Elevation of Total Homocysteine in the Serum of Patients with Cobalamin or Folate Deficiency Detected by Capillary Gas Chromatography–Mass Spectrometry

Sally P. Stabler,* Paul D. Marcell,* Elaine R. Podell,* Robert H. Allen,* David G. Savage,† and John Lindenbaum†
*Divisions of Hematology and Oncology, Department of Medicine, and the Department of Biochemistry, Biophysics, and Genetics,
University of Colorado Health Sciences Center, Denver, Colorado 80262; and †Departments of Medicine, Harlem Hospital Center,
Columbia-Presbyterian Medical Center and College of Physicians & Surgeons, Columbia University, New York, New York 10032

Abstract

To determine if levels of serum total homocysteine are elevated in patients with either cobalamin or folate deficiency, we utilized a new capillary gas chromatographic-mass spectrometric technique to measure total homocysteine in the serum of 78 patients with clinically confirmed cobalamin deficiency and 19 patients with clinically confirmed folate deficiency. Values ranged from 11 to 476 µmol/liter in the cobalamin-deficient patients and 77 of the 78 patients had values above the normal range of 7-22 μ mol/liter as determined for 50 normal blood donors. In the cobalamin-deficient patients, serum total homocysteine was positively correlated with serum folate, mean corpuscular volume, serum lactate dehydrogenase, serum methylmalonic acid, and the degree of neurologic involvement, and inversely correlated with platelets and hematocrit. In the folate-deficient patients, values for serum total homocysteine ranged from 17 to 185 μ mol/liter and 18 of the 19 patients had values above the normal range. Some patients with pernicious anemia who were intermittently treated with cyanocobalamin were found to have elevated serum levels of total homocysteine while they were free of hematologic and neurologic abnormalities. The measurement of serum total homocysteine will help define the incidence of cobalamin deficiency and folate deficiency in various patient populations.

Introduction

At present the diagnosis of cobalamin (Cbl, vitamin B12) deficiency and folate deficiency are almost entirely dependent on the demonstration of low serum levels of the vitamins in patients with supportive clinical and laboratory findings. The limitations in using only the serum Cbl level to detect Cbl deficiency have been widely recognized (1-4). For example, the significance of the high incidence of low serum Cbl values in elderly subjects without hematologic abnormalities (5, 6),

Address correspondence to Dr. Stabler, Div. of Hematology, Campus Box B170, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262.

Received for publication 20 March 1987 and in revised form 7 July 1987.

and in patients who have various neuropsychiatric abnormalities (7, 8), is not known. Other tests (9), such as the deoxyuridine suppression test, have not been widely used to assess patients for Cbl deficiency.

The diagnosis of folate deficiency can also be problematic for several reasons. For instance, after acute dietary deprivation, serum folate levels may be decreased, although tissue folate levels are adequate (10). In the setting of chronic alcoholism, the laboratory features of megaloblastic anemia due to folate deficiency may be confused by concurrent illness. Serum and red blood cell folate may be normal in patients with alcoholism and megaloblastic anemia (11). Finally, because many of the clinical and laboratory features of Cbl and folate deficiency are similar, it is often difficult to distinguish between them (12), and the administration of folic acid alone to a patient with Cbl deficiency is dangerous (13). Therefore, as in Cbl deficiency syndromes, additional diagnostic tests for folate deficiency would be useful.

In both Cbl and folate deficiency, it is likely that there is reduced activity of the Cbl-dependent enzyme, methionine synthetase (tetrahydropteroylglutamate methyltransferase), which simultaneously methylates homocysteine to methionine while demethylating N⁵-methyltetrahydrofolate to tetrahydrofolate, as shown in Fig. 1. The reduced folates formed from this reaction are necessary for thymidine synthesis and ultimately DNA synthesis, and the methionine formed participates in the methylation of many compounds (14). If methionine synthetase activity is decreased by a deficiency of Cbl or folate, serum homocysteine levels might increase and methionine levels might decrease, although regulation of other enzymes in the pathway shown in Fig. 1 might maintain levels of one or both of these amino acids within normal limits. A few (15-20) but not all (21-24) children with severe Cbl deficiency have been reported to have increased levels of homocystine in their urine and plasma, along with decreased levels of plasma methionine. An early study (25) reported that plasma methionine levels were low in adults with Cbl deficiency. In addition, excretion of large amounts of homocystine in the urine has been reported in patients with various inherited defects affecting the activity of methionine synthetase such as the inability to form methylcobalamin (Cbl C and Cbl D mutants) (26, 27), and an inability to form N5-methyltetrahydrofolate due to 5,10-methylenetetrahydrofolate reductase deficiency (28, 29). However, homocystinuria was not present in patients with transcobalamin II deficiency (30), a patient with a lysosomal block in Cbl transport (31), or in a patient with congenital folate malabsorption (32), all of whom had hematologic abnormalities that would be associated with a decrease in methionine synthetase activity.

We have developed a new capillary gas chromatographic-

^{1.} Abbreviations used in this paper: Cbl, cobalamin; CN-Cbl, cyano-Cbl; Hct, hematocrit; LDH, lactate dehydrogenase; MCV, mean corpuscular volume.

J. Clin. Invest.

[©] The American Society for Clinical Investigation, Inc. 0021-9738/88/02/0466/09 \$2.00 Volume 81, February 1988, 466-474

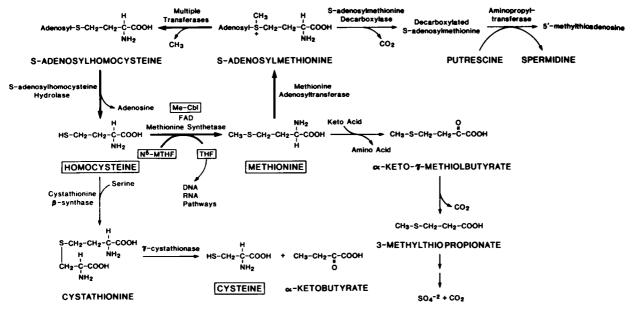


Figure 1. Various pathways involved in the metabolism of methionine including the methylcobalamin-dependent methylation of homocysteine to form methionine by the enzyme, methionine synthetase.

mass spectrometric assay for serum methylmalonic acid and have shown that 69 out of 73 patients with clinically confirmed Cbl deficiency have elevated values (33). We have recently developed similar assays (24) for the quantitation of total homocysteine, methionine, and total cysteine in serum and now report on the measurement of these amino acids in a large number of patients with clinically confirmed deficiencies of Cbl and folate.

