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Abstract: The Red Chris porphyry Cu-Au deposit is located in the Stikinia island-arc terrane in
northwest British Columbia. It is hosted by the Red Stock, which has four phases of
porphyry intrusions: P1, P2E, P2L, and P3. New U-Pb dating of zircon shows that
these intrusions were emplaced at 211.6 ± 1.3 Ma (MSWD = 0.85), 206.0 ± 1.2 Ma
(MSWD = 1.5), 203.6 ± 1.8 Ma (MSWD = 1.5), and 201.7 ± 1.2 Ma (MSWD = 1.05),
respectively. The ore-forming event at Red Chris was a short-lived event at 206.1 ± 0.5
Ma (MSWD = 0.96; weighted average age of three Re-Os analyses), implying a
duration of <1 m.y., as defined by the uncertainty range. This mineralization age
coincides with the emplacement age of the P2E porphyry, and is consistent with cross-
cutting relationships that suggest P2E was the main syn-mineralization intrusion.
Zircons from P1 to P3 porphyry rocks have consistently high EuN/EuN* ratios (mostly >
0.4), indicating that their associated magmas were moderately oxidized. The magmatic
water contents estimated from plagioclase and amphibole compositions suggest H2O
contents of ~5 wt. %. Taken together, the P1 to P3 porphyries are interpreted to be
moderately oxidized and hydrous.
The four phases of porphyries are differentiated by sulfur and chlorine contents. The
SO3 contents of igneous apatite microphenocrysts from the mineralization-related P2
porphyries are higher (P2E: 0.30 ± 0.13 wt. %, n = 34; P2L: 0.29 ± 0.18 wt. %, n = 100)
than those from the pre-mineralization P1 (0.11 ± 0.03 wt. %, n = 34) and post-
mineralization P3 porphyries (0.03 ± 0.01 wt. %, n = 13). The chlorine contents in
apatite grains from the P2E and P2L porphyries are 1.18 ± 0.37 (n = 34) and 1.47 ±
0.28 wt. % (n = 100), also higher than those from P1 (0.51 ± 0.3 wt. % Cl, n = 34) and
P3 (0.02 ± 0.02 wt. % Cl, n = 17). These results imply that the sulfur and chlorine
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contents of the P2E and P2L magmas were higher than in the P1 and P3 magmas,
suggesting that elevated magmatic S-Cl contents in the P2 porphyries may have been
important for ore-formation. Although the process that caused the increase in sulfur
and chlorine is not clear, reverse zoning seen in plagioclase phenocrysts from the P2
porphyry, and the occurrence of more mafic compositions in P2L suggest that recharge
of the deeper magma chamber by a relatively S-Cl-rich mafic magma may have
triggered the ore-forming hydrothermal event.
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Abstract 14 

The Red Chris porphyry Cu-Au deposit is located in the Stikinia island-arc terrane in 15 

northwest British Columbia. It is hosted by the Red Stock, which has four phases of 16 

porphyry intrusions: P1, P2E, P2L, and P3. New U-Pb dating of zircon shows that these 17 

intrusions were emplaced at 211.6 ± 1.3 Ma (MSWD = 0.85), 206.0 ± 1.2 Ma (MSWD = 18 

1.5), 203.6 ± 1.8 Ma (MSWD = 1.5), and 201.7 ± 1.2 Ma (MSWD = 1.05), respectively. 19 

The ore-forming event at Red Chris was a short-lived event at 206.1 ± 0.5 Ma (MSWD = 20 

0.96; weighted average age of three Re-Os analyses), implying a duration of <1 m.y., as 21 

defined by the uncertainty range. This mineralization age coincides with the emplacement 22 
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 2 

age of the P2E porphyry, and is consistent with cross-cutting relationships that suggest 23 

P2E was the main syn-mineralization intrusion.  24 

Zircons from P1 to P3 porphyry rocks have consistently high EuN/EuN
* ratios (mostly > 25 

0.4), indicating that their associated magmas were moderately oxidized. The magmatic 26 

water contents estimated from plagioclase and amphibole compositions suggest H2O 27 

contents of ~5 wt. %. Taken together, the P1 to P3 porphyries are interpreted to be 28 

moderately oxidized and hydrous. 29 

The four phases of porphyries are differentiated by sulfur and chlorine contents. The 30 

SO3 contents of igneous apatite microphenocrysts from the mineralization-related P2 31 

porphyries are higher (P2E: 0.30 ± 0.13 wt. %, n = 34; P2L: 0.29 ± 0.18 wt. %, n = 100) 32 

than those from the pre-mineralization P1 (0.11 ± 0.03 wt. %, n = 34) and post-33 

mineralization P3 porphyries (0.03 ± 0.01 wt. %, n = 13). The chlorine contents in apatite 34 

grains from the P2E and P2L porphyries are 1.18 ± 0.37 (n = 34) and 1.47 ± 0.28 wt. % 35 

(n = 100), also higher than those from P1 (0.51 ± 0.3 wt. % Cl, n = 34) and P3 (0.02 ± 36 

0.02 wt. % Cl, n = 17). These results imply that the sulfur and chlorine contents of the 37 

P2E and P2L magmas were higher than in the P1 and P3 magmas, suggesting that 38 

elevated magmatic S-Cl contents in the P2 porphyries may have been important for ore-39 

formation. Although the process that caused the increase in sulfur and chlorine is not 40 

clear, reverse zoning seen in plagioclase phenocrysts from the P2 porphyry, and the 41 

occurrence of more mafic compositions in P2L suggest that recharge of the deeper 42 

magma chamber by a relatively S-Cl-rich mafic magma may have triggered the ore-43 

forming hydrothermal event. 44 
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 3 

Introduction 46 

Compared to the relatively long-lived magmatic systems represented by a composite 47 

batholith (up to 10 m.y.; Matzel et al., 2006; Walker et al., 2007; Harris et al., 2008; 48 

Schaltegger et al., 2009; Paterson et al., 2011; Rezeau et al., 2016), the life spans of 49 

porphyry magmatic-hydrothermal ore-forming events are much shorter, probably on the 50 

order of several hundred thousand years (up to 1 m.y.; Cathles et al., 1997; Hayba and 51 

Ingebritsen, 1997; Masterman et al., 2004; von Quadt et al., 2011; Weis et al., 2012; 52 

Chiaradia et al., 2013; Correa et al., 2016; Li et al., 2017). In many large magmatic 53 

systems, porphyry formation occurs at a relatively late stage in the system’s evolution 54 

(Creasey, 1977; Titley and Beane, 1981; Candela, 1992; Richards, 2003; Rohrlach and 55 

Loucks, 2005; Yang et al., 2009; Correa et al., 2016). 56 

Although the multiple phases of porphyry stocks are commonly broadly cogenetic, 57 

they may be derived from packets of magma that evolved at different crustal levels over 58 

the history of the larger magmatic system (Annen et al., 2006). Understanding why ore-59 

formation is only associated with a specific intrusive suite within these broader systems, 60 

and at discrete, commonly singular times, is a focus of this study. 61 

It is recognized that magmas with high sulfur (>1000 ppm), chlorine (>3000 ppm), 62 

and water (>4 wt. %) contents as well as relatively high oxidation states (higher than the 63 

fayalite-magnetite-quartz buffer, FMQ, by 1–2 log fO2 units) are fertile for the 64 

generation of magmatic-hydrothermal porphyry Cu deposits (Burnham, 1979; Candela, 65 

1992; Richards, 2003, 2009, 2011, 2015; Wallace, 2005; Chambefort et al., 2008; Simon 66 

and Ripley, 2011; Chiaradia et al., 2012; Loucks, 2014; Hou et al., 2015; Lu et al., 2015, 67 

2016; Chelle-Michou and Chiaradia, 2017). These ingredients are essential for the 68 
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 4 

transport of Cu (and Au) both in the magma (Zajacz et al., 2012) and in exsolved high 69 

temperature, SO2-rich, saline magmatic fluids (Candela and Holland, 1984; Zajacz et al., 70 

2011). However, whereas many magmas achieve such compositions, ore formation is a 71 

relatively rare and discrete event in such systems. 72 

Various mechanisms have been proposed that might trigger an ore forming event 73 

from a fertile magma source, including recharge of the magma chamber by hot, sulfur-74 

rich melts (Hattori, 1993; Keith et al., 1997; Larocque et al., 2000; Hattori and Keith, 75 

2001; Halter et al., 2005; Stern et al., 2007; Nadeau et al., 2010, 2016; Wilkinson, 2013; 76 

Tapster et al., 2016; Zhang and Audétat, 2017), fluxing by sulfur gases (Blundy et al., 77 

2015),  or increasing the water and oxidation state of magmas during long-term 78 

fractionation in deep magma chambers (Ballard et al., 2002; Wang et al., 2014a, 2014b; 79 

Dilles et al., 2015; Lu et al., 2015, 2016). The Red Chris porphyry Cu-Au deposit 80 

provides an opportunity to test these hypotheses, because ore-formation occurred at a 81 

discrete and relatively late stage in the ~10 m.y. history of the associated magmatic 82 

system. 83 

The Red Chris deposit is located in northwest British Columbia, and contains 84 

measured and indicated resources of 1,035 million metric tonnes of ore grading 0.35% 85 

Cu and 0.35 g/t Au (Gillstrom et al., 2012). Pre-, syn-, and post-mineralization porphyry 86 

intrusions have been recognized based on detailed core logging and petrographic work 87 

(Rees et al., 2015), with mineralization occurring in a singular episode during this 88 

magmatic history. In this paper, we present detailed geochronological and geochemical 89 

data for the porphyry phases at Red Chris, and show that they have similar bulk 90 

compositions, including all being relatively hydrous and oxidized. However, the syn-91 
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 5 

mineralization porphyry is characterized by plagioclase with reverse zoning and apatite 92 

with relatively high sulfur and chlorine contents. We interpret these data to indicate that 93 

high magmatic S and Cl contents, in addition to high H2O contents and oxidation state, 94 

were critical for Cu-Au ore-formation at Red Chris. We speculate that there was an 95 

injection of relatively mafic (hotter, and more S- and Cl-rich) but cogenetic magma into 96 

the mid–upper crustal source magma chamber approximately coincident with 97 

emplacement of the syn-mineralization porphyry.  98 

 99 

Geological Setting 100 

Red Chris is situated within the island-arc terrane of Stikinia in the Intermontane Belt 101 

of the Canadian Cordillera of British Columbia (Fig. 1; Monger and Irving, 1980; Nelson 102 

and Colpron, 2007; Nelson et al., 2013). Stikinia consists primarily of Mesozoic arc-103 

related igneous and sedimentary rocks, formed in response to subduction processes prior 104 

to accretion to the ancestral North American margin in the Middle Jurassic (Gabrielse, 105 

1991; Ricketts et al., 1992; Lang et al., 1995; Mihalynuk et al., 2004; Nelson and Colpron, 106 

2007; Logan and Mihalynuk, 2014). In northwestern Stikinia, arc assemblages comprise 107 

the Middle to Late Triassic Stuhini Group, unconformably overlain by Late Triassic and 108 

Early to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group (Fig. 2; 109 

Brown et al., 1991; Gabrielse, 1991; Marsden and Thorkelson, 1992; Dostal et al., 1999; 110 

Gagnon et al., 2012; Nelson et al., 2013; Logan and Mihalynuk, 2014).  The Hazelton 111 

Group is overlain by sedimentary rocks of the syn- to post-accretion Middle Jurassic to 112 

Early Cretaceous Bowser Lake Group. 113 
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 6 

Several porphyry Cu±Au±Mo deposits occur in the region, hosted by Late Triassic to 114 

Early Jurassic arc-related plutons (Fig. 1), including Red Chris which formed in the Late 115 

Triassic Red Stock. Collectively, these regional intrusions have ages ranging from ~222 116 

Ma to ~180 Ma, recording much of the pre-accretionary history of Stikinia (Lang et al., 117 

1995; McMillan et al., 1995; Scott et al., 2008; Nelson et al., 2013; Logan and Mihalynuk, 118 

2014). A significant percentage of the known porphyry Cu deposits, including Red Chris,  119 

formed during a 6-m.y. pulse of magmatism between 206 and 200 Ma, with compositions 120 

ranging from calc-alkaline to strongly alkaline (Lang et al., 1995; McMillan et al., 1995; 121 

Nelson et al., 2013; Bissig and Cooke, 2014; Logan and Mihalynuk, 2014; Micko et al., 122 

2014; Pass et al., 2014). 123 

 124 

Geology of the Red Chris Cu-Au deposit 125 

The Red Chris Cu-Au deposit was discovered in the 1950s and explored 126 

intermittently in subsequent decades, with mining beginning in 2015 (Ash et al., 1995, 127 

1996; Newell and Peatfield, 1995; Baker et al., 1997; Gillstrom et al., 2012; Rees et al., 128 

2015).  The deposit is hosted by the Red Stock, which is the largest of a suite of Late 129 

Triassic to Early Jurassic stocks and dikes that intrude the Stuhini Group in the district 130 

(Fig. 2; Friedman and Ash, 1997; Rees et al., 2015). The stock is tabular, elongate in an 131 

east to northeast direction, and approximately 6.5 km long by 300 to 1500 m wide (Fig. 2; 132 

Ash et al., 1995; Baker et al., 1997; Gillstrom et al., 2012). It has a steep northern contact 133 

against Stuhini Group country rocks, but its southeastern margin against Hazelton and 134 

Bowser Lake Group strata is poorly exposed, and has locally been truncated by the NE-135 
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 7 

trending, steeply SE-dipping South Boundary fault (Fig. 2). This fault, and the East zone 136 

fault within the stock, probably reflect a long-lived and deep structure which guided the 137 

emplacement of the intrusions, mineralization, and subsequent deformation of the Red 138 

Stock. 139 

The Red Stock is a composite intrusion consisting of several phases of porphyritic 140 

diorite to quartz monzonite. Mineralogically, the rocks consist of medium- to coarse-141 

grained amphibole, plagioclase, and minor biotite phenocrysts, with K-feldspar, 142 

plagioclase, and quartz in the groundmass. Based on compositional and textural 143 

differences and crosscutting relationships, Rees et al. (2015) identified four distinct 144 

porphyry phases, P1, P2, P3, and P4. The P1 porphyry is a pre-mineralization 145 

leucodiorite which accounts for the main volume of the Red Stock, and is distinguished 146 

by sparse anhedral to subhedral amphibole (~10%) and abundant plagioclase (30−40 147 

vol. %) phenocrysts with lengths up to 4 mm. The groundmass is composed of fine-148 

grained plagioclase and minor quartz (Fig. 3A).  149 

The P2 porphyry is a syn-mineralization quartz monzonite intrusion which is largely 150 

unexposed at surface but is observed in drill core to have intruded P1 at depth. It has been 151 

subdivided by Rees et al. (2015) into early (P2E), intermediate (P2I), and late (P2L) 152 

phases based on vein truncations and chilled margins. The P2 porphyries are generally 153 

characterized by tabular subhedral to euhedral amphibole (10−15 vol. %) and plagioclase 154 

(35−50 vol. %) phenocrysts. The amphibole crystals are mostly euhedral and larger than 155 

in P1, with lengths up to 10 mm. The groundmass comprises K-feldspar, plagioclase, and 156 

quartz. In this paper, the P2 subphases are simplified to an early stage (P2E; Fig. 3B) and 157 

late stage porphyry (P2L, probably corresponding to P2I and P2L of Rees et al., 2015; 158 
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 8 

Fig. 3C). The P2E porphyry has a crowded plagioclase texture with slightly smaller 159 

amphibole phenocrysts than P2L. In contrast, the P2L porphyry is relatively fresh and 160 

occurs only as small dikes (Fig. 4).  161 

The post-mineralization P3 monzonite porphyry is much less abundant. It is texturally 162 

similar to the P2L porphyry with abundant amphibole phenocrysts (15−20 vol. %), but is 163 

distinguished by the absence of quartz in the groundmass, which is mainly composed of 164 

K-feldspar and plagioclase (Fig. 3D). Although no crosscutting relationships between the 165 

P3 and P2L porphyries have been found, the zircon U-Pb dating results (see below) 166 

confirm that P3 is younger. The P4 porphyry occurs as rare dikes and is typified by 167 

sparse fine-grained amphibole phenocrysts (Rees et al., 2015). No P4 samples were 168 

included in this study. 169 

Several younger basaltic to andesitic dikes with sparse amphibole phenocrysts cut the 170 

Red Stock and the Stuhini Group host rocks (Figs. 3E and F). They postdate the 171 

porphyry-stage Cu-Au mineralization (Baker et al., 1997; Rees et al., 2015), but are 172 

mildly to strongly altered (Figs. 3E and F) and are crosscut by late quartz-calcite-pyrite 173 

veins.  174 

    Hydrothermal alteration 175 

Alteration at Red Chris has been described previously by Baker et al. (1997), 176 

Gillstrom et al. (2012), Norris (2012) and Rees et al. (2015). The alteration assemblages 177 

are typical of calc-alkaline porphyry Cu systems (Lowell and Guilbert, 1970; Seedorff et 178 

al., 2005; Sillitoe, 2010), and consists of early stage potassic alteration, overprinted by 179 

chlorite–sericite, sericitic (phyllic), intermediate argillic, and minor late stage propylitic 180 
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 9 

alteration (see paragenetic diagram in Rees et al., 2015). Potassic alteration is expressed 181 

by replacement of amphibole phenocrysts by secondary biotite, plagioclase replaced or 182 

rimmed by secondary K-feldspar, and by K-feldspar veins (Figs. 3B and 5A−C). It is best 183 

preserved in the deeper levels of the deposit where it is spatially associated with the syn-184 

mineralization P2E porphyry; however it locally extends into pre-mineralization P1 185 

porphyry wall rocks (Fig. 4). The P2L and P3 porphyries were only weakly affected by 186 

potassic alteration (Rees et al., 2015). 187 

Chlorite–sericite alteration is characterized by chlorite replacing secondary biotite 188 

(Fig. 5C) and sericite replacing feldspar (Fig. 5D). At shallower levels in the system, 189 

potassic alteration is completely overprinted by phyllic and intermediate argillic 190 

alteration (Gillstrom et al., 2012), characterized by sericite after plagioclase (phyllic; Fig. 191 

5D), and illite and kaolinite (intermediate argillic; Norris, 2012). This lower temperature 192 

alteration overprint affects all the porphyry phases, but is less pervasive at depth. 193 

Propylitic alteration at Red Chris is mainly observed as minor chlorite and epidote in 194 

the outer part of the Red Stock, and extends for 100 to 200 m into the Stuhini volcanic 195 

country rocks (Gillstrom et al., 2012; Norris, 2012; Rees et al., 2015). 196 

 Vein styles and mineralization 197 

Detailed descriptions of vein styles at Red Chris have been given by Norris (2012) 198 

and Rees et al. (2015).  A-type quartz veins (Gustafson and Hunt, 1975) and stockworks 199 

are associated with potassic alteration and host the bulk of the copper-gold mineralization. 200 

These veins are most intensely developed around the apex of the principal P2 porphyry 201 

body, but extend for hundreds of metres into the P1 wall rocks. Typical A veins contain 202 
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 10 

K-feldspar, biotite, chalcopyrite, bornite, and magnetite, with K-feldspar alteration halos 203 

(Figs. 5A−B and G). Copper sulfides also occur as disseminations in the host porphyry. 204 

Bornite is more abundant in the apex of P2E, and progressively decreases outwards 205 

where chalcopyrite is the dominant Cu-sulfide (Norris, 2012; Rees et al., 2015).  At 206 

shallower depths in the preserved system, early bornite was sulfidized to chalcopyrite, 207 

and pyrite becomes increasingly dominant. Rees et al. (2015) delineated a high-sulfur 208 

contour (>4% S) in section above which total sulfide (dominantly pyrite) ranges from 4 to 209 

10%.  Microscopic native gold and electrum occur as inclusions in bornite (Rees et al., 210 

2015). The grades of Cu and Au are positively correlated with quartz vein density 211 

(Gillstrom et al., 2012). In high-grade zones at depth (e.g., 4.12 % Cu and 8.83 g/t Au in 212 

hole 09-350 from 540 to 692.5 m down-hole depth), vein abundance exceeds 80 vol. % in 213 

sheeted arrays (Fig. 5G; Rees et al., 2015).  214 

B- and D-type veins (Gustafson and Hunt, 1975) are relatively minor at Red Chris, 215 

and host only minor amounts of Cu sulfides. B quartz veins are characterized by 216 

relatively straight margins with sulfide centerlines (pyrite and minor chalcopyrite, and 217 

locally molybdenite; Fig. 5E). Pyritic D veins have variable widths (1 to 10 mm; Fig. 5F).  218 

