, 203.6 \pm 1.8 \text{ Ma}, \text{ and } 201.7 \pm 1.2 \text{ Ma}$ for the P1, P2E, P2L, and P3 porphyries, respectively). The ore-forming event at Red Chris occurred relatively late in this magmatic history, synchronous with P2E at 206.1 ± 0.5 Ma, and over a short period of <1 m.y. (as constrained by the error on the average of three Re-Os analyses). The four phases of porphyry and their related magmas were chemically fairly homogeneous and isotopically primitive, consistent with an island arc origin. The magmas were all moderately oxidized and hydrous (~ 5 wt. H₂O), but the P2 magmas had distinctly higher S and Cl contents. Combined with evidence for reverse zonation in plagioclase phenocrysts from P2 porphyries, and more mafic compositions in P2L, we suggest that the deeper source magma chamber was recharged at the time of emplacement of the P2 porphyries by injection of a more mafic S-Cl-rich magma. This recharge process may have triggered ore formation by causing voluminous exsolution of metalliferous hydrothermal fluids. Acknowledgements

704	This research was funded by a Collaborative Research and Development Grant from
705	Natural Sciences and Engineering Research Council of Canada and the Red Chris
706	Development Company Ltd. (RCDC) to JPR, and a post-doctoral fellowship from China
707	Scholarship Council, University of Alberta, and Institute of Geochemistry, Chinese
708	Academy of Sciences to JJZ. RCDC provided access to the Red Chris mine by Jürgen
709	Lang to collect samples from drill core in 2014. Prof. Zhaochu Hu from China University
710	of Geosciences at Wuhan, China is thanked for help with in-situ zircon LA-ICP-MS Hf
711	isotope analyses, which was funded by the National Natural Science Foundation Project
712	of China (41673049 and 41303040), and the National Key Research and Development
713	Program of China (2016YFC0600503) to JJZ. We particularly thank Steve Robertson and
714	'Lyn Anglin from RCDC for support of this project. We thank David Cooke and Adam
715	Bath for constructive reviews of the manuscript.
716	

References

718	Annen, C., Blundy, J., and Sparks, R., 2006, The genesis of intermediate and silicic
719	magmas in deep crustal hot zones: Journal of Petrology, v. 47, p. 505-539.
720	Ash, C.H., Fraser, T.M., Blanchflower, J.D. and Thurston, B.G., 1995, Tatogga Lake
721	project, north western British Columbia (104H/11, 12); in Geological Field work 1994,
722	BC Ministry of Energy, Mines and Petroleum Resources, Paper 1995-1, p. 343-358.
723	Ash, C.H., Stinson, P.K., and Macdonald, R.W.J., 1996, Geology of the Todagin plateau
724	and Kinaskan Lake area, northwestern British Columbia (104H/12, 104G/9): B.C.
725	Ministry of Energy, Mines and Petroleum Resources Paper 1996-1, p. 155–174.
726	Baker, T., Ash, C., and Thompson, J., 1997, Geological setting and characteristics of the
727	Red Chris porphyry copper-gold deposit, northwestern British Columbia: Exploration
728	Mining Geology, v. 6, p. 297–316.
729	Ballard, J. R., Palin, M. J., and Campbell, I. H., 2002, Relative oxidation states of
730	magmas inferred from Ce ^(IV) /Ce ^(III) in zircon: application to porphyry copper deposits
731	of northern Chile: Contributions to Mineralogy and Petrology, v. 144, p. 347-364.

1 2		
3 4	732	Bath, A. B., Cooke, D. R., Friedman, R. M., Faure, K., Kamenetsky, V. S., Tosdal, R. M.,
5 6	733	and Berry, R. F., 2014, Mineralization, U-Pb geochronology, and stable isotope
7	734	geochemistry of the lower main zone of the Lorraine deposit, north-central British
8 9	735	Columbia: a replacement-style alkalic Cu-Au porphyry: Economic Geology, v. 109, p.
10	736	979–1004.
11 12	737	Bell, A. S., and Simon, A., 2011, Experimental evidence for the alteration of the Fe ³⁺ / Σ Fe
13	738	of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles:
14 15	739	Geology, v. 39, p. 499–502.
16	740	Bissig, T., and Cooke, D. R., 2014, Introduction to the special issue devoted to alkalic
17 18	741	porphyry Cu-Au and epithermal Au Deposits: Economic Geology, v. 109, p. 819–825.
19	742	Blundy, J., Mavrogenes, J., Tattitch, B., Sparks, S., and Gilmer, A., 2015, Generation of
20 21	743	porphyry copper deposits by gas-brine reaction in volcanic arcs: Nature Geoscience, v.
22 23	744	8, p. 235–240.
24	745	Boyce, J. W., Liu, Y., Rossman, G. R., Guan, Y., Eiler, J. M., Stolper, E. M., and Taylor,
25 26	746	L. A., 2010, Lunar apatite with terrestrial volatile abundances: Nature, v. 466, p. 466.
27	747	Brown, D. A., Logan, J. M., Gunning, M. H., Orchard, M. J., and Bamber, W. E., 1991,
28 29	748	Stratigraphic evolution of the Paleozoic Stikine assemblage in the Stikine and Iskut
30	749	rivers area, northwestern British Columbia: Canadian Journal of Earth Sciences, v. 28,
31 32	750	p. 958–972.
33 34	751	Brown, P., and Kahlert, B., 1986, Geology and mineralization of the Red Mountain
35	752	porphyry molybdenum deposit, south-central Yukon: Canadian Institute of Mining
36 37	753	and Metallurgy, Special Volume 37, p. 288–297.
38	754	Burgisser, A., and Scaillet, B., 2007, Redox evolution of a degassing magma rising to the
39 40	755	surface: Nature, v. 445, p. 194–197.
41	756	Burnham, C.W., 1979, Magmas and hydrothermal fluids, in Barnes, H.L., ed.,
42 43	757	Geochemistry of hydrothermal ore deposits, 2nd ed.: New York, John Wiley and Sons,
44	758	p. 71–136.
45 46	759	Byrne, K., and Tosdal, R. M., 2014, Genesis of the Late Triassic southwest zone breccia-
47 48	760	hosted alkalic porphyry Cu-Au deposit, Galore Creek, British Columbia, Canada:
49	761	Economic Geology, v. 109, p. 915–938.
50 51	762	Candela, P. A., 1986, The evolution of aqueous vapor from silicate melts: effect on
52	763	oxygen fugacity: Geochimica et Cosmochimica Acta, v. 50, p. 1205–1211.
53 54	764	Candela, P. A., 1992, Controls on ore metal ratios in granite-related ore systems: an
55	765	experimental and computational approach: Transactions of the Royal Society of
56 57	766	Edinburgh, Earth Sciences, v. 83, p. 317–326.
58 59		
60		
61 62		
63		33
64		33

2 3		
4	767	Candela, P.A., and Holland, H.D., 1984, The partitioning of copper and molybdenum
5 6	768	between silicate melts and aqueous fluids: Geochimica et Cosmochimica Acta, v. 48, p.
7	769	373–380.
8 9	770	Carmichael, I. S., and Ghiorso, M. S., 1986, Oxidation-reduction relations in basic
10	771	magma: a case for homogeneous equilibria: Earth and Planetary Science Letters, v. 78,
11 12	772	p. 200–210.
13	773	Cathles, L. M., Erendi, A., and Barrie, T., 1997, How long can a hydrothermal system be
14 15	774	sustained by a single intrusive event?: Economic Geology, v. 92, p. 766–771
16 17	775	Chambefort, I., Dilles, J. H., and Kent, A. J. R., 2008, Anhydrite-bearing andesite and
18	776	dacite as a source for sulfur in magmatic-hydrothermal mineral deposits: Geology, v.
19 20	777	36, p. 719–722.
21	778	Chelle-Michou, C., and Chiaradia, M., 2017, Amphibole and apatite insights into the
22 23	779	evolution and mass balance of Cl and S in magmas associated with porphyry copper
24	780	deposits: Contributions to Mineralogy and Petrology, v. 172, 105, doi:
25 26	781	https://doi.org/10.1007/s00410-017-1417-2
27	782	Chiaradia, M., Ulianov, A., Kouzmanov, K., and Beate, B., 2012, Why large porphyry Cu
28 29	783	deposits like high Sr/Y magmas?: Scientific reports, v. 2, 685.
30	784	Chiaradia, M., Schaltegger, U., Spikings, R., Wotzlaw, JF., and Ovtcharova, M., 2013,
31 32	785	How accurately can we date the duration of magmatic-hydrothermal events in
33	786	porphyry systems?—An invited paper: Economic Geology, v. 108, p. 565–584.
34 35	787	Correa, K. J., Rabbia, O. M., Hernández, L. B., Selby, D., and Astengo, M., 2016, The
36 37	788	timing of magmatism and ore formation in the El Abra porphyry copper deposit,
38	789	northern Chile: implications for long-lived multiple-event magmatic-hydrothermal
39 40	790	porphyry Systems: Economic Geology, v. 111, p. 1–28.
41	791	Creasey, S., 1977, Intrusives associated with porphyry copper deposits: Bulletin of the
42 43	792	Geological Society of Malaysia, v. 9, p. 51–66.
44	793	Devine, F. A. M., Chamberlain, C. M., Davies, A. G. S., Friedman, R., and Baxter, P.,
45 46	794	2014, Geology and district-scale setting of tilted alkalic porphyry Cu-Au
47	795	mineralization at the Lorraine deposit, British Columbia: Economic Geology, v. 109, p.
48 49	796	939–977.
50	797	Dilles, J. H., Kent, A. J., Wooden, J. L., Tosdal, R. M., Koleszar, A., Lee, R. G., and
51 52	798	Farmer, L. P., 2015, Zircon compositional evidence for sulfur-degassing from ore-
53	799	forming arc magmas: Economic Geology, v. 110, p. 241–251.
54 55	800	Dostal, J., Gale, V., and Church, B., 1999, Upper Triassic Takla Group volcanic rocks,
56 57	801	Stikine Terrane, north-central British Columbia: geochemistry, petrogenesis, and
58	802	tectonic implications: Canadian Journal of Earth Sciences, v. 36, p. 1483–1494.
59 60		
61		
62 63		
64		34
65		

1 2		
3 4	803	Duuring, P., Rowins, S. M., McKinley, B. S. M., Dickinson, J. M., Diakow, L. J., Kim,
5 6	803	YS., and Creaser, R. A., 2009, Magmatic and structural controls on porphyry-style
7	805	Cu–Au–Mo mineralization at Kemess South, Toodoggone District of British
8 9	806	Columbia, Canada: Mineralium Deposita, v. 44, p. 435–462.
10	807	Ferry, J., and Watson, E., 2007, New thermodynamic models and revised calibrations for
11 12	808	the Ti-in-zircon and Zr-in-rutile thermometers: Contributions to Mineralogy and
13	809	Petrology, v. 154, p. 429–437.
14 15	810	Friedman, R.M., and Ash, C.H., 1997, U-Pb age of intrusions related to porphyry Cu-Au
16	811	mineralization in the Tatogga Lake area, northwestern British Columbia: B.C.
17 18	812	Ministry of Employment and Investment Paper 1997-1, p. 291–297.
19	813	Gabrielse, H., 1991, Late Paleozoic and Mesozoic terrane interactions in north-central
20 21	814	British Columbia: Canadian Journal of Earth Sciences, v. 28, p. 947–957.
22 23	815	Gagnon, JF., Barresi, T., Waldron, J. W., Nelson, J., Poulton, T., and Cordey, F., 2012,
23 24	816	Stratigraphy of the upper Hazelton Group and the Jurassic evolution of the Stikine
25 26	817	terrane, British Columbia 1 1 ESS Contribution 20120051: Canadian Journal of Earth
27	818	Sciences, v. 49, p. 1027–1052.
28 29	819	Gillstrom, G., Anand, R., Robertson, S., and Sterling, P., 2012, 2012 technical report on
30	820	the Red Chris copper-gold project, for Imperial Metals Corp (Amended and Restated
31 32	821	at 2015). https://www.imperialmetals.com/assets/docs/red-chris-43-101-report-sept-
33	822	30-2015.pdf.
34 35	823	Ginibre, C., and Wörner, G., 2007, Variable parent magmas and recharge regimes of the
36	824	Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase:
37 38	825	Lithos, v. 98, p. 118–140.
39 40	826	Goldstein, S., O'Nions, R., and Hamilton, P., 1984, A Sm-Nd isotopic study of
41	827	atmospheric dusts and particulates from major river systems: Earth and planetary
42 43	828	Science letters, v. 70, p. 221–236.
44	829	Gustafson, L.B., and Hunt, J.P., 1975, The porphyry copper deposit at El Salvador, Chile:
45 46	830	Economic Geology, v. 70, p. 857–912.
47	831	Halter, W. E., Heinrich, C. A., and Pettke, T., 2005, Magma evolution and the formation
48 49	832	of porphyry Cu-Au ore fluids: evidence from silicate and sulfide melt inclusions:
50	833	Mineralium Deposita, v. 39, p. 845–863.
51 52	834	Harris, A. C., Dunlap, W. J., Reiners, P. W., Allen, C. M., Cooke, D. R., White, N. C.,
53	835	Campbell, I. H., and Golding, S. D., 2008, Multimillion year thermal history of a
54 55	836	porphyry copper deposit: application of U-Pb, ⁴⁰ Ar/ ³⁹ Ar and (U-Th)/He chronometers,
56 57	837	Bajo de la Alumbrera copper-gold deposit, Argentina: Mineralium Deposita, v. 43, p.
58	838	295–314.
59 60		
61		
62 63		
64		35
65		

Hattori, K., 1993, High-sulfur magma, a product of fluid discharge from underlying 6 mafic magma: evidence from Mount Pinatubo, Philippines: Geology, v. 21, p. 1083-1086. Hattori, K. H., and Keith, J. D., 2001, Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA: Mineralium Deposita, v. 36, p. 799-806. Hawkesworth, C., Gallagher, K., Hergt, J., and McDermott, F., 1993, Mantle and slab contributions in arc magmas: Annual Review of Earth and Planetary Sciences, v. 21, p. 175-204. Hayba, D. O., and Ingebritsen, S. E., 1997, Multiphase groundwater flow near cooling plutons: Journal of Geophysical Research, v. 102, p. 235–252. Hoskin, P. W., and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in mineralogy and geochemistry, v. 53, p. 27-62. Hou, Z., Yang, Z., Lu, Y., Kemp, A., Zheng, Y., Li, Q., Tang, J., Yang, Z., and Duan, L., 2015, A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones: Geology, v. 43, p. 247-250. Imai, A., 2002, Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K-Ar ages, SO₃ Contents of microphenocrystic apatite and significance of intrusive rocks: Resource Geology, v. 52, p. 147–161. Jago, C. P., Tosdal, R. M., Cooke, D. R., and Harris, A. C., 2014, Vertical and lateral variation of mineralogy and chemistry in the Early Jurassic Mt. Milligan alkalic porphyry Au-Cu deposit, British Columbia, Canada: Economic Geology, v. 109, p. 1005-1033. Jugo, P. J., Luth, R. W., and Richards, J. P., 2005, Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts: Geochimica et Cosmochimica Acta, v. 69, p. 497–503. Jugo, P. J., 2009, Sulfur content at sulfide saturation in oxidized magmas: Geology, v. 37, p. 415–418. Keith, J., Whitney, J., Hattori, K., Ballantyne, G., Christiansen, E., Barr, D., Cannan, T., and Hook, C., 1997, The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah: Journal of Petrology, v. 38, p. 1679–1690. Konecke, B. A., Fiege, A., Simon, A. C., and Holtz, F., 2017a, Cryptic metasomatism during late-stage lunar magmatism implicated by sulfur in apatite: Geology, p. 739– 742. Konecke, B. A., Fiege, A., Simon, A. C., Parat, F., and Stechern, A., 2017b, Co-variability of S^{6+} , S^{4+} , and S^{2-} in apatite as a function of oxidation state: Implications for a new oxybarometer: American Mineralogist, v. 102, p. 548-557.