Methods

Assay of total homocysteine,2 methionine, and total cysteine.2 Serum total homocysteine, methionine, and total cysteine were assayed using capillary gas chromatography-mass spectrometry as previously described in detail (34). Briefly, 50 μ l of H₂O containing 5 nmol of D,L-[3,3,3',3'4,4,4'4'-2H₈]homocystine (98.4%), 15 nmol of L-[methyl-²H₃]methionine (98%), and 25 nmol of D₁L-[3,3,3',3'-²H₄]cystine (98%), is added to 100 μ l of human serum. The sample is then heated with 2-mercaptoethanol in order to reduce and release endogenous homocysteine and cysteine from proteins and other disulfides and to equilibrate them with their stable isotope internal standards, which are also reduced during this procedure. Protein is then precipitated with sulfosalicylic acid and the supernatant is partially purified by sequential cation exchange and anion exchange chromatography. The t-butyldimethylsilyl derivatives of the amino acids are formed with Nmethyl-(t-butyldimethylsilyl)trifluoroacetamide, followed by their extraction into hexane and volume reduction using a stream of nitrogen.

The samples are analyzed on a Durabond DB-1 fused silica capillary column (30 m \times 0.25 mm i.d., 0.25 μ m film thickness) from J&W Scientific, Inc. (Rancho Cordova, CA) and a Hewlett-Packard Co. (Palo Alto, CA) 5992B gas chromatograph-mass spectrometer equipped with a falling needle injector. Quantitation is based on the ratio of the areas of the base peak ion 420.2 for homocysteine, 320.2 for methionine, and 406.2 for cysteine, each of which elutes at a different time, to the areas of the base peak ions of 424.2, 323.2, and 408.2 for the derivatives of their respective stable isotope internal standards. Total homocysteine, methionine, and total cysteine are very stable in collected serum since no change or trend in values for these amino acids was noted in a sample of pooled normal human serum that was frozen, thawed, and assayed > 30 times over a 12-mo period.

Values of serum total homocysteine obtained with blood samples that were drawn and immediately centrifuged at 4° C were the same (< 10% difference) as those obtained with portions of the same blood samples that were incubated at room temperature for 1 h before centrifugation, but increased by \sim 35 and 75% when the incubation was prolonged for 4 and 24 h, respectively, before centrifugation. Values for serum methionine were unchanged at 1 h and increased by 10 and 25% at 4 and 24 h, respectively. Values for serum total cysteine were unchanged over the 24-h incubation period. Values for urine total homocysteine, total cysteine, and total methionine were unchanged when urine samples were incubated at room temperature for 0–24 h. Serum samples and the internal standards of homocysteine, methionine, and cysteine were stable for > 1 yr, based on their gas chromatographic—mass spectrometric behavior, when stored at -20° C in between numerous freezings and thawings over this time period.

Subjects and patients. Serum samples from 50 normal blood donors, 25 males and 25 females, ranging in age from 18 to 65 yr were obtained as described previously (35). Patient samples were selected by Dr. Lindenbaum from an extensive serum collection that has been assembled over the past 15 yr. Both the normal and the patient samples were allowed to clot for $\sim 1-4$ h at room temperature before the serum was removed and stored at -20°C. Thus, postcollection increases for total homocysteine and methionine should have been modest and similar in both the normal and patient groups (see above). The diagnosis of Cbl deficiency was based on low serum Cbl levels, megaloblastic bone marrow morphology, appropriate hematologic or neurologic abnormalities, and a significant response to treatment with parenteral Cbl. The diagnosis of pernicious anemia was based on an abnormal

^{2.} The term "total homocysteine" as applied to biologic samples such as serum and urine refers to the sum of homocysteine and the homocysteine that is linked via disulfide bond formation in a variety of compounds that include homocysteine (homocysteine-homocysteine disulfide), homocysteine-cysteine mixed disulfide, proteins via their cysteine moieties, and peptides such as glutathione via their cysteine moieties. The term "total cysteine" is used in the same way and refers to the sum of cysteine and the cysteine linked via disulfide bond formation in compounds such as cystine (cysteine-cysteine disulfide), homocysteine-cysteine mixed disulfide, and proteins and peptides via their cysteine moieties.

Schilling test that corrected with exogenous intrinsic factor and/or the presence of anti-intrinsic factor-blocking antibodies in the serum. The diagnosis of folate deficiency was based on low serum folate values, normal or elevated serum Cbl values, megaloblastic bone marrow morphology, appropriate hematologic abnormalities, and responses to folic acid therapy. In 17 of the patients there was a history of alcoholism and poor diet; one had history of poor diet alone, and one had tropical sprue. The samples in the Cbl-deficient infrequently treated group were from patients with pernicious anemia who were previously diagnosed as Cbl deficient as described above, but who received only intermittent treatment with parenteral Cbl at intervals of 6-9 mo due to poor compliance or as part of studies of Cbl requirements to be reported elsewhere. They had low, borderline, or normal levels for serum Cbl, lacked hematologic and neurologic abnormalities, and were asymptomatic at the time the samples were collected. Serum Cbl levels were assayed using the Lactobacillus leichmannii method or a number of radiodilution assays utilizing purified intrinsic factor or gastric juice with > 95% of Cbl binding activity due to intrinsic factor. These assays were performed in Dr. Lindenbaum's laboratory where it has been found that very similar patient values and normal ranges are obtained with all of the various Cbl assays. Serum folate was assayed with the Lactobacillus casei method or by milk binder radiodilution assay. Most of the patients' samples were coded in a manner such that the categories to which they belonged and the number of patients in each category were not known by the personnel involved in the performance of the total homocysteine, methionine, and total cysteine assays, until after the results were reported to Dr. Lindenbaum. A large number of Dr. Lindenbaum's samples from patients without Cbl or folate deficiency have been assayed and found to have normal values for these amino acids, thus ruling out the possibility that elevated values might arise due to storage in the freezers used in Dr. Lindenbaum's laboratory.