Carbonate and minor chlorite veins cut all the earlier veins and are generally barren 219 

(Norris, 2012). 220 

Sampling and Analytical Methods 221 

Samples of the P1, P2E, P2L, and P3 porphyries were collected from drill core, and 222 

descriptions and locations are listed in Digital Appendix Table A1; sampled drill hole 223 

locations are also shown on Figure 2. Fourteen least-altered samples of the porphyry 224 

intrusions and three samples of late basaltic to andesitic dikes were selected for whole-225 
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 11 

rock geochemical analysis. Eight of these samples were selected for determination of Nd-226 

Sr isotopes. Three samples of quartz-carbonate-pyrite-molybdenite-chalcopyrite veins 227 

(Fig. 5H) were collected for Re-Os dating. Four samples of the P1 (RC13-40), P2E 228 

(RC13-107), P2L (RC13-33), and P3 (RC13-78) intrusions were selected for zircon U-Pb 229 

dating, Hf isotopic, and trace element analyses. Details of analytical methods are 230 

provided in Appendix 1. 231 

 232 

Electron microprobe analyses 233 

Primary igneous minerals such as plagioclase and amphibole in the porphyry rocks 234 

are widely altered to K-feldspar, sericite, and chlorite (Figs. 3A–B and 5C–D). However, 235 

a few least-altered samples of the P2E, P2L, and P3 porphyries contained unaltered 236 

plagioclase and amphibole grains. In addition, igneous apatite grains were typically 237 

preserved as inclusions within plagioclase and amphibole phenocrysts. Compared with 238 

hydrothermal apatite (acicular crystals intergrown with other hydrothermal minerals such 239 

as quartz, sericite, chlorite, and sulfides), igneous apatite grains typically showed stubby 240 

prismatic habits, as described by Richards et al. (2017). Detailed analytical methods are 241 

described in Appendix 1. 242 

 243 

Re-Os molybdenite dating 244 

Three samples of molybdenite from quartz-carbonate-pyrite-molybdenite-chalcopyrite 245 

veins were collected from the Gully zone (RC13-88 and RC13-103), and the East zone 246 

(RC13-82; Digital Appendix Table A1; Fig. 2). A molybdenite mineral separate was 247 

produced for each sample by metal-free crushing followed by gravity and magnetic 248 
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 12 

concentration methods. Dating was conducted at the Canadian Centre for Isotopic 249 

Microanalysis at the University of Alberta, Canada, using methods described in 250 

Appendix 1.  251 

 252 

Geochronological Results 253 

Zircon U-Pb ages of the Red Stock 254 

Zircon U-Pb results are presented in Digital Appendix Table A2 and illustrated in 255 

Figure 6; all ages are illustrated and reported with 2 errors. All the zircons show 256 

oscillatory zoning under BSE imaging. Sample RC13-40 was collected from P1 257 

leucodiorite porphyry (Digital Appendix Table A1). Analyzed zircon grains form a 258 

tightly clustered age population, mostly with low common lead contents. Except for one 259 

inherited or xenocryst zircon (apparent 206Pb/238U age = 261 ± 12 Ma), the twenty-seven 260 

grains yielded an intercept age of 211.6 ± 1.3 Ma (MSWD = 0.85; Fig. 6A), similar to the 261 

weighted mean 206Pb/238U age of 211.8 ± 1.3 Ma (MSWD = 0.8). 262 

Sample RC13-107 was collected from P2E quartz monzonite porphyry (Digital 263 

Appendix Table A1). One xenocrystic zircon grain yielded an older age (apparent 264 

206Pb/238U age = 316 ± 10 Ma), but the other twenty-nine zircons contained low amounts 265 

of common lead and intersected the concordia line at 206.0 ± 1.2 Ma (MSWD = 1.5; Fig. 266 

6B), in good agreement with the weighted mean 206Pb/238U age of 205.9 ± 1.5 Ma 267 

(MSWD = 1.5). 268 

Sample RC13-33 was collected from P2L quartz monzonite porphyry (Digital 269 

Appendix Table A1). Two xenocryst grains were found among thirty-one analyzed 270 

zircons, with 206Pb/238U ages of 298 ± 16 Ma and 441 ± 13 Ma. The remaining twenty-271 
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 13 

nine zircon grains had low common lead contents and yielded an intercept age of 203.6 ± 272 

1.8 Ma (MSWD = 1.5; Fig. 6C), similar to the weighted mean 206Pb/238U age of 203.3 ± 273 

1.5 Ma (MSWD = 1.04). 274 

Sample RC13-78 was collected from P3 monzonite porphyry (Digital Appendix Table 275 

A1). Thirty-two zircons with low common lead contents yielded an intercept age of 201.7 276 

± 1.2 Ma (MSWD = 1.05; Fig. 6D), and a weighted mean 206Pb/238U age of 201.6 ± 1.2 277 

Ma (MSWD = 1.04). 278 

All of the zircons have magmatic textures, and the intercept ages above are interpreted 279 

to be the crystallization ages of the individual intrusions. The ages are consistent with 280 

crosscutting relationships described by Rees et al. (2015), and define a 10 m.y. span of 281 

magmatism from 211.6 ± 1.3 Ma (P1) to 201.7 ± 1.2 Ma (P3). The relative ages of the 282 

two samples of syn-mineralization P2 porphyry are consistent with crosscutting 283 

relationships, but the dates (P2E: 206.0 ± 1.2 Ma; P2L: 203.6 ± 1.8 Ma) overlap within 284 

the 2 uncertainty. Hence the apparent 2.4 m.y. age difference is not statistically robust, 285 

and their true ages may in fact be closer as suggested by their close relationship with ore 286 

mineral paragenesis. 287 

 288 

Re-Os molybdenite ages 289 

The Re-Os model ages for three samples are shown in Table 1. They have relatively 290 

high rhenium contents ranging from 497.8 to 1771 ppm, with common 187Os of 1078 to 291 

3821 ppb. Although the three samples are from two different mineralization zones (i.e., 292 

East and Gully zones; Fig. 2), they yielded indistinguishable model ages within 293 

uncertainty: 206.5 ± 0.8 Ma, 205.7 ± 0.9 Ma, and 205.9 ± 1.1 Ma (±2 s.d.). The small 294 
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grain size of the molybdenite (< 1 mm) minimizes the risk of decoupling between Re and 295 

187Os in these samples (caused by diffusion: Selby and Creaser, 2004). The results 296 

yielded a weighted average age for all three samples of 206.1 ± 0.5 Ma (95% confidence 297 

level with MSWD = 0.96; Fig. 7). This age is consistent with the age of the syn-298 

mineralization P2E porphyry (206.0 ± 1.2 Ma). 299 

 300 

Geochemical and Isotopic Results 301 

Whole-rock major and trace elements 302 

Whole-rock major and trace element compositions for fourteen samples of the Red 303 

Stock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3 304 

porphyry intrusions have relatively homogeneous major element compositions, but have 305 

moderate to high loss-on-ignition values (LOI: 2.3 to 10.9%) reflecting varying degrees 306 

of potassic and sericitic alteration. On an LOI-free basis, they are mostly intermediate 307 

composition (SiO2 = 56.71–63.16 wt. %; Digital Appendix Table A3), and straddle the 308 

boundary between granodiorite (diorite) and syenite on a Zr/Ti versus Nb/Y diagram (Fig. 309 

8). The late basaltic–andesitic dikes have distinct compositions, and plot in the field of 310 

diorite and gabbro on Figure 8. On Harker-type diagrams of SiO2 versus selected major 311 

elements, the alkali elements (K2O and Na2O; Figs. 9A–B) show significant scatter, 312 

likely due to hydrothermal alteration, as confirmed by a rough correlation between alkali 313 

contents and LOI. However, other elements such as Fe2O3, MgO, TiO2, and Al2O3 show 314 

roughly correlated trends with SiO2 (Figs. 9E–F), suggesting a broadly cogenetic suite, 315 

with the exception of the late basaltic to andesitic dikes, which do not plot on the same 316 

trends for K2O and TiO2. 317 
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On primitive mantle-normalized extended trace element and chondrite-normalized 318 

rare earth element (REE) diagrams (Figs. 10A–B), the porphyritic rocks show largely 319 

indistinguishable patterns consistent with typical subduction-related igneous rocks 320 

(Hawkesworth et al., 1993; Pearce, 1996), characterized by large-ion lithophile element 321 

(LILEs: Rb, Ba, Th, U, K) and light rare earth element enrichments (LREE), low 322 

concentrations of high field strength elements (HFSE: Nb, Ta, Zr, Hf, and Ti), relative 323 

depletions in compatible elements and middle to heavy rare earth elements (MREE, 324 

HREE; La/Yb = 8.9 ± 1.7, n = 14), and flat to listric-shaped patterns from MREE to 325 

HREE. Such listric patterns likely reflect amphibole fractionation from hydrous magmas, 326 

and are an indication of magma fertility for porphyry ore formation (Richards and 327 

Kerrich, 2007). Most samples have flat or slightly positive Eu anomalies with EuN/EuN
* 328 

of 1.1 ± 0.15 (n = 14; Fig. 10B), also likely reflecting amphibole fractionation and lack of 329 

plagioclase fractionation. 330 

Three samples of late basaltic to andesitic dikes show distinct trace element patterns, 331 

especially for HFSE and REE, which are enriched relative to the porphyries; they are 332 

clearly not cogenetic with the earlier porphyries. 333 

Excluding two samples with high Sr values that may reflect calcite veining, the 334 

porphyries have relatively high Sr/Y (53 ± 23, n = 12) and V/Sc ratios (9.0 ± 0.9, n = 14), 335 

which overlap the range of fertile rocks for porphyry formation (Richards and Kerrich, 336 

2007; Loucks, 2013, 2014). 337 

 338 

Whole-rock Nd-Sr isotopes 339 
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Nd and Sr isotopic compositions of the porphyritic rocks are very homogeneous (Table 340 

4 and Fig. 11). They show a narrow range of initial Sr isotopic ratios from 0.7042 to 341 

0.7047 ((87Sr/86Sr)t = 0.7044 ± 0.0002, n = 8), with relatively high ƐNd(t) values from 2.4 342 

to 3.6 (average = +3.1 ± 0.4, n = 8), consistent with a mantle source with minor crustal 343 

contamination. The single-stage Nd model ages (TDM1) calculated following the methods 344 

of Goldstein et al. (1984) range from 0.74 to 0.88 Ga (average = 0.80 ± 0.05 Ga, n = 8), 345 

and are indistinguishable for the different porphyry phases. Two basaltic–andesitic dike 346 

samples show slightly lower Sr isotopic ratios ((87Sr/86Sr)t = 0.7042 and 0.7043) and 347 

higher ƐNd(t) ratios (+3.5 and +3.9) than the porphyry rocks (Fig. 11). 348 

Zircon Hf isotopes 349 

Zircon Hf isotopic results are listed in Digital Appendix Table A4, and illustrated in 350 

Figure 12. The four zircon samples from porphyritic rocks show indistinguishable Hf 351 

isotopic compositions and single-stage Hf model ages of 375 ± 52 Ma (range = 264–527 352 

Ma, n = 56), with relatively high ƐHf(t) values of 12.0 ± 0.4 (weighted mean value, 95% 353 

confidence level; range = 8.1–14.8, n = 56). These data suggest that the porphyries shared 354 

a common primitive mantle source, consistent with their island arc origin. 355 

 356 

Amphibole, Plagioclase, Zircon, and Apatite Compositions 357 

The compositions of amphibole, plagioclase, zircon, and apatite from samples of least-358 

altered porphyritic rocks are listed in Digital Appendix Tables A5, A6, A7, and A8, 359 

respectively. Based on these analyses, water and sulfur contents as well as oxygen 360 

fugacity of the magma have been estimated qualitatively and quantitatively. 361 

 362 
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Amphibole compositions 363 

Amphibole compositions can be used to estimate magmatic oxidation state, 364 

crystallization temperatures and pressures, as well as water contents (e.g., Ridolfi et al., 365 

2010; Zhang et al., 2012; Wang et al., 2014b). However, fresh amphibole grains were 366 

only observed in the P2E and P2L porphyries. All of the analyzed grains are calcic 367 

amphiboles, and two generations of amphibole were recognized in both P2E and P2L. 368 

Early stage grains occur as phenocrysts and are characterized by higher Al contents 369 

(range = 9.35–12.86 and 8.79–13.46 wt. % Al2O3 for P2E and P2L, respectively; Digital 370 

Appendix Table A5); they are mostly classified as magnesio-ferri-hornblende and 371 

magnesio-hastingsite (including potassic-magnesio-hastingsite; Fig. 13A). The late stage 372 

grains were developed in the groundmass or as recrystallized phenocrysts, typified by 373 

lower Al concentrations (range = 1.62–4.76 and 4.33–7.53 wt. % Al2O3 for P2E and P2L, 374 

respectively; Digital Appendix Table A5). They are classified as magnesio-ferri-375 

hornblende or rare actinolite (Fig. 13A). The early stage amphibole grains are intergrown 376 

with plagioclase phenocrysts (Fig. 14), and igneous apatite crystals occur as inclusions 377 

within amphibole (Fig. 14B). This indicates that these three minerals are broadly coeval. 378 

The crystallization temperature, magmatic water contents, and oxygen fugacities were 379 

estimated for the two stages of amphiboles using the spreadsheet of Ridolfi et al. (2010), 380 

and the crystallization pressures were calculated following the equation of Mutch et al. 381 

(2016). The Al-in-hornblende geobarometer used is applicable to granitoids that contain 382 

amphibole, plagioclase, quartz, and alkali feldspar, broadly consistent with the mineral 383 

assemblage within P2 porphyry rocks. The calculated results are listed in Digital 384 

Appendix Table A5 and illustrated in Figure 13 (B–C). 385 
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Amphibole phenocrysts from the P2E and P2L porphyry samples have similar 386 

compositions, with calculated crystallization pressures from 3.5 to 6.7 kbar (average = 387 

4.6 ± 0.8 kbar, n = 51), temperatures from 855 to 983 °C (average = 900 ± 30 °C, n = 51), 388 

FMQ values from 0.5 to 1.8 (average = 1.1 ± 0.3, n = 51), and H2O contents in melts 389 

from 4.0 to 6.1 wt. % (average = 5.1 ± 0.4 wt. %, n = 51).  390 

Late stage (low-Al) amphiboles in P2E porphyry samples yielded crystallization 391 

pressures from 0.6 to 1.4 kbar (average = 1.1 ± 0.3 kbar, n = 12), temperatures from 637° 392 

to 774 °C (average = 719 ± 34 °C, n =12), FMQ values from 2.6 to 3.3 (average = 3 ± 393 

0.2, n =12), and magmatic water contents from 3.6 to 5.1 wt. % (average = 4 ± 0.4 Ma, n 394 

= 12). Low-Al amphibole grains from P2L samples yielded slightly higher crystallization 395 

pressures (2.0 ± 0.4 MPa; range = 1.3–2.6 kbar, n = 8) and temperatures (800 ± 24 °C; 396 

range = 751–800 °C, n = 8), slightly lower FMQ values (2.4 ± 0.3; range = 1.1–2.9, n = 397 

8), but similar H2O contents (4.0 ± 0.2; range = 3.7–4.4, n = 8) to those calculated for 398 

P2E. 399 

There are clear trends of increasing oxidation state and decreasing crystallization 400 

pressures, temperatures, and magmatic water contents from early to late stage amphiboles 401 

in both P2E and P2L porphyries (Figs. 13B–D). These trends are consistent with the 402 

high-Al amphibole phenocrysts having crystallized at depth before final crystallization of 403 

the magma (and low-Al amphibole) after emplacement at shallow levels (e.g., Rutherford 404 

and Devine, 2003). The decreasing magmatic water contents might be attributed to 405 

degassing during ascent and crystallization, which can also result in a small increase in 406 

oxygen fugacity (Mathez, 1984; Candela, 1986; Burgisser and Scaillet, 2007; Zimmer et 407 

al., 2010; Bell and Simon, 2011; Dilles et al., 2015). 408 
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 409 

Plagioclase compositions 410 

Plagioclase phenocrysts from all P1 porphyry samples studied have been altered, but 411 

partially unaltered phenocrysts were found in some P2 and P3 porphyry samples. 412 

Analyses with K2O > 1 wt. % are interpreted to reflect potassic alteration and have been 413 

excluded. Plagioclase grains from the P2E porphyry (sample RC13-13) are classified as 414 

oligoclase (≥ An17) to labradorite (≤ An70), with an average anorthite (An) content of 44 ± 415 

12 mol % (n = 28). Nearly all these crystals exhibited reverse zoning in An content, with 416 

compositional ranges up to ~16 mol %, and FeO contents that correlate positively with 417 

XAn values (Digital Appendix Table A6; Fig. 14A). Plagioclase grains from the P2L 418 

porphyry (samples RC13-26 and RC13-33) have compositions similar to P2E (An mol % 419 

= 48 ± 5, n = 38), and also show reverse zoning with amplitudes up to ~19 mol % An that 420 

correlate with FeO contents (Fig. 14B). Such reverse zoning with positive An-FeO 421 

correlations were observed both in partially altered (i.e., sericite alteration; Fig. 14A) and 422 

relatively fresh plagioclase crystals (Fig. 14B), indicating that it was not likely to have 423 

been generated by hydrothermal alterations. In contrast, plagioclase grains from the P3 424 

porphyry (RC13-78) display relatively uniform An compositions (An mol % = 51 ± 5, n 425 

= 37), with no clear zoning in XAn and FeO (Fig. 14C). 426 

 Plagioclase compositions (An proportions) are very sensitive to dissolved water 427 

content and temperature of the melt, and thus can be used as a hygrometer if corrected for 428 

temperature (Mathez, 1973; Lange, 2009; Waters and Lange, 2015). We used apatite 429 

saturation temperatures (AST) following the formula of Piccoli and Candela (1994) to 430 

calculate magma temperatures for P2 and P3 samples (Table 4; Digital Appendix Table 431 
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A3). The whole-rock SiO2 and P2O5 values were assumed to approximate the melt 432 

contents at the time of crystallization, although this assumption can be challenged 433 

(Piccoli and Candela, 1994, 2002). Nevertheless, the calculated temperatures are 434 

reasonable for magmas of intermediate, hydrous composition, and are also in agreement 435 

with the estimated crystallization temperatures of early stage amphibole (Digital 436 

Appendix Table A5): 932 °C for P2E (RC13-13), 892 °C (RC13-26) and 905 °C (RC13-437 

33) for P2L, and 928 °C for P3 (RC13-78; Table 4). 438 

The updated spreadsheet of Waters and Lange (2015) has been used to calculate 439 

magmatic water contents (Digital Appendix Table A9). The calculated values are 440 

relatively uniform and indistinguishable between the different porphyry phases: 5.2 ± 0.2 441 

(n = 28) for P2E, 5.5 ± 0.2 (n = 38) for P2L, and 5.1 ± 0.1 wt. % (n = 37) for P3. For the 442 

P2E and P2L porphyries, the magmatic water contents calculated from plagioclase and 443 

early stage amphibole compositions agree well with each other (Digital Appendix Tables 444 

A5 and A8). 445 

 446 

Zircon trace element compositions 447 

Twenty trace element spot analyses were obtained for zircons from samples of P1 to 448 

P3 porphyries (Digital Appendix Table A7; Fig. 15). It is common to encounter small 449 

mineral inclusions, especially of apatite, titanite, in zircon during LA-ICP-MS analyses 450 

(e.g., Lu et al., 2016). We have taken Ca > 200 ppm or La > 0.3 ppm as an indication of 451 

apatite contamination, and Ti > 20 ppm to reflect titanite contamination, and such data 452 

were excluded (Digital Appendix Table A7). The remaining analyses have low LREE 453 

and elevated HREE contents, with small negative Eu and strongly positive Ce anomalies 454 
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(Fig. 15). These REE patterns and total contents (ƩREE = 351–1125 ppm), as well as 455 

Th/U ratios above 0.1 (0.26–0.63) (Digital Appendix Table A7) are typical of igneous 456 

zircons from relatively oxidized magmas (Hoskin and Schaltegger, 2003). 457 

Zircon crystals from the P1 to P3 porphyries show slightly different calculated Ti-in-458 

zircon temperatures and Eu anomalies (EuN/EuN
* = EuN/(SmN × GdN)0.5; Fig. 16; Digital 459 