1		
2 3		
4	876	Lang, J. R., Lueck, B., Mortensen, J. K., Russell, J. K., Stanley, C. R., and Thompson, J.
5 6	877	F., 1995, Triassic-Jurassic silica-undersaturated and silica-saturated alkalic intrusions
7	878	in the Cordillera of British Columbia: Implications for arc magmatism: Geology, v. 23,
8 9	879	p. 451–454.
10	880	Lange, R. A., Frey, H. M., and Hector, J., 2009, A thermodynamic model for the
11 12	881	plagioclase-liquid hygrometer/thermometer: American Mineralogist, v. 94, p. 494–506.
13	882	Large, S.J.E., von Quadt, A., Wotzlaw, JF., Guillong, M., and Heinrich, C.A., 2018,
14 15	883	Magma evolution leading to porphyry Au-Cu mineralization at the Ok Tedi Deposit,
16	884	Papua New Guinea: trace element geochemistry and high-precision geochronology of
17 18	885	igneous zircon: Economic Geology, v. 113, p. 39–61.
19	886	Larocque, A. C., Stimac, J. A., Keith, J. D., and Huminicki, M. A., 2000, Evidence for
20 21	887	open-system behavior in immiscible Fe–S–O liquids in silicate magmas: implications
22	888	for contributions of metals and sulfur to ore-forming fluids: The Canadian
23 24	889	Mineralogist, v. 38, p. 1233–1249.
25 26	890	Li, J., Li, G., Qin, K., Xiao, B., Chen, L., and Zhao, J., 2012, Mineralogy and mineral
20 27	891	chemistry of the Cretaceous Duolong gold-rich porphyry copper deposit in the
28 29	892	Bangongco arc, northern Tibet: Resource Geology, v. 62, p. 19–41.
30	893	Li, Y., Selby, D., Feely, M., Costanzo, A., and Li, XH., 2017, Fluid inclusion
31 32	894	characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-
33	895	molybdenum deposit, Tibet: Mineralium Deposita, v.52, p. 137–158.
34 35	896	Liang, HY., Campbell, I. H., Allen, C., Sun, WD., Liu, CQ., Yu, HX., Xie, YW.,
36	897	and Zhang, YQ., 2006, Zircon Ce^{4+}/Ce^{3+} ratios and ages for Yulong ore-bearing
37 38	898	porphyries in eastern Tibet: Mineralium Deposita, v. 41, p. 152–159.
39	899	Loader, M. A., Wilkinson, J. J., and Armstrong, R. N., 2017, The effect of titanite
40 41	900	crystallisation on Eu and Ce anomalies in zircon and its implications for the
42	901	assessment of porphyry Cu deposit fertility: Earth and Planetary Science Letters, v.
43 44	902	472, p. 107–119.
45	903	Loucks, R.R., 2013, Distinctive composition and genesis of copper ore-forming arc
46 47	904	magmas: Goldschmidt Conference 2013 Abstracts: Mineralogical Magazine, v. 77, p.
48	905	1642.
49 50	906	Locock, A. J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles
51 52	907	following the IMA 2012 recommendations: Computers & Geosciences, v. 62, p. 1–11.
53	908	Logan, J. M., and Mihalynuk, M. G., 2014, Tectonic controls on Early Mesozoic paired
54 55	909	alkaline porphyry deposit belts (Cu-Au \pm Ag-Pt-Pd-Mo) within the Canadian
56	910	Cordillera: Economic Geology, v. 109, p. 827–858.
57 58	911	Loucks, R., 2014, Distinctive composition of copper-ore-forming arc magmas: Australian
59	912	Journal of Earth Sciences, v. 61, p. 5–16.
60 61		
62		
63 64		37
65		

Lowell, J. D., and Guilbert, J. M., 1970, Lateral and vertical alteration-mineralization zoning in porphyry ore deposits: Economic Geology, v. 65, p. 373–408. Lu, Y.-J., Loucks, R. R., Fiorentini, M. L., Yang, Z.-M., and Hou, Z.-Q., 2015, Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet: Geology, v.43, p. 583–586. Lu, Y.-J., Loucks, R. R., Fiorentini, M., McCuaig, T. C., Evans, N. J., Yang, Z.-M., Hou, Z.-Q., Kirkland, C. L., Parra-Avila, L. A., and Kobussen, A., 2016, Zircon compositions as a pathfinder for Cu±Mo±Au deposits: Society of Economic Geologists Special Publication, v. 19, p. 329-347. Mao, M., Rukhlov, A. S., Rowins, S. M., Spence, J., and Coogan, L. A., 2016, Apatite trace element compositions: A robust new tool for mineral exploration: Economic Geology, v. 111, p. 1187–1222. Marsden, H., and Thorkelson, D. J., 1992, Geology of the Hazelton volcanic belt in British Columbia: implications for the Early to Middle Jurassic evolution of Stikinia: Tectonics, v. 11, p. 1266–1287. Masterman, G. J., Cooke, D. R., Berry, R. F., Clark, A. H., Archibald, D. A., Mathur, R., Walshe, J. L., and Durán, M., 2004, ⁴⁰Ar/³⁹Ar and Re-Os geochronology of porphyry copper-molybdenum deposits and related copper-silver veins in the Collahuasi district, northern Chile: Economic Geology, v. 99, p. 673-690. Mathez, E. A., 1973, Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks: Contributions to Mineralogy and Petrology, v. 41, p. 61-72. Mathez, E.A., 1984, Influence of degassing on oxidation-states of basaltic magmas: Nature, v. 310, p. 371-375. Mathez, E. A., and Webster, J. D., 2005, Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid: Geochimica et Cosmochimica Acta, v. 69, p. 1275-1286. Matzel, J. E., Bowring, S. A., and Miller, R. B., 2006, Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington: Geological Society of America Bulletin, v. 118, p. 1412-1430. McMillan, W.J., Thompson, J.F.H., Hart, C.J.R., and Johnston, S.T., 1995, Regional geological and tectonic setting of porphyry deposits in British Columbia and Yukon Territory: Canadian Institute of Mining, Metallurgy and Petroleum Special Volume 46, p. 40–57. Merzbacher, C., and Eggler, D.H., 1984, A magmatic geohygrometer: Application to Mount St. Helens and other dacitic magmas: Geology, v. 12, p. 587-590.

Micko, J., Tosdal, R. M., Bissig, T., Chamberlain, C. M., and Simpson, K. A., 2014, Hydrothermal alteration and mineralization of the Galore Creek alkalic Cu-Au porphyry deposit, northwestern British Columbia, Canada: Economic Geology, v. 109, p. 891-914. Mihalynuk, M., Erdmer, P., Ghent, E., Cordey, F., Archibald, D., Friedman, R., and Johannson, G., 2004, Coherent French Range blueschist: Subduction to exhumation in< 2.5 my?: Geological Society of America Bulletin, v. 116, p. 910–922. Monger, J. W. H., and Irving, E., 1980, Northward displacement of north-central British Columbia: Nature, v. 285, p. 289–294. Moore, G., and Carmichael, I., 1998, The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth: Contributions to Mineralogy and Petrology, v. 130, p. 304-319. Mortensen, J.K., Ghosh, D.K., and Ferri, F., 1995, U-Pb geochronology of intrusive rocks associated with copper-gold porphyry deposits in the Canadian Cordillera: Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, p. 142–158. Mutch, E., Blundy, J., Tattitch, B., Cooper, F., and Brooker, R., 2016, An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer: Contributions to Mineralogy and Petrology, v. 171, 85, doi: 10.1007/s00410-016-1298-9 Myers, J. t., and Eugster, H., 1983, The system Fe-Si-O: Oxygen buffer calibrations to 1,500 K: Contributions to Mineralogy and Petrology, v. 82, p. 75–90. Nadeau, O., Williams-Jones, A. E., and Stix, J., 2010, Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids: Nature Geoscience, v. 3, p. 501-505. Nadeau, O., Stix, J., and Williams-Jones, A. E., 2016, Links between arc volcanoes and porphyry-epithermal ore deposits: Geology, v. 44, p. 11-14. Naney, M. T., 1983, Phase equilibria of rock-forming ferromagnesian silicates in granitic systems: American Journal of Science, v. 283, p. 993–1033. Nelson, J., and Colpron, M., 2007, Tectonics and metallogeny of the British Columbia, Yukon and Alaskan Cordillera, 1.8 Ga to the present: Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, v. 5, p. 755–791. Nelson, J., Colpron, M., and Israel, S., 2013, The Cordillera of British Columbia, Yukon, and Alaska: Tectonics and metallogeny: Society of Economic Geologists Special Publication, v. 17, p. 53-109.

1 2		
3 4	987	Newell, J.M., and Peatfield, G.R., 1995, The Red Chris porphyry copper-gold deposit:
5 6	988	Canadian Institute of Mining and Metallurgy Special Volume 46,
7	989	p. 674–688.
8 9	990	Norris, J.R., 2012, Evolution of alteration and mineralization at the Red Chris Cu-Au
10	991	porphyry deposit East zone, northwestern British Columbia, Canada: M.Sc. thesis,
11 12	992	Vancouver, Canada, University of British Columbia, 194 p.
13 14	993	Pan, LC., Hu, RZ., Wang, XS., Bi, XW., Zhu, JJ., and Li, C., 2016, Apatite trace
1415	994	element and halogen compositions as petrogenetic-metallogenic indicators: Examples
16 17	995	from four granite plutons in the Sanjiang region, SW China: Lithos, v. 254–255, p.
18	996	118–130.
19 20	997	Parat, F., and Holtz, F., 2005, Sulfur partition coefficient between apatite and rhyolite:
21	998	the role of bulk S content: Contributions to Mineralogy and Petrology, v. 150, p. 643-
22 23	999	651.
24	1000	Parat, F., Holtz, F., and Klügel, A., 2011, S-rich apatite-hosted glass inclusions in
25 26	1001	xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline
27	1002	magmas: Contributions to Mineralogy and Petrology, v. 162, p. 463–478.
28 29	1003	Pass, H. E., Cooke, D. R., Davidson, G., Maas, R., Dipple, G., Rees, C., Ferreira, L.,
30	1004	Taylor, C., and Deyell, C. L., 2014, Isotope geochemistry of the northeast zone,
31 32	1005	Mount Polley alkalic Cu-Au-Ag porphyry deposit, British Columbia: A case for
33 34	1006	carbonate assimilation: Economic Geology, v. 109, p. 859-890.
34 35	1007	Patchett, P., Gehrels, G. E., and Isachsen, C., 1998, Nd isotopic characteristics of
36 37	1008	metamorphic and plutonic rocks of the Coast Mountains near Prince Rupert, British
38	1009	Columbia: Canadian Journal of Earth Sciences, v. 35, p. 556–561.
39 40	1010	Paterson, S. R., Okaya, D., Memeti, V., Economos, R., and Miller, R. B., 2011, Magma
41	1011	addition and flux calculations of incrementally constructed magma chambers in
42 43	1012	continental margin arcs: Combined field, geochronologic, and thermal modeling
44	1013	studies: Geosphere, v. 7, p. 1439–1468.
45 46	1014	Pearce, T. H., and Kolisnik, A. M., 1990, Observations of plagioclase zoning using
47	1015	interference imaging: Earth-Science Reviews, v. 29, p. 9–26.
48 49	1016	Pearce, J., 1996, Sources and settings of granitic rocks: Episodes, v. 19, p. 120–125.
50	1017	Peng, G., Luhr, J. F., and McGee, J. J., 1997, Factors controlling sulfur concentrations in
51 52	1018	volcanic apatite: American Mineralogist, v. 82, p. 1210–1224.
53 54	1019	Piccoli, P., and Candela, P., 1994, Apatite in felsic rocks; a model for the estimation of
54 55	1020	initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne
56 57	1021	Intrusive Suite (Sierra Nevada Batholith) magmas: American Journal of Science, v.
58	1022	294, p. 92–135.
59 60		
61		
62 63		
64		40

Piccoli, P. M., and Candela, P. A., 2002, Apatite in igneous systems: Reviews in Mineralogy and Geochemistry, v. 48, p. 255–292. Pilet, S., Baker, M. B., Müntener, O., and Stolper, E. M., 2011, Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts: Journal of Petrology, v. 52, p. 1415–1442. Qiu, J.-T., Li, P.-J., Santosh, M., and Yu, X.-Q., 2014, Magma oxygen fugacities of granitoids in the Xiaoqinling area, central China: implications for regional tectonic setting: Neues Jahrbuch für Mineralogie-Abhandlungen (Journal of Mineralogy and Geochemistry), v. 191, p. 317-329. Rees, C., Riedell, K. B., Proffett, J. M., Macpherson, J., and Robertson, S., 2015, The Red Chris porphyry copper-gold deposit, Northern British Columbia, Canada: Igneous phases, alteration, and controls of mineralization: Economic Geology, v. 110, p. 857– 888. Rezeau, H., Moritz, R., Wotzlaw, J.-F., Tayan, R., Melkonyan, R., Ulianov, A., Selby, D., d'Abzac, F.-X., and Stern, R. A., 2016, Temporal and genetic link between incremental pluton assembly and pulsed porphyry Cu-Mo formation in accretionary orogens: Geology, v. 44, p. 627-630. Richards, J. P., 2003, Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation: Economic Geology, v. 98, p. 1515–1533. Richards, J. P., 2009, Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere: Geology, v. 37, p. 247–250. Richards, J.P., 2011, Magmatic to hydrothermal metal fluxes in convergent and collided margins: Ore Geology Reviews, v. 40, p. 1-26. Richards, J. P., 2015, The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny: Lithos, v. 233, p. 27-45. Richards, J. P., and Kerrich, R., 2007, Special Paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis: Economic Geology, v. 102, p. 537-576. Richards, J. P., López, G. P., Zhu, J.-J., Creaser, R. A., Locock, A. J., and Mumin, A. H., 2017, Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry $Cu \pm Mo \pm Au$ and intrusion-related iron oxide Cu-Au deposits in northern Chile: Economic Geology, v. 112, p. 295-318. Ricketts, B. D., Evenchick, C. A., Anderson, R. G., and Murphy, D. C., 1992, Bowser basin, northern British Columbia: Constraints on the timing of initial subsidence and Stikinia-North America terrane interactions: Geology, v. 20, p. 1119–1122. Ridolfi, F., Renzulli, A., and Puerini, M., 2010, Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations

- and application to subduction-related volcanoes: Contributions to Mineralogy and Petrology, v. 160, p. 45-66. Rohrlach, B.D., and Loucks, R.R., 2005, Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines, in Porter, T.M., ed., Super porphyry copper and gold deposits: A global perspective: PGC Publishing, Adelaide, South Australia, v. 2, p. 369–407. Rutherford, M.J., and Devine, J.D., 1988, The May 18, 1980, eruption of Mount St. Helens. 3. Stability and chemistry of amphibole in the magma chamber: Journal of Geophysical Research, v. 93, p. 11,949–11,959. Rutherford, M. J., and Devine, J. D., 2003, Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufriere Hills magma: Journal of Petrology, v. 44, p. 1433–1453. Samson, S. D., McClelland, W. C., Patchett, P. J., Gehrels, G. E., and Anderson, R. G., 1989, Evidence from neodymium isotopes for mantle contributions to Phanerozoic crustal genesis in the Canadian Cordillera: Nature, v. 337, p. 705-709. Samson, S. D., Patchett, P. J., McClelland, W. C., and Gehrels, G. E., 1991, Nd and Sr isotopic constraints on the petrogenesis of the west side of the northern Coast Mountains batholith, Alaskan and Canadian Cordillera: Canadian Journal of Earth Sciences, v. 28, p. 939-946. Schaltegger, U., Brack, P., Ovtcharova, M., Peytcheva, I., Schoene, B., Stracke, A., Marocchi, M., and Bargossi, G. M., 2009, Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy): Earth and Planetary Science Letters, v. 286, p. 208–218. Scott, J.E., Richards, J.P., Heaman, L.M., Creaser, R.A., and Salazar, G.S., 2008, The Schaft Creek porphyry Cu-Mo-(Au) deposit, Northwestern British Columbia: Exploration and Mining Geology, v. 17, p. 163–196. Seedorff, E., Dilles, J., Proffett, J., Einaudi, M., Zurcher, L., Stavast, W., Johnson, D., and Barton, M., 2005, Porphyry deposits: Characteristics and origin of hypogene features: Economic Geology 100th anniversary volume, v. 29, p. 251–298. Selby, D., and Creaser, R. A., 2004, Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite: Geochimica et Cosmochimica Acta, v. 68, p. 3897-3908. Shen, P., Hattori, K., Pan, H., Jackson, S., and Seitmuratova, E., 2015, Oxidation condition and metal fertility of granitic magmas: zircon trace-element data from

- porphyry Cu deposits in the Central Asian Orogenic Belt: Economic Geology, v. 110, p. 1861-1878. Sillitoe, R., 2010, Porphyry copper systems: Economic Geology, v. 105, p. 3-41. Simon, A. C., and Ripley, E. M., 2011, The role of magmatic sulfur in the formation of ore deposits: Reviews in Mineralogy and Geochemistry, v. 73, p. 513–578. Steinberger, I., Hinks, D., Driesner, T., and Heinrich, C.A., 2013, Source plutons driving porphyry copper ore formation: combining geomagnetic data, thermal constraints, and chemical mass balance to quantify the magma chamber beneath the Bingham Canyon deposit: Economic Geology, v. 108, p. 605-624. Stern, C. R., Funk, J. A., Skewes, M. A., and Arévalo, A., 2007, Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit, Chile, and the role of sulfur-and copper-rich magmas in its formation: Economic geology, v. 102, p. 1335–1344. Stock, M. J., Humphreys, M. C. S., Smith, V. C., Isaia, R., and Pyle, D. M., 2016, Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions: Nature Geosciences, v. 9, p. 249-254. Streck, M. J., and Dilles, J. H., 1998, Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith: Geology, v. 26, p. 523–526. Sun, S.-S., and McDonough, W., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313-345. Tapster, S., Condon, D., Naden, J., Noble, S., Petterson, M., Roberts, N., Saunders, A., and Smith, D. J., 2016, Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect, Solomon Islands: Earth and Planetary Science Letters, v. 442, p. 206-217. Taseko Mines Limited, 2013, Gibraltar reserves and resources at December 31, 2012: Taseko Mines Limited Report, www.tasekomines.com/gibraltar/ID540174. Titley, S.R., and Beane, R.E., 1981, Porphyry copper deposits, Part 1. Geologic settings, petrology, and tectogenesis: Economic Geology 75TH Anniversary Volume, p. 214-235. Trail, D., Watson, E. B., and Tailby, N. D., 2011, The oxidation state of Hadean magmas and implications for early Earth/'s atmosphere: Nature, v. 480, p. 79-82. Ustunisik, G., Kilinc, A., and Nielsen, R. L., 2014, New insights into the processes controlling compositional zoning in plagioclase: Lithos, v. 200, p. 80–93. Von Quadt, A., Erni, M., Martinek, K., Moll, M., Peytcheva, I., and Heinrich, C. A., 2011, Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems: Geology, v. 39, p. 731-734.

1 2		
3 4	1122	Walltan In D. A. Millan C. E. Lawary Claibarna, L. Waadan, L. L. and Millan, I. S.
5	1133 1134	Walker Jr, B. A., Miller, C. F., Lowery Claiborne, L., Wooden, J. L., and Miller, J. S., 2007, Geology and geochronology of the Spirit Mountain batholith, southern Nevada:
6 7	1134	Implications for timescales and physical processes of batholith construction: Journal
8 9	1135	of Volcanology and Geothermal Research, v. 167, p. 239–262.
9 10	1130	Wallace, P. J., 2005, Volatiles in subduction zone magmas: concentrations and fluxes
11 12	1137	based on melt inclusion and volcanic gas data: Journal of Volcanology and
13	1130	Geothermal Research, v. 140, p. 217–240.
14 15	1140	Wang, R., Richards, J. P., Hou, Z., Yang, Z., and DuFrane, S. A., 2014a, Increased
16	1141	magmatic water content—the key to Oligo-Miocene porphyry Cu-Mo ± Au formation
17 18	1142	in the Eastern Gangdese Belt, Tibet: Economic Geology, v. 109, p. 1315–1339.
19	1143	Wang, R., Richards, J. P., Hou, Zq., Yang, Zm., Gou, Zb., and DuFrane, S. A., 2014b,
20 21	1144	Increasing magmatic oxidation state from Paleocene to Miocene in the Eastern
22	1145	Gangdese Belt, Tibet: Implication for collision-related porphyry Cu-Mo ± Au
23 24	1146	mineralization: Economic Geology, v. 109, p. 1943–1965.
25 26	1147	Waters, L. E., and Lange, R. A., 2015, An updated calibration of the plagioclase-liquid
26 27	1148	hygrometer-thermometer applicable to basalts through rhyolites: American
28 29	1149	Mineralogist, v. 100, p. 2172–2184.
30	1150	Webster, J. D., 1997, Chloride solubility in felsic melts and the role of chloride in
31 32	1151	magmatic degassing: Journal of Petrology, v. 38, p. 1793–1807.
33	1152	Webster, J. D., Kinzler, R. J., and Mathez, E. A., 1999, Chloride and water solubility in
34 35	1153	basalt and andesite melts and implications for magmatic degassing: Geochimica et
36	1154	Cosmochimica Acta, v. 63, p. 729–738.
37 38	1155	Webster, J. D., Tappen, C. M., and Mandeville, C. W., 2009, Partitioning behavior of
39 40	1156	chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200
41	1157	MPa: Geochimica et Cosmochimica Acta, v. 73, p. 559–581.
42 43	1158	Webster, J., Goldoff, B., Sintoni, M., Shimizu, N., and De Vivo, B., 2014, C-O-H-Cl-
44	1159	S-F volatile solubilities, partitioning, and mixing in phonolitic-trachytic melts and
45 46	1160	aqueous-carbonic vapor ± saline liquid at 200 MPa: Journal of Petrology, v. 55, p.
47	1161	2217-2248.
48 49	1162	Webster, J. D., and Piccoli, P. M., 2015, Magmatic apatite: A powerful, yet deceptive,
50	1163	mineral: Elements, v. 11, p. 177–182.
51 52	1164	Weis, P., Driesner, T., and Heinrich, C., 2012, Porphyry-copper ore shells form at stable
53 54	1165	pressure-temperature fronts within dynamic fluid plumes: Science, v. 338, p. 1613-
54 55	1166	1616.
56 57	1167	Wilkinson, J. J., 2013, Triggers for the formation of porphyry ore deposits in magmatic
58	1168	arcs: Nature Geoscience, v. 6, p. 917–925.
59 60		
61		
62 63		
64		44
65		

Winchester, J.A., and Floyd, P.A., 1977, Geochemical discrimination of different magma 6 series and their differentiation products using immobile elements: Chemical Geology, v. 20, p. 325-343. Xu, L., Bi, X., Hu, R., Qi, Y., Tang, Y., Wang, X., and Zhu, J., 2016, Redox states and genesis of magmas associated with intra-continental porphyry Cu-Au mineralization within the Jinshajiang-Red River alkaline igneous belt, SW China: Ore Geology Reviews, v. 73, Part 2, p. 330-345. Yang, Z., Hou, Z., White, N. C., Chang, Z., Li, Z., and Song, Y., 2009, Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet: Ore Geology Reviews, v. 36, p. 133-159. Zajacz, Z., Seo, J.H., Candela, P.A., Piccoli, P.M., and Tossell, J.A., 2011, The solubility of copper in high-temperature magmatic vapors: A quest for the significance of various chloride and sulfide complexes: Geochimica et Cosmochimica Acta, v. 75, p. 2811-2827. Zajacz, Z., Candela, P.A., Piccoli, P.M., Wälle, M., and Sanchez-Valle, C., 2012, Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation: Geochimica et Cosmochimica Acta, v. 91, p. 140–159. Zhang, C., Holtz, F., Ma, C., Wolff, P. E., and Li, X., 2012, Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China): Contributions to Mineralogy and Petrology, v. 164, p. 859-879. Zhang, D., and Audétat, A., 2017, What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt Inclusions and magmatic sulfides: Economic Geology, v. 112, p. 221–244. Zimmer, M.M., Plank, T., Hauri, E.H., Yogodzinski, G.M., Stelling, P., Larsen, J., Singer, B., Jicha, B., Mandeville, C., and Nye, C.J., 2010, The role of water in generating the calc-alkaline trend: New volatile data for Aleutian magmas and a new Tholeiitic Index: Journal of Petrology, v. 51, p. 2411–2444. Zhu, C., and Sverjensky, D. A., 1991, Partitioning of F-Cl-OH between minerals and hydrothermal fluids: Geochimica et Cosmochimica Acta, v. 55, p. 1837–1858.

Figure Captions

Fig. 1. Major terranes in the south of the Canadian Cordillera, showing Triassic to Jurassic magmatic belts and major associated porphyry deposits in the Stikine and Quesnel terranes (modified from Nelson and Colpron, 2007; Nelson et al., 2013; original graphics file provided by Joanne Nelson, British Columbia Geological Survey of Canada). The age of the Red Chris deposit is from this study (Table 1), and the ages for the other porphyry deposits are from Brown and Kahlert (1986; Red Mountain), Mortensen et al. (1995; Mt. Polley), Scott et al. (2008; Schaft Creek), Duuring et al. (2009; Kemess South), Taseko Mines Limited (2013; Gibraltar), Bath et al. (2014; Lorraine), Byrne and Tosdal (2014; Galore Creek), Devine et al. (2014; Lorraine), Logan and Mihalynuk (2014; Highland Valley, Copper Mountaine, Afton/Ajax, and Brenda), and Jago et al. (2014; Mt. Milligan). Fig. 2. Simplified geological map of the Red Stock and Red Chris Cu-Au deposit, showing the main mineralized zoned (named) and the locations of sampled drill holes (modified from Rees et al., 2015). Universal Transverse Mercator coordinates are based on the WGS84 datum. Fig. 3. Hand specimen photographs of samples of the P1, P2E, P2L, and P3 porphyry intrusions, and two late basaltic to andesitic dikes. (A) P1 porphyry with anhedral to

subhedral altered amphibole and plagioclase phenocrysts, crosscut by pyrite-quartz veins

(sample RC13-35). (B) P2E porphyry showing crowded texture with chloritized

amphibole and plagioclase phenocrysts; plagioclase grains are rimmed or replaced by

secondary K-feldspar. The brick-red color is due to fine-grained hematite (sample RC13-107). (C) P2L porphyry composed of abundant fresh amphibole and plagioclase phenocrysts, with quartz in the groundmass (sample RC13-32). (D) The P3 porphyry is similar to P2L, but is distinguished by the absence of quartz in the groundmass (sample RC13-78). (E) Andesitic dike with anhedral to subhedral amphibole phenocrysts, crosscut by a small calcite vein (sample RC13-62). (F) Basaltic dike with chloritized amphibole phenocrysts (sample RC13-106). See Digital Appendix Table A1 for sample locations. Fig. 4. West-southwest-east-northeast cross section A-A', and north-northwest-southsouthwest cross section B-B' (location of sections shown in Fig. 2), modified from Gillstrom et al. (2012) and Rees et al. (2015). Copper equivalent-grade zones, drill holes, and the boundary between potassic and post-potassic zones are shown: Cu equivalent (%) = Cu (%) + 0.486 × Au (g/t). Fig. 5. Hand specimen photographs and photomicrographs of alteration and vein minerals. (A, B) P2E porphyry (samples RC13-81 and RC13-75) with potassic alteration and A-type quartz veins comprising magnetite, secondary K-feldspar, and disseminated bornite and pyrite. Potassic alteration is characterized by secondary K-feldspar veins and selvedges around A-veins. Late unmineralized carbonate veins cut the A veins. (C) Amphibole phenocryst altered to secondary biotite, which has then been altered to chlorite, reflecting potassic alteration overprinted by chlorite-sericite alteration (plane-polarized transmitted light; P2E: sample RC13-30). (D) Plagioclase phenocryst partially overprinted by sericite (cross-polarized transmitted light; P2E porphyry: sample RC13-