Statistical methods. A number of factors were examined individually for possible relationships with serum total homocysteine, methionine, and total cysteine. For factors that were discreet, such as sex, race, and diagnosis, the Wilcoxon two-sample test was used to determine the significance of the relation. For assessing possible relationships with neurologic severity, groups 0, 1, and 2 (as defined in Table I) were combined and compared with combined groups 3 and 4. Factors that were continuous, such as age or mean corpuscular volume (MCV), were examined using Spearman correlation coefficients.

Results

The values obtained for serum total homocysteine, methionine, and serum total cysteine for the normal subjects and patients in the various categories are shown in Fig. 2. In the Cbl-deficient group, 77 of the 78 patients had values for serum total homocysteine above the normal range of 7-22 μ mol/liter. The highest value was 476 μ mol/liter and the median value was 113 μmol/liter. In the folate-deficient group, 18 of the 19 patients had serum total homocysteine levels above the normal range. The highest value in this group was 185 μmol/liter and the median value was 67 µmol/liter. In the Cbl-deficient infrequently treated group, 13 of the 18 patients had elevated values that ranged as high as 47 μ mol/liter at a time when they did not have hematologic or neurologic abnormalities. Of the thirteen patients with elevated total homocysteine values, serum L. leichmannii Cbl concentrations were low (88-180 pg/ml) in nine, two others were assayed by radiodilution and were both low at 115 pg/ml, and two were normal by the L. leichmannii method at 205 and 275 pg/ml, respectively. Of the five patients with normal total homocysteine values, two had low Cbl values by radioassay and one by the L. leichmannii method.

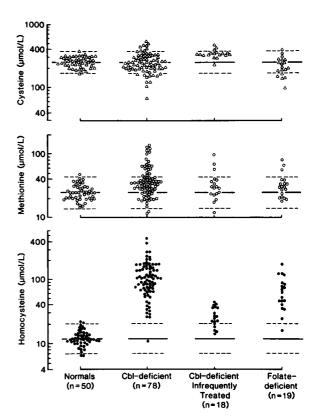


Figure 2. Levels of serum total homocysteine (bottom), serum methionine (middle), and serum total cysteine (top) in patients with clinically confirmed Cbl deficiency, folate deficiency, and Cbl-deficient infrequently treated patients who had no hematologic or neurologic abnormalities, using capillary gas chromatography-mass spectrometry. The normal range for total homocysteine is $(7-22 \, \mu \text{mol/liter})$, for methionine $(14-44 \, \mu \text{mol/liter})$, and for cysteine $(173-378 \, \mu \text{mol/liter})$. These ranges were calculated as the mean±2 SD after log transformation to correct for skewness towards higher values.

To determine if the elevations of serum total homocysteine were due to Cbl or folate deficiency and not due to illness in general, we studied 25 consecutive patients (13 hospitalized, 12 outpatients; age, 25-86 yr) who had sera submitted for serum Cbl and serum folate assays and in whom the Cbl values were > 500 pg/ml (normal, 200-1,000 pg/ml) and the folate values were > 5 ng/ml (normal, 3-20 ng/ml). Of the 25 patients, 21 had values within the normal range of 7-22 μ mol/ liter (mean for the 21 patients, 13.7 μ mol/liter) and 1 had a very slightly elevated value of 22.5 μmol/liter. Significantly elevated values of 32.6 and 27.4 µmol/liter were observed in two patients with chronic renal failure who had serum creatinine values of 5.6 and 13.3 mg/dl, respectively. Various forms of homocysteine have been previously reported to be elevated in the plasma of patients with renal failure (36, 37). We are currently studying the incidence of elevated total homocysteine values in chronic renal failure. Preliminary results indicate that total homocysteine is elevated in many but not all such patients. A significantly elevated value of 34.4 μmol/liter was also observed in one patient with Cbl deficiency since 1984, who had been intermittently treated with Cbl. The patient had not been treated for several months but had a serum Cbl of > 2,000 pg/ml because a Cbl injection was given 10-15min before the blood was drawn for the Cbl assay. Taken together, these results indicate that serum total homocysteine is not elevated in most ill patients.

In the Cbl-deficient group values for serum methionine were below the normal range of $14-44~\mu$ mol/liter in only 2 of the 78 patients and above the normal range in 20 patients. Of the 19 folate-deficient patients, 3 had values above the normal range as did 3 of the 18 Cbl-deficient infrequently treated patients. None of the folate-deficient patients and only one of the Cbl-deficient infrequently treated patients had a value for serum methionine below the normal range.

Total serum cysteine was below the normal range in 11 of 78 Cbl-deficient patients, 4 of 19 folate-deficient patients, and none of the Cbl-deficient infrequently treated patients. It was above the normal range in 7 of 78 Cbl-deficient patients, 1 of the 19 folate-deficient patients, and 3 of the 18 Cbl-deficient infrequently treated patients.

The clinical data for the 78 Cbl-deficient patients in addition to their serum total homocysteine, methionine, total cysteine, and methylmalonic acid values are shown in Table I. They are arranged in descending order of their serum total homocysteine values. There was a significant positive correlation between serum total homocysteine and serum folate (r = 0.27, P < 0.05), MCV (r = 0.23, P < 0.05), serum lactate dehydrogenase (LDH) (r = 0.34, P < 0.01), and serum methylmalonic acid (r = 0.74, P < 0.0001). There was a significant negative correlation between serum total homocysteine and platelets (r = -0.26, P < 0.05), and hematocrit (Hct) (r= -0.26, P < 0.05). Patients with more severe neurologic abnormalities (groups 3 and 4) had higher serum total homocysteine levels (166±98 mean±SD, median 145 μmol/liter) than those with no or less severe abnormalities (groups 0-2) $(105\pm65 \text{ mean}\pm\text{SEM}, \text{ median } 89 \text{ } \mu\text{mol/liter}) (P < 0.01).$ Serum total homocysteine was not significantly correlated with serum Cbl (r = -0.20, P < 0.08). There was no significant correlation between serum total homocysteine and any of the following: serum methionine, serum total cysteine, sex, race, etiology, presence of anti-intrinsic factor antibody, and presence of glossitis.