Appendix Table A7). Titanium-in-zircon temperatures were calculated using the equation 460 

of Ferry and Watson (2007), where it is assumed that log aSiO2 = 1 because of the 461 

existence of quartz in the host porphyries, and log aTiO2 = 0.7 due to the presence of 462 

titanite (a common accessory mineral in these rocks). Zircon crystals from the P2E 463 

porphyry (sample RC13-107) have the highest calculated temperatures (average of 760 ± 464 

29 °C; range = 723°–819°C, n = 14) with relatively uniform EuN/EuN
* values from 0.5 to 465 

0.7 (average = 0.6 ± 0.1; n = 14). Zircon crystals from the P3 porphyry (sample RC13-78) 466 

show the lowest calculated temperatures (average = 726 ± 24 °C; range = 693°–758°C, n 467 

= 18) and lowest EuN/EuN
* ratios (0.5 ± 0.1; range = 0.3–0.6, n = 18). Zircon crystals 468 

from the P1 and P2L porphyries have intermediate calculated temperatures (P1: 736 ± 469 

26 °C, range = 699°–810 °C, n = 16; P2L: 730 ± 24 °C, range = 705°–795°C, n = 17), 470 

and a similar wide range of EuN/EuN
* values (P1: 0.3–1.0, average = 0.6 ± 0.2; P2L: 0.3–471 

0.9, average = 0.6 ± 0.1). 472 

Trace element compositions in zircon are sensitive to magmatic water content and 473 

oxygen fugacity, and have been used to distinguish between fertile and infertile suites in 474 

porphyry Cu ± Au ± Mo systems (Ballard et al., 2002; Liang et al., 2006; Qiu et al., 2014; 475 

Wang et al., 2014b; Dilles et al., 2015; Shen et al., 2015; Lu et al., 2016; Xu et al., 2016; 476 

Loader et al., 2017). In hydrous magmas, early plagioclase crystallization is suppressed 477 
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(Moore and Carmichael, 1998), leading to no pronounced depletion of Eu in melts (Eu2+ 478 

substitutes for Ca2+ in plagioclase). On the other hand, in oxidized magmas, Eu is 479 

predominantly present as Eu3+ and is partitioned into zircon along with other REE 480 

(Ballard et al., 2002; Hoskin and Schaltegger, 2003; Trail et al., 2011; Dilles et al., 2015). 481 

Therefore, the small negative Eu anomalies in zircon samples (as indicated by EuN/EuN
* 

482 

ratios >0.3 and mostly > 0.4; Fig. 16A), and slightly positive anomalies in whole rocks 483 

(Fig. 10) indicate relatively high magmatic water contents and/or oxidation states 484 

(Ballard et al., 2002; Dilles et al., 2015; Lu et al., 2016). 485 

Ballard et al. (2002) defined the zircon Ce4+/Ce3+ ratio as an indicator of magmatic 486 

oxidation state. However, Dilles et al. (2015) and Lu et al. (2016) argue that these values 487 

are difficult to estimate accurately because the abundances of the adjacent elements, La 488 

and Pr, which are used as a baseline to calculate the magnitude of the Ce anomaly, are 489 

low and close to the analytical detection limit. Confirming this reservation, Ce4+/Ce3+ 490 

ratios and fO2 values calculated for our samples using the equation of Trail et al. (2011) 491 

yielded unrealistic and widely variable FMQ values (-9 to +5). 492 

 493 

Apatite compositions 494 

The SO3, Cl, and F analyses of igneous apatites are listed in Digital Appendix Table 495 

A8 and illustrated in Figures 17 and 18. The results show that igneous apatites from the 496 

P2 porphyries have higher sulfur and chlorine concentrations than those from P1 and P3 497 

rocks. The high SO3 contents in apatites from the P2 porphyries (P2E: 0.11 to 0.8 wt. % 498 

SO3, average = 0.30 ± 0.13 wt. %, n = 34; P2L: 0.07 to 1.2 wt. % SO3, average = 0.29 ± 499 

0.18 wt. %, n = 100) are similar to values from global porphyry Cu deposits (Streck and 500 
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Dilles, 1998; Imai, 2002; Li et al., 2012; Pan et al., 2016; Richards et al., 2017). In 501 

comparison, apatite crystals from the P1 porphyry (RC13-39) have lower sulfur contents 502 

(0.05 to 0.19 wt. % SO3; average = 0.11 ± 0.03 wt. %, n = 34), whereas those from the P3 503 

porphyry (RC13-78) have the lowest sulfur concentrations (from 0.05 wt. % to below the 504 

analytical detection limit of SO3; average of analyses above limit of detection = 0.03 ± 505 

0.01, n = 13). Although the ranges for P1 and P2L porphyries overlap at their outer limits, 506 

a t-test shows that the two populations are significantly different (t = 5.87, p = 0). 507 

Similarly, the Cl contents in apatite crystals from P1 and P3 porphyries are 508 

significantly lower (0.51 ± 0.3 wt. %, n = 34, and 0.1 ± 0.06 wt. %, n = 17, respectively) 509 

compared to values from the P2 porphyries (P2E: 1.18 ± 0.37 wt. %, n = 34; P2L: 1.47 ± 510 

0.28 wt. %, n = 100). There is a rough positive correlation between sulfur and chlorine 511 

contents of apatites from the four porphyries (Fig. 18A), with relatively constant molar 512 

S/Cl ratios (P1: 0.13 ± 0.08, n = 34; P2E: 0.13 ± 0.08, n = 34; P2L: 0.10 ± 0.14, n =100; 513 

P3: 0.16 ± 0.09, n =13; Table 4). Detailed analyses also show that single apatite crystals 514 

are commonly zoned in sulfur, with decreasing core-to-rim SO3 contents (and small 515 

decreases in Cl; Fig. 17C), possibly reflecting progressive degassing of SO2 (and Cl) 516 

from the melt during crystallization (Richards et al., 2017).  517 

Fluorine contents in apatites from the P1 and P3 porphyries are similar (P1: 3.64 ± 518 

0.48 wt. %, n = 34; P3: 3.6 ± 0.4, n = 17) and distinctly higher than in the P2E (2.33 ± 519 

0.29 wt. %, n = 34) and P2L (2.32 ± 0.23 wt. %, n = 100) porphyries. 520 

Some hydrothermal apatite grains were also analyzed for comparison with igneous 521 

grains, and they show wide variations in sulfur and chlorine content (Digital Appendix 522 

Table A8), as observed by other researchers (e.g., Li et al., 2012; Richards et al., 2017). 523 
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The sulfur partition coefficient between apatite and melt is jointly controlled by 524 

temperature, oxygen fugacity, and the S content in the silicate melt (Peng et al., 1997; 525 

Parat and Holtz, 2005; Parat et al., 2011; Webster and Piccoli, 2015; Konecke et al., 526 

2017a, b), and no formula currently exists to accurately calculate magmatic sulfur 527 

concentrations from apatite SO3 contents. However, two semi-quantitative formulae can 528 

be used to estimate relative magmatic S content (Peng et al., 1997; Parat et al., 2011). 529 

Using the equation of Peng et al. (1997), the magmas related to the P2E and P2L 530 

porphyry intrusions are calculated to have sulfur concentrations of 0.03 ± 0.01 wt. % (n = 531 

34) and 0.02 ± 0.01 wt. %  (n = 100), significantly higher than the corresponding S 532 

contents for P1 (0.010 ± 0.003 wt. % S, n = 34) and P3 magmas (0.003 ± 0.001 wt. % S, 533 

n = 13; Table 4). The results calculated by the method of Parat et al. (2011) are more 534 

variable, and yielded lower absolute values than those from Peng et al. (1997). However, 535 

they also support the conclusion that the P2E and P2L magmas had significantly higher 536 

sulfur contents than the P1 and P3 magmas (Table 4). 537 

The chlorine partition coefficient between apatite and melt is a complex function of 538 

magma composition and Cl concentration in the melt (Zhu and Sverjensky, 1991; Piccolli 539 

and Candela, 1994; Mathez and Webster, 2005; Webster et al., 2009; Chelle-Michou and 540 

Chiaradia, 2017). Mathez and Webster (2005) proposed a value of 0.8 as the partition 541 

coefficient (mass ratio) between apatite and basaltic melt (51.1 wt. % SiO2). Based on 542 

this semi-quantitative equation (and recognizing that these magmas were not basaltic), we 543 

estimate Cl concentrations in the P2E and P2L magmas of 1.48 ± 0.46 wt.% (n = 34) and 544 

1.83 ± 0.34 wt.% (n = 100),respectively, significantly higher than for P1 (0.63 ± 0.38 545 

wt.%, n = 34) and P3 (0.12 ± 0.07 wt.%; Table 4). 546 
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 547 

Discussion 548 

Magmatic duration and timing of ore formation at Red Chris 549 

Four phases of the Red Stock, P1, P2E, P2L, and P3, have been dated at 211.6 ± 1.3 550 

Ma, 206.0 ± 1.2 Ma, 203.6 ± 1.8 Ma, and 201.7 ± 1.2 Ma, respectively, spanning a period 551 

of ~10 m.y. (Fig. 6; Digital Appendix Table A2).  These ages are consistent with 552 

crosscutting relationships described by Rees et al. (2015). Re-Os dating of molybdenite 553 

intergrown with chalcopyrite in quartz veins yielded a weighted mean age of 206.1 ± 0.5 554 

Ma (Fig. 7), reflecting the timing of mineralization and in good agreement with the 555 

emplacement age of the mineralized P2E quartz monzonite porphyry. Ore formation 556 

occurred at a relatively late stage in the ~10 m.y. evolution of the Red Stock, and over a 557 

relatively brief period time (<1 m.y., as defined by the uncertainty on the average of three 558 

Re-Os analyses). This relatively late and short duration of mineralization is similar to the 559 

timing observed in many other porphyry deposits (e.g., Cathles et al., 1997; Masterman et 560 

al., 2004; von Quadt et al., 2011; Chiaradia et al., 2013; Correa et al., 2016; Li et al., 561 

2017). 562 

The age of mineralization at ~206 Ma is contemporaneous with the major pulse of 563 

mineralization in the Stikine and Quesnel terranes, representing a particularly fertile pre-564 

accretionary magmatic event (Nelson and Colpron, 2007; Nelson et al., 2013; Logan and 565 

Mihalynuk, 2014). 566 

 567 

Igneous geochemistry and petrogenesis 568 
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Whole-rock major and trace element compositions of P1 to P3 porphyry rocks are 569 

almost identical to each other, and show characteristics of subduction-related magmatic 570 

rocks with high LILE and low HFSE concentrations (Figs. 9 and 10; Hawkesworth et al., 571 

1993; Pearce, 1996). The high Sr/Y ratios (53 ± 23, n = 12) and slightly positive Eu 572 

anomalies (Eun/Eun
* = 1.1 ± 0.15; n =14) indicate the suppression of plagioclase 573 

crystallization and early crystallization of amphibole from hydrous and oxidized magmas 574 

(Richards and Kerrich, 2007; Loucks, 2014). Rees et al. (2015) concluded from their 575 

analysis of petrochemistry that the Red Stock evolved from subalkaline (P1, P2) to 576 

marginally alkaline (P3), and classified the overall system as high-K calc-alkalic. 577 

All the porphyritic rocks from P1 to P3 show mantle-like, relatively low (87Sr/86Sr)t 578 

(0.7044 ± 0.0002) and high ƐNd(t) (+3.1 ± 0.4) values, and similar single-stage Nd model 579 

ages (0.80 ± 0.05 Ga). Zircon crystals from these rocks yield positive zircon ƐHf(t) values 580 

(+8.1 to +14.8) and single-stage Hf model ages of 375 ± 52 Ma (Figs. 11 and 12). These 581 

data indicate minimal involvement of ancient crustal components in the petrogenesis of 582 

these magmas, as observed for other Mesozoic igneous rocks in the Stikine terrane, and 583 

are consistent with an oceanic island arc setting (Samson et al., 1989; Logan and 584 

Mihalynuk, 2014). 585 

Late basaltic to andesitic dikes have similar Nd–Sr isotopic compositions to the 586 

porphyritic rocks, but show distinct trace element and REE patterns, and lower Sr/Y and 587 

La/Yb ratios, suggesting that they are not cogenetic. 588 

 589 

Oxygen fugacity and sulfur-chlorine-water contents of the porphyry magmas 590 
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Magmatic oxidation state, and sulfur, chlorine, and water contents are fundamental 591 

factors for the formation of porphyry Cu deposits (e.g., Burnham, 1979; Candela, 1992; 592 

Richards, 2003; Loucks, 2014). It is difficult to measure the original magmatic oxidation 593 

state in altered plutonic rocks, but normalized Ce and Eu anomalies in zircons can be 594 

used to provide qualitative estimates (Ballard et al., 2002; Dilles et al., 2015; Lu et al., 595 

2016). Zircon grains from the P1 to P3 porphyries display large positive Ce and small 596 

negative Eu anomalies (EuN/EuN
* mostly > 0.4; Figs. 15 and 16), similar to zircons from 597 

other mineralized porphyry systems worldwide (Wang et al., 2014b; Dilles et al., 2015; 598 

Lu et al., 2016). These data are also consistent with estimates of magmatic oxidation state 599 

from early stage amphibole phenocrysts from the P2E and P2L porphyries, which yielded 600 

FMQ values of 1.5 ± 0.2 (n = 7) and 1.1 ± 0.3 (n = 44). Consequently, we conclude that 601 

the four phases of magma in the Red Stock were all at least moderately oxidized.  602 

It is similarly difficult to estimate original magmatic water contents from altered 603 

plutonic rocks. However, the presence of amphibole phenocrysts in the P1 to P3 604 

porphyries suggest that the magmas contained at least 4 wt. % H2O (Burnham, 1979, 605 

Naney, 1983; Merzbacher and Eggler, 1984; Rutherford and Devine, 1988; Ridolfi et al., 606 

2010). This observation is supported by: (1) high whole-rock Sr/Y ratios (53 ± 23, n = 607 

12), which reflect the suppression of plagioclase relative to amphibole crystallization 608 

under hydrous conditions (Moore and Carmichael, 1998; Richards and Kerrich, 2007); (2) 609 

high 10000×(EuN/EuN
*)/Y (>1) and low Dy/Yb (<0.3) ratios in zircons (Digital Appendix 610 

Table A7; Lu et al., 2016); (3) high whole-rock V/Sc ratios (9.0 ± 0.9, n = 14) (Loucks, 611 

2014); and (4) estimates of magmatic water content from plagioclase phenocryst 612 

compositions, which indicate values of ~5 wt.% H2O. 613 
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The compositions of igneous apatite inclusions in plagioclase and amphibole 614 

phenocrysts have been used to estimate magmatic sulfur and chlorine contents. The 615 

results suggest that apatite microphenocrysts from the P2E and P2L porphyries had 616 

higher S and Cl contents than for P1 and P3 (Fig. 18). The SO3 contents in apatite are 617 

controlled by both magmatic sulfur concentration and oxidation state (Peng et al., 1997; 618 

Parat and Holtz, 2005; Webster and Piccoli, 2015). Sulfur occurs in the apatite structure 619 

mainly as S6+ and its content will increase in relatively oxidized environments (Boyce et 620 

al., 2010; Parat et al., 2011; Konecke et al., 2017b). The magmas associated with the four 621 

porphyry phases at Red Chris were all moderately oxidized, and therefore the differences 622 

in apatite sulfur content likely mainly reflect variations in the sulfur fugacity in the 623 

associated melts. The data indicate that the P2E and P2L porphyry magmas contained 624 

significantly higher S contents than the P1 and P3 magmas (Fig. 18). Models used to 625 

estimate magmatic sulfur content in equilibrium with apatite (Peng et al., 1997) are not 626 

strictly accurate because of uncertainties in the details of exchange reactions (Streck and 627 

Dilles, 1998; Mao et al., 2016) but are expected to be correct in relative terms. Our data 628 

yield higher values for the P2E and P2L porphyries (0.02–0.03 wt. % S) compared to 629 

estimates for P1 (0.01 wt. % S) and P3 (0.003 wt. % S). Consequently, we conclude that 630 

the syn-mineral porphyry (P2E and P2L) magmas were more S-rich than the pre-631 

mineralization P1 and especially the post-mineralization P3 porphyry magmas. 632 

Similarly, the magmatic Cl contents calculated from apatite compositions in the P2E 633 

and P2L porphyries are also higher than in the P1 and P3 porphyries, whereas F contents 634 

are lower (Table 4). Volatile species such as S, Cl, and F are differentially affected by 635 

degassing during ascent and crystallization of magmas: S and Cl will be preferentially 636 
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lost to the vapor phase relative to F (Webster et al., 2014; Stock et al., 2016), leading to 637 

high F/Cl and F/S ratios in degassed magmas. The data shown in Figure 18 suggest that 638 

the P2E and P2L were S-Cl-rich, whereas the P1 and P3 were S-Cl-poor but enriched in F. 639 

These differences could reflect either loss of volatiles from the source magma 640 

chamber (presumed to be an underlying batholith) prior to emplacement of the P1 and P3 641 

magmas but not in the case of P2, or conversely addition of a volatile phase or a volatile-642 

rich magma to the magma chamber immediately prior to emplacement of P2. Volatile 643 

loss is expected to be a general condition of upper crustal magma emplacement, and this 644 

may well be a factor contributing to the low Cl/F ratios in the late P3 magmas, as well as 645 

the negatively correlated trend for F and Cl in P1. The P2 magma was emplaced after P1, 646 

and so might be expected to be similarly degassed if this represents a comagmatic 647 

sequence. However, the 6–8 m.y. age difference between P1 (211.6 ± 1.3 Ma) and P2 648 

(P2E: 206.0 ± 1.2 Ma; P2L: 203.6 ± 1.8 Ma) indicates that P1 and P2 are not directly 649 

comagmatic. One explanation is that the P2 event represents a pulse of S-Cl-rich magma 650 

injected at a relatively late stage into the mid-crustal magma reservoir, leading to a pulse 651 

of fluid exsolution and injection of P2 magma into the shallower level Red Stock, where 652 

syn-P2, quartz-vein hosted mineralization formed the Red Chris Cu-Au deposit. The 653 

post-mineralization P3 (201.7 ± 1.2 Ma) and P4 porphyries may represent the final stages 654 

of intrusive activity emanating from the now degassed underlying magma chamber. 655 

Although both P2E and P2L porphyries are S-Cl-rich, apatites from P2L are 656 

marginally the most enriched. Samples of P2L are also the most mafic (SiO2-poor) in the 657 

suite, and it is therefore tempting to speculate that the source magma chamber was 658 

recharged with more mafic, S-Cl-H2O-rich magma during the P2 stage. The solubility of 659 
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S and Cl is higher in oxidized mafic magmas compared to felsic melts (> 1000 ppm S 660 

and > 3000 ppm Cl; Carmichael and Ghiorso, 1986; Webster, 1997; Webster et al., 1999; 661 

Hattori and Keith, 2001; Jugo et al., 2005; Jugo, 2009; Chelle-Michou and Chiaradia, 662 

2017). Therefore, a key step in porphyry ore formation at Red Chris may have been 663 

recharge of the batholithic system by a less evolved, although broadly cogenetic, magma 664 

(cf. Hattori and Keith, 2001; Steinberger et al., 2013; Large et al., 2018). 665 

Support for this recharge model is provided by high magmatic temperatures 666 

calculated from zircon grains from some P2 samples (Fig. 16), and reverse zoning 667 

observed in plagioclase phenocrysts from the P2E and P2L porphyries, but which is not 668 

observed in P3 (Fig. 14C). In detail, zircons from the P2E porphyry show the highest Ti-669 

in-zircon temperatures and EuN/EuN
* values, and P3 the lowest values. This might reflect 670 

an influx of higher temperature melt during the evolution of the P2E magma, and greater 671 

degrees of plagioclase fractionation from the late P3 magma. The compositional ranges 672 

of up to ~19 mol % An for plagioclase are higher than the upper limit caused by chemical 673 

diffusion (~10 mol % An; Pearce and Kolisnik, 1990). Furthermore, these reverse zoning 674 

patterns are matched by FeO contents in the phenocrysts (Figs. 14A and 14B), which 675 

suggests that the zonation reflects changes in magma composition (as opposed to simply 676 

changes in pressure, temperature, or water content; Ginibre and Wörner, 2007; Lange, 677 