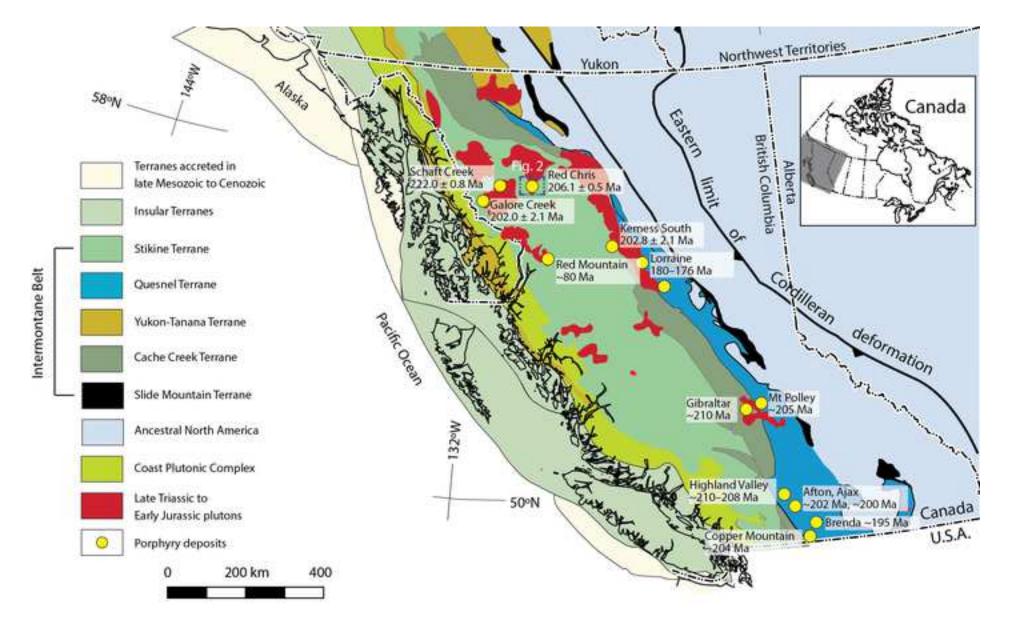
1246	11). (E) B-type quartz veins with centerline pyrite in P2L porphyry (sample RC13-44). (F)
1247	Pyritic D vein in P1 porphyry (sample RC13-40). (G) High-grade ore in sheeted A-type
1248	quartz-chalcopyrite-K-feldspar veins (sample RC13-31 in P2E porphyry). (H) Quartz-
1249	carbonate-pyrite-molybdenite-chalcopyrite vein in P2E porphyry (reflected light; sample
1250	RC13-88). Abbreviations: Amp = amphibole; Bi = biotite; Bn = bornite; Cbn = carbonate;
1251	Chl = chlorite; Cpy = chalcopyrite; Kfs = K-feldspar; Mo = molybdenite; Mt = magnetite;
1252	Pl = plagioclase; Py = pyrite; Qtz = quartz. See Digital Appendix Table A1 for sample
1253	locations.
1254	
1255	Fig. 6. Zircon U–Pb Tera-Wasserburg concordia diagrams for (A) P1, (B) P2E, (C) P2L,
1256	and (D) P3 porphyry samples dated by LA-MC-ICP-MS. Uncertainty ellipses and
1257	calculated ages are shown at 2σ .
1258	
1259	Fig. 7. Weighted mean Re-Os model age of three molybdenite vein samples from the Red
1260	Chris Cu-Au deposit.
1261	
1262	Fig. 8. Zr/Ti vs. Nb/Y discrimination diagram (Winchester and Floyd, 1977) for porphyry
1263	and basaltic-andesitic dike samples from Red Chris.
1264	
1265	Fig. 9. Selected whole-rock major element variation diagrams for porphyry and basaltic-
1266	andesitic dike samples from Red Chris: (A) K ₂ O, (B) Na ₂ O, (C) TiO ₂ , (D) Al ₂ O ₃ , (E)
1267	total Fe ₂ O ₃ , and (F) MgO vs. SiO ₂ .
1268	
	48

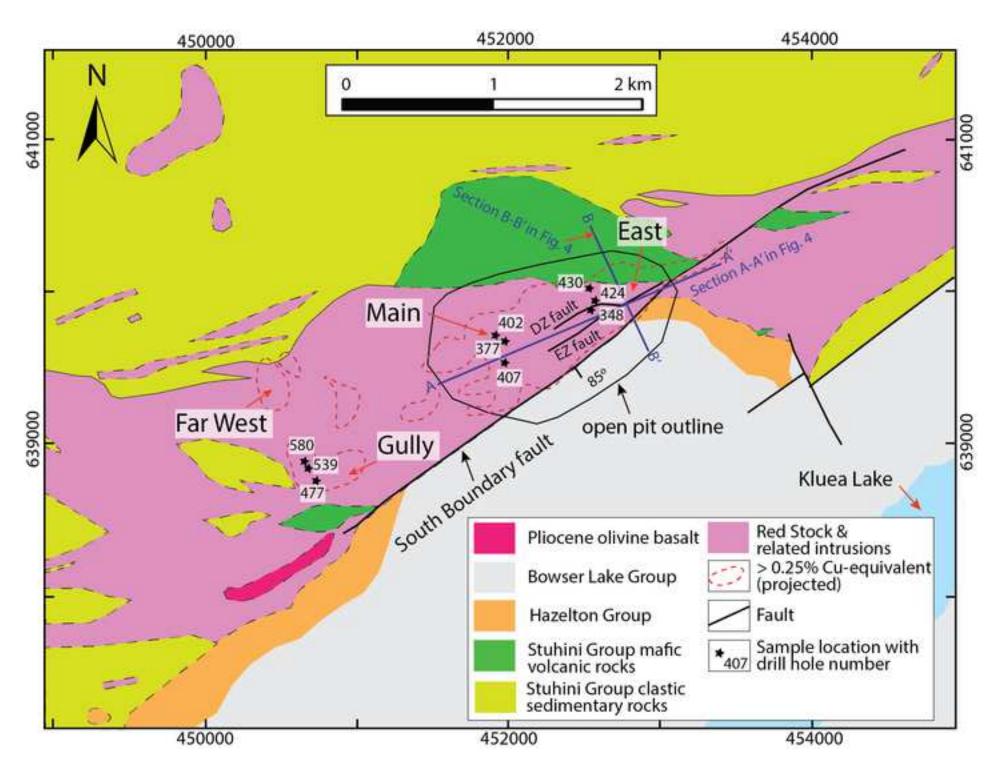
Fig. 10. (A) Primitive mantle-normalized trace element, and (B) chondrite-normalized rare earth element diagrams for porphyry and basaltic-andesitic dike samples from Red Chris. The normalization values for primitive mantle chondrite are from from Sun and McDonough (1989).

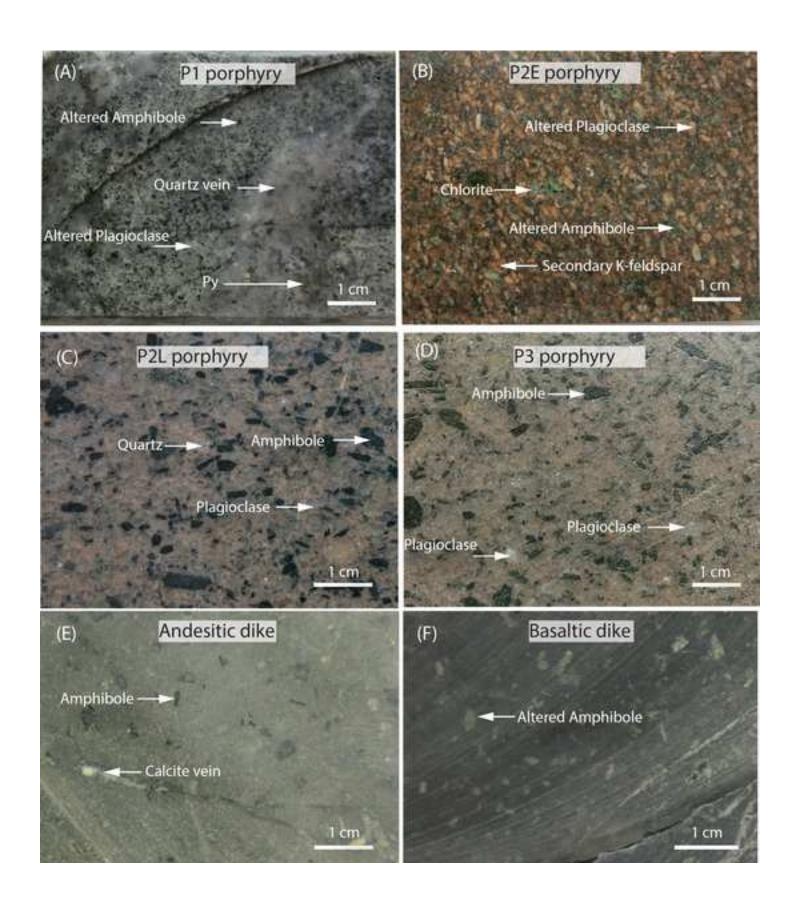
Fig. 11. $E_{Nd}(t)$ vs. initial ⁸⁷Sr/⁸⁶Sr ratios for porphyry and basaltic–andesitic dike samples from Red Chris, calculated at t = 200 Ma. All the samples fall in the field of Mesozoic igneous rocks in the Stikine island arc terrane, clearly different from the Late Cretaceous to Eocene plutons in the Northern Coast Plutonic Complex, which were derived from evolved crust. The depleted MORB mantle field is from Pilet et al. (2011); the Stikinia Mesozoic igneous rock field is from Samson et al. (1989); the Northern Coast Plutonic Complex field is from Samson et al. (1991) and Patchett et al. (1998); all data are re-calculated at 200 Ma.

Fig. 12. Histogram and relative probability curve for zircon $\mathcal{E}_{Hf}(t)$ values from (A) P1, (B) P2E, (C) P2L, and (D) P3 porphyry samples.

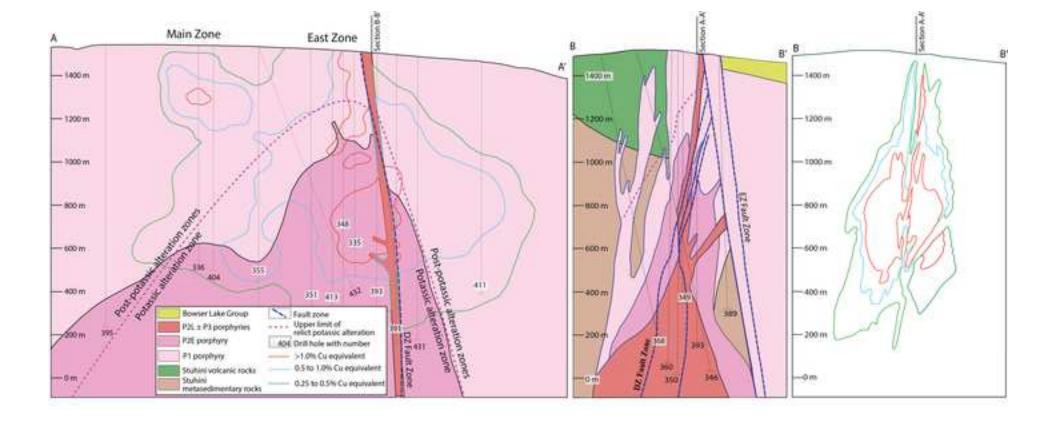
Fig. 13. Classification diagram and plots of oxidation state, temperature, pressure, and magmatic water content estimated from amphibole compositions from P2E and P2L

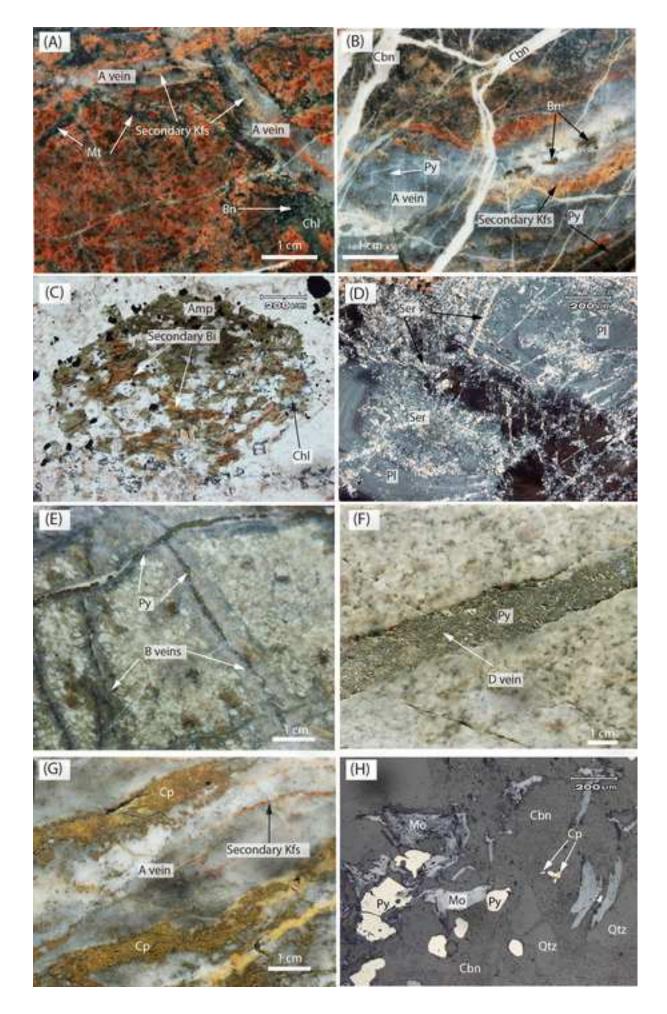

porphyry samples at Red Chris. A. $^{C}(Al^{VI} + Fe^{3+} + 2Ti^{4+})$ (apfu) vs. $^{A}(Na^{+} + K^{+})$ (apfu). B.

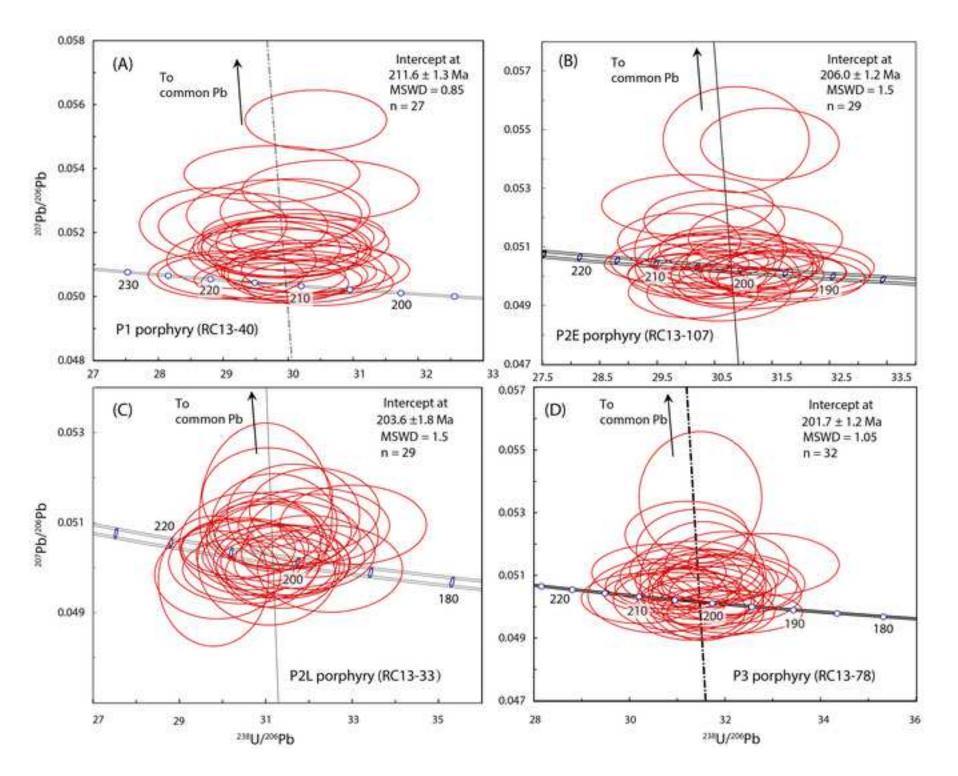

 Δ FMQ vs. temperature. C. Δ FMQ vs. pressure. D. Δ FMQ vs. magmatic water content.