Serum methionine was not significantly correlated with any of the parameters mentioned above and significant differences were not observed between any of the various subgroups.

The hematologic data presented in Table I on the 77 Cbl-deficient patients with elevated levels of total homocysteine, demonstrates wide variations in their degree of anemia, macrocytosis, and other abnormalities. For instance, only 32 (42%) had a severe anemia (Hct < 25%), while 27 (35%) had only a moderate degree of anemia (Hct, 25–34% for females, 25–39% for males), and 18 (23%) were not anemic at all. Only 45 (58%) of the patients had a marked elevation in MCV (> 110 fl), while 23 (30%) had only a moderate elevation of MCV (101–110 fl), and 9 (12%) had a normal MCV. There was a wide range of serum Cbl levels in these patients also; only 47 (61%) had markedly decreased levels to < 100 pg/ml, while the other 30 (39%) had levels between 100 and 200 pg/ml.

The clinical data on the 19 patients with folate deficiency along with their serum total homocysteine, methionine, total cysteine, and methylmalonic acid values are also shown in Table I. Because of the small number of patients tested, correlations between their clinical and laboratory abnormalities were not evaluated.

We have previously reported that serum methylmalonic

acid is increased in 95% of patients with Cbl deficiency (33). As shown in Table I, 74 of the 78 Cbl-deficient patients had methylmalonic acid levels above the normal range of 19–76 ng/ml (median, 1,240 ng/ml, range, 78 to 2,300 ng/ml). The one Cbl-deficient patient (No. 78) with a serum total homocysteine level within the normal range also had a normal serum methylmalonic acid. His diagnosis was tropical sprue. The other three patients with normal serum methylmalonic acid levels (Nos. 49, 61, and 73) all had elevated serum total homocysteine levels ranging from 34 to 92 μ mol/liter. Their diagnoses consisted of tropical sprue, postgastrectomy syndrome, and pernicious anemia.

As we have reported previously (33), most folate-deficient patients have normal levels of serum methylmalonic acid, although some have mild elevations. In the current study, as shown in Table I, 13 of the 19 folate-deficient patients had normal values for serum methylmalonic acid, and the other 6 had mild elevations (median for the 6 patients, 132 ng/ml, range, 79 to 195 ng/ml).

Fig. 3 shows the serum and urine homocysteine levels both before and after treatment in a patient with classic pernicious anemia and in another patient with alcoholism and nutritional folate deficiency. The Cbl-deficient patient had markedly elevated levels of total homocysteine both in serum and urine, which fell into the normal range within 3 d of treatment with parenteral cyano-Cbl (CN-Cbl). This same patient has been previously shown (33) to have a similar rapid fall in serum and urine methylmalonic acid in response to this course of CN-Cbl treatment. The patient with folate deficiency had an elevated serum total homocysteine which over several days decreased to the upper border of the normal range after several doses of oral folic acid. The urine total homocysteine which was at the upper border of the normal range also fell markedly after treatment. This data suggests that serum and urine homocysteine levels correlate with each other in patients with Cbl or folate deficiency and could be used to monitor the response of treatment, although more patients would need to be evaluated before this could be concluded with certainty. Initial serum and urine methionine levels were normal in both patients and did not change significantly after CN-Cbl or folate treatment (data not shown).

Discussion

Our studies demonstrate that serum total homocysteine levels are likely to be clinically useful, since they were above the normal range in 77 of 78 Cbl-deficient patients and 18 of 19 folate-deficient patients. The serum total homocysteine appears to be similar in sensitivity to the serum methylmalonic acid in the Cbl-deficient patients, since the latter was elevated in 74 of the same 78 Cbl-deficient patients. Using the serum total homocysteine level in combination with the serum methylmalonic acid level will often be helpful in distinguishing patients with Cbl deficiency from those with folate deficiency, since most patients with folate deficiency have normal levels of serum methylmalonic acid and the rest have only mild elevations.

Additional clinical studies using measurements of serum total homocysteine and serum methylmalonic acid in addition to measurements of serum Cbl and serum folate should make it possible to further define the clinical spectra of Cbl and folate deficiency, and to define the proper diagnostic approach

Table I. Clinical Data for 78 Patients with Cbl Deficiency and 19 Patients with Folate Deficiency