2009; Ustunisik et al., 2014; Waters and Lange, 2015). We therefore interpret these 678 

changes to reflect late-stage (rim) growth from a more mafic magma that mixed into a 679 

more evolved resident magma. 680 

 681 

Conclusions 682 
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Zircon U-Pb ages indicate that the Red Stock was emplaced over a period of ~10 m.y. 683 

(211.6 ± 1.3 Ma, 206.0 ± 1.2 Ma, 203.6 ± 1.8 Ma, and 201.7 ± 1.2 Ma for the P1, P2E, 684 

P2L, and P3 porphyries, respectively). The ore-forming event at Red Chris occurred 685 

relatively late in this magmatic history, synchronous with P2E at 206.1 ± 0.5 Ma, and 686 

over a short period of <1 m.y. (as constrained by the error on the average of three Re-Os 687 

analyses). The four phases of porphyry and their related magmas were chemically fairly 688 

homogeneous and isotopically primitive, consistent with an island arc origin. The 689 

magmas were all moderately oxidized and hydrous (~5 wt. H2O), but the P2 magmas had 690 

distinctly higher S and Cl contents. Combined with evidence for reverse zonation in 691 

plagioclase phenocrysts from P2 porphyries, and more mafic compositions in P2L, we 692 

suggest that the deeper source magma chamber was recharged at the time of 693 

emplacement of the P2 porphyries by injection of a more mafic S-Cl-rich magma. This 694 

recharge process may have triggered ore formation by causing voluminous exsolution of 695 

metalliferous hydrothermal fluids. 696 
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Figure Captions 1195 

Fig. 1. Major terranes in the south of the Canadian Cordillera, showing Triassic to 1196 

Jurassic magmatic belts and major associated porphyry deposits in the Stikine and 1197 

Quesnel terranes (modified from Nelson and Colpron, 2007; Nelson et al., 2013; original 1198 

graphics file provided by Joanne Nelson, British Columbia Geological Survey of Canada). 1199 

The age of the Red Chris deposit is from this study (Table 1), and the ages for the other 1200 

porphyry deposits are from Brown and Kahlert (1986; Red Mountain), Mortensen et al. 1201 

(1995; Mt. Polley), Scott et al. (2008; Schaft Creek), Duuring et al. (2009; Kemess 1202 

South), Taseko Mines Limited (2013; Gibraltar), Bath et al. (2014; Lorraine), Byrne and 1203 

Tosdal (2014; Galore Creek), Devine et al. (2014; Lorraine), Logan and Mihalynuk (2014; 1204 

Highland Valley, Copper Mountaine, Afton/Ajax, and Brenda), and Jago et al. (2014; Mt. 1205 

Milligan).  1206 

 1207 

Fig. 2. Simplified geological map of the Red Stock and Red Chris Cu-Au deposit, 1208 

showing the main mineralized zoned (named) and the locations of sampled drill holes 1209 

(modified from Rees et al., 2015). Universal Transverse Mercator coordinates are based 1210 

on the WGS84 datum. 1211 

 1212 

Fig. 3. Hand specimen photographs of samples of the P1, P2E, P2L, and P3 porphyry 1213 

intrusions, and two late basaltic to andesitic dikes. (A) P1 porphyry with anhedral to 1214 

subhedral altered amphibole and plagioclase phenocrysts, crosscut by pyrite-quartz veins 1215 

(sample RC13-35). (B) P2E porphyry showing crowded texture with chloritized 1216 

amphibole and plagioclase phenocrysts; plagioclase grains are rimmed or replaced by 1217 
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 47 

secondary K-feldspar. The brick-red color is due to fine-grained hematite (sample RC13-1218 

107). (C) P2L porphyry composed of abundant fresh amphibole and plagioclase 1219 

phenocrysts, with quartz in the groundmass (sample RC13-32). (D) The P3 porphyry is 1220 

similar to P2L, but is distinguished by the absence of quartz in the groundmass (sample 1221 

RC13-78). (E) Andesitic dike with anhedral to subhedral amphibole phenocrysts, crosscut 1222 

by a small calcite vein (sample RC13-62). (F) Basaltic dike with chloritized amphibole 1223 

phenocrysts (sample RC13-106). See Digital Appendix Table A1 for sample locations. 1224 

 1225 

Fig. 4. West-southwest–east-northeast cross section A–A’, and north-northwest–south-1226 

southwest cross section B-B’ (location of sections shown in Fig. 2), modified from 1227 

Gillstrom et al. (2012) and Rees et al. (2015). Copper equivalent-grade zones, drill holes, 1228 

and the boundary between potassic and post-potassic zones are shown: Cu equivalent (%) 1229 

= Cu (%) + 0.486 × Au (g/t). 1230 

 1231 

Fig. 5. Hand specimen photographs and photomicrographs of alteration and vein minerals. 1232 

(A, B) P2E porphyry (samples RC13-81 and RC13-75) with potassic alteration and A-1233 

type quartz veins comprising magnetite, secondary K-feldspar, and disseminated bornite 1234 

and pyrite. Potassic alteration is characterized by secondary K-feldspar veins and 1235 

selvedges around A-veins. Late unmineralized carbonate veins cut the A veins. (C) 1236 

Amphibole phenocryst altered to secondary biotite, which has then been altered to 1237 

chlorite, reflecting potassic alteration overprinted by chlorite–sericite alteration (plane-1238 

polarized transmitted light; P2E: sample RC13-30). (D) Plagioclase phenocryst partially 1239 

overprinted by sericite (cross-polarized transmitted light; P2E porphyry: sample RC13-1240 
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 48 

11). (E) B-type quartz veins with centerline pyrite in P2L porphyry (sample RC13-44). (F) 1241 

Pyritic D vein in P1 porphyry (sample RC13-40). (G) High-grade ore in sheeted A-type 1242 

quartz-chalcopyrite-K-feldspar veins (sample RC13-31 in P2E porphyry). (H) Quartz-1243 

carbonate-pyrite-molybdenite-chalcopyrite vein in P2E porphyry (reflected light; sample 1244 

RC13-88). Abbreviations: Amp = amphibole; Bi = biotite; Bn = bornite; Cbn = carbonate; 1245 

Chl = chlorite; Cpy = chalcopyrite; Kfs = K-feldspar; Mo = molybdenite; Mt = magnetite; 1246 

Pl = plagioclase; Py = pyrite; Qtz = quartz. See Digital Appendix Table A1 for sample 1247 

locations. 1248 

 1249 

Fig. 6. Zircon U–Pb Tera-Wasserburg concordia diagrams for (A) P1, (B) P2E, (C) P2L, 1250 

and (D) P3 porphyry samples dated by LA-MC-ICP-MS. Uncertainty ellipses and 1251 

calculated ages are shown at 2. 1252 

 1253 

Fig. 7. Weighted mean Re-Os model age of three molybdenite vein samples from the Red 1254 

Chris Cu-Au deposit. 1255 

 1256 

Fig. 8. Zr/Ti vs. Nb/Y discrimination diagram (Winchester and Floyd, 1977) for porphyry 1257 

and basaltic–andesitic dike samples from Red Chris. 1258 

 1259 

Fig. 9. Selected whole-rock major element variation diagrams for porphyry and basaltic–1260 

andesitic dike samples from Red Chris: (A) K2O, (B) Na2O, (C) TiO2, (D) Al2O3, (E) 1261 

total Fe2O3, and (F) MgO vs. SiO2. 1262 
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 49 

Fig. 10. (A) Primitive mantle-normalized trace element, and (B) chondrite-normalized 1264 

rare earth element diagrams for porphyry and basaltic–andesitic dike samples from Red 1265 

Chris. The normalization values for primitive mantle chondrite are from from Sun and 1266 

McDonough (1989). 1267 

 1268 

Fig. 11. ƐNd(t) vs. initial 87Sr/86Sr ratios for porphyry and basaltic–andesitic dike samples 1269 

from Red Chris, calculated at t = 200 Ma. All the samples fall in the field of Mesozoic 1270 

igneous rocks in the Stikine island arc terrane, clearly different from the Late Cretaceous 1271 

to Eocene plutons in the Northern Coast Plutonic Complex, which were derived from 1272 

evolved crust. The depleted MORB mantle field is from Pilet et al. (2011); the Stikinia 1273 

Mesozoic igneous rock field is from Samson et al. (1989); the Northern Coast Plutonic 1274 

Complex field is from Samson et al. (1991) and Patchett et al. (1998); all data are re-1275 

calculated at 200 Ma. 1276 

 1277 

Fig. 12. Histogram and relative probability curve for zircon ƐHf(t) values from (A) P1, (B) 1278 

P2E, (C) P2L, and (D) P3 porphyry samples. 1279 

 1280 

Fig. 13. Classification diagram and plots of oxidation state, temperature, pressure, and 1281 

magmatic water content estimated from amphibole compositions from P2E and P2L 1282 

porphyry samples at Red Chris. A. C(AlVI + Fe3+ + 2Ti4+) (apfu) vs. A(Na+ + K+) (apfu). B. 1283 

ΔFMQ vs. temperature. C. ΔFMQ vs. pressure. D. ΔFMQ vs. magmatic water content. 1284 

The classification diagram for calcic amphibole is given by the Excel spreadsheet of 1285 
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 50 

Locock (2014), and the superscript C and A represent C and A cations following the 1286 

general amphibole formula (AB2C5T8O22W2), respectively. Note that potassic-magnesio-1287 

hastingsite is included in the field of magnesio-hastingsite. ΔFMQ values, temperatures, 1288 

and magmatic water content were calculated from the spreadsheet of Ridolfi et al. (2010). 1289 

Amphibole crystallization pressures were calculated using the equation of Mutch et al. 1290 

(2016). The ΔFMQ values were calculated following the equation of Myers and Eugster 1291 

(1983): log fO2 = –24,441.9/T (K) + 8.290 (± 0.167). Abbreviation: apfu = atoms per 1292 

formula unit.  1293 

 1294 

Fig. 14. Photomicrographs (cross-polarized transmitted light), Backscattered eelectron 1295 

(BSE) images, and electron microprobe analysis profiles for FeO and anorthite proportion 1296 

(XAn) for representative plagioclase crystals from the P2E, P2L, and P3 porphyries at Red 1297 

Chris. Red circles on photomicrographs and white circles on BSE images denote the 1298 

analyzed spots. The error bars for XAn and FeO analyses are smaller than the size of the 1299 

symbols. Abbreviations: Amp = amphibole; Ap = apatite; Pl = plagioclase; Ser = sericite. 1300 

 1301 

Fig. 15. Chondrite-normalized REE patterns for zircons from (A) P1, (B), P2E, (C) P2L, 1302 

and (D) P3 porphyry samples from Red Chris. Normalization values are from Sun and 1303 

McDonough (1989). 1304 

 1305 

Fig. 16. Zircon EuN/EuN
* vs. temperature diagram. EuN/EuN

* is the europium anomaly, 1306 

calculated as EuN/EuN
* = EuN/(SmN × GdN)0.5,, using the chondrite normalization values 1307 
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of Sun and McDonough (1989). Oxidized suites have zircon EuN/EuN
* values >0.4 1308 

(Dilles et al., 2015). 1309 

 1310 

Fig. 17. Backscattered electron images of apatite crystals in samples from (A) P1 (RC13-1311 

39), (B) P2E (RC13-107), (C) P2L (RC13-33), and (D) P3 (RC13-78). Concentrations of 1312 

SO3 and Cl in apatite crystals are shown in wt. % (SO3/Cl); red circles represent the 1313 

analyzed spots. Higher concentrations are observed in apatites from P2E and P2L; some 1314 

apatite microphenocrysts from P2 porphyries show zoning from SO3-Cl-rich cores to 1315 

SO3-Cl-poorer rims (C). 1316 

 1317 

Fig. 18. Plots of (A) S, and (B) F vs. Cl contents for apatite microphenocrysts from P1 to 1318 

P3 porphyry samples at Red Chris. Abbreviation: apfu = atoms per formula unit. Data 1319 

from Digital Appendix Table A8. 1320 
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Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the Red 1 

Chris porphyry Cu-Au deposit, Northern British Columbia, Canada 2 
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*Corresponding author e-mail: jzhu4@laurentian.ca; zhujingjing-1103@163.com 13 

Abstract 14 

The Red Chris porphyry Cu-Au deposit is located in the Stikinia island-arc terrane in 15 

northwest British Columbia, . it It is hosted by the Red Stock, which has four phases of 16 

porphyry intrusions: P1, P2E, P2L, and P3. New U-Pb dating of zircon shows that these 17 

intrusions were emplaced at 211.6 ± 1.3 Ma (MSWD = 0.85), 206.0 ± 1.2 Ma (MSWD = 18 

1.5), 203.6 ± 1.8 Ma (MSWD = 1.5), and 201.7 ± 1.2 Ma (MSWD = 1.05), respectively. 19 

The ore-forming event at Red Chris was a short-lived event at 206.1 ± 0.5 Ma (MSWD = 20 

0.96; weighted average age of three Re-Os analyses), implying a duration of <1 m.y., as 21 

defined by the uncertainty range. This mineralization age coincides with the emplacement 22 

Manuscript with marked changes Click here to download Manuscript Zhu et al-2nd changes
tracked.docx
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 2 

age of the P2E porphyry, and is consistent with cross-cutting relationships that suggest 23 

P2E was the main syn-mineralization intrusion.  24 

Zircons from P1 to P3 porphyry rocks have consistently high EuN/EuN
* ratios (mostly > 25 

0.4), indicating that their associated magmas were moderately oxidized. The magmatic 26 

water contents estimated from plagioclase and amphibole compositions suggest H2O 27 

contents of ~5 wt. %. Taken together, the P1 to P3 porphyries are interpreted to be 28 

moderately oxidized and hydrous. 29 

The four phases of porphyries are differentiated by sulfur and chlorine contents. The 30 

SO3 contents of igneous apatite microphenocrysts from the mineralization-related P2 31 

porphyries are higher (P2E: 0.30 ± 0.13 wt. %, n = 34; P2L: 0.29 ± 0.18 wt. %, n = 100) 32 

than those from the pre-mineralization P1 (0.11 ± 0.03 wt. %, n = 34) and post-33 

mineralization P3 porphyries (0.03 ± 0.01 wt. %, n = 13). The chlorine contents in apatite 34 

grains from the P2E and P2L porphyries are 1.18 ± 0.37 (n = 34) and 1.47 ± 0.28 wt. % 35 

(n = 100), also higher than those from P1 (0.51 ± 0.3 wt. % Cl, n = 34) and P3 (0.02 ± 36 

0.02 wt. % Cl, n = 17). These results imply that the sulfur and chlorine contents of the 37 

P2E and P2L magmas were higher than in the P1 and P3 magmas, suggesting that 38 

elevated magmatic S-Cl contents in the P2 porphyries may have been important for ore-39 

formation. Although the process that caused the increase in sulfur and chlorine is not 40 

clear, reverse zoning seen in plagioclase phenocrysts from the P2 porphyry, and the 41 

occurrence of more mafic compositions in P2L suggest that recharge of the deeper 42 

magma chamber by a relatively S-Cl-rich mafic magma may have triggered the ore-43 

forming hydrothermal event. 44 

 45 
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 3 

Introduction 46 

Compared to the relatively long-lived magmatic systems represented by a composite 47 

batholith (up to 10 m.y.; Matzel et al., 2006; Walker et al., 2007; Harris et al., 2008; 48 

Schaltegger et al., 2009; Paterson et al., 2011; Rezeau et al., 2016), the life spans of 49 

porphyry magmatic-hydrothermal ore-forming events are much shorter, probably on the 50 

order of several 105 hundred thousand years (up to 1 m.y.; Cathles et al., 1997; Hayba 51 

and Ingebritsen, 1997; Masterman et al., 2004; von Quadt et al., 2011; Weis et al., 2012; 52 

Chiaradia et al., 2013; Correa et al., 2016; Li et al., 2017). In many large magmatic 53 

systems, porphyry formation occurs at a relatively late stage in the system’s evolution 54 

(Creasey, 1977; Titley and Beane, 1981; Candela, 1992; Richards, 2003; Rohrlach and 55 

Loucks, 2005; Yang et al., 2009; Correa et al., 2016). 56 

Although the multiple phases of porphyry stocks are commonly broadly cogenetic, 57 

they may be derived from packets of magma that evolved at different crustal levels over 58 

the history of the larger magmatic system (Annen et al., 2006). Understanding why ore-59 

formation is only associated with a specific intrusive suite within these broader systems, 60 

and at discrete, commonly singular times, is a focus of this study. 61 

It is recognized that magmas with high sulfur (>1000 ppm), chlorine (>3000 ppm), 62 

and water (>4 wt. %) contents as well as relatively high oxidation states (higher than the 63 

fayalite-magnetite-quartz buffer, FMQ, by 1–2 log fO2 units) are fertile for the 64 

generation of magmatic-hydrothermal porphyry Cu deposits (Burnham, 1979; Candela, 65 

1992; Richards, 2003, 2009, 2011, 2015; Wallace, 2005; Chambefort et al., 2008; Simon 66 

and Ripley, 2011; Chiaradia et al., 2012; Loucks, 2014; Hou et al., 2015; Lu et al., 2015, 67 

2016; Chelle-Michou and Chiaradia, 2017). These ingredients are essential for the 68 
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 4 

transport of Cu (and Au) both in the magma (Zajacz et al., 2012) and in exsolved high 69 

temperature, SO2-rich, saline magmatic fluids (Candela and Holland, 1984; Zajacz et al., 70 

2011). However, whereas many magmas achieve such compositions, ore formation is a 71 

relatively rare and discrete event in such systems. 72 

Various mechanisms have been proposed that might trigger an ore forming event 73 

from a fertile magma source, including recharge of the magma chamber by hot, sulfur-74 

rich melts (Hattori, 1993; Keith et al., 1997; Larocque et al., 2000; Hattori and Keith, 75 

2001; Halter et al., 2005; Stern et al., 2007; Nadeau et al., 2010, 2016; Wilkinson, 2013; 76 

Tapster et al., 2016; Zhang and Audétat, 2017), fluxing by sulfur gases (Blundy et al., 77 

2015),  or increasing the water and oxidation state of magmas during long-term 78 

fractionation in deep magma chambers (Ballard et al., 2002; Wang et al., 2014a, 2014b; 79 

Dilles et al., 2015; Lu et al., 2015, 2016). The Red Chris porphyry Cu-Au deposit 80 

provides an opportunity to test these hypotheses, because ore-formation occurred at a 81 

discrete and relatively late stage in the ~10 m.y. history of the associated magmatic 82 

system. 83 

The Red Chris deposit is located in northwest British Columbia, and contains 84 

measured and indicated resources of 1,035 million metric tonnes of ore grading 0.35% 85 

Cu and 0.35 g/t Au (Gillstrom et al., 2012). Pre-, syn-, and post-mineralization porphyry 86 

intrusions have been recognized based on detailed core logging and petrographic work 87 

(Rees et al., 2015), with mineralization occurring in a singular episode during this 88 

magmatic history. In this paper, we present detailed geochronological and geochemical 89 

data for the porphyry phases at Red Chris, and show that they have similar bulk 90 

compositions, including all being relatively hydrous and oxidized. However, the syn-91 
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 5 

mineralization porphyry is characterized by plagioclase with reverse zoning and apatite 92 

with relatively high sulfur and chlorine contents. We interpret these data to indicate that 93 

high magmatic S and Cl contents, in addition to high H2O contents and oxidation state, 94 

were critical for Cu-Au ore-formation at Red Chris. We speculate that there was an 95 

injection of relatively mafic (hotter, and more S- and Cl-rich) but cogenetic magma into 96 

the mid–upper crustal source magma chamber approximately coincident with 97 

emplacement of the syn-mineralization porphyry.  98 

 99 

Geological Setting 100 

Red Chris is situated within the island-arc terrane of Stikinia in the Intermontane Belt 101 

of the Canadian Cordillera of British Columbia (Fig. 1; Monger and Irving, 1980; Nelson 102 

and Colpron, 2007; Nelson et al., 2013). Stikinia consists primarily of Mesozoic arc-103 

related igneous and sedimentary rocks, formed in response to subduction processes prior 104 

to accretion to the ancestral North American margin in the Middle Jurassic (Gabrielse, 105 

1991; Ricketts et al., 1992; Lang et al., 1995; Mihalynuk et al., 2004; Nelson and Colpron, 106 

2007; Logan and Mihalynuk, 2014). In northwestern Stikinia, arc assemblages comprise 107 

the Middle to Late Triassic Stuhini Group, unconformably overlain by Late Triassic and 108 

Early to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group (Fig. 2; 109 

Brown et al., 1991; Gabrielse, 1991; Marsden and Thorkelson, 1992; Dostal et al., 1999; 110 