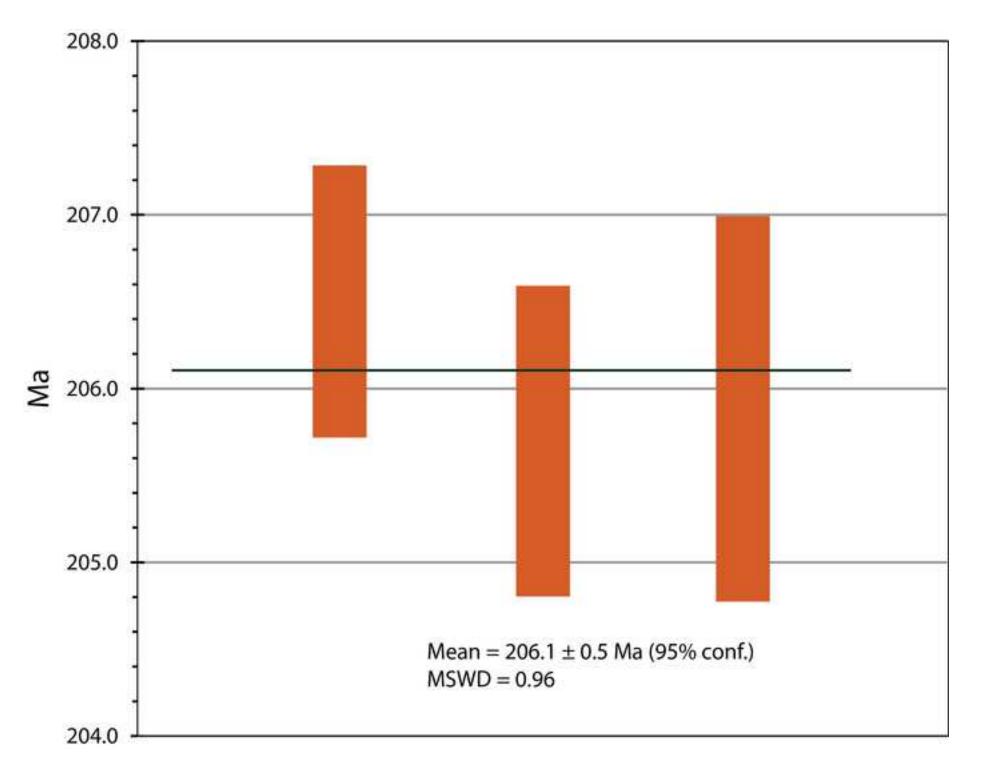

The classification diagram for calcic amphibole is given by the Excel spreadsheet of

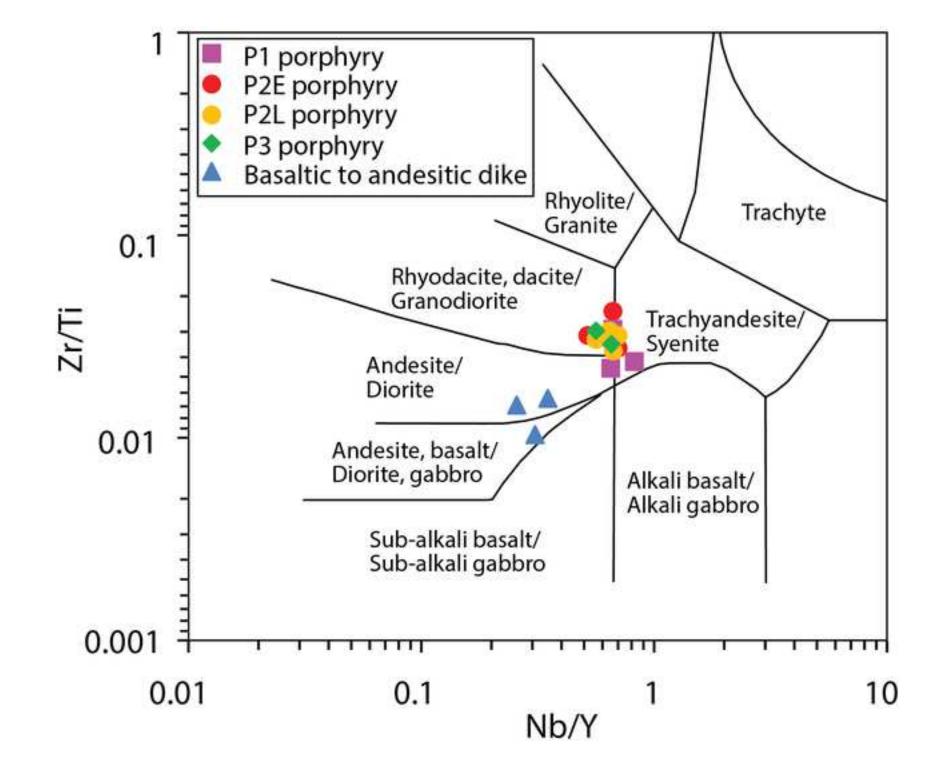
1291	Locock (2014), and the superscript C and A represent C and A cations following the
1292	general amphibole formula ($AB_2C_5T_8O_{22}W_2$), respectively. Note that potassic-magnesio-
1293	hastingsite is included in the field of magnesio-hastingsite. ΔFMQ values, temperatures,
1294	and magmatic water content were calculated from the spreadsheet of Ridolfi et al. (2010).
1295	Amphibole crystallization pressures were calculated using the equation of Mutch et al.
1296	(2016). The Δ FMQ values were calculated following the equation of Myers and Eugster
1297	(1983): $\log fO_2 = -24,441.9/T$ (K) + 8.290 (± 0.167). Abbreviation: apfu = atoms per
1298	formula unit.
1299	
	Fig. 14 Dhotomions menha (anone polarized transmitted light) Deckesottened colectron
1300	Fig. 14. Photomicrographs (cross-polarized transmitted light), Backscattered eelectron
1301	(BSE) images, and electron microprobe analysis profiles for FeO and anorthite proportion
1302	(X_{An}) for representative plagioclase crystals from the P2E, P2L, and P3 porphyries at Red
1303	Chris. Red circles on photomicrographs and white circles on BSE images denote the
1304	analyzed spots. The error bars for X_{An} and FeO analyses are smaller than the size of the
1305	symbols. Abbreviations: Amp = amphibole; Ap = apatite; Pl = plagioclase; Ser = sericite.
1306	
1307	Fig. 15. Chondrite-normalized REE patterns for zircons from (A) P1, (B), P2E, (C) P2L,
1308	and (D) P3 porphyry samples from Red Chris. Normalization values are from Sun and
1309	McDonough (1989).
1310	
1311	Fig. 16. Zircon Eu_N/Eu_N^* vs. temperature diagram. Eu_N/Eu_N^* is the europium anomaly,
1312	calculated as $Eu_N/Eu_N^* = Eu_N/(Sm_N \times Gd_N)^{0.5}$, using the chondrite normalization values

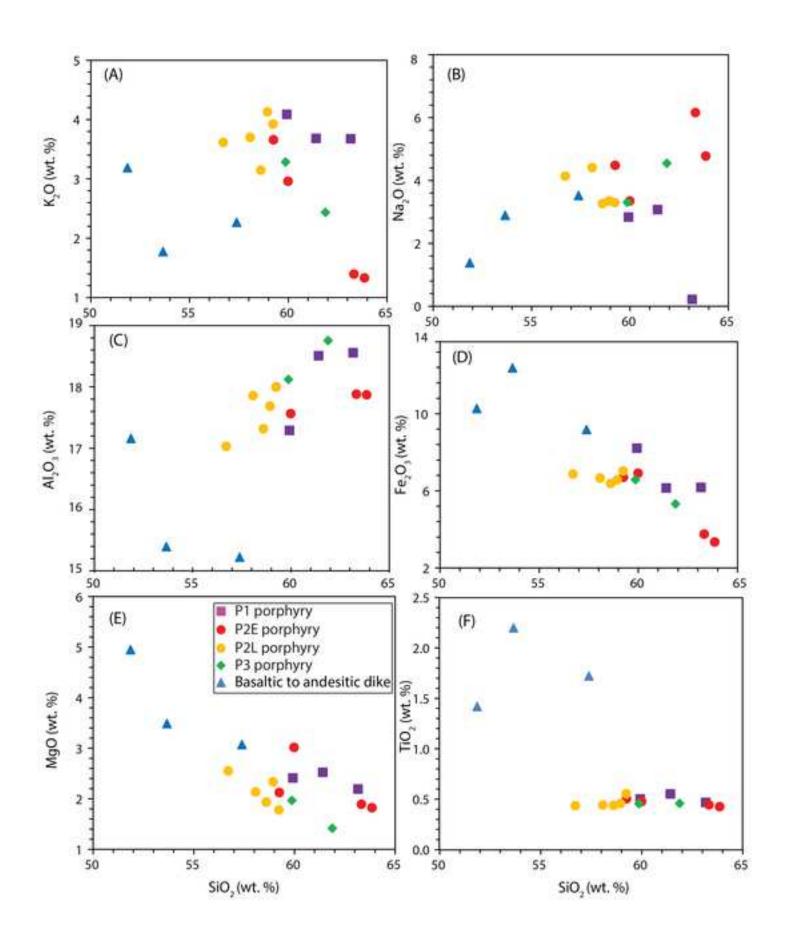

of Sun and McDonough (1989). Oxidized suites have zircon Eu_N/Eu_N^* values >0.4 (Dilles et al., 2015). Fig. 17. Backscattered electron images of apatite crystals in samples from (A) P1 (RC13-39), (B) P2E (RC13-107), (C) P2L (RC13-33), and (D) P3 (RC13-78). Concentrations of SO₃ and Cl in apatite crystals are shown in wt. % (SO₃/Cl); red circles represent the analyzed spots. Higher concentrations are observed in apatites from P2E and P2L; some apatite microphenocrysts from P2 porphyries show zoning from SO₃-Cl-rich cores to SO₃-Cl-poorer rims (C). Fig. 18. Plots of (A) S, and (B) F vs. Cl contents for apatite microphenocrysts from P1 to P3 porphyry samples at Red Chris. Abbreviation: apfu = atoms per formula unit. Data from Digital Appendix Table A8.