470

Patient	Age Se	Sex* Race	Serum Cbl	Serum folate	Hct	MCV	White blood cells	Platelets	Serum	Neuroabnor- malities ⁶	Glossitis ^{II}	Intrinsic factor antibody	Diagnosis ^r	Serum methylmalonic acid	Serum methionine	Serum total cysteine	Serum total homocysteine
			lm/8d	ng/ml	88	ď	No./µl	No./µl	U/ml					lm/gn	µmol/liter	µmol/liter	µmol/liter
Normals			200-1,000	3-25	M 40-52 F 35-47	80-100	4,000-10,000	150,000–450,000	<225	0	0	0	0	19-76	44	174-378	7–22.
Cbl deficient	ent F	æ	89	26.0	30	108	3,000	149,000		9		0	PA	22,200	43	216	476
. 7	64 F	М	122	20.0	18	130	3,200	138,000	>600	3		+	PA	7,410	24	321	399
ι κο		H	81	3.8	70	135	3,700	140,000	926	0	+ 0	0	TS :	1,160	၉ ၄	96 6	299
4		≱	145	10.0	04	611		Adequate	327	.	-	o ·	Σ :	1,/11	2 :	489	789
so v		m :	9 9	3.6	2 9	115		381,000	3.250	c	- -	+ +	Z Z	3,900 2,660	78 28	310 178	251 251
o t			2 9	C.82	7. 2.	5 5		200,000	2,70 008	۰, د	> +	- +	PA PA	4.580	27 2	262	228
~ oc	88 F	≱ m	120	10.0	3 6	120	009;1	Decrease	909	. 4	. 0	+	PA	7,449	41	318	223
0			10	28.0	18	108		20,000	3,925	-	0	+	PA	1,320	35	228	205
10			78	13.0	16	122		71,000	9,500	7	0	+ -	PA S	5,560	14.	571	961
==			125	29.0	35	60 5		234,000		o •	o -	+ -	K &	3,350	37	/71	190
12		_ •	0,5	9.0	- 26	£ 5	12,800	65,000	0,040	ń <	+ +	+ c	7.4 P.4	2,740	, 7	29.1	187
5 7		_	9 7	10.7	δ -	2,7		Aucquate 110 000	3,000	+ 65	- c		PA	637	35	506	184
1 7			5 %	25.0	33	117	4.500	117,000	350	. 60	+	+	PA	2,790	21	229	183
£ 2			25	15.0	70	106		100,000	3,205	2	+	+	PA	9,500	24	255	182
17		æ	75	œ .œ	38	110		255,000	255	3		+	PA	4,800	29	210	174
81			70	4 .	25	126		548,000	786	0	0	0	PA	546	102	220	173
19			110	3.4	45	10		212,000	237	en (+ -	+ -	P.A	9,800	56	330	97
50			\$3	48.0	28	Ξ:		000,071	707	3	+	+ -	₹ å	2,790	o - F	171	691
21			y 2	C 6	64 00 00	571		150,000	4 450	2	+	+ +	PA PA	380	32	300	157
7, 6		===	: :	20.0	2 5	101		185,000	1.525	١	+	0	ST	1,990	38	236	153
24			132	4.7	22	86	5,200	115,000	1,550	0	0	+	PA	3,400	27	286	151
25		Н	115	19.3	26	135	2,900	20,000	805		0	0	PA	22,300	33	235	150
26		≯	145	20.0	38	104	2,600	Adequate	205	3	0	+	PA	9,090	∞ ;	208	149
27			2 (38.0	= 9	112	3,000	112,000	1,525	, 0	+ +	+ -	PA PA	8,300 - 700	35 24	700	140
8 78 78		≥ a	790	0.62<	6 7	118	4,400 2,800	Adequate 136,000	3,860	ر د	+ c	s +	Z A	1.530	5 7	250	130
67 8			45	28.0	22	137		98,000	425	ıπ	· +	0	PA	1,100	28	126	128
31			45	3.5	21	Ξ		380,000	2,125	4		+	PA	1,770	24	241	128
32		H	4	3.3	91	120		101,000	1,872	-	0	+ .	PA :	1,120	7 4 5	264	126
33			36	5.7	17	132		250,000	4,100	m (o ·	-	₽ F	6,200	129	507	071
¥ ;			8 %	>29.0	29	121	3,500	260,000	200	-	+ +	o +	51 P4	2,950 4 180	8 C	6 9	110
6, 6		n e	\$ <u>5</u>	79.0	2 5	91 00		315,000	3,5	o		- +	PA A	2.735	32	158	117
37		a I	120	2.2	15	61		000'616	009^	,	,	+	PA	518	98	351	114
38		: ≥	150	11.0	31	601	4,800	160,000	280	3	0	+	PA	2,080	99	295	113
36		H	150	5.7	18	66		140,000	2,073	0	+	+	PA	1,040	38	208	113
9		*	125	14.3	38	901		Adequate	106	E	+	0	PA	5,640	139	29	111
4		H	150	20.0	36			307,000	232	0	+	+ (PA :	751	<u>«</u> :	329	601
42	92 F	æ	73	4.1	41		11,500	Adequate	506	,		0	PA	1,870	51	503	90 8
43	84 F	≩	89	15.8			3,300	Adequate	201	4 (+ 4	+ ‹	PA 2	386	61 2	348	66
4 ;		≩ 6	20	6.3	38		8,800	Adequate	350	, 2	-	o	Σá	453 280	9 6	5 5 7	76
4 5	6 8 구 1	za t	2 ;	4 (77		3,200	99,000	3,170	n (+ c	⊢ ⊣	۲ <u>۲</u> ۵	1 520	ر م	3 60 3	05
ð í		Σ	0 3 2	9. 5	4 -		12,100	530,000	680	4 C	>	⊦ +	7 A	7,605	5 =	891	95
4		<u>a</u>	130	11./	<u>‡</u>		1,400	33,000	200	4	>	-	:	222	:) 1	3