Gagnon et al., 2012; Nelson et al., 2013; Logan and Mihalynuk, 2014).  The Hazelton 111 

Group is overlain by sedimentary rocks of the syn- to post-accretion Middle Jurassic to 112 

Early Cretaceous Bowser Lake Group. 113 
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 6 

Several porphyry Cu±Au±Mo deposits occur in the region, hosted by Late Triassic to 114 

Early Jurassic arc-related plutons (Fig. 1), including Red Chris which formed in the Late 115 

Triassic Red Stock. Collectively, these regional intrusions have ages ranging from ~222 116 

Ma to ~180 Ma, recording much of the pre-accretionary history of Stikinia (Lang et al., 117 

1995; McMillan et al., 1995; Scott et al., 2008; Nelson et al., 2013; Logan and Mihalynuk, 118 

2014). A significant percentage of the known porphyry Cu deposits, including Red Chris,  119 

formed during a 6-m.y. pulse of magmatism between 206 and 200 Ma, with compositions 120 

ranging from calc-alkaline to strongly alkaline (Lang et al., 1995; McMillan et al., 1995; 121 

Nelson et al., 2013; Bissig and Cooke, 2014; Logan and Mihalynuk, 2014; Micko et al., 122 

2014; Pass et al., 2014). 123 

 124 

Geology of the Red Chris Cu-Au deposit 125 

The Red Chris Cu-Au deposit was discovered in the 1950s and explored 126 

intermittently in subsequent decades, with mining beginning in 2015 (Ash et al., 1995, 127 

1996; Newell and Peatfield, 1995; Baker et al., 1997; Gillstrom et al., 2012; Rees et al., 128 

2015).  The deposit is hosted by the Red Stock, which is the largest of a suite of Late 129 

Triassic to Early Jurassic stocks and dikes that intrude the Stuhini Group in the district 130 

(Fig. 2; Friedman and Ash, 1997; Rees et al., 2015). The stock is tabular, elongate in an 131 

east to northeast direction, and approximately 6.5 km long by 300 to 1500 m wide (Fig. 2; 132 

Ash et al., 1995; Baker et al., 1997; Gillstrom et al., 2012). It has a steep northern contact 133 

against Stuhini Group country rocks, but its southeastern margin against Hazelton and 134 

Bowser Lake Group strata is poorly exposed, and has locally been truncated by the NE-135 
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 7 

trending, steeply SE-dipping South Boundary fault (Fig. 2). This fault, and the East zone 136 

fault within the stock, probably reflect a long-lived and deep structure which guided the 137 

emplacement of the intrusions, mineralization, and subsequent deformation of the Red 138 

Stock. 139 

The Red Stock is a composite intrusion consisting of several phases of porphyritic 140 

diorite to quartz monzonite. Mineralogically, the rocks consist of medium- to coarse-141 

grained amphibole, plagioclase, and minor biotite phenocrysts, with K-feldspar, 142 

plagioclase, and quartz in the groundmass. Based on compositional and textural 143 

differences and crosscutting relationships, Rees et al. (2015) identified four distinct 144 

porphyry phases, P1, P2, P3, and P4. The P1 porphyry is a pre-mineralization 145 

leucodiorite which accounts for the main volume of the Red Stock, and is distinguished 146 

by sparse anhedral to subhedral amphibole (~10%) and abundant plagioclase (30−40 147 

vol. %) phenocrysts with lengths up to 4 mm. The groundmass is composed of fine-148 

grained plagioclase and minor quartz (Fig. 3A).  149 

The P2 porphyry is a syn-mineralization quartz monzonite intrusion which is largely 150 

unexposed at surface but is observed in drill core to have intruded P1 at depth. It has been 151 

subdivided by Rees et al. (2015) into early (P2E), intermediate (P2I), and late (P2L) 152 

phases based on vein truncations and chilled margins. The P2 porphyries are generally 153 

characterized by tabular subhedral to euhedral amphibole (10−15 vol. %) and plagioclase 154 

(35−50 vol. %) phenocrysts. The amphibole crystals are mostly euhedral and larger than 155 

in P1, with lengths up to 10 mm. The groundmass comprises K-feldspar, plagioclase, and 156 

quartz. In this paper, the P2 subphases are simplified to an early stage (P2E; Fig. 3B) and 157 

late stage porphyry (P2L, probably corresponding to P2I and P2L of Rees et al., 2015; 158 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 8 

Fig. 3C). The P2E porphyry has a crowded plagioclase texture with slightly smaller 159 

amphibole phenocrysts than P2L. In contrast, the P2L porphyry is relatively fresh and 160 

occurs only as small dikes (Fig. 4).  161 

The post-mineralization P3 monzonite porphyry is much less abundant. It is texturally 162 

similar to the P2L porphyry with abundant amphibole phenocrysts (15−20 vol. %), but is 163 

distinguished by the absence of quartz in the groundmass, which is mainly composed of 164 

K-feldspar and plagioclase (Fig. 3D). Although no crosscutting relationships between the 165 

P3 and P2L porphyries have been found, the zircon U-Pb dating results (see below) 166 

confirm that P3 is younger. The P4 porphyry occurs as rare dikes and is typified by 167 

sparse fine-grained amphibole phenocrysts (Rees et al., 2015). No P4 samples were 168 

included in this study. 169 

Several younger basaltic to andesitic dikes with sparse amphibole phenocrysts cut the 170 

Red Stock and the Stuhini Group host rocks (Figs. 3E and F). They postdate the 171 

porphyry-stage Cu-Au mineralization (Baker et al., 1997; Rees et al., 2015), but are 172 

mildly to strongly altered (Figs. 3E and F) and are crosscut by late quartz-calcite-pyrite 173 

veins.  174 

    Hydrothermal alteration 175 

Alteration at Red Chris has been described previously by Baker et al. (1997), 176 

Gillstrom et al. (2012), Norris (2012) and Rees et al. (2015). The alteration assemblages 177 

are typical of calc-alkaline porphyry Cu systems (Lowell and Guilbert, 1970; Seedorff et 178 

al., 2005; Sillitoe, 2010), and consists of early stage potassic alteration, overprinted by 179 

chlorite–sericite, sericitic (phyllic), intermediate argillic, and minor late stage propylitic 180 
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 9 

alteration (see paragenetic diagram in Rees et al., 2015)Alteration at Red Chris is typical 181 

of calc-alkaline porphyry Cu systems (Lowell and Guilbert, 1970; Seedorff et al., 2005; 182 

Sillitoe, 2010), and consists of early stage potassic alteration, overprinted by chlorite–183 

sericite, sericitic (phyllic), intermediate argillic, and minor late stage propylitic alteration 184 

(see paragenetic diagram in figure 13 of Rees et al., 2015; Baker et al., 1997; Gillstrom et 185 

al., 2012; Norris, 2012). Potassic alteration is expressed by replacement of amphibole 186 

phenocrysts by secondary biotite, plagioclase replaced or rimmed by secondary K-187 

feldspar, and by K-feldspar veins (Figs. 3B and 5A−C). It is best preserved in the deeper 188 

levels of the deposit where it is spatially associated with the syn-mineralization P2E 189 

porphyry; however it locally extends into pre-mineralization P1 porphyry wall rocks (Fig. 190 

4). The P2L and P3 porphyries are were only weakly affected by potassic alteration (Rees 191 

et al., 2015). 192 

Chlorite–sericite alteration is characterized by chlorite replacing secondary biotite 193 

(Fig. 5C) and sericite replacing feldspar (Fig. 5D). At shallower levels in the system, 194 

potassic alteration is completely overprinted by phyllic and intermediate argillic 195 

alteration (Gillstrom et al., 2012), characterized by sericite after plagioclase (phyllic; Fig. 196 

5D), and illite and kaolinite (intermediate argillic; Norris, 2012). This lower temperature 197 

alteration overprint affects all the porphyry phases, but is less pervasive at depth. 198 

Propylitic alteration at Red Chris is mainly observed as minor chlorite and epidote in 199 

the outer part of the Red Stock, and extends for 100 to 200 m into the Stuhini volcanic 200 

country rocks (Gillstrom et al., 2012; Norris, 2012; Rees et al., 2015). 201 

 Vein styles and mineralization 202 
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 10 

Detailed descriptions of vein styles at Red Chris have been given by Norris (2012) 203 

and Rees et al. (2015).  A-type quartz veins (Gustafson and Hunt, 1975) and stockworks 204 

are associated with potassic alteration and host the bulk of the copper-gold mineralization. 205 

These veins are most intensely developed around the apex of the principal P2 porphyry 206 

body, but extend for hundreds of metres into the P1 wall rocks (see figure 13 in Rees et 207 

al., 2015). Typical A veins contain K-feldspar, biotite, chalcopyrite, bornite, and 208 

magnetite, with K-feldspar alteration halos (Figs. 5A−B and G). Copper sulfides also 209 

occur as disseminations in the host porphyry. Bornite is more abundant in the apex of 210 

P2E, and progressively decreases outwards where chalcopyrite is the dominant Cu-211 

sulfide (Norris, 2012; Rees et al., 2015).  At shallower depths in the preserved system, 212 

early bornite was sulfidized to chalcopyrite, and pyrite becomes increasingly dominant. 213 

Rees et al. (2015) delineated a high-sulfur contour (>4% S) in section above which total 214 

sulfide (dominantly pyrite) ranges from 4 to 10%.  Microscopic native gold and electrum 215 

occur as inclusions in bornite (Rees et al., 2015). The grades of Cu and Au are positively 216 

correlated with quartz vein density (Gillstrom et al., 2012). In high-grade zones at depth 217 

(e.g., 4.12 % Cu and 8.83 g/t Au in hole 09-350 from 540 to 692.5 m down-hole depth), 218 

vein abundance exceeds 80 vol. % in sheeted arrays (Fig. 5G; Rees et al., 2015).  219 

B- and D-type veins (Gustafson and Hunt, 1975) are relatively minor at Red Chris, 220 

and host only minor amounts of Cu sulfides. B quartz veins are characterized by 221 

relatively straight margins with sulfide centerlines (pyrite and minor chalcopyrite, and 222 

locally molybdenite; Fig. 5E). Pyritic D veins have variable widths (1 to 10 mm; Fig. 5F).  223 

Carbonate and minor chlorite veins cut all the earlier veins and are generally barren 224 

(Norris, 2012). 225 
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 11 

Sampling and Analytical Methods 226 

Samples of the P1, P2E, P2L, and P3 porphyries were collected from drill core, and 227 

descriptions and locations are listed in Digital Appendix Table A1; sampled drill hole 228 

locations are also shown on Figure 2. Fourteen least-altered samples of the porphyry 229 

intrusions and three samples of late basaltic to andesitic dikes were selected for whole-230 

rock geochemical analysis. Eight of these samples were selected for determination of Nd-231 

Sr isotopes. Three samples of quartz-carbonate-pyrite-molybdenite-chalcopyrite veins 232 

(Fig. 5H) were collected for Re-Os dating. Four samples of the P1 (RC13-40), P2E 233 

(RC13-107), P2L (RC13-33), and P3 (RC13-78) intrusions were selected for zircon U-Pb 234 

dating, Hf isotopic, and trace element analyses. Details of analytical methods are 235 

provided in Appendix 1. 236 

 237 

Electron microprobe analyses 238 

Primary igneous minerals such as plagioclase and amphibole in the porphyry rocks 239 

are widely altered to K-feldspar, sericite, and chlorite (Figs. 3A–B and 5C–D). However, 240 

a few least-altered samples of the P2E, P2L, and P3 porphyries contained unaltered 241 

plagioclase and amphibole grains. In addition, igneous apatite grains were typically 242 

preserved as inclusions within plagioclase and amphibole phenocrysts. Compared with 243 

hydrothermal apatite (acicular crystals intergrown with other hydrothermal minerals such 244 

as quartz, sericite, chlorite, and sulfides), igneous apatite grains typically showed stubby 245 

prismatic habits, as described by Richards et al. (2017). Detailed analytical methods are 246 

described in Appendix 1. 247 
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 12 

Re-Os molybdenite dating 249 

Three samples of molybdenite from quartz-carbonate-pyrite-molybdenite-chalcopyrite 250 

veins were collected from the Gully zone (RC13-88 and RC13-103), and the East zone 251 

(RC13-82; Digital Appendix Table A1; Fig. 2). A molybdenite mineral separate was 252 

produced for each sample by metal-free crushing followed by gravity and magnetic 253 

concentration methods. Dating was conducted at the Canadian Centre for Isotopic 254 

Microanalysis at the University of Alberta, Canada, using methods described in 255 

Appendix 1.  256 

 257 

Geochronological Results 258 

Zircon U-Pb ages of the Red Stock 259 

Zircon U-Pb results are presented in Digital Appendix Table A2 and illustrated in 260 

Figure 6; all ages are illustrated and reported with 2 errors. All the zircons show 261 

oscillatory zoning under BSE imaging. Sample RC13-40 was collected from P1 262 

leucodiorite porphyry (Digital Appendix Table A1). Analyzed zircon grains form a 263 

tightly clustered age population, mostly with low common lead contents. Except for one 264 

inherited or xenocryst zircon (apparent 206Pb/238U age = 261 ± 12 Ma), the twenty-seven 265 

grains yielded an intercept age of 211.6 ± 1.3 Ma (MSWD = 0.85; Fig. 6A), similar to the 266 

weighted mean 206Pb/238U age of 211.8 ± 1.3 Ma (MSWD = 0.8). 267 

Sample RC13-107 was collected from P2E quartz monzonite porphyry (Digital 268 

Appendix Table A1). One xenocrystic zircon grain yielded an older age (apparent 269 

206Pb/238U age = 316 ± 10 Ma), but the other twenty-nine zircons contained low amounts 270 

of common lead and intersected the concordia line at 206.0 ± 1.2 Ma (MSWD = 1.5; Fig. 271 
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 13 

6B), in good agreement with the weighted mean 206Pb/238U age of 205.9 ± 1.5 Ma 272 

(MSWD = 1.5). 273 

Sample RC13-33 was collected from P2L quartz monzonite porphyry (Digital 274 

Appendix Table A1). Two xenocryst grains were found among thirty-one analyzed 275 

zircons, with 206Pb/238U ages of 298 ± 16 Ma and 441 ± 13 Ma. The remaining twenty-276 

nine zircon grains had low common lead contents and yielded an intercept age of 203.6 ± 277 

1.8 Ma (MSWD = 1.5; Fig. 6C), similar to the weighted mean 206Pb/238U age of 203.3 ± 278 

1.5 Ma (MSWD = 1.04). 279 

Sample RC13-78 was collected from P3 monzonite porphyry (Digital Appendix Table 280 

A1). Thirty-two zircons with low common lead contents yielded an intercept age of 201.7 281 

± 1.2 Ma (MSWD = 1.05; Fig. 6D), and a weighted mean 206Pb/238U age of 201.6 ± 1.2 282 

Ma (MSWD = 1.04). 283 

All of the zircons have magmatic textures, and the intercept ages above are interpreted 284 

to be the crystallization ages of the individual intrusions. The ages are consistent with 285 

crosscutting relationships described by Rees et al. (2015), and define a 10 m.y. span of 286 

magmatism from 211.6 ± 1.3 Ma (P1) to 201.7 ± 1.2 Ma (P3). The relative ages of the 287 

two samples of syn-mineralization P2 porphyry are consistent with crosscutting 288 

relationships, but the dates (P2E: 206.0 ± 1.2 Ma; P2L: 203.6 ± 1.8 Ma) overlap within 289 

the 2 uncertainty. Hence the apparent 2.4 m.y. age difference is not statistically robust, 290 

and their true ages may in fact be closer as suggested by their close relationship with ore 291 

mineral paragenesis. 292 

 293 

Re-Os molybdenite ages 294 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 14 

The Re-Os model ages for three samples are shown in Table 1. They have relatively 295 

high rhenium contents ranging from 497.8 to 1771 ppm, with common 187Os of 1078 to 296 

3821 ppb. Although the three samples are from two different mineralization zones (i.e., 297 

East and Gully zones; Fig. 2), they yielded indistinguishable model ages within 298 

uncertainty: 206.5 ± 0.8 Ma, 205.7 ± 0.9 Ma, and 205.9 ± 1.1 Ma (±2 s.d.). The small 299 

grain size of the molybdenite (< 1 mm) minimizes the risk of decoupling between Re and 300 

187Os in these samples (caused by diffusion: Selby and Creaser, 2004). The results 301 

yielded a weighted average age for all three samples of 206.1 ± 0.5 Ma (95% confidence 302 

level with MSWD = 0.96; Fig. 7). This age is consistent with the age of the syn-303 

mineralization P2E porphyry (206.0 ± 1.2 Ma). 304 

 305 

Geochemical and Isotopic Results 306 

Whole-rock major and trace elements 307 

Whole-rock major and trace element compositions for fourteen samples of the Red 308 

Stock and three basaltic–andesitic dike samples are listed in Table 2. All the P1 to P3 309 

porphyry intrusions have relatively homogeneous major element compositions, but have 310 

moderate to high loss-on-ignition values (LOI: 2.3 to 10.9%) reflecting varying degrees 311 

of potassic and sericitic alteration. On an LOI-free basis, they are mostly intermediate 312 

composition (SiO2 = 56.71–63.16 wt. %; Digital Appendix Table A3), and straddle the 313 

boundary between granodiorite (diorite) and syenite on a Zr/Ti versus Nb/Y diagram (Fig. 314 

8). The late basaltic–andesitic dikes have distinct compositions, and plot in the field of 315 

diorite and gabbro on Figure 8. On Harker-type diagrams of SiO2 versus selected major 316 

elements, the alkali elements (K2O and Na2O; Figs. 9A–B) show significant scatter, 317 
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 15 

likely due to hydrothermal alteration, as confirmed by a rough correlation between alkali 318 

contents and LOI. However, other elements such as Fe2O3, MgO, TiO2, and Al2O3 show 319 

roughly correlated trends with SiO2 (Figs. 9E–F), suggesting a broadly cogenetic suite, 320 

with the exception of the late basaltic to andesitic dikes, which do not plot on the same 321 

trends for K2O and TiO2. 322 

On primitive mantle-normalized extended trace element and chondrite-normalized 323 

rare earth element (REE) diagrams (Figs. 10A–B), the porphyritic rocks show largely 324 

indistinguishable patterns consistent with typical subduction-related igneous rocks 325 

(Hawkesworth et al., 1993; Pearce, 1996), characterized by large-ion lithophile element 326 

(LILEs: Rb, Ba, Th, U, K) and light rare earth element enrichments (LREE), low 327 

concentrations of high field strength elements (HFSE: Nb, Ta, Zr, Hf, and Ti), relative 328 

depletions in compatible elements and middle to heavy rare earth elements (MREE, 329 

HREE; La/Yb = 8.9 ± 1.7, n = 14), and flat to listric-shaped patterns from MREE to 330 

HREE. Such listric patterns likely reflect amphibole fractionation from hydrous magmas, 331 

and are an indication of magma fertility for porphyry ore formation (Richards and 332 

Kerrich, 2007). Most samples have flat or slightly positive Eu anomalies with EuN/EuN
* 333 

of 1.1 ± 0.15 (n = 14; Fig. 10B), also likely reflecting amphibole fractionation and lack of 334 

plagioclase fractionation. 335 

Three samples of late basaltic to andesitic dikes show distinct trace element patterns, 336 

especially for HFSE and REE, which are enriched relative to the porphyries; they are 337 

clearly not cogenetic with the earlier porphyries. 338 

Excluding two samples with high Sr values that may reflect calcite veining, the 339 

porphyries have relatively high Sr/Y (53 ± 23, n = 12) and V/Sc ratios (9.0 ± 0.9, n = 14), 340 
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which overlap the range of fertile rocks for porphyry formation (Richards and Kerrich, 341 

2007; Loucks, 2013, 2014). 342 

 343 

Whole-rock Nd-Sr isotopes 344 

Nd and Sr isotopic compositions of the porphyritic rocks are very homogeneous (Table 345 

4 and Fig. 11). They show a narrow range of initial Sr isotopic ratios from 0.7042 to 346 