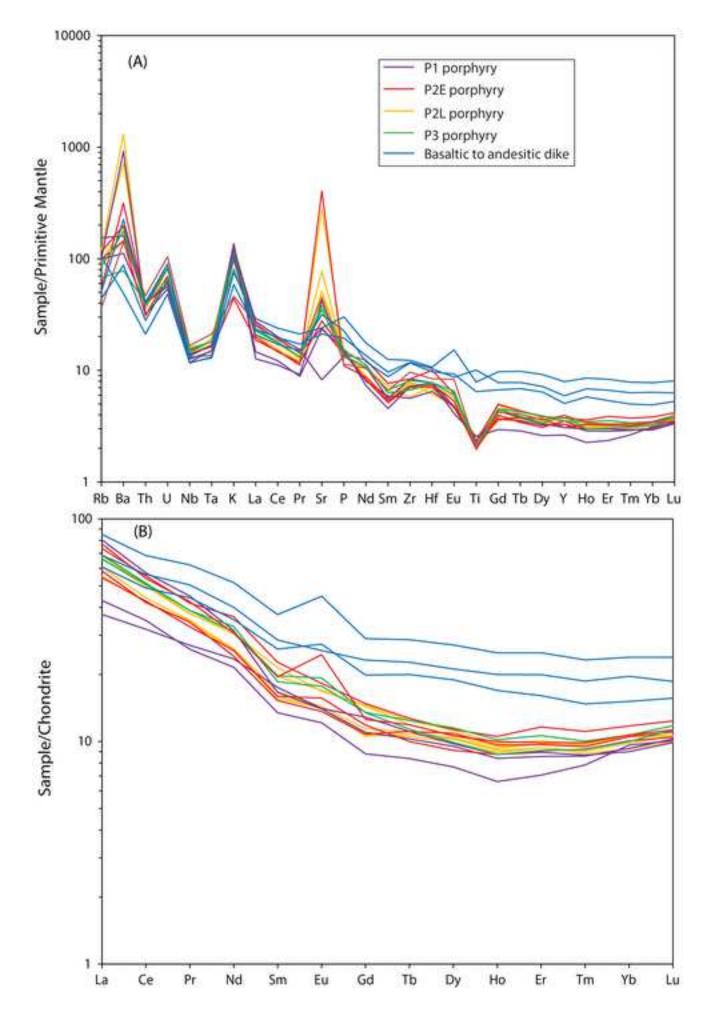


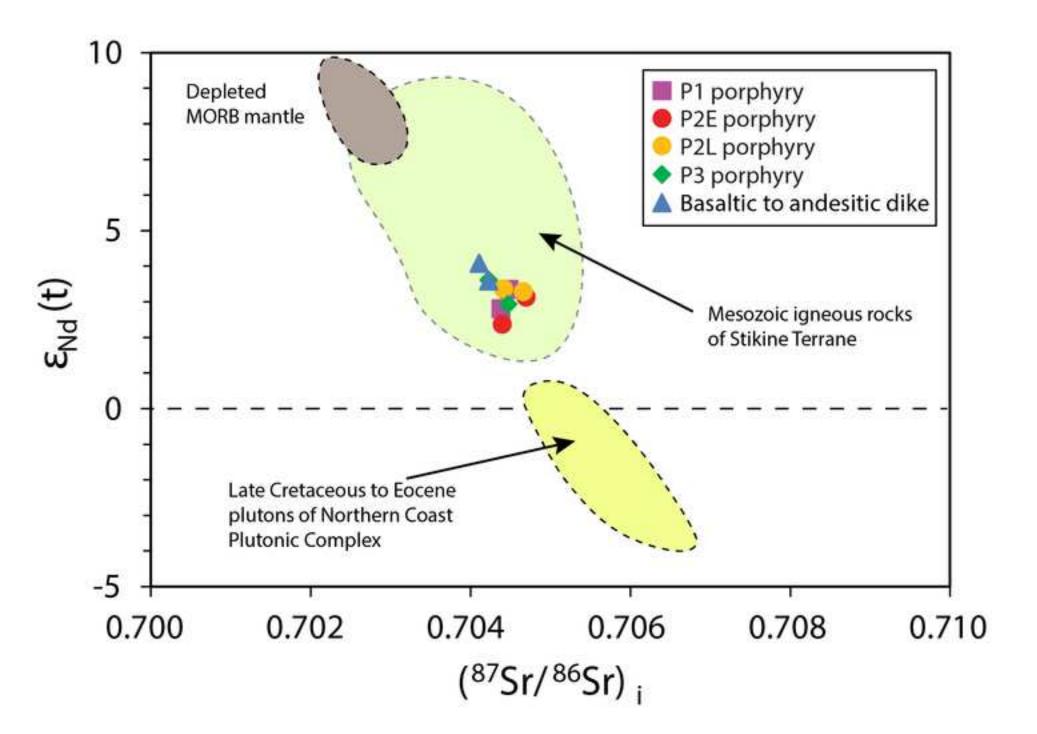


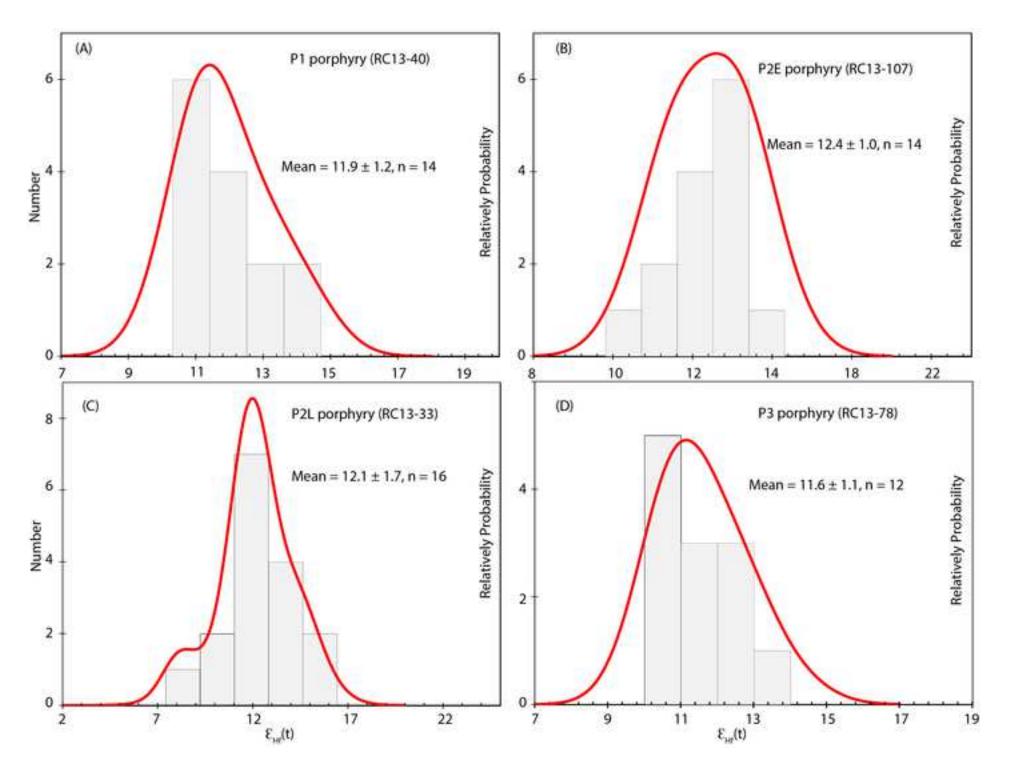


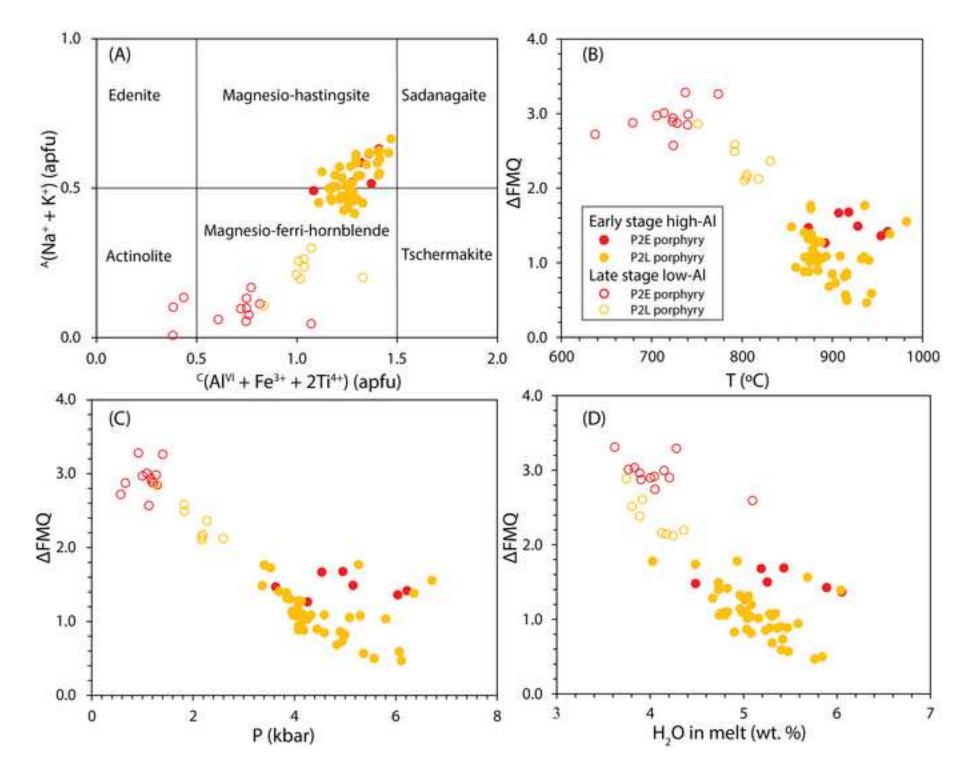


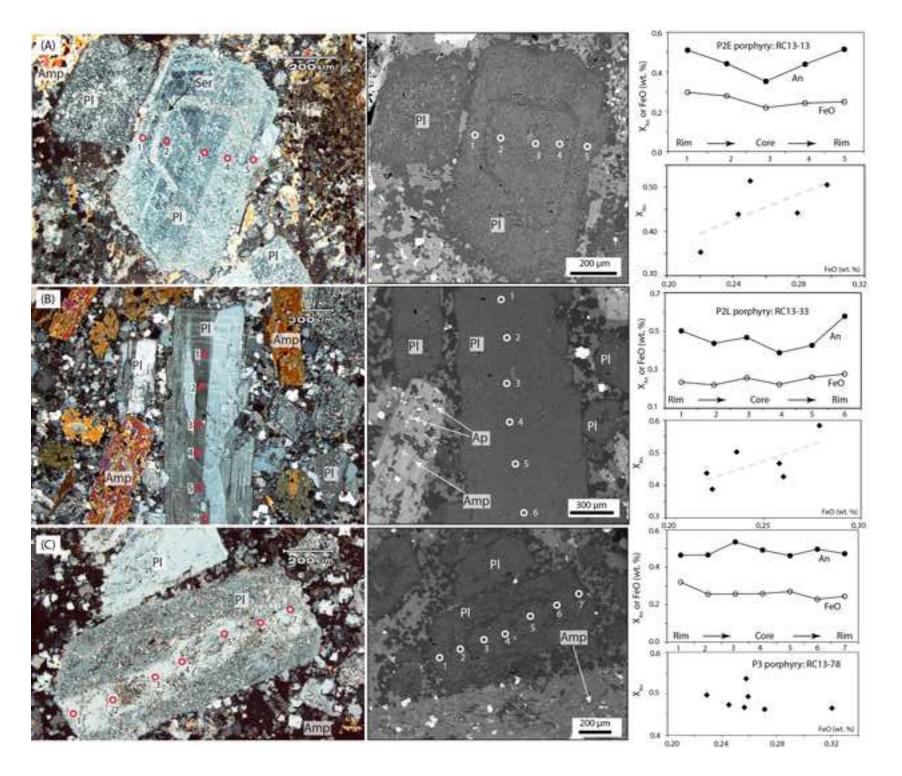


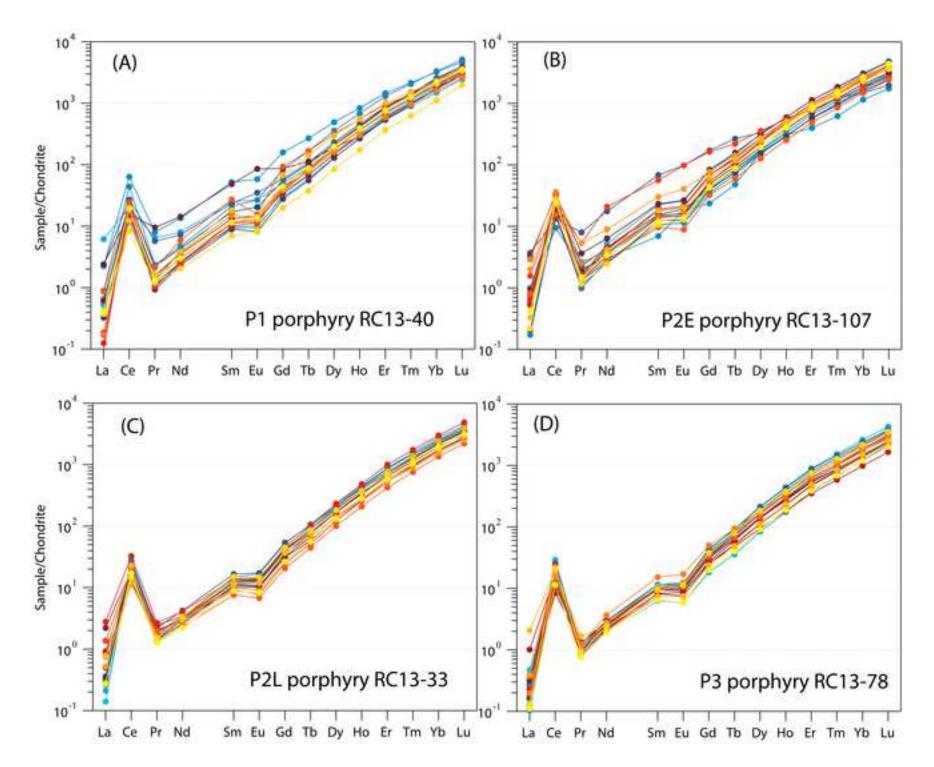


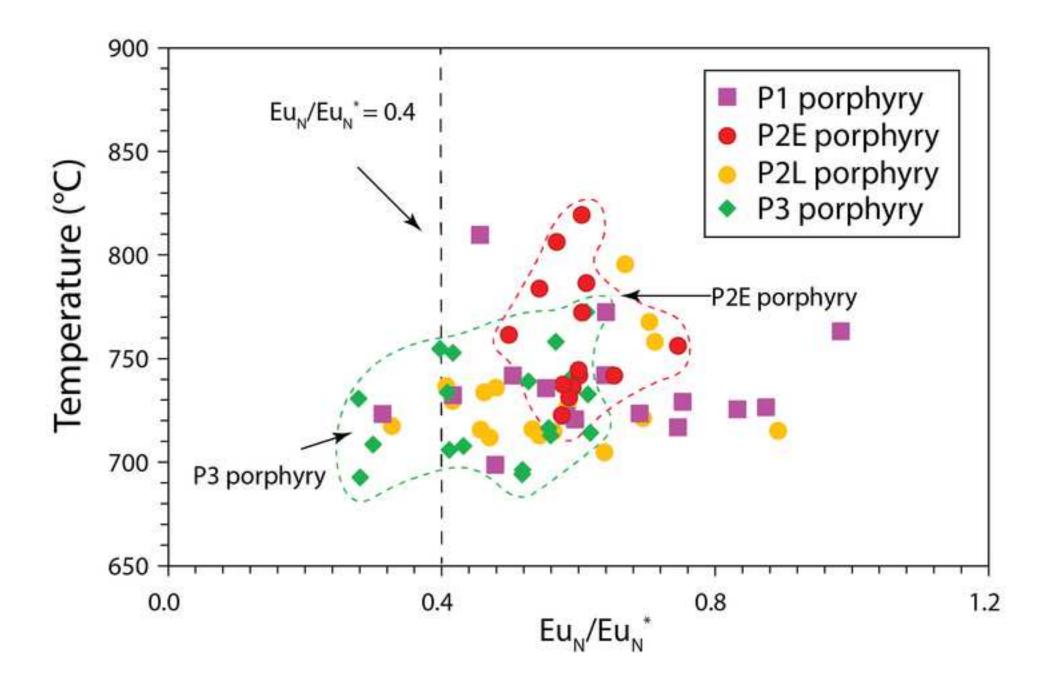


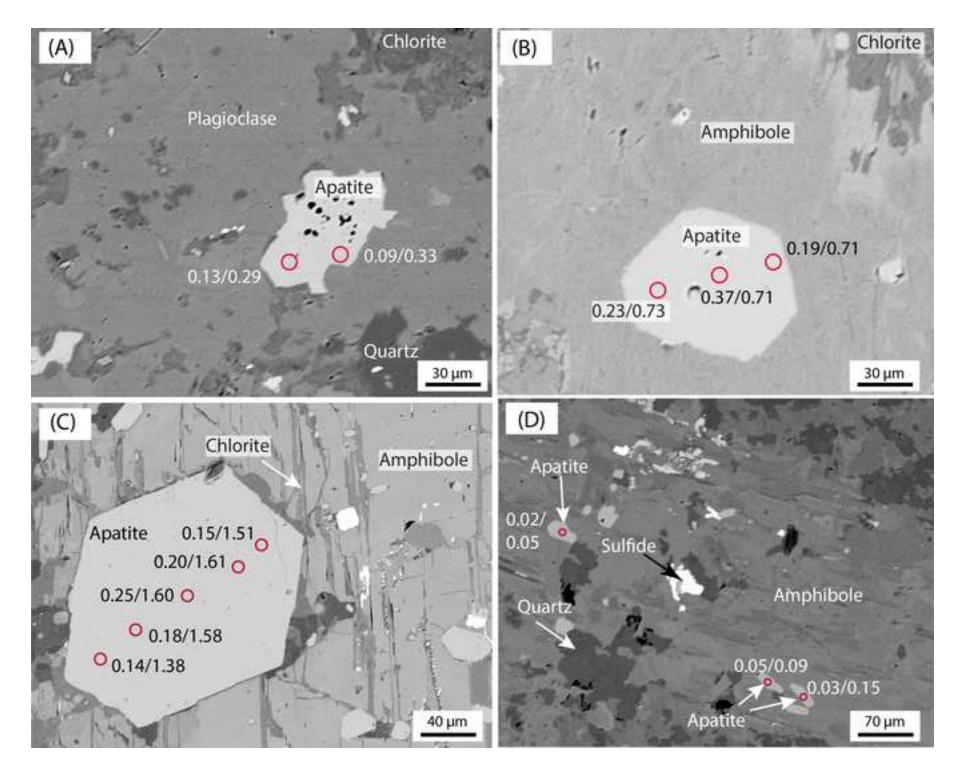












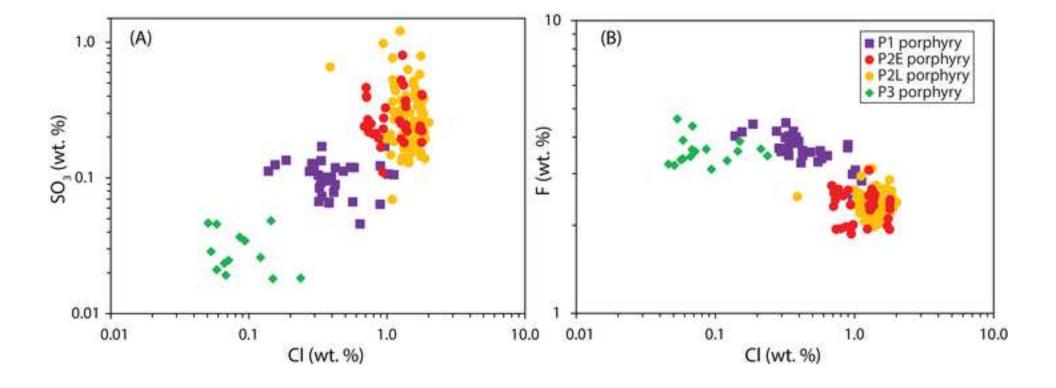


Table 1. Re-Os isotope Analyses for morybucinte from the Red Ciris Cu-Ad deposit											
Sample	Description	Re (µg/g)	±2σ	¹⁸⁷ Re	$\pm 2\sigma$	¹⁸⁷ Os	±2σ	Model Age			
	Description	κε (μg/g)	± 20	(µg/g)		(ng/g)	± 20	(Ma)			
RC13-82	Quartz-carbonate-pyrite-	497.8	1.3	312.9	0.8	1078	0.0	206.5			
RC13-88	molybdenite-chalcopyrite	1771	5.0	1113	3.0	3821	2.0	205.7			
RC13-103	vein in P2E porphyry	1124	3.0	706	1.8	2427	4.0	205.9			

Table 1. Re-Os Isotope Analyses for molybdenite from the Red Chris Cu-Au deposit

Note: See the Digital Appendix Table A1 for sample locations.