	V V V V V V V V V V V V V V V V V V V
8 8 8 8 8 8 8 8 8 8 7 5 5 5 5 5 5 5 5 5	133 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
305 230 207 207 207 366 279 272 272 272 273 274 373 373 374 375 376 377 377 377 377 377 377 377 377 377	210 238 252 273 326 91 193 335 277 277 196 1196 1179 1179 1179
25	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2,620 59 21,900 137 1,160 335 335 335 340 1,656	74 75 75 75 75 75 75 75 75 75 75 75 75 75
13 P P P P P P P P P P P P P P P P P P P	ALC, PALC, P
0+0000++++++00+++0+0++++000+++0	000000000000000000
000 00++ +0++0+000++00+00000	++0+ 0+000 0 00 00
2,500 862 1 862 1 168 0 168 0 168 0 2,000 2,000 1,550 2,000 1,550 2,000 1,550 1,500 1,	
Adequate 84,000 84,000 84,000 84,000 Adequate 1140,000 191,000 223,000 223,000 225,000 120,000 45,000 Adequate 275,000	64,000 55,000 153,000 7,000 105,000 240,000 161,000 89,000 89,000 306,000 136,000 136,000 136,000 136,000 250,000
6,100 Adequate 6,600 350,000 4,200 84,000 3,600 140,000 7,500 990,000 2,700 191,000 5,100 174,000 9,300 208,000 5,200 124,000 4,200 124,000 4,200 45,000 4,200 Adequate 2,200 Adequate 5,300 Adequate 5,300 Adequate 6,200 Adequate 7,000 Adequate 8,000 107,000 4,700 Adequate 8,000 275,000 7,100 Adequate 8,000 141,000 6,600 189,000 7,600 189,000 7,600 189,000 6,600 283,000 6,400 283,000 6,400 283,000	
	9,100 2,100 3,600 1,500 3,400 9,600 7,900 11,400 11,400 14,400 6,800 6,600 6,600 19,200
6,100 6,200 7,500 7,500 7,500 7,100 7,100 7,100 7,100 8,000 8,	9,100 2,100 3,600 1,500 3,400 9,600 7,900 11,400 11,400 14,400 6,800 6,600 6,600 19,200
99 6,100 121 6,600 103 4,200 113 7,500 113 7,500 114 5,100 115 5,200 110 5,200 110 5,200 111 2,200 111 4,200 112 4,200 113 7,500 114 2,500 118 4,700 118 4,700 119 6,200 118 4,700 119 6,200 110 7,600 110 8,000 111 7,100 110 8,000 110 8,000 110 7,600 110 8,000 110 8,000 110 8,000 110 8,000 110 7,600 110 8,000 110 8,000 1	11 9,100 32 114 5,600 8 100 1,500 18 110 3,400 25 142 9,600 33 114 5,600 15 108 7,900 23 113 13,000 18 114 14,400 18 114 14,400 18 115 8,600 11 1,200 12 12 5,500 21 12 4,500 22 112 4,500 23 114 6,600 24 112 4,500 27 112 5,500 27 12 5,500 27 12 12 5,500 27 12 12 5,500
3.1 27 121 6,600 2.8 15 125 4,200 50.0** 39 109 3,600 7.3 29 132 6,600 32.0 27 113 7,500 32.0 27 113 7,500 11.0 13 110 5,200 11.0 13 110 5,200 12.4 14 100 4,900 7.5 16 114 2,500 12.0 35 119 6,200 6.8 31 116 4,600 8.5 22 126 5,000 8.5 22 118 4,700 41.0 42 84 9,300 7.8 23 114 5,000 7.8 23 118 7,100 17.0** 35 119 6,600 8.5 22 126 5,000 8.5 22 126 5,000 8.5 22 126 5,000 8.5 22 126 5,000 8.5 22 126 5,000 8.5 22 126 5,000 8.5 22 126 5,000 8.5 22 127 4,000 9.9 45 109 8,000 9.9 45 109 8,000 9.9 45 109 8,000 9.9 45 103 5,800 11.5 39 1103 5,800 9.9 8,000 9.9 9,000 9.9 9	0.5 11 9,100 0.6 32 114 5,600 0.5 8 100 1,500 2.0 18 110 3,400 1.2 25 142 9,600 2.3 33 114 5,600 1.1 15 108 7,900 0.4 23 113 13,000 1.5 13 104 8,600 0.8 28 104 8,600 0.9 18 114 14,400 1.0 27 112 4,500 0.1 13 123 3,800 0.1 12 123 5,900 0.1 12 122 5,500 0.5 33 114 6,600
130 39 99 6,100 43 2.8 15 121 6,600 43 2.8 15 125 4,200 110 7.3 29 109 3,600 150 4.3 35 113 6,600 95 32.0 27 113 5,100 120 3.8 38 103 9,300 120 3.8 38 103 9,300 10 5.2 44 97 5,100 10 12.0 34 82 10,100 10 1.2 14 10 5,200 10 1.2 14 10 4,200 96 7.5 16 114 2,500 10 12.0 35 129 5,200 10 12.0 35 129 5,000 10 12.0 35 114 2,500 10 8.5 22 128 4,700 13 10 4,700 4,700	11 9,100 32 114 5,600 8 100 1,500 18 110 3,400 25 142 9,600 33 114 5,600 15 108 7,900 23 113 13,000 18 114 14,400 18 114 14,400 18 115 8,600 11 1,200 12 12 5,500 21 12 4,500 22 112 4,500 23 114 6,600 24 112 4,500 27 112 5,500 27 12 5,500 27 12 12 5,500 27 12 12 5,500
B 130 39 6,100 H 43 2.8 15 121 6,600 W 78 50.0** 39 6,100 9 6,100 W 78 50.0** 39 121 6,600 W 150 4,3 29 132 6,600 B 110 7.3 29 112 6,600 B 60 5.3 44 97 7,500 B 60 5.2 44 97 5,100 H 120 3.8 38 103 9,300 H 10 5.2 11 5,100 H 96 7.5 14 10 4,200 W 130 12.4 14 11 5,200 H 96 7.5 16 114 2,500 H 96 7.5 16 4,700 H 45 41.0 42	790 0.5 11 9,100 420 0.5 12 2,100 520 0.6 32 114 5,600 3,150 0.5 8 100 1,500 1,070 1.2 25 142 9,600 1,160 1.1 15 108 7,900 1,170 0.4 23 113 13,000 780 1.5 13 11,400 750 0.8 28 104 8,600 750 0.9 18 114 4,400 1,70 0.1 13 123 3,800 420 0.8 15 8 116 6,800 200 0.1 13 123 3,800 1,110 0.7 112 4,500 200 0.1 12 123 5,500 1,110 0.5 33 114 6,600 1,950 1.9 27 123 19,200
130 39 99 6,100 43 2.8 15 121 6,600 43 2.8 15 125 4,200 110 7.3 29 109 3,600 150 4.3 35 113 6,600 95 32.0 27 113 5,100 120 3.8 38 103 9,300 120 3.8 38 103 9,300 10 5.2 44 97 5,100 10 12.0 34 82 10,100 10 1.2 14 10 5,200 10 1.2 14 10 4,200 96 7.5 16 114 2,500 10 12.0 35 129 5,200 10 12.0 35 129 5,000 10 12.0 35 114 2,500 10 8.5 22 128 4,700 13 10 4,700 4,700	M

* F. Female: M. male. * B. Black; H. Hispanic; W. white. * 4, Severe advanced combined systems disease; 3, combined systems disease or severe cerebral dysfunction responsive to Cbl treatment; 2, no neurological symptoms but impairment of position and/or vibration sense on exam; 1, paresthesias with negative neurological exam; PN, peripheral neuropathy associated with alcoholism. * Sore tongue, glossal atrophy, or both. * IR, ileal resection; MJD, multiple jejunal diverticula; PA, pernicious anemia; PG, postgastrectomy; TS, tropical sprue; ALC, P, alcoholism with poor diet; PD, poor diet. ** Receiving folic acid.