0.7047 ((87Sr/86Sr)t = 0.7044 ± 0.0002, n = 8), with relatively high ƐNd(t) values from 2.4 347 

to 3.6 (average = +3.1 ± 0.4, n = 8), consistent with a mantle source with minor crustal 348 

contamination. The single-stage Nd model ages (TDM1) calculated following the methods 349 

of Goldstein et al. (1984) range from 0.74 to 0.88 Ga (average = 0.80 ± 0.05 Ga, n = 8), 350 

and are indistinguishable for the different porphyry phases. Two basaltic–andesitic dike 351 

samples show slightly lower Sr isotopic ratios ((87Sr/86Sr)t = 0.7042 and 0.7043) and 352 

higher ƐNd(t) ratios (+3.5 and +3.9) than the porphyry rocks (Fig. 11). 353 

Zircon Hf isotopes 354 

Zircon Hf isotopic results are listed in Digital Appendix Table A4, and illustrated in 355 

Figure 12. The four zircon samples from porphyritic rocks show indistinguishable Hf 356 

isotopic compositions and single-stage Hf model ages of 375 ± 52 Ma (range = 264–527 357 

Ma, n = 56), with relatively high ƐHf(t) values of 12.0 ± 0.4 (weighted mean value, 95% 358 

confidence level; range = 8.1–14.8, n = 56). These data suggest that the porphyries shared 359 

a common primitive mantle source, consistent with their island arc origin. 360 

 361 

Amphibole, Plagioclase, Zircon, and Apatite Compositions 362 
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The compositions of amphibole, plagioclase, zircon, and apatite from samples of least-363 

altered porphyritic rocks are listed in Digital Appendix Tables A5, A6, A7, and A8, 364 

respectively. Based on these analyses, water and sulfur contents as well as oxygen 365 

fugacity of the magma have been estimated qualitatively and quantitatively. 366 

 367 

Amphibole compositions 368 

Amphibole compositions can be used to estimate magmatic oxidation state, 369 

crystallization temperatures and pressures, as well as water contents (e.g., Ridolfi et al., 370 

2010; Zhang et al., 2012; Wang et al., 2014b). However, fresh amphibole grains were 371 

only observed in the P2E and P2L porphyries. All of the analyzed grains are calcic 372 

amphiboles, and two generations of amphibole were recognized in both P2E and P2L. 373 

Early stage grains occur as phenocrysts and are characterized by higher Al contents 374 

(range = 9.35–12.86 and 8.79–13.46 wt. % Al2O3 for P2E and P2L, respectively; Digital 375 

Appendix Table A5); they are mostly classified as magnesio-ferri-hornblende and 376 

magnesio-hastingsite (including potassic-magnesio-hastingsite; Fig. 13A). The late stage 377 

grains were developed in the groundmass or as recrystallized phenocrysts, typified by 378 

lower Al concentrations (range = 1.62–4.76 and 4.33–7.53 wt. % Al2O3 for P2E and P2L, 379 

respectively; Digital Appendix Table A5). They are classified as magnesio-ferri-380 

hornblende or rare actinolite (Fig. 13A). The early stage amphibole grains are intergrown 381 

with plagioclase phenocrysts (Fig. 14), and igneous apatite crystals occur as inclusions 382 

within amphibole (Fig. 14B). This indicates that these three minerals are broadly coeval. 383 

The crystallization temperature, magmatic water contents, and oxygen fugacities were 384 

estimated for the two stages of amphiboles using the spreadsheet of Ridolfi et al. (2010), 385 
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and the crystallization pressures were calculated following the equation of Mutch et al. 386 

(2016). The Al-in-hornblende geobarometer used is applicable to granitoids that contain 387 

amphibole, plagioclase, quartz, and alkali feldspar, broadly consistent with the mineral 388 

assemblage within P2 porphyry rocks. The calculated results are listed in Digital 389 

Appendix Table A5 and illustrated in Figure 13 (B–C). 390 

Amphibole phenocrysts from the P2E and P2L porphyry samples have similar 391 

compositions, with calculated crystallization pressures from 3.5 to 6.7 kbar (average = 392 

4.6 ± 0.8 kbar, n = 51), temperatures from 855 to 983 °C (average = 900 ± 30 °C, n = 51), 393 

FMQ values from 0.5 to 1.8 (average = 1.1 ± 0.3, n = 51), and H2O contents in melts 394 

from 4.0 to 6.1 wt. % (average = 5.1 ± 0.4 wt. %, n = 51).  395 

Late stage (low-Al) amphiboles in P2E porphyry samples yielded crystallization 396 

pressures from 0.6 to 1.4 kbar (average = 1.1 ± 0.3 kbar, n = 12), temperatures from 637° 397 

to 774 °C (average = 719 ± 34 °C, n =12), FMQ values from 2.6 to 3.3 (average = 3 ± 398 

0.2, n =12), and magmatic water contents from 3.6 to 5.1 wt. % (average = 4 ± 0.4 Ma, n 399 

= 12). Low-Al amphibole grains from P2L samples yielded slightly higher crystallization 400 

pressures (2.0 ± 0.4 MPa; range = 1.3–2.6 kbar, n = 8) and temperatures (800 ± 24 °C; 401 

range = 751–800 °C, n = 8), slightly lower FMQ values (2.4 ± 0.3; range = 1.1–2.9, n = 402 

8), but similar H2O contents (4.0 ± 0.2; range = 3.7–4.4, n = 8) to those calculated for 403 

P2E. 404 

There are clear trends of increasing oxidation state and decreasing crystallization 405 

pressures, temperatures, and magmatic water contents from early to late stage amphiboles 406 

in both P2E and P2L porphyries (Figs. 13B–D). These trends are consistent with the 407 

high-Al amphibole phenocrysts having crystallized at depth before final crystallization of 408 
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the magma (and low-Al amphibole) after emplacement at shallow levels (e.g., Rutherford 409 

and Devine, 2003). The decreasing magmatic water contents might be attributed to 410 

degassing during ascent and crystallization, which can also result in a small increase in 411 

oxygen fugacity (Mathez, 1984; Candela, 1986; Burgisser and Scaillet, 2007; Zimmer et 412 

al., 2010; Bell and Simon, 2011; Dilles et al., 2015). 413 

 414 

Plagioclase compositions 415 

Plagioclase phenocrysts from all P1 porphyry samples studied have been altered, but 416 

partially unaltered phenocrysts were found in some P2 and P3 porphyry samples. 417 

Analyses with K2O > 1 wt. % are interpreted to reflect potassic alteration and have been 418 

excluded. Plagioclase grains from the P2E porphyry (sample RC13-13) are classified as 419 

oligoclase (≥ An17) to labradorite (≤ An70), with an average anorthite (An) content of 44 ± 420 

12 mol % (n = 28). Nearly all these crystals exhibited reverse zoning in An content, with 421 

compositional ranges up to ~16 mol %, and FeO contents that correlate positively with 422 

XAn values (Digital Appendix Table A6; Fig. 14A). Plagioclase grains from the P2L 423 

porphyry (samples RC13-26 and RC13-33) have compositions similar to P2E (An mol % 424 

= 48 ± 5, n = 38), and also show reverse zoning with amplitudes up to ~19 mol % An that 425 

correlate with FeO contents (Fig. 14B). Such reverse zoning with positive An-FeO 426 

correlations were observed both in partially altered (i.e., sericite alteration; Fig. 14A) and 427 

relatively fresh plagioclase crystals (Fig. 14B), indicating that it was not likely to have 428 

been generated by hydrothermal alterations. In contrast, plagioclase grains from the P3 429 

porphyry (RC13-78) display relatively uniform An compositions (An mol % = 51 ± 5, n 430 

= 37), with no clear zoning in XAn and FeO (Fig. 14C). 431 
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 Plagioclase compositions (An proportions) are very sensitive to dissolved water 432 

content and temperature of the melt, and thus can be used as a hygrometer if corrected for 433 

temperature (Mathez, 1973; Lange, 2009; Waters and Lange, 2015). We used apatite 434 

saturation temperatures (AST) following the formula of Piccoli and Candela (1994) to 435 

calculate magma temperatures for P2 and P3 samples (Table 4; Digital Appendix Table 436 

A3). The whole-rock SiO2 and P2O5 values were assumed to approximate the melt 437 

contents at the time of crystallization, although this assumption can be challenged 438 

(Piccoli and Candela, 1994, 2002). Nevertheless, the calculated temperatures are 439 

reasonable for magmas of intermediate, hydrous composition, and are also in agreement 440 

with the estimated crystallization temperatures of early stage amphibole (Digital 441 

Appendix Table A5): 932 °C for P2E (RC13-13), 892 °C (RC13-26) and 905 °C (RC13-442 

33) for P2L, and 928 °C for P3 (RC13-78; Table 4). 443 

The updated spreadsheet of Waters and Lange (2015) has been used to calculate 444 

magmatic water contents (Digital Appendix Table A9). The calculated values are 445 

relatively uniform and indistinguishable between the different porphyry phases: 5.2 ± 0.2 446 

(n = 28) for P2E, 5.5 ± 0.2 (n = 38) for P2L, and 5.1 ± 0.1 wt. % (n = 37) for P3. For the 447 

P2E and P2L porphyries, the magmatic water contents calculated from plagioclase and 448 

early stage amphibole compositions agree well with each other (Digital Appendix Tables 449 

A5 and A8). 450 

 451 

Zircon trace element compositions 452 

Twenty trace element spot analyses were obtained for zircons from samples of P1 to 453 

P3 porphyries (Digital Appendix Table A7; Fig. 15). It is common to encounter small 454 
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mineral inclusions, especially of apatite, titanite, in zircon during LA-ICP-MS analyses 455 

(e.g., Lu et al., 2016). We have taken Ca > 200 ppm or La > 0.3 ppm as an indication of 456 

apatite contamination, and Ti > 20 ppm to reflect titanite contamination, and such data 457 

were excluded (Digital Appendix Table A7). The remaining analyses have low LREE 458 

and elevated HREE contents, with small negative Eu and strongly positive Ce anomalies 459 

(Fig. 15). These REE patterns and total contents (ƩREE = 351–1125 ppm), as well as 460 

Th/U ratios above 0.1 (0.26–0.63) (Digital Appendix Table A7) are typical of igneous 461 

zircons from relatively oxidized magmas (Hoskin and Schaltegger, 2003). 462 

Zircon crystals from the P1 to P3 porphyries show slightly different calculated Ti-in-463 

zircon temperatures and Eu anomalies (EuN/EuN
* = EuN/(SmN × GdN)0.5; Fig. 16; Digital 464 

Appendix Table A7). Titanium-in-zircon temperatures were calculated using the equation 465 

of Ferry and Watson (2007), where it is assumed that log aSiO2 = 1 because of the 466 

existence of quartz in the host porphyries, and log aTiO2 = 0.7 due to the presence of 467 

titanite (a common accessory mineral in these rocks). Zircon crystals from the P2E 468 

porphyry (sample RC13-107) have the highest calculated temperatures (average of 760 ± 469 

29 °C; range = 723°–819°C, n = 14) with relatively uniform EuN/EuN
* values from 0.5 to 470 

0.7 (average = 0.6 ± 0.1; n = 14). Zircon crystals from the P3 porphyry (sample RC13-78) 471 

show the lowest calculated temperatures (average = 726 ± 24 °C; range = 693°–758°C, n 472 

= 18) and lowest EuN/EuN
* ratios (0.5 ± 0.1; range = 0.3–0.6, n = 18). Zircon crystals 473 

from the P1 and P2L porphyries have intermediate calculated temperatures (P1: 736 ± 474 

26 °C, range = 699°–810 °C, n = 16; P2L: 730 ± 24 °C, range = 705°–795°C, n = 17), 475 

and a similar wide range of EuN/EuN
* values (P1: 0.3–1.0, average = 0.6 ± 0.2; P2L: 0.3–476 

0.9, average = 0.6 ± 0.1). 477 
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Trace element compositions in zircon are sensitive to magmatic water content and 478 

oxygen fugacity, and have been used to distinguish between fertile and infertile suites in 479 

porphyry Cu ± Au ± Mo systems (Ballard et al., 2002; Liang et al., 2006; Qiu et al., 2014; 480 

Wang et al., 2014b; Dilles et al., 2015; Shen et al., 2015; Lu et al., 2016; Xu et al., 2016; 481 

Loader et al., 2017). In hydrous magmas, early plagioclase crystallization is suppressed 482 

(Moore and Carmichael, 1998), leading to no pronounced depletion of Eu in melts (Eu2+ 483 

substitutes for Ca2+ in plagioclase). On the other hand, in oxidized magmas, Eu is 484 

predominantly present as Eu3+ and is partitioned into zircon along with other REE 485 

(Ballard et al., 2002; Hoskin and Schaltegger, 2003; Trail et al., 2011; Dilles et al., 2015). 486 

Therefore, the small negative Eu anomalies in zircon samples (as indicated by EuN/EuN
* 

487 

ratios >0.3 and mostly > 0.4; Fig. 16A), and slightly positive anomalies in whole rocks 488 

(Fig. 10) indicate relatively high magmatic water contents and/or oxidation states 489 

(Ballard et al., 2002; Dilles et al., 2015; Lu et al., 2016). 490 

Ballard et al. (2002) defined the zircon Ce4+/Ce3+ ratio as an indicator of magmatic 491 

oxidation state. However, Dilles et al. (2015) and Lu et al. (2016) argue that these values 492 

are difficult to estimate accurately because the abundances of the adjacent elements, La 493 

and Pr, which are used as a baseline to calculate the magnitude of the Ce anomaly, are 494 

low and close to the analytical detection limit. Confirming this reservation, Ce4+/Ce3+ 495 

ratios and fO2 values calculated for our samples using the equation of Trail et al. (2011) 496 

yielded unrealistic and widely variable FMQ values (-9 to +5). 497 

 498 

Apatite compositions 499 
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The SO3, Cl, and F analyses of igneous apatites are listed in Digital Appendix Table 500 

A8 and illustrated in Figures 17 and 18. The results show that igneous apatites from the 501 

P2 porphyries have higher sulfur and chlorine concentrations than those from P1 and P3 502 

rocks. The high SO3 contents in apatites from the P2 porphyries (P2E: 0.11 to 0.8 wt. % 503 

SO3, average = 0.30 ± 0.13 wt. %, n = 34; P2L: 0.07 to 1.2 wt. % SO3, average = 0.29 ± 504 

0.18 wt. %, n = 100) are similar to values from global porphyry Cu deposits (Streck and 505 

Dilles, 1998; Imai, 2002; Li et al., 2012; Pan et al., 2016; Richards et al., 2017). In 506 

comparison, apatite crystals from the P1 porphyry (RC13-39) have lower sulfur contents 507 

(0.05 to 0.19 wt. % SO3; average = 0.11 ± 0.03 wt. %, n = 34), whereas those from the P3 508 

porphyry (RC13-78) have the lowest sulfur concentrations (from 0.05 wt. % to below the 509 

analytical detection limit of SO3; average of analyses above limit of detection = 0.03 ± 510 

0.01, n = 13). Although the ranges for P1 and P2L porphyries overlap at their outer limits, 511 

a t-test shows that the two populations are significantly different (t = 5.87, p = 0). 512 

Similarly, the Cl contents in apatite crystals from P1 and P3 porphyries are 513 

significantly lower (0.51 ± 0.3 wt. %, n = 34, and 0.1 ± 0.06 wt. %, n = 17, respectively) 514 

compared to values from the P2 porphyries (P2E: 1.18 ± 0.37 wt. %, n = 34; P2L: 1.47 ± 515 

0.28 wt. %, n = 100). There is a rough positive correlation between sulfur and chlorine 516 

contents of apatites from the four porphyries (Fig. 18A), with relatively constant molar 517 

S/Cl ratios (P1: 0.13 ± 0.08, n = 34; P2E: 0.13 ± 0.08, n = 34; P2L: 0.10 ± 0.14, n =100; 518 

P3: 0.16 ± 0.09, n =13; Table 4). Detailed analyses also show that single apatite crystals 519 

are commonly zoned in sulfur, with decreasing core-to-rim SO3 contents (and small 520 

decreases in Cl; Fig. 17C), possibly reflecting progressive degassing of SO2 (and Cl) 521 

from the melt during crystallization (Richards et al., 2017).  522 
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Fluorine contents in apatites from the P1 and P3 porphyries are similar (P1: 3.64 ± 523 

0.48 wt. %, n = 34; P3: 3.6 ± 0.4, n = 17) and distinctly higher than in the P2E (2.33 ± 524 

0.29 wt. %, n = 34) and P2L (2.32 ± 0.23 wt. %, n = 100) porphyries. 525 

Some hydrothermal apatite grains were also analyzed for comparison with igneous 526 

grains, and they show wide variations in sulfur and chlorine content (Digital Appendix 527 

Table A8), as observed by other researchers (e.g., Li et al., 2012; Richards et al., 2017). 528 

The sulfur partition coefficient between apatite and melt is jointly controlled by 529 

temperature, oxygen fugacity, and the S content in the silicate melt (Peng et al., 1997; 530 

Parat and Holtz, 2005; Parat et al., 2011; Webster and Piccoli, 2015; Konecke et al., 531 

2017a, b), and no formula currently exists to accurately calculate magmatic sulfur 532 

concentrations from apatite SO3 contents. However, two semi-quantitative formulae can 533 

be used to estimate relative magmatic S content (Peng et al., 1997; Parat et al., 2011). 534 

Using the equation of Peng et al. (1997), the magmas related to the P2E and P2L 535 

porphyry intrusions are calculated to have sulfur concentrations of 0.03 ± 0.01 wt. % (n = 536 

34) and 0.02 ± 0.01 wt. %  (n = 100), significantly higher than the corresponding S 537 

contents for P1 (0.010 ± 0.003 wt. % S, n = 34) and P3 magmas (0.003 ± 0.001 wt. % S, 538 

n = 13; Table 4). The results calculated by the method of Parat et al. (2011) are more 539 

variable, and yielded lower absolute values than those from Peng et al. (1997). However, 540 

they also support the conclusion that the P2E and P2L magmas had significantly higher 541 

sulfur contents than the P1 and P3 magmas (Table 4). 542 

The chlorine partition coefficient between apatite and melt is a complex function of 543 

magma composition and Cl concentration in the melt (Zhu and Sverjensky, 1991; Piccolli 544 

and Candela, 1994; Mathez and Webster, 2005; Webster et al., 2009; Chelle-Michou and 545 
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Chiaradia, 2017). Mathez and Webster (2005) proposed a value of 0.8 as the partition 546 

coefficient (mass ratio) between apatite and basaltic melt (51.1 wt. % SiO2). Based on 547 

this semi-quantitative equation (and recognizing that these magmas were not basaltic), we 548 

estimate Cl concentrations in the P2E and P2L magmas of 1.48 ± 0.46 wt.% (n = 34) and 549 

1.83 ± 0.34 wt.% (n = 100),respectively, significantly higher than for P1 (0.63 ± 0.38 550 

wt.%, n = 34) and P3 (0.12 ± 0.07 wt.%; Table 4). 551 

 552 

Discussion 553 

Magmatic duration and timing of ore formation at Red Chris 554 

Four phases of the Red Stock, P1, P2E, P2L, and P3, have been dated at 211.6 ± 1.3 555 

Ma, 206.0 ± 1.2 Ma, 203.6 ± 1.8 Ma, and 201.7 ± 1.2 Ma, respectively, spanning a period 556 

of ~10 m.y. (Fig. 6; Digital Appendix Table A2).  These ages are consistent with 557 

crosscutting relationships described by Rees et al. (2015). Re-Os dating of molybdenite 558 

intergrown with chalcopyrite in quartz veins yielded a weighted mean age of 206.1 ± 0.5 559 

Ma (Fig. 7), reflecting the timing of mineralization and in good agreement with the 560 

emplacement age of the mineralized P2E quartz monzonite porphyry. Ore formation 561 

occurred at a relatively late stage in the ~10 m.y. evolution of the Red Stock, and over a 562 

relatively brief period time (<1 m.y., as defined by the uncertainty on the average of three 563 

Re-Os analyses). This relatively late and short duration of mineralization is similar to the 564 

timing observed in many other porphyry deposits (e.g., Cathles et al., 1997; Masterman et 565 

al., 2004; von Quadt et al., 2011; Chiaradia et al., 2013; Correa et al., 2016; Li et al., 566 

2017). 567 
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The age of mineralization at ~206 Ma is contemporaneous with the major pulse of 568 

mineralization in the Stikine and Quesnel terranes, representing a particularly fertile pre-569 

accretionary magmatic event (Nelson and Colpron, 2007; Nelson et al., 2013; Logan and 570 

Mihalynuk, 2014). 571 

 572 

Igneous geochemistry and petrogenesis 573 

Whole-rock major and trace element compositions of P1 to P3 porphyry rocks are 574 

almost identical to each other, and show characteristics of subduction-related magmatic 575 

rocks with high LILE and low HFSE concentrations (Figs. 9 and 10; Hawkesworth et al., 576 