0.8
0.9

-	-			_			-			ic dike re
•	Detection						RC13-92 I			
Lithology	\downarrow	P1	P1	P1	P2E	P2E	P2E	P2E	P2L	P2L
Weight %										
SiO ₂	0.01				55.54		61.29	56.4	53.86	56.05
Al_2O_3	0.01	15.94	16.57	17.5	16.21	16.35	17.25	17.08	16.12	17.18
$Fe_2O_3(T)$	0.01	7.59	5.53	5.83	6.4	3.06	3.63	6.38	6.52	6.42
MnO	0.001	0.067	0.079	0.107	0.135	0.028	0.057	0.152	0.134	0.125
MgO	0.01				2.79	1.67	1.83	2.02	2.42	2.06
CaO	0.01	2.54	3.12	2.11	5.53	3.86	3.63	3.47	4.78	4.57
Na ₂ O	0.01	2.62	0.19	2.91	3.1	4.38	5.96	4.26	3.93	4.25
K ₂ O	0.01	3.78	3.29	3.49	2.74	1.22	1.35	3.48	3.43	3.57
TiO ₂	0.001	0.463	0.419	0.523	0.441	0.39	0.429	0.48	0.414	0.426
P_2O_5	0.01	0.29	0.26	0.32	0.3	0.22	0.24	0.29	0.3	0.29
LOI		7.51	10.44	5.15	7.42	8.22	3.22	4.81	5.03	3.49
S	0.001	4.63	3.65	0.386	0.026	1.63	1.19	1.22	0.251	0.157
Total		98.45	98.43	98.57	100.6	98.02	98.9	98.81	96.94	98.43
Parts per	million									
Ba	1	6440	783	1123	1012	2201	980	1382	9182	5082
Со	0.1	10.5	9.4	16.2	12.7	10.6	8.3	9.3	11.4	12
Cr	0.5	24.9	30.2	26.3	115	50.1	19.4	26	31.2	32.8
Cs	0.1	3.7	2.1	4.2	6.7	4.5	0.8	1.1	4.7	4.9
Ga	1		14	17	15	15	15	17	15	17
Ge	0.5	3.2	2.4	1.4	2	3.1	2	1.8	1.7	1.9
Hf	0.1				2.2	2.3	2.6	3.1	2.2	2.2
Nb	0.2				9.9	8.4	11.9	10.8	10.1	11.5
Ni	1				23	3	7	3	5	6
Pb	5			< 5	< 5	< 5		< 5	< 5	< 5
Rb	1			98	63	35	23	73	74	76
Sc	0.01			15	17.6	10.5	9.78	13	15.9	15.9
Sr	2				586	8516	944	508	5880	1639
Ta 7	0.01		0.69		0.68	0.62	0.87	0.74	0.67	0.73
Zr	1				79	81	108	94	85	65
Hf	0.1				2.2	2.3	2.6	3.1	2.2	2.2
U	0.01				1.46	1.26	2.2	1.75	1.31	1.69
Th	0.05		3.23	3.38	2.64	3.41	3.97	3.52	2.63	3.2
V Y	5			134 12	147	109	110	114 17	135	135
r Zn	1			58	14 101	16 29	18 32	56	14 72	16 79
Zn	1				79	29 81	108	50 94	85	65
ZI Tl	0.05				0.51	0.17	0.12	0.12	0.28	0.06
La	0.05				13.7	12.8	18.1	17.3	13.7	15.6
La Ce	0.05				26.1	26.5	33.5	34.4		30.9
Pr	0.03				3.23	3.08	3.99	3.93		3.52
Nd	0.01			9.9	11.1	11.8	14.1	16.7	11.7	14.4
Sm	0.03				2.29	2.39	2.93	3.4	2.33	2.94
Eu	0.001				0.778	0.893	1.4	1.04	0.805	0.968
Gd	0.005				2.16		2.51	2.96		2.88
Tb	0.01				0.41	0.37	0.44	0.47		0.44
Dy	0.01				2.72	2.28	2.65	2.83	2.56	2.67
Но	0.01				0.54		0.56	0.59		0.53
Er	0.01				1.55		1.58	1.86	1.5	1.55
Tm	0.001						0.247	0.277		0.241
Yb	0.005					1.61	1.71	1.88		1.72
	0.01	1.1.1	1.17	1.01	1.00	1.01	1., 1	1.00	11.10	1., 2

Table 2. Major and trace element compositions of porphyry and basaltic to andesitic dike re

Lu	0.002	0.247	0.257	0.252	0.276	0.261	0.282	0.309	0.25	0.266
La/Yb		6.069	12.685	6.558	8.155	7.950	10.585	9.202	9.257	9.070
Sr/Y		63.143	11.600	41.083	41.857	532.250	52.444	29.882	420.000	102.438
Nb/Y		0.643	0.640	0.833	0.707	0.525	0.661	0.635	0.721	0.719
Zr/Ti		0.021	0.034	0.024	0.028	0.032	0.041	0.031	0.033	0.025
V/Sc		7.387	8.898	8.933	8.352	10.381	11.247	8.769	8.491	8.491
Eu _N /Eu _N *		0.938	1.037	1.114	1.063	1.140	1.569	0.996	1.103	1.011

Note: See the Digital Appendix Table A1 for sample locations.

ocks at R	lea Unri	S					
RC13-32	RC13-33	RC13-83	RC13-77	RC13-78	RC13-62	RC13-79	RC13-97
P2L	P2L	P2L	P3	P3	Dike	Dike	Dike
57.57	56.05	57.38	58.47	57.45	46.23	49.38	54.17
17.22	16.51	17.38	17.67	17.34	15.25	14.12	14.32
6.41	6.09	6.8	5.02	6.31	9.15	11.39	8.66
0.13	0.107	0.116	0.066	0.11	0.108	0.168	0.19
2.28	1.85	1.72	1.34	1.89	4.41	3.21	2.9
5.66	6.6	6.04	4.84		7.78	7.3	5.72
3.27	3.12	3.19	4.29	3.17	1.23	2.66	3.32
4.03	3.01	3.8	2.3	3.15	2.84	1.63	2.14
0.444	0.418	0.536	0.432	0.436	1.25	2.008	1.608
0.28	0.3	0.3	0.28	0.32	0.44	0.39	0.62
2.33	4.36	3.13	5.51	4.03	10.85	7.97	5.61
0.296	0.053	0.155	0.633	0.112	0.231	0.255	0.092
99.63	98.4	100.4	100.2	100.3	99.53	100.2	99.28
1322	1323	1002	545	1232	343	614	1572
11.2	8.6	11.7	8	9.2	27.1	22.6	10.1
22.6	46.8	36	35.1	19.3	15.8	21.3	16.4
1.7	2.1	1.6	2.9	1.9	2.4	0.7	0.7
17	15	15	16	18	16	16	16
1.6	1.8	1.4	1.7	1.7	2.4	1.7	2
2.3	1.9	2.1	2.4	2.4	3	3.2	3.3
10.3 5	9.9 5	9.2 6	10.4 6	11.1 5	8.3 4	8.4 3	9.4 5
< 5	< 5	< 5	< 5	< 5	< 5 4	< 5	< 5
62	61	57	43	54	66	28	32
14.2	14.5	15.8	12.8	15.5	22.1	32	26.2
978	1083	985	737	800	668	447	507
0.69	0.79	0.6	0.75	0.74	0.54	0.53	0.56
74	86	88	91	75	131	132	138
2.3	1.9	2.1	2.4	2.4	3	3.2	3.3
1.46	1.71	1.27	1.74	1.38	1.01	1 0 4	
3.48				1.50	1.01	1.34	1.89
100	3.01	2.7	3.45		1.8	1.34 2.39	1.89 3.46
129	3.01 130	2.7	3.45 122	3.26 132	1.8 221	2.39 480	3.46 129
17	130 14	2.7 148 15	3.45 122 18	3.26 132 16	1.8 221 23	2.39 480 27	3.46 129 36
17 66	130 14 52	2.7 148 15 60	3.45 122 18 36	3.26 132 16 50	1.8 221 23 84	2.39 480 27 99	3.46 129 36 111
17 66 74	130 14 52 86	2.7 148 15 60 88	3.45 122 18 36 91	3.26 132 16 50 75	1.8 221 23 84 131	2.39 480 27 99 132	3.46 129 36 111 138
17 66 74 0.06	130 14 52 86 0.24	2.7 148 15 60 88 0.2	3.45 122 18 36 91 0.14	3.26 132 16 50 75 0.08	1.8 221 23 84 131 0.61	2.39 480 27 99 132 0.14	3.46 129 36 111 138 0.17
17 66 74 0.06 16	130 14 52 86 0.24 14.3	2.7 148 15 60 88 0.2 13	3.45 122 18 36 91 0.14 16.2	3.26 132 16 50 75 0.08 15.5	1.8 221 23 84 131 0.61 14.3	2.39 480 27 99 132 0.14 16.1	3.46 129 36 111 138 0.17 20
17 66 74 0.06 16 31.4	130 14 52 86 0.24 14.3 27.4	2.7 148 15 60 88 0.2 13 26.1	3.45 122 18 36 91 0.14 16.2 31.9	3.26 132 16 50 75 0.08 15.5 31.5	1.8 221 23 84 131 0.61 14.3 30.3	2.39 480 27 99 132 0.14 16.1 34.9	3.46 129 36 111 138 0.17 20 42.4
17 66 74 0.06 16 31.4 3.54	130 14 52 86 0.24 14.3 27.4 3.3	2.7 148 15 60 88 0.2 13 26.1 3.26	3.45 122 18 36 91 0.14 16.2 31.9 3.64	3.26 132 16 50 75 0.08 15.5 31.5 3.64	1.8 221 23 84 131 0.61 14.3 30.3 4.16	2.39 480 27 99 132 0.14 16.1 34.9 4.75	3.46 129 36 111 138 0.17 20 42.4 5.84
17 66 74 0.06 16 31.4 3.54 14	130 14 52 86 0.24 14.3 27.4 3.3 11.7	2.7 148 15 60 88 0.2 13 26.1 3.26 12	3.45 122 18 36 91 0.14 16.2 31.9 3.64 14.3	3.26 132 16 50 75 0.08 15.5 31.5 3.64 15.1	$1.8 \\ 221 \\ 23 \\ 84 \\ 131 \\ 0.61 \\ 14.3 \\ 30.3 \\ 4.16 \\ 16.2$	2.39 480 27 99 132 0.14 16.1 34.9 4.75 18.4	3.46 129 36 111 138 0.17 20 42.4 5.84 23.8
$ \begin{array}{r} 17\\66\\74\\0.06\\16\\31.4\\3.54\\14\\3.22\end{array} $	130 14 52 86 0.24 14.3 27.4 3.3 11.7 2.4	$2.7 \\ 148 \\ 15 \\ 60 \\ 88 \\ 0.2 \\ 13 \\ 26.1 \\ 3.26 \\ 12 \\ 2.51$	3.45 122 18 36 91 0.14 16.2 31.9 3.64 14.3 2.96	3.26 132 16 50 75 0.08 15.5 31.5 3.64 15.1 2.78	$1.8 \\ 221 \\ 23 \\ 84 \\ 131 \\ 0.61 \\ 14.3 \\ 30.3 \\ 4.16 \\ 16.2 \\ 3.9 \\ 1.8 \\ 1$	2.39 480 27 99 132 0.14 16.1 34.9 4.75 18.4 4.28	3.46 129 36 111 138 0.17 20 42.4 5.84 23.8 5.57
$ \begin{array}{r} 17\\66\\74\\0.06\\16\\31.4\\3.54\\14\\3.22\\0.958\end{array} $	130 14 52 86 0.24 14.3 27.4 3.3 11.7 2.4 0.798	$2.7 \\ 148 \\ 15 \\ 60 \\ 88 \\ 0.2 \\ 13 \\ 26.1 \\ 3.26 \\ 12 \\ 2.51 \\ 0.818$	3.45 122 18 36 91 0.14 16.2 31.9 3.64 14.3 2.96 1.1	$\begin{array}{c} 3.26\\ 132\\ 16\\ 50\\ 75\\ 0.08\\ 15.5\\ 31.5\\ 3.64\\ 15.1\\ 2.78\\ 1.01\\ \end{array}$	$ \begin{array}{c} 1.8\\221\\23\\84\\131\\0.61\\14.3\\30.3\\4.16\\16.2\\3.9\\1.56\end{array} $	$\begin{array}{c} 2.39\\ 480\\ 27\\ 99\\ 132\\ 0.14\\ 16.1\\ 34.9\\ 4.75\\ 18.4\\ 4.28\\ 1.46\end{array}$	$\begin{array}{c} 3.46 \\ 129 \\ 36 \\ 111 \\ 138 \\ 0.17 \\ 20 \\ 42.4 \\ 5.84 \\ 23.8 \\ 5.57 \\ 2.56 \end{array}$
$ \begin{array}{r} 17\\ 66\\ 74\\ 0.06\\ 16\\ 31.4\\ 3.54\\ 14\\ 3.22\\ 0.958\\ 2.91\\ \end{array} $	130 14 52 86 0.24 14.3 27.4 3.3 11.7 2.4 0.798 2.14	2.7 148 15 60 88 0.2 13 26.1 3.26 12 2.51 0.818 2.28	3.45 122 18 36 91 0.14 16.2 31.9 3.64 14.3 2.96 1.1 2.69	$\begin{array}{c} 3.26\\ 132\\ 16\\ 50\\ 75\\ 0.08\\ 15.5\\ 31.5\\ 3.64\\ 15.1\\ 2.78\\ 1.01\\ 2.7\end{array}$	$ \begin{array}{c} 1.8\\221\\23\\84\\131\\0.61\\14.3\\30.3\\4.16\\16.2\\3.9\\1.56\\3.98\end{array} $	$\begin{array}{c} 2.39\\ 480\\ 27\\ 99\\ 132\\ 0.14\\ 16.1\\ 34.9\\ 4.75\\ 18.4\\ 4.28\\ 1.46\\ 4.64\end{array}$	$\begin{array}{c} 3.46\\ 129\\ 36\\ 111\\ 138\\ 0.17\\ 20\\ 42.4\\ 5.84\\ 23.8\\ 5.57\\ 2.56\\ 5.8\end{array}$
$ \begin{array}{r} 17\\ 66\\ 74\\ 0.06\\ 16\\ 31.4\\ 3.54\\ 14\\ 3.22\\ 0.958\\ 2.91\\ 0.46\\ \end{array} $	130 14 52 86 0.24 14.3 27.4 3.3 11.7 2.4 0.798 2.14 0.39	$\begin{array}{c} 2.7\\ 148\\ 15\\ 60\\ 88\\ 0.2\\ 13\\ 26.1\\ 3.26\\ 12\\ 2.51\\ 0.818\\ 2.28\\ 0.41\end{array}$	3.45 122 18 36 91 0.14 16.2 31.9 3.64 14.3 2.96 1.1 2.69 0.42	$\begin{array}{c} 3.26\\ 132\\ 16\\ 50\\ 75\\ 0.08\\ 15.5\\ 31.5\\ 3.64\\ 15.1\\ 2.78\\ 1.01\\ 2.7\\ 0.46\end{array}$	$1.8 \\ 221 \\ 23 \\ 84 \\ 131 \\ 0.61 \\ 14.3 \\ 30.3 \\ 4.16 \\ 16.2 \\ 3.9 \\ 1.56 \\ 3.98 \\ 0.74 \\ \end{array}$	$\begin{array}{c} 2.39\\ 480\\ 27\\ 99\\ 132\\ 0.14\\ 16.1\\ 34.9\\ 4.75\\ 18.4\\ 4.28\\ 1.46\\ 4.64\\ 0.84\end{array}$	$\begin{array}{c} 3.46\\ 129\\ 36\\ 111\\ 138\\ 0.17\\ 20\\ 42.4\\ 5.84\\ 23.8\\ 5.57\\ 2.56\\ 5.8\\ 1.06\end{array}$
$ \begin{array}{c} 17\\ 66\\ 74\\ 0.06\\ 16\\ 31.4\\ 3.54\\ 14\\ 3.22\\ 0.958\\ 2.91\\ 0.46\\ 2.8\end{array} $	130 14 52 86 0.24 14.3 27.4 3.3 11.7 2.4 0.798 2.14 0.39 2.47	$\begin{array}{c} 2.7\\ 148\\ 15\\ 60\\ 88\\ 0.2\\ 13\\ 26.1\\ 3.26\\ 12\\ 2.51\\ 0.818\\ 2.28\\ 0.41\\ 2.59\end{array}$	3.45 122 18 36 91 0.14 16.2 31.9 3.64 14.3 2.96 1.1 2.69 0.42 2.48	$\begin{array}{c} 3.26\\ 132\\ 16\\ 50\\ 75\\ 0.08\\ 15.5\\ 31.5\\ 3.64\\ 15.1\\ 2.78\\ 1.01\\ 2.7\\ 0.46\\ 2.88\end{array}$	$1.8 \\ 221 \\ 23 \\ 84 \\ 131 \\ 0.61 \\ 14.3 \\ 30.3 \\ 4.16 \\ 16.2 \\ 3.9 \\ 1.56 \\ 3.98 \\ 0.74 \\ 4.73 \\ \end{array}$	$\begin{array}{c} 2.39\\ 480\\ 27\\ 99\\ 132\\ 0.14\\ 16.1\\ 34.9\\ 4.75\\ 18.4\\ 4.28\\ 1.46\\ 4.64\\ 0.84\\ 5.29\end{array}$	$\begin{array}{c} 3.46\\ 129\\ 36\\ 111\\ 138\\ 0.17\\ 20\\ 42.4\\ 5.84\\ 23.8\\ 5.57\\ 2.56\\ 5.8\\ 1.06\\ 6.78\end{array}$
$ \begin{array}{c} 17\\ 66\\ 74\\ 0.06\\ 16\\ 31.4\\ 3.54\\ 14\\ 3.22\\ 0.958\\ 2.91\\ 0.46\\ 2.8\\ 0.55\\ \end{array} $	$\begin{array}{c} 130\\ 14\\ 52\\ 86\\ 0.24\\ 14.3\\ 27.4\\ 3.3\\ 11.7\\ 2.4\\ 0.798\\ 2.14\\ 0.39\\ 2.47\\ 0.5\end{array}$	$\begin{array}{c} 2.7\\ 148\\ 15\\ 60\\ 88\\ 0.2\\ 13\\ 26.1\\ 3.26\\ 12\\ 2.51\\ 0.818\\ 2.28\\ 0.41\\ 2.59\\ 0.52\end{array}$	3.45 122 18 36 91 0.14 16.2 31.9 3.64 14.3 2.96 1.1 2.69 0.42 2.48 0.49	$\begin{array}{c} 3.26\\ 132\\ 16\\ 50\\ 75\\ 0.08\\ 15.5\\ 31.5\\ 3.64\\ 15.1\\ 2.78\\ 1.01\\ 2.7\\ 0.46\\ 2.88\\ 0.57\end{array}$	$\begin{array}{c} 1.8\\ 221\\ 23\\ 84\\ 131\\ 0.61\\ 14.3\\ 30.3\\ 4.16\\ 16.2\\ 3.9\\ 1.56\\ 3.98\\ 0.74\\ 4.73\\ 0.95\end{array}$	$\begin{array}{c} 2.39\\ 480\\ 27\\ 99\\ 132\\ 0.14\\ 16.1\\ 34.9\\ 4.75\\ 18.4\\ 4.28\\ 1.46\\ 4.64\\ 0.84\\ 5.29\\ 1.12\end{array}$	$\begin{array}{c} 3.46\\ 129\\ 36\\ 111\\ 138\\ 0.17\\ 20\\ 42.4\\ 5.84\\ 23.8\\ 5.57\\ 2.56\\ 5.8\\ 1.06\end{array}$
$ \begin{array}{c} 17\\ 66\\ 74\\ 0.06\\ 16\\ 31.4\\ 3.54\\ 14\\ 3.22\\ 0.958\\ 2.91\\ 0.46\\ 2.8\end{array} $	130 14 52 86 0.24 14.3 27.4 3.3 11.7 2.4 0.798 2.14 0.39 2.47	$\begin{array}{c} 2.7\\ 148\\ 15\\ 60\\ 88\\ 0.2\\ 13\\ 26.1\\ 3.26\\ 12\\ 2.51\\ 0.818\\ 2.28\\ 0.41\\ 2.59\end{array}$	3.45 122 18 36 91 0.14 16.2 31.9 3.64 14.3 2.96 1.1 2.69 0.42 2.48	$\begin{array}{c} 3.26\\ 132\\ 16\\ 50\\ 75\\ 0.08\\ 15.5\\ 31.5\\ 3.64\\ 15.1\\ 2.78\\ 1.01\\ 2.7\\ 0.46\\ 2.88\\ 0.57\\ 1.7\end{array}$	$\begin{array}{c} 1.8\\ 221\\ 23\\ 84\\ 131\\ 0.61\\ 14.3\\ 30.3\\ 4.16\\ 16.2\\ 3.9\\ 1.56\\ 3.98\\ 0.74\\ 4.73\end{array}$	$\begin{array}{c} 2.39\\ 480\\ 27\\ 99\\ 132\\ 0.14\\ 16.1\\ 34.9\\ 4.75\\ 18.4\\ 4.28\\ 1.46\\ 4.64\\ 0.84\\ 5.29\\ 1.12\\ 3.19\end{array}$	$\begin{array}{c} 3.46\\ 129\\ 36\\ 111\\ 138\\ 0.17\\ 20\\ 42.4\\ 5.84\\ 23.8\\ 5.57\\ 2.56\\ 5.8\\ 1.06\\ 6.78\\ 1.4\\ 4\end{array}$