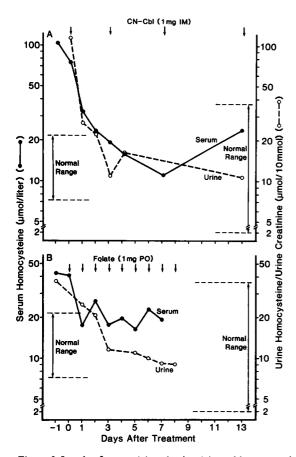


Figure 3. Levels of serum (•) and urine (o) total homocysteine in (A) a patient with pernicious anemia before and after treatment with CN-Cbl, and (B) a patient with nutritional folate deficiency and alcoholism using capillary gas chromatography-mass spectrometry. Patient A was a 32-yr-old white male with pancytopenia, megaloblastic bone marrow findings, a serum Cbl value of 43 pg/ml, serum antiintrinsic factor blocking antibodies, and an abnormal Schilling test that corrected with exogenous intrinsic factor. Patient B was a 52-yr-old black male with alcoholism and a poor diet who had severe anemia, megaloblastic bone marrow findings, a plasma folate value of 2.0 ng/ml, a red cell folate value of 41 ng/ml, and a serum Cbl value of 690 pg/ml. The Cbl was given by intramuscular (IM) injection and the folate was given by mouth. PO, per os.

to these patients. The importance of these studies is suggested by the fact that many of the Cbl-deficient patients in the current study had normal or only mildly abnormal values for various individual hematologic parameters such as Hct and MCV that are thought to be markedly or at least moderately abnormal in the vast majority of Cbl-deficient patients. Additional studies concerning the specificity of measurements of serum total homocysteine will also be of interest.

The serum total homocysteine and methylmalonic acid levels both have one advantage that is not shared by serum Cbl and serum folate levels in that one can treat a patient suspected of being Cbl-deficient with Cbl and then observe the effect on the serum total homocysteine and methylmalonic acid levels or treat a patient suspected of being folate-deficient with folate and then observe the effect on the serum total homocysteine level. If such treatment results in a decrease in the appropriate metabolite from the elevated to the normal range, this is strong presumptive evidence that the patient was Cbl deficient, or folate deficient, as was the case with the two patients described

in detail in this report. This advantage is not shared by the serum Cbl and serum folate levels, since these values are always elevated or at least normal after treatment with Cbl or folate, respectively, regardless of whether a patient is Cbl- or folate-deficient or not.

That levels of serum total homocysteine are almost always elevated in deficiencies of Cbl and folate, whereas levels of serum methionine are almost never decreased in these conditions, indicates that the pathways shown in Fig. 1 are regulated to a considerable degree. The maintenance of methionine levels within a relatively narrow range appears reasonable, since methionine is an essential amino acid that plays an important role in protein synthesis, in various methylations, and in a large number of other metabolic reactions. The enzymatic reaction or reactions that represent the site or sites of regulation in Cbl deficiency and in folate deficiency are not known. Cystathione β -synthase (see Fig. 1) could play a role, since regulation of this enzyme is important in the maintenance of methionine homeostasis during changes in dietary methionine (38–40).

The fact that methionine levels are maintained in Cbl and folate deficiency at the expense of elevated levels of total homocysteine might be harmful, since elevations in homocysteine due to homozygosity or heterozygosity for cystathionine synthetase deficiency have been associated with an increase in vascular disease and thrombosis (41–43). That these problems have not been reported as being present in increased incidence in Cbl deficiency or in folate deficiency may be due to the shorter duration of Cbl and folate deficiencies or to possible differences in other regulatory factors that may exist in these conditions.

Our finding that serum total homocysteine is negatively correlated with platelet count and Hct and positively correlated with MCV and LDH in the Cbl-deficient patients supports the concept that a block in methionine synthetase activity occurs in Cbl deficiency and that this block is responsible for the megaloblastic anemia and other hematologic abnormalities that are seen in these patients (12), and which are indistinguishable from those seen in patients with folate deficiency. We have previously reported (33) and have found in this study that serum methylmalonic acid is not significantly correlated with Hct, MCV, or LDH in Cbl-deficient patients. This supports the concept that the second Cbl-dependent enzyme, L-methylmalonyl-CoA mutase, does not play a role in the megaloblastic anemia and other hematologic abnormalities seen in Cbl deficiency.

The cause of the neuropsychiatric abnormalities that are seen in Cbl deficiency but not in folate deficiency has long been of interest. Some investigators have favored a defect in L-methylmalonyl-CoA mutase as the cause and have suggested that the neuropsychiatric abnormalities are due to a buildup in propionyl-CoA and a resultant increase in odd number carbon fatty acids in peripheral nerves and the central nervous system (44-46). Other investigators have favored a defect in methionine synthetase as the cause and have suggested that the neuropsychiatric abnormalities are due to a lack of methionine and a resultant decrease in various methylation reactions in peripheral nerves and the central nervous system (47-49). Our studies are not helpful in distinguishing between these two possibilities since we have found that serum methylmalonic acid and serum total homocysteine are both strongly positively correlated with the presence and severity of neuropsychiatric abnormalities in patients with Cbl deficiency. Our finding that serum methionine is not decreased in patients with Cbl deficiency would appear to argue against a mechanism involving a lack of methionine as the cause of the neuropsychiatric abnormalities, but it should be emphasized that levels of methionine in serum may not reflect levels of methionine in peripheral nerves and the central nervous system. Measurements of methylmalonic acid, total homocysteine, and methionine in cerebral spinal fluid and various tissues would be of interest in this regard.

Acknowledgments

We thank Ms. Maria Ignacio for expert assistance in preparing the manuscript.

This work was supported by Department of Health and Human Services Research Grants DK21365 (to Dr. Allen) and DK37165 (to Dr. Stabler), awarded by the National Institutes of Diabetes and Digestive and Kidney Diseases.