1993; Pearce, 1996). The high Sr/Y ratios (53 ± 23, n = 12) and slightly positive Eu 577 

anomalies (Eun/Eun
* = 1.1 ± 0.15; n =14) indicate the suppression of plagioclase 578 

crystallization and early crystallization of amphibole from hydrous and oxidized magmas 579 

(Richards and Kerrich, 2007; Loucks, 2014). Rees et al. (2015) concluded from their 580 

analysis of petrochemistry that the Red Stock evolved from subalkaline (P1, P2) to 581 

marginally alkaline (P3), and classified the overall system as high-K calc-alkalic. 582 

All the porphyritic rocks from P1 to P3 show mantle-like, relatively low (87Sr/86Sr)t 583 

(0.7044 ± 0.0002) and high ƐNd(t) (+3.1 ± 0.4) values, and similar single-stage Nd model 584 

ages (0.80 ± 0.05 Ga). Zircon crystals from these rocks yield positive zircon ƐHf(t) values 585 

(+8.1 to +14.8) and single-stage Hf model ages of 375 ± 52 Ma (Figs. 11 and 12). These 586 

data indicate minimal involvement of ancient crustal components in the petrogenesis of 587 

these magmas, as observed for other Mesozoic igneous rocks in the Stikine terrane, and 588 

are consistent with an oceanic island arc setting (Samson et al., 1989; Logan and 589 

Mihalynuk, 2014). 590 
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Late basaltic to andesitic dikes have similar Nd–Sr isotopic compositions to the 591 

porphyritic rocks, but show distinct trace element and REE patterns, and lower Sr/Y and 592 

La/Yb ratios, suggesting that they are not cogenetic. 593 

 594 

Oxygen fugacity and sulfur-chlorine-water contents of the porphyry magmas 595 

Magmatic oxidation state, and sulfur, chlorine, and water contents are fundamental 596 

factors for the formation of porphyry Cu deposits (e.g., Burnham, 1979; Candela, 1992; 597 

Richards, 2003; Loucks, 2014). It is difficult to measure the original magmatic oxidation 598 

state in altered plutonic rocks, but normalized Ce and Eu anomalies in zircons can be 599 

used to provide qualitative estimates (Ballard et al., 2002; Dilles et al., 2015; Lu et al., 600 

2016). Zircon grains from the P1 to P3 porphyries display large positive Ce and small 601 

negative Eu anomalies (EuN/EuN
* mostly > 0.4; Figs. 15 and 16), similar to zircons from 602 

other mineralized porphyry systems worldwide (Wang et al., 2014b; Dilles et al., 2015; 603 

Lu et al., 2016). These data are also consistent with estimates of magmatic oxidation state 604 

from early stage amphibole phenocrysts from the P2E and P2L porphyries, which yielded 605 

FMQ values of 1.5 ± 0.2 (n = 7) and 1.1 ± 0.3 (n = 44). Consequently, we conclude that 606 

the four phases of magma in the Red Stock were all at least moderately oxidized.  607 

It is similarly difficult to estimate original magmatic water contents from altered 608 

plutonic rocks. However, the presence of amphibole phenocrysts in the P1 to P3 609 

porphyries suggest that the magmas contained at least 4 wt. % H2O (Burnham, 1979, 610 

Naney, 1983; Merzbacher and Eggler, 1984; Rutherford and Devine, 1988; Ridolfi et al., 611 

2010). This observation is supported by: (1) high whole-rock Sr/Y ratios (53 ± 23, n = 612 

12), which reflect the suppression of plagioclase relative to amphibole crystallization 613 
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under hydrous conditions (Moore and Carmichael, 1998; Richards and Kerrich, 2007); (2) 614 

high 10000×(EuN/EuN
*)/Y (>1) and low Dy/Yb (<0.3) ratios in zircons (Digital Appendix 615 

Table A7; Lu et al., 2016); (3) high whole-rock V/Sc ratios (9.0 ± 0.9, n = 14) (Loucks, 616 

2014); and (4) estimates of magmatic water content from plagioclase phenocryst 617 

compositions, which indicate values of ~5 wt.% H2O. 618 

The compositions of igneous apatite inclusions in plagioclase and amphibole 619 

phenocrysts have been used to estimate magmatic sulfur and chlorine contents. The 620 

results suggest that apatite microphenocrysts from the P2E and P2L porphyries had 621 

higher S and Cl contents than for P1 and P3 (Fig. 18). The SO3 contents in apatite are 622 

controlled by both magmatic sulfur concentration and oxidation state (Peng et al., 1997; 623 

Parat and Holtz, 2005; Webster and Piccoli, 2015). Sulfur occurs in the apatite structure 624 

mainly as S6+ and its content will increase in relatively oxidized environments (Boyce et 625 

al., 2010; Parat et al., 2011; Konecke et al., 2017b). The magmas associated with the four 626 

porphyry phases at Red Chris were all moderately oxidized, and therefore the differences 627 

in apatite sulfur content likely mainly reflect variations in the sulfur fugacity in the 628 

associated melts. The data indicate that the P2E and P2L porphyry magmas contained 629 

significantly higher S contents than the P1 and P3 magmas (Fig. 18). Models used to 630 

estimate magmatic sulfur content in equilibrium with apatite (Peng et al., 1997) are not 631 

strictly accurate because of uncertainties in the details of exchange reactions (Streck and 632 

Dilles, 1998; Mao et al., 2016) but are expected to be correct in relative terms. Our data 633 

yield higher values for the P2E and P2L porphyries (0.02–0.03 wt. % S) compared to 634 

estimates for P1 (0.01 wt. % S) and P3 (0.003 wt. % S). Consequently, we conclude that 635 
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the syn-mineral porphyry (P2E and P2L) magmas were more S-rich than the pre-636 

mineralization P1 and especially the post-mineralization P3 porphyry magmas. 637 

Similarly, the magmatic Cl contents calculated from apatite compositions in the P2E 638 

and P2L porphyries are also higher than in the P1 and P3 porphyries, whereas F contents 639 

are lower (Table 4). Volatile species such as S, Cl, and F are differentially affected by 640 

degassing during ascent and crystallization of magmas: S and Cl will be preferentially 641 

lost to the vapor phase relative to F (Webster et al., 2014; Stock et al., 2016), leading to 642 

high F/Cl and F/S ratios in degassed magmas. The data shown in Figure 18 suggest that 643 

the P2E and P2L were S-Cl-rich, whereas the P1 and P3 were S-Cl-poor but enriched in F. 644 

These differences could reflect either loss of volatiles from the source magma 645 

chamber (presumed to be an underlying batholith) prior to emplacement of the P1 and P3 646 

magmas but not in the case of P2, or conversely addition of a volatile phase or a volatile-647 

rich magma to the magma chamber immediately prior to emplacement of P2. Volatile 648 

loss is expected to be a general condition of upper crustal magma emplacement, and this 649 

may well be a factor contributing to the low Cl/F ratios in the late P3 magmas, as well as 650 

the negatively correlated trend for F and Cl in P1. The P2 magma was emplaced after P1, 651 

and so might be expected to be similarly degassed if this represents a comagmatic 652 

sequence. However, the 6–8 m.y. age difference between P1 (211.6 ± 1.3 Ma) and P2 653 

(P2E: 206.0 ± 1.2 Ma; P2L: 203.6 ± 1.8 Ma) indicates that P1 and P2 are not directly 654 

comagmatic. One explanation is that the P2 event represents a pulse of S-Cl-rich magma 655 

injected at a relatively late stage into the mid-crustal magma reservoir, leading to a pulse 656 

of fluid exsolution and injection of P2 magma into the shallower level Red Stock, where 657 

syn-P2, quartz-vein hosted mineralization formed the Red Chris Cu-Au deposit. The 658 
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post-mineralization P3 (201.7 ± 1.2 Ma) and P4 porphyries may represent the final stages 659 

of intrusive activity emanating from the now degassed underlying magma chamber. 660 

Although both P2E and P2L porphyries are S-Cl-rich, apatites from P2L are 661 

marginally the most enriched. Samples of P2L are also the most mafic (SiO2-poor) in the 662 

suite, and it is therefore tempting to speculate that the source magma chamber was 663 

recharged with more mafic, S-Cl-H2O-rich magma during the P2 stage. The solubility of 664 

S and Cl is higher in oxidized mafic magmas compared to felsic melts (> 1000 ppm S 665 

and > 3000 ppm Cl; Carmichael and Ghiorso, 1986; Webster, 1997; Webster et al., 1999; 666 

Hattori and Keith, 2001; Jugo et al., 2005; Jugo, 2009; Chelle-Michou and Chiaradia, 667 

2017). Therefore, a key step in porphyry ore formation at Red Chris may have been 668 

recharge of the batholithic system by a less evolved, although broadly cogenetic, magma 669 

(cf. Hattori and Keith, 2001; Steinberger et al., 2013; Large et al., 2018). 670 

Support for this recharge model is provided by high magmatic temperatures 671 

calculated from zircon grains from some P2 samples (Fig. 16), and reverse zoning 672 

observed in plagioclase phenocrysts from the P2E and P2L porphyries, but which is not 673 

observed in P3 (Fig. 14C). In detail, zircons from the P2E porphyry show the highest Ti-674 

in-zircon temperatures and EuN/EuN
* values, and P3 the lowest values. This might reflect 675 

an influx of higher temperature melt during the evolution of the P2E magma, and greater 676 

degrees of plagioclase fractionation from the late P3 magma. The compositional ranges 677 

of up to ~19 mol % An for plagioclase are higher than the upper limit caused by chemical 678 

diffusion (~10 mol % An; Pearce and Kolisnik, 1990). Furthermore, these reverse zoning 679 

patterns are matched by FeO contents in the phenocrysts (Figs. 14A and 14B), which 680 

suggests that the zonation reflects changes in magma composition (as opposed to simply 681 
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changes in pressure, temperature, or water content; Ginibre and Wörner, 2007; Lange, 682 

2009; Ustunisik et al., 2014; Waters and Lange, 2015). We therefore interpret these 683 

changes to reflect late-stage (rim) growth from a more mafic magma that mixed into a 684 

more evolved resident magma. 685 

 686 

Conclusions 687 

Zircon U-Pb ages indicate that the Red Stock was emplaced over a period of ~10 m.y. 688 

(211.6 ± 1.3 Ma, 206.0 ± 1.2 Ma, 203.6 ± 1.8 Ma, and 201.7 ± 1.2 Ma for the P1, P2E, 689 

P2L, and P3 porphyries, respectively). The ore-forming event at Red Chris occurred 690 

relatively late in this magmatic history, synchronous with P2E at 206.1 ± 0.5 Ma, and 691 

over a short period of <1 m.y. (as constrained by the error on the average of three Re-Os 692 

analyses). The four phases of porphyry and their related magmas were chemically fairly 693 

homogeneous and isotopically primitive, consistent with an island arc origin. The 694 

magmas were all moderately oxidized and hydrous (~5 wt. H2O), but the P2 magmas had 695 

distinctly higher S and Cl contents. Combined with evidence for reverse zonation in 696 

plagioclase phenocrysts from P2 porphyries, and more mafic compositions in P2L, we 697 

suggest that the deeper source magma chamber was recharged at the time of 698 

emplacement of the P2 porphyries by injection of a more mafic S-Cl-rich magma. This 699 

recharge process may have triggered ore formation by causing voluminous exsolution of 700 

metalliferous hydrothermal fluids. 701 
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Figure Captions 1200 

Fig. 1. Major terranes in the south of the Canadian Cordillera, showing Triassic to 1201 

Jurassic magmatic belts and major associated porphyry deposits in the Stikine and 1202 

Quesnel terranes (modified from Nelson and Colpron, 2007; Nelson et al., 2013; original 1203 

graphics file provided by Joanne Nelson, British Columbia Geological Survey of Canada). 1204 

The age of the Red Chris deposit is from this study (Table 1), and the ages for the other 1205 

porphyry deposits are from Brown and Kahlert (1986; Red Mountain), Mortensen et al. 1206 

(1995; Mt. Polley), Scott et al. (2008; Schaft Creek), Duuring et al. (2009; Kemess 1207 

South), Taseko Mines Limited (2013; Gibraltar), Bath et al. (2014; Lorraine), Byrne and 1208 

Tosdal (2014; Galore Creek), Devine et al. (2014; Lorraine), Logan and Mihalynuk (2014; 1209 

Highland Valley, Copper Mountaine, Afton/Ajax, and Brenda), and Jago et al. (2014; Mt. 1210 

Milligan).  1211 

 1212 

Fig. 2. Simplified geological map of the Red Stock and Red Chris Cu-Au deposit, 1213 

showing the main mineralized zoned (named) and the locations of sampled drill holes 1214 

(modified from Rees et al., 2015). Universal Transverse Mercator coordinates are based 1215 

on the WGS84 datum. 1216 

 1217 

Fig. 3. Hand specimen photographs of samples of the P1, P2E, P2L, and P3 porphyry 1218 

intrusions, and two late basaltic to andesitic dikes. (A) P1 porphyry with anhedral to 1219 

subhedral altered amphibole and plagioclase phenocrysts, crosscut by pyrite-quartz veins 1220 

(sample RC13-35). (B) P2E porphyry showing crowded texture with chloritized 1221 

amphibole and plagioclase phenocrysts; plagioclase grains are rimmed or replaced by 1222 
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secondary K-feldspar. The brick-red color is due to fine-grained hematite (sample RC13-1223 

107). (C) P2L porphyry composed of abundant fresh amphibole and plagioclase 1224 

phenocrysts, with quartz in the groundmass (sample RC13-32). (D) The P3 porphyry is 1225 

similar to P2L, but is distinguished by the absence of quartz in the groundmass (sample 1226 

RC13-78). (E) Andesitic dike with anhedral to subhedral amphibole phenocrysts, crosscut 1227 

by a small calcite vein (sample RC13-62). (F) Basaltic dike with chloritized amphibole 1228 

phenocrysts (sample RC13-106). See Digital Appendix Table A1 for sample locations. 1229 

 1230 

Fig. 4. West-southwest–east-northeast cross section A–A’, and north-northwest–south-1231 

southwest cross section B-B’ (location of sections shown in Fig. 2), modified from 1232 

Gillstrom et al. (2012) and Rees et al. (2015). Copper equivalent-grade zones, drill holes, 1233 

and the boundary between potassic and post-potassic zones are shown: Cu equivalent (%) 1234 

= Cu (%) + 0.486 × Au (g/t). 1235 

 1236 

Fig. 5. Hand specimen photographs and photomicrographs of alteration and vein minerals. 1237 

(A, B) P2E porphyry (samples RC13-81 and RC13-75) with potassic alteration and A-1238 

type quartz veins comprising magnetite, secondary K-feldspar, and disseminated bornite 1239 

and pyrite. Potassic alteration is characterized by secondary K-feldspar veins and 1240 

selvedges around A-veins. Late unmineralized carbonate veins cut the A veins. (C) 1241 

Amphibole phenocryst altered to secondary biotite, which has then been altered to 1242 

chlorite, reflecting potassic alteration overprinted by chlorite–sericite alteration (plane-1243 

polarized transmitted light; P2E: sample RC13-30). (D) Plagioclase phenocryst partially 1244 

overprinted by sericite (cross-polarized transmitted light; P2E porphyry: sample RC13-1245 
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11). (E) B-type quartz veins with centerline pyrite in P2L porphyry (sample RC13-44). (F) 1246 

Pyritic D vein in P1 porphyry (sample RC13-40). (G) High-grade ore in sheeted A-type 1247 

quartz-chalcopyrite-K-feldspar veins (sample RC13-31 in P2E porphyry). (H) Quartz-1248 

carbonate-pyrite-molybdenite-chalcopyrite vein in P2E porphyry (reflected light; sample 1249 

RC13-88). Abbreviations: Amp = amphibole; Bi = biotite; Bn = bornite; Cbn = carbonate; 1250 

Chl = chlorite; Cpy = chalcopyrite; Kfs = K-feldspar; Mo = molybdenite; Mt = magnetite; 1251 

Pl = plagioclase; Py = pyrite; Qtz = quartz. See Digital Appendix Table A1 for sample 1252 

locations. 1253 

 1254 

Fig. 6. Zircon U–Pb Tera-Wasserburg concordia diagrams for (A) P1, (B) P2E, (C) P2L, 1255 

and (D) P3 porphyry samples dated by LA-MC-ICP-MS. Uncertainty ellipses and 1256 

calculated ages are shown at 2. 1257 

 1258 

Fig. 7. Weighted mean Re-Os model age of three molybdenite vein samples from the Red 1259 

Chris Cu-Au deposit. 1260 

 1261 

Fig. 8. Zr/Ti vs. Nb/Y discrimination diagram (Winchester and Floyd, 1977) for porphyry 1262 

and basaltic–andesitic dike samples from Red Chris. 1263 

 1264 

Fig. 9. Selected whole-rock major element variation diagrams for porphyry and basaltic–1265 

andesitic dike samples from Red Chris: (A) K2O, (B) Na2O, (C) TiO2, (D) Al2O3, (E) 1266 

total Fe2O3, and (F) MgO vs. SiO2. 1267 
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Fig. 10. (A) Primitive mantle-normalized trace element, and (B) chondrite-normalized 1269 

rare earth element diagrams for porphyry and basaltic–andesitic dike samples from Red 1270 

Chris. The normalization values for primitive mantle chondrite are from from Sun and 1271 

McDonough (1989). 1272 

 1273 

Fig. 11. ƐNd(t) vs. initial 87Sr/86Sr ratios for porphyry and basaltic–andesitic dike samples 1274 

from Red Chris, calculated at t = 200 Ma. All the samples fall in the field of Mesozoic 1275 

igneous rocks in the Stikine island arc terrane, clearly different from the Late Cretaceous 1276 

to Eocene plutons in the Northern Coast Plutonic Complex, which were derived from 1277 

evolved crust. The depleted MORB mantle field is from Pilet et al. (2011); the Stikinia 1278 

Mesozoic igneous rock field is from Samson et al. (1989); the Northern Coast Plutonic 1279 

Complex field is from Samson et al. (1991) and Patchett et al. (1998); all data are re-1280 

calculated at 200 Ma. 1281 

 1282 

Fig. 12. Histogram and relative probability curve for zircon ƐHf(t) values from (A) P1, (B) 1283 

P2E, (C) P2L, and (D) P3 porphyry samples. 1284 

 1285 

Fig. 13. Classification diagram and plots of oxidation state, temperature, pressure, and 1286 

magmatic water content estimated from amphibole compositions from P2E and P2L 1287 

porphyry samples at Red Chris. A. C(AlVI + Fe3+ + 2Ti4+) (apfu) vs. A(Na+ + K+) (apfu). B. 1288 

ΔFMQ vs. temperature. C. ΔFMQ vs. pressure. D. ΔFMQ vs. magmatic water content. 1289 

The classification diagram for calcic amphibole is given by the Excel spreadsheet of 1290 
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Locock (2014), and the superscript C and A represent C and A cations following the 1291 

general amphibole formula (AB2C5T8O22W2), respectively. Note that potassic-magnesio-1292 

hastingsite is included in the field of magnesio-hastingsite. ΔFMQ values, temperatures, 1293 

and magmatic water content were calculated from the spreadsheet of Ridolfi et al. (2010). 1294 

Amphibole crystallization pressures were calculated using the equation of Mutch et al. 1295 

(2016). The ΔFMQ values were calculated following the equation of Myers and Eugster 1296 

(1983): log fO2 = –24,441.9/T (K) + 8.290 (± 0.167). Abbreviation: apfu = atoms per 1297 

formula unit.  1298 

 1299 

Fig. 14. Photomicrographs (cross-polarized transmitted light), Backscattered eelectron 1300 

(BSE) images, and electron microprobe analysis profiles for FeO and anorthite proportion 1301 

(XAn) for representative plagioclase crystals from the P2E, P2L, and P3 porphyries at Red 1302 

Chris. Red circles on photomicrographs and white circles on BSE images denote the 1303 

analyzed spots. The error bars for XAn and FeO analyses are smaller than the size of the 1304 

symbols. Abbreviations: Amp = amphibole; Ap = apatite; Pl = plagioclase; Ser = sericite. 1305 

 1306 

Fig. 15. Chondrite-normalized REE patterns for zircons from (A) P1, (B), P2E, (C) P2L, 1307 

and (D) P3 porphyry samples from Red Chris. Normalization values are from Sun and 1308 

McDonough (1989). 1309 

 1310 

Fig. 16. Zircon EuN/EuN
* vs. temperature diagram. EuN/EuN

* is the europium anomaly, 1311 

calculated as EuN/EuN
* = EuN/(SmN × GdN)0.5,, using the chondrite normalization values 1312 
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of Sun and McDonough (1989). Oxidized suites have zircon EuN/EuN
* values >0.4 1313 

(Dilles et al., 2015). 1314 

 1315 

Fig. 17. Backscattered electron images of apatite crystals in samples from (A) P1 (RC13-1316 

39), (B) P2E (RC13-107), (C) P2L (RC13-33), and (D) P3 (RC13-78). Concentrations of 1317 

SO3 and Cl in apatite crystals are shown in wt. % (SO3/Cl); red circles represent the 1318 

analyzed spots. Higher concentrations are observed in apatites from P2E and P2L; some 1319 

apatite microphenocrysts from P2 porphyries show zoning from SO3-Cl-rich cores to 1320 

SO3-Cl-poorer rims (C). 1321 

 1322 

Fig. 18. Plots of (A) S, and (B) F vs. Cl contents for apatite microphenocrysts from P1 to 1323 

P3 porphyry samples at Red Chris. Abbreviation: apfu = atoms per formula unit. Data 1324 

from Digital Appendix Table A8. 1325 
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Table 1. Re-Os Isotope Analyses for molybdenite from the Red Chris Cu-Au deposit 

Sample Description Re (µg/g) ± 2σ
187

Re 

(µg/g)
± 2σ

187
Os 

(ng/g)
± 2σ Model Age 

(Ma)

RC13-82 497.8 1.3 312.9 0.8 1078 0.0 206.5

RC13-88 1771 5.0 1113 3.0 3821 2.0 205.7

RC13-103 1124 3.0 706 1.8 2427 4.0 205.9

Note: See the Digital Appendix Table A1 for sample locations.