0.28	2 0.265	0.264	0.281	0.294	0.391	0.465	0.597
9.35	7 9.108	7.738	10.125	9.064	5.909	5.127	5.236
57.52	9 77.357	65.667	40.944	50.000	29.043	16.556	14.083
0.60	6 0.707	0.613	0.578	0.694	0.361	0.311	0.261
0.02	7 0.033	0.027	0.033	0.028	0.016	0.010	0.014
9.08	5 8.966	9.367	9.531	8.516	10.000	15.000	4.924
0.95	1 1.070	1.039	1.185	1.120	1.203	0.996	1.369

		1		I	1 0 0				
Sample	Rb (µg/g)	Sr (µg/g)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	$\pm 2\sigma$	T (Ma)	$({}^{87}\text{Sr}/{}^{86}\text{Sr})_{\text{T}}$	Sm (µg/g)	Nd (µg/g)
P1 porphyry									
RC13-39	44.10	640.50	0.199213	0.705022	0.000020	211.6	0.7044	2.29	9.96
RC13-40	36.38	96.01	1.096378	0.707480	0.000032	211.6	0.7042	2.94	15.77
P2E porphyry									
RC13-92	18.75	703.50	0.077095	0.704633	0.000019	206.0	0.7044	3.06	15.31
RC13-107	43.23	320.70	0.390074	0.705837	0.000037	206.0	0.7047	2.97	14.70
P2L porphyry									
RC13-32	27.07	509.50	0.153691	0.705103	0.000035	203.6	0.7047	2.65	12.77
RC13-33	47.40	846.00	0.162098	0.704873	0.000017	203.6	0.7044	2.63	12.87
P3 porphyry									
RC13-77	37.47	531.70	0.203855	0.704991	0.000016	201.7	0.7044	2.80	14.06
RC13-78	25.78	427.70	0.174403	0.704748	0.000024	201.7	0.7042	2.67	13.03
Mafic to andesitic dike	!								
RC13-97	23.90	385.10	0.179519	0.704792	0.000020	200.0	0.7043	6.22	25.72
RC13-79	15.73	252.40	0.180303	0.704741	0.000030	200.0	0.7042	4.81	20.18

Table 3. Whole-rock Nd-Sr isotopic results for the porphyry and basaltic to andesitic dike rocks

Notes: ${}^{1}N/A =$ no data; the used ages for calculations are from zircon U-Pb dating results for porphyry rocks, and assuming $T_{DM1} = (1/\lambda) \times Ln[(({}^{143}Nd/{}^{144}Nd)sample - ({}^{143}Nd/{}^{144}Nd)DM)/(({}^{147}Sm/{}^{144}Nd)sample - ({}^{147}Sm/{}^{144}Nd)DM + 1)]$. See Appendia and depleted mantle. See the Digital Appendix Table A1 for sample locations.

at Red Chris	1					
¹⁴⁷ Sm/ ¹⁴⁴ Nd	(¹⁴³ Nd/ ¹⁴⁴ Nd) ₀	± 2σ	$\epsilon_{Nd}(t=0)$	(¹⁴³ Nd/ ¹⁴⁴ Nd) _T	T _{DM1} (Ga)	$\boldsymbol{\epsilon}_{Nd}(T)$
0.139132	0.512732	0.000009	1.8	0.512540	0.88	3.4
0.112591	0.512672	0.000010	0.7	0.512516	0.74	2.9
0.120965	0.512659	0.000007	0.4	0.512496	0.83	2.4
0.122321	0.512700	0.000010	1.2	0.512535	0.77	3.2
0.125462	0.512713	0.000008	1.5	0.512546	0.78	3.3
0.123603	0.512713	0.000010	1.5	0.512548	0.76	3.4
0.120209	0.512686	0.000012	0.9	0.512527	0.78	2.9
0.123767	0.512727	0.000010	1.7	0.512564	0.74	3.6
0.146221	0.512751	0.000006	2.2	0.512559	N/A	3.5
0.144047	0.512766	0.000011	2.5	0.512578	N/A	3.9

200 Ma for basaltic to andesitic dikes based on geological relationship, see text for details.

ix 1 for the ¹⁴³Nd/¹⁴⁴Nd and ¹⁴⁷Sm/¹⁴⁴Nd values of present day chondrite

Porphyry Phase	Sample	Whole rock SiO ₂ (wt. %) ¹	Whole rock P ₂ O ₅ (wt. %) ¹	AST ² (°C)	Apatite SO3 (wt. %) (n) ³ [maximum, minimum]	Apatite Cl (wt. %) (n) ³	Apatite F (wt. %) (n) ³	Apatite Molar S/Cl (n) ³	Apatite Molar Cl/F (n) ³	Average magmatic S content (wt. %) ⁴ [maximum]	Average magmatic S content (wt. %) ⁵ [maximum]	Average magmatic Cl content (wt. %) ⁶
P1	RC13-39	59.93	0.31	921	$\begin{array}{c} 0.11 \pm 0.03 \; (34) \\ [0.05, 0.19] \end{array}$	0.51 ± 0.3 (34)	3.64 ± 0.48 (34)	0.13 ± 0.08 (34)	0.08 ± 0.06 (34)	0.010 ± 0.003 [0.017]	0.002 ± 0.0004 [0.003]	0.63 ± 0.38
DOE	RC13-13 ⁷	63.33	0.25	932	0.28 ± 0.10 (19) [0.11, 0.46]	1.47 ± 0.22 (19)	2.32 ± 0.29 (19)	0.09 ± 0.03 (19)	0.35 ± 0.10 (19)	0.030 ± 0.010 [0.050]	0.006 ± 0.004 [0.015]	1.84 ± 0.27
P2E	RC13-107	59.25	0.30	909	0.32 ± 0.17 (15) [0.18, 0.80]	0.82 ± 0.10 (15)	2.36 ± 0.30 (15)	0.17 ± 0.09 (15)	0.19 ± 0.05 (15)	0.031 ± 0.017 [0.078]	0.014 ± 0.031 [0.012]	1.02 ± 1.13
	RC13-26	58.08	0.30	892	0.30 ± 0.22 (48) [0.07, 1.2]	1.57 ± 0.33 (48)	2.23 ± 0.22 (48)	0.11 ± 0.20 (48)	0.39 ± 0.10 (48)	0.017 ± 0.013 [0.070]	0.0490 ± 0.2380 [1.6168]	1.96 ± 0.41
P2L	RC13-33	58.61	0.31	905	$\begin{array}{c} 0.28 \pm 0.13 \ (52) \\ [0.14, 0.79] \end{array}$	1.37 ± 0.17 (52)	2.40 ± 0.21 (52)	0.09 ± 0.04 (52)	0.31 ± 0.05 (52)	0.020 ± 0.009 [0.056]	0.008 ± 0.017 [0.117]	1.71 ± 0.21
P3	RC13-78	59.86	0.33	928	$0.03 \pm 0.01(13)$ [0.02, 0.05]	0.02 ± 0.02 (17)	3.60 ± 0.40 (17)	0.16 ± 0.09 (13)	0.01 ± 0.01 (17)	0.003 ± 0.001 [0.005]	0.001 ± 0.0001 [0.001]	0.12 ± 0.07

Table 4. Estimates of magmatic temperature and sulfur-chlorine content from igneous apatite and whole-rock compositions

Notes:

1. Normalized to 100 wt. % (Digital Appendix Table A3).

2. Apatite saturation temperature (AST) calculated from whole-rock SiO₂ and P₂O₅ concentrations using the equation of Piccoli and Candela (1994).

3. Average of all igneous apatite analyses (Digital Appendix Table A8).

4. Estimated from apatite SO₃ contents (Digital Appendix Table A8) using the temperature-dependent apatite-melt partition coefficient formula of Peng et al. (1997): $lnK_D = 21130/T - 16.2$ (where T is in Kelvin).

5. Estimated from apatite SO₃ contents (Digital Appendix Table A8) using the temperature-dependent apatite–melt partition coefficient formula of Parat et al. (2011): SO₃ apatite (wt. %) = $0.157 \times \ln SO_3$ glass (melt, wt.%) + 0.9834 (r² = 0.62).

6. Estimated from apatite Cl contents (Digital Appendix Table A8) using the apatite-melt partition coefficient value (mass ratios) of Mathez and Webster (2005), which is 0.8 for basaltic melt (51.1 wt. % SiO₂) and tends to be similar for rhyodacitic melt at 200 MPa (Webster et al., 2009).

7. SiO₂ and P₂O₅ compositions for this sample taken from sample RC13-92 with same lithology as RC13-13 but less altered (Digital Appendix Table A3).

Digital Appendix Tables A1-A9

Click here to access/download Electronic Appendix (Excel etc.) Appendix tables.xlsx Appendix 1

Click here to access/download Electronic Appendix (Excel etc.) Appendix 1 updated.docx