References

- Dawson, D. W. 1984. Diagnosis of vitamin B₁₂ deficiency. Br. Med. J. 289:938-939.
- 2. Lindenbaum, J. 1983. Status of laboratory testing in the diagnosis of megaloblastic anemia. *Blood.* 61:624-627.
- 3. Schilling, R. F., V. F. Fairbanks, R. Miller, K. Schmitt, and M. J. Smith. 1983. Improved vitamin B₁₂ assays: a report on two commercial kits. *Clin. Chem.* 29:582–583.
- 4. Beck, W. S. 1983. The assay of serum cobalamin by *Lactobacillus leichmannii* and the interpretation of serum cobalamin levels. *Methods Hematol.* 10:31-50.
- 5. Magnus, E. M., J. E. Bache-Wiig, T. R. Anderson, and E. Melbostad. 1982. Folate and vitamin B₁₂ (cobalamin) blood levels in elderly persons in geriatric homes. *Scand. J. Haematol.* 28:360–366.
- 6. Nexo, E. 1983. Variation with age of reference values for P-co-balamins. *Scand. J. Haematol.* 30:430-432.
- 7. Evans, D. L., G. A. Edelsohn, and R. N. Golden. 1983. Organic psychosis without anemia or spinal cord symptoms in patients with vitamin B₁₂ deficiency. *Am. J. Psychol.* 140:218-221.
- 8. Cole, M. G., and J. F. Prchal. 1984. Low serum vitamin B_{12} in Alzheimer-type dementia. Age Ageing. 13:101-105.
- 9. Metz, J., A. Kelly, V. C. Swett, S. Waxman, and V. Herbert. 1968. Deranged DNA synthesis by bone marrow from vitamin B₁₂-deficient humans. *Br. J. Haematol.* 14:575–592.
- 10. Herbert, V. 1962. Minimal daily adult folate requirement. Arch. Intern. Med. 110:649-652.
- 11. Savage, D., and J. Lindenbaum. 1986. Anemia in alcoholics. *Medicine*. 65:322-338.
- 12. Beck, W. S. 1983. Erythrocyte disorders: anemias related to disturbance of DNA synthesis (megaloblastic anemias). *In* Hematology. W. J. Williams, E. Beutler, A. J. Erslev, and M. A. Lichtman, editors. McGraw-Hill, Inc., New York. 434–465.
- 13. Vilter, C. F., R. W. Vilter, and T. P. Spies. 1947. The treatment of pernicious anemia and related anemias with synthetic folic acid. I. Observations on the maintenance of a normal hematologic status and the occurrence of combined system disease at the end of one year. J. Lab. Clin. Med. 32:262-273.
- 14. Mudd, S. H., and H. L. Levy. 1983. Disorders of transsulfuration. *In* The Metabolic Basis of Inherited Disease. J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, editors. McGraw-Hill, Inc., New York. 522-559.
- 15. Fraden, J. O., B. Reibman, and D. Turkewitz. 1978. Vitamin B₁₂ deficiency in strict vegetarians. *N. Engl. J. Med.* 299:1319.
- 16. Higginbottom, M. C., L. Sweetman, and W. L. Nyker. 1978. A syndrome of methylmalonic aciduria, homocystinuria, megaloblastic

- anemia: neurologic abnormalities in a vitamin B_{12} -deficient breast-fed infant of a strict vegetarian. N. Engl. J. Med. 299:317-323.
- 17. Shipman, R. T., R. R. W. Townley, and D. M. Danks. 1969. Homocystinuria, Addisonian pernicious anemia, and partial deletion of a G chromosome. *Lancet*. ii:693-694.
- 18. Hollowell, J. G., Jr., W. K. Hall, M. F. Coryell, J. McPherson, Jr., and D. A. Hahn. 1969. Homocystinuria and organic aciduria in a patient with vitamin B₁₂ deficiency. *Lancet*. ii:1428.
- 19. Davis, J. R., Jr., J. Goldenring, and B. H. Lubin. 1981. Nutritional vitamin B₁₂ deficiency in infants. *Am. J. Dis. Child.* 135:566-567
- 20. Hoey, H., J. C. Linnell, V. G. Oberholzer, and B. M. Laurance. 1982. Vitamin B₁₂ deficiency in a breastfed infant of a mother with pernicious anemia. *J. Royal. Soc. Med.* 75:656-658.
- 21. Graesbeck, R., R. Bordin, I. Kantero, and B. Kuhlbaeck. 1960. Selective vitamin B₁₂ malabsorption and proteinuria in young people. *Acta Medica Scandin*. 167:289-296.
- 22. Lampkin, B. C., and A. M. Mauer. 1967. Congenital pernicious anemia with coexistent transitory intestinal malabsorption of vitamin B_{12} . *Blood.* 30:495-502.
- 23. Lambert, H. P., T. A. J. Prankerd, and I. M. Smellie. 1961. Pernicious anemia in childhood. O. J. Med. 30:71-90.
- 24. Sievens, C. J. 1964. Megaloblastic anemia in a 3-year old child. *Blood.* 23:547. (Abstr.)
- 25. Parry, T. E. 1969. Serum valine and methionine levels in pernicious anaemia under treatment. Br. J. Haematol. 16:221-229.
- 26. Levy, H. L., S. H. Mudd, J. D. Schulman, P. M. Dreyfus, and R. H. Abeles. 1970. A derangement in B₁₂ metabolism associated with homocystinaemia, cystathionaemia, hypomethioninaemia, and methylmalonic aciduria. *Am. J. Med.* 48:390–397.
- 27. Goodman, S. I., P. G. Moe, K. B. Hammond, S. H. Mudd, and B. W. Uhlendorf. 1970. Homocystinuria with methylmalonic aciduria: two cases in a sibship. *Biochem. Med.* 4:500–515.
- 28. Mudd, S. H., B. W. Uhlendorf, J. M. Freeman, J. D. Finkelstein, and V. E. Shih. 1972. Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity. *Biochem. Biophys. Res. Commun.* 46:905–912.
- 29. Freeman, J. M., J. D. Finkelstein, and S. H. Mudd. 1975. Folate-responsive homocystinuria and "schizophrenia" a defect in methylation due to deficient 5,10-methylenetetrahydrofolate reductase activity. N. Engl. J. Med. 292:491-496.
- 30. Scott, C. R., N. Hakami, C. C. Teng, and R. N. Sagerson. 1972. Hereditary transcobalamin II deficiency; the role of transcobalamin II in vitamin B₁₂-mediated reactions. *J. Pediatr.* 81:1106-1111.
- 31. Rosenblatt, D. S., R. Laframboise, J. Pichette, P. Langevin, B. A. Cooper, and T. Costa. 1986. New disorder of vitamin B₁₂ metabolism (cobalamin F) presenting as methylmalonic aciduria. *Pediatrics*. 78:51–54.
- 32. Corbeel, L., G. Van der Berghe, J. Jaeken, J. von Tornout, and