Quartz-carbonate-pyrite-

molybdenite-chalcopyrite 

vein in P2E porphyry
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Table 2. Major and trace element compositions of porphyry and basaltic to andesitic dike roc

Sample # →Detection LRC13-39 RC13-40 RC13-63 RC13-37 RC13-42 RC13-92 RC13-107 RC13-25 RC13-26

Lithology → ↓ P1 P1 P1 P2E P2E P2E P2E P2L P2L

Weight %

SiO2 0.01 55.43 56.57 58.25 55.54 58.61 61.29 56.4 53.86 56.05

Al2O3 0.01 15.94 16.57 17.5 16.21 16.35 17.25 17.08 16.12 17.18

Fe2O3(T) 0.01 7.59 5.53 5.83 6.4 3.06 3.63 6.38 6.52 6.42

MnO 0.001 0.067 0.079 0.107 0.135 0.028 0.057 0.152 0.134 0.125

MgO 0.01 2.23 1.96 2.39 2.79 1.67 1.83 2.02 2.42 2.06

CaO 0.01 2.54 3.12 2.11 5.53 3.86 3.63 3.47 4.78 4.57

Na2O 0.01 2.62 0.19 2.91 3.1 4.38 5.96 4.26 3.93 4.25

K2O 0.01 3.78 3.29 3.49 2.74 1.22 1.35 3.48 3.43 3.57

TiO2 0.001 0.463 0.419 0.523 0.441 0.39 0.429 0.48 0.414 0.426

P2O5 0.01 0.29 0.26 0.32 0.3 0.22 0.24 0.29 0.3 0.29

LOI 7.51 10.44 5.15 7.42 8.22 3.22 4.81 5.03 3.49

S 0.001 4.63 3.65 0.386 0.026 1.63 1.19 1.22 0.251 0.157

Total 98.45 98.43 98.57 100.6 98.02 98.9 98.81 96.94 98.43

Parts per million

Ba 1 6440 783 1123 1012 2201 980 1382 9182 5082

Co 0.1 10.5 9.4 16.2 12.7 10.6 8.3 9.3 11.4 12

Cr 0.5 24.9 30.2 26.3 115 50.1 19.4 26 31.2 32.8

Cs 0.1 3.7 2.1 4.2 6.7 4.5 0.8 1.1 4.7 4.9

Ga 1 17 14 17 15 15 15 17 15 17

Ge 0.5 3.2 2.4 1.4 2 3.1 2 1.8 1.7 1.9

Hf 0.1 2 2.4 2.4 2.2 2.3 2.6 3.1 2.2 2.2

Nb 0.2 9 9.6 10 9.9 8.4 11.9 10.8 10.1 11.5

Ni 1 5 7 32 23 3 7 3 5 6

Pb 5 14 8 < 5 < 5 < 5 < 5 < 5 < 5 < 5

Rb 1 64 63 98 63 35 23 73 74 76

Sc 0.01 19.9 11.8 15 17.6 10.5 9.78 13 15.9 15.9

Sr 2 884 174 493 586 8516 944 508 5880 1639

Ta 0.01 0.61 0.69 0.67 0.68 0.62 0.87 0.74 0.67 0.73

Zr 1 63 94 80 79 81 108 94 85 65

Hf 0.1 2 2.4 2.4 2.2 2.3 2.6 3.1 2.2 2.2

U 0.01 1.13 1.72 1.19 1.46 1.26 2.2 1.75 1.31 1.69

Th 0.05 2.71 3.23 3.38 2.64 3.41 3.97 3.52 2.63 3.2

V 5 147 105 134 147 109 110 114 135 135

Y 1 14 15 12 14 16 18 17 14 16

Zn 1 724 123 58 101 29 32 56 72 79

Zr 1 63 94 80 79 81 108 94 85 65

Tl 0.05 0.59 1.02 0.6 0.51 0.17 0.12 0.12 0.28 0.06

La 0.05 8.74 18.9 10.1 13.7 12.8 18.1 17.3 13.7 15.6

Ce 0.05 19.8 35.5 21.7 26.1 26.5 33.5 34.4 26 30.9

Pr 0.01 2.54 4.23 2.44 3.23 3.08 3.99 3.93 3.24 3.52

Nd 0.05 10.8 14.5 9.9 11.1 11.8 14.1 16.7 11.7 14.4

Sm 0.01 2.62 2.49 2.02 2.29 2.39 2.93 3.4 2.33 2.94

Eu 0.005 0.801 0.799 0.691 0.778 0.893 1.4 1.04 0.805 0.968

Gd 0.01 2.57 2.2 1.76 2.16 2.37 2.51 2.96 2.11 2.88

Tb 0.01 0.41 0.38 0.31 0.41 0.37 0.44 0.47 0.4 0.44

Dy 0.01 2.44 2.38 1.92 2.72 2.28 2.65 2.83 2.56 2.67

Ho 0.01 0.49 0.47 0.37 0.54 0.49 0.56 0.59 0.51 0.53

Er 0.01 1.43 1.37 1.13 1.55 1.45 1.58 1.86 1.5 1.55

Tm 0.005 0.217 0.215 0.196 0.237 0.231 0.247 0.277 0.221 0.241

Yb 0.01 1.44 1.49 1.54 1.68 1.61 1.71 1.88 1.48 1.72
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Lu 0.002 0.247 0.257 0.252 0.276 0.261 0.282 0.309 0.25 0.266

La/Yb 6.069 12.685 6.558 8.155 7.950 10.585 9.202 9.257 9.070

Sr/Y 63.143 11.600 41.083 41.857 532.250 52.444 29.882 420.000 102.438

Nb/Y 0.643 0.640 0.833 0.707 0.525 0.661 0.635 0.721 0.719

Zr/Ti 0.021 0.034 0.024 0.028 0.032 0.041 0.031 0.033 0.025

V/Sc 7.387 8.898 8.933 8.352 10.381 11.247 8.769 8.491 8.491

EuN/EuN
*

0.938 1.037 1.114 1.063 1.140 1.569 0.996 1.103 1.011

Note: See the Digital Appendix Table A1 for sample locations.



 rocks at Red Chris

RC13-32 RC13-33 RC13-83 RC13-77 RC13-78 RC13-62 RC13-79 RC13-97

P2L P2L P2L P3 P3 Dike Dike Dike

57.57 56.05 57.38 58.47 57.45 46.23 49.38 54.17

17.22 16.51 17.38 17.67 17.34 15.25 14.12 14.32

6.41 6.09 6.8 5.02 6.31 9.15 11.39 8.66

0.13 0.107 0.116 0.066 0.11 0.108 0.168 0.19

2.28 1.85 1.72 1.34 1.89 4.41 3.21 2.9

5.66 6.6 6.04 4.84 6.1 7.78 7.3 5.72

3.27 3.12 3.19 4.29 3.17 1.23 2.66 3.32

4.03 3.01 3.8 2.3 3.15 2.84 1.63 2.14

0.444 0.418 0.536 0.432 0.436 1.25 2.008 1.608

0.28 0.3 0.3 0.28 0.32 0.44 0.39 0.62

2.33 4.36 3.13 5.51 4.03 10.85 7.97 5.61

0.296 0.053 0.155 0.633 0.112 0.231 0.255 0.092

99.63 98.4 100.4 100.2 100.3 99.53 100.2 99.28

1322 1323 1002 545 1232 343 614 1572

11.2 8.6 11.7 8 9.2 27.1 22.6 10.1

22.6 46.8 36 35.1 19.3 15.8 21.3 16.4

1.7 2.1 1.6 2.9 1.9 2.4 0.7 0.7

17 15 15 16 18 16 16 16

1.6 1.8 1.4 1.7 1.7 2.4 1.7 2

2.3 1.9 2.1 2.4 2.4 3 3.2 3.3

10.3 9.9 9.2 10.4 11.1 8.3 8.4 9.4

5 5 6 6 5 4 3 5

< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5

62 61 57 43 54 66 28 32

14.2 14.5 15.8 12.8 15.5 22.1 32 26.2

978 1083 985 737 800 668 447 507

0.69 0.79 0.6 0.75 0.74 0.54 0.53 0.56

74 86 88 91 75 131 132 138

2.3 1.9 2.1 2.4 2.4 3 3.2 3.3

1.46 1.71 1.27 1.74 1.38 1.01 1.34 1.89

3.48 3.01 2.7 3.45 3.26 1.8 2.39 3.46

129 130 148 122 132 221 480 129

17 14 15 18 16 23 27 36

66 52 60 36 50 84 99 111

74 86 88 91 75 131 132 138

0.06 0.24 0.2 0.14 0.08 0.61 0.14 0.17

16 14.3 13 16.2 15.5 14.3 16.1 20

31.4 27.4 26.1 31.9 31.5 30.3 34.9 42.4

3.54 3.3 3.26 3.64 3.64 4.16 4.75 5.84

14 11.7 12 14.3 15.1 16.2 18.4 23.8

3.22 2.4 2.51 2.96 2.78 3.9 4.28 5.57

0.958 0.798 0.818 1.1 1.01 1.56 1.46 2.56

2.91 2.14 2.28 2.69 2.7 3.98 4.64 5.8

0.46 0.39 0.41 0.42 0.46 0.74 0.84 1.06

2.8 2.47 2.59 2.48 2.88 4.73 5.29 6.78

0.55 0.5 0.52 0.49 0.57 0.95 1.12 1.4

1.61 1.5 1.56 1.46 1.7 2.57 3.19 4

0.243 0.226 0.241 0.23 0.251 0.369 0.467 0.581

1.71 1.57 1.68 1.6 1.71 2.42 3.14 3.82



0.282 0.265 0.264 0.281 0.294 0.391 0.465 0.597

9.357 9.108 7.738 10.125 9.064 5.909 5.127 5.236

57.529 77.357 65.667 40.944 50.000 29.043 16.556 14.083

0.606 0.707 0.613 0.578 0.694 0.361 0.311 0.261

0.027 0.033 0.027 0.033 0.028 0.016 0.010 0.014

9.085 8.966 9.367 9.531 8.516 10.000 15.000 4.924

0.951 1.070 1.039 1.185 1.120 1.203 0.996 1.369



Table 3. Whole-rock Nd-Sr isotopic results for the porphyry and basaltic to andesitic dike rocks at R

Sample Rb (µg/g) Sr  (µg/g)
87 

Rb/
86 

Sr
87 

Sr/
86

 Sr ± 2σ T (Ma) (
87

Sr/
86 

Sr)T Sm (µg/g) Nd (µg/g)

P1 porphyry

RC13-39 44.10 640.50 0.199213 0.705022 0.000020 211.6 0.7044 2.29 9.96

RC13-40 36.38 96.01 1.096378 0.707480 0.000032 211.6 0.7042 2.94 15.77

P2E porphyry

RC13-92 18.75 703.50 0.077095 0.704633 0.000019 206.0 0.7044 3.06 15.31

RC13-107 43.23 320.70 0.390074 0.705837 0.000037 206.0 0.7047 2.97 14.70

P2L porphyry

RC13-32 27.07 509.50 0.153691 0.705103 0.000035 203.6 0.7047 2.65 12.77

RC13-33 47.40 846.00 0.162098 0.704873 0.000017 203.6 0.7044 2.63 12.87

P3 porphyry

RC13-77 37.47 531.70 0.203855 0.704991 0.000016 201.7 0.7044 2.80 14.06

RC13-78 25.78 427.70 0.174403 0.704748 0.000024 201.7 0.7042 2.67 13.03

Mafic to andesitic dike

RC13-97 23.90 385.10 0.179519 0.704792 0.000020 200.0 0.7043 6.22 25.72

RC13-79 15.73 252.40 0.180303 0.704741 0.000030 200.0 0.7042 4.81 20.18

Notes: 
1
N/A = no data; the used ages for calculations are from zircon U-Pb dating results for porphyry rocks, and assuming 2

TDM1 = (1/λ) × Ln[((
143

Nd/
144

Nd)sample  ̶  (143
Nd/

144
Nd)DM)/((

147
Sm/

144
Nd)sample  ̶  (147

Sm/
144

Nd)DM + 1)]. See Appendix

 and depleted mantle. See the Digital Appendix Table A1 for sample locations.
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s at Red Chris
1

147
Sm/

144
Nd (

143
Nd/

144
Nd)0

± 2σ ƐNd(t = 0) (
143

Nd/
144

Nd)T TDM1 (Ga) ƐNd(T)

0.139132 0.512732 0.000009 1.8 0.512540 0.88 3.4

0.112591 0.512672 0.000010 0.7 0.512516 0.74 2.9

0.120965 0.512659 0.000007 0.4 0.512496 0.83 2.4

0.122321 0.512700 0.000010 1.2 0.512535 0.77 3.2

0.125462 0.512713 0.000008 1.5 0.512546 0.78 3.3

0.123603 0.512713 0.000010 1.5 0.512548 0.76 3.4

0.120209 0.512686 0.000012 0.9 0.512527 0.78 2.9

0.123767 0.512727 0.000010 1.7 0.512564 0.74 3.6

0.146221 0.512751 0.000006 2.2 0.512559 N/A 3.5

0.144047 0.512766 0.000011 2.5 0.512578 N/A 3.9

g 200 Ma for basaltic to andesitic dikes based on geological relationship, see text for details. 

λ sample  ̶  sample  ̶  dix 1 for the 
143

Nd/
144

Nd and 
147

Sm/
144

Nd values of present day chondrite



Table 4. Estimates of magmatic temperature and sulfur–chlorine content from igneous apatite and whole-rock compositions 

 

Porphyry 

Phase 
Sample 

Whole 

rock SiO2 

(wt. %)1 

Whole 

rock P2O5 

(wt. %)1 

AST2 

(°C) 

Apatite  

SO3 (wt. %) (n)3 

[maximum, minimum] 

Apatite Cl (wt. 

%) (n)3 

Apatite F (wt. 

%) (n)3 

Apatite  

Molar S/Cl (n)3 

Apatite  

Molar Cl/F (n)3 

Average 

magmatic S 

content (wt. %)4 

[maximum] 

Average 

magmatic S 

content (wt. %)5 

[maximum] 

Average 

magmatic 

Cl content 

(wt. %)6 

P1 RC13-39 59.93 0.31 921 
0.11 ± 0.03 (34) 

[0.05, 0.19] 
0.51 ± 0.3 (34)  3.64 ± 0.48 (34) 0.13 ± 0.08 (34) 0.08 ± 0.06 (34) 

0.010 ± 0.003 

[0.017] 

0.002 ± 0.0004 

[0.003] 

0.63 ± 0.38 

P2E 

RC13-137 63.33 0.25 932 
0.28 ± 0.10 (19) 

[0.11, 0.46] 
1.47 ± 0.22 (19) 2.32 ± 0.29 (19) 0.09 ± 0.03 (19) 0.35 ± 0.10 (19) 

0.030 ± 0.010 

[0.050] 

0.006 ± 0.004 

[0.015] 

1.84 ± 0.27 

RC13-107 59.25 0.30 909 
0.32 ± 0.17 (15) 

[0.18, 0.80] 
0.82 ± 0.10 (15) 2.36 ± 0.30 (15) 0.17 ± 0.09 (15) 0.19 ± 0.05 (15) 

0.031 ± 0.017 

[0.078] 

0.014 ± 0.031 

[0.012] 

1.02 ± 1.13 

P2L 

RC13-26 58.08 0.30 892 
0.30 ± 0.22 (48) 

[0.07, 1.2] 
1.57 ± 0.33 (48) 2.23 ± 0.22 (48) 0.11 ± 0.20 (48) 0.39 ± 0.10 (48) 

0.017  ± 0.013 

[0.070] 

0.0490 ± 0.2380 

[1.6168] 

1.96 ± 0.41 

RC13-33 58.61 0.31 905 
0.28 ± 0.13 (52) 

[0.14, 0.79] 
1.37 ± 0.17 (52) 2.40 ± 0.21 (52) 0.09 ± 0.04 (52) 0.31 ± 0.05 (52) 

0.020  ± 0.009 

[0.056] 

0.008 ± 0.017 

[0.117] 

1.71 ± 0.21 

P3 RC13-78 59.86 0.33 928 
0.03 ± 0.01(13) 

[0.02, 0.05 ] 
0.02 ± 0.02 (17) 3.60 ± 0.40 (17) 0.16 ± 0.09 (13) 0.01 ± 0.01 (17) 

0.003± 0.001 

[0.005] 

0.001 ± 0.0001 

[0.001] 

0.12 ± 0.07 

 

Notes: 

1. Normalized to 100 wt. % (Digital Appendix Table A3). 

2. Apatite saturation temperature (AST) calculated from whole-rock SiO2 and P2O5 concentrations using the equation of Piccoli and Candela (1994). 

3. Average of all igneous apatite analyses (Digital Appendix Table A8). 

4. Estimated from apatite SO3 contents (Digital Appendix Table A8) using the temperature-dependent apatite–melt partition coefficient formula of Peng et al. (1997): 

 lnKD = 21130/T – 16.2 (where T is in Kelvin). 

5. Estimated from apatite SO3 contents (Digital Appendix Table A8) using the temperature-dependent apatite–melt partition coefficient formula of Parat et al. (2011): 

 SO3 apatite (wt. %) = 0.157 × ln SO3 glass (melt, wt.%) + 0.9834 (r2 = 0.62). 

6. Estimated from apatite Cl contents (Digital Appendix Table A8) using the apatite–melt partition coefficient value (mass ratios) of Mathez and Webster (2005), which is 

0.8 for basaltic melt (51.1 wt. % SiO2) and tends to be similar for rhyodacitic melt at 200 MPa (Webster et al., 2009). 

7. SiO2 and P2O5 compositions for this sample taken from sample RC13-92 with same lithology as RC13-13 but less altered (Digital Appendix Table A3). 

Table 4 Click here to download Table Updated Table 4.docx 

http://www.editorialmanager.com/seg/download.aspx?id=107143&guid=541e8935-9c15-4e05-a1e6-8565d3f25f8f&scheme=1
http://www.editorialmanager.com/seg/download.aspx?id=107143&guid=541e8935-9c15-4e05-a1e6-8565d3f25f8f&scheme=1


  

Digital Appendix Tables A1-A9

Click here to access/download
Electronic Appendix (Excel etc.)

Appendix tables.xlsx

http://www.editorialmanager.com/seg/download.aspx?id=107142&guid=10e0470f-1b88-42b7-9278-60fe488acd7f&scheme=1


  

Appendix 1

Click here to access/download
Electronic Appendix (Excel etc.)

Appendix 1 updated.docx

http://www.editorialmanager.com/seg/download.aspx?id=107144&guid=28fd694f-85c2-400a-affe-447812549a50&scheme=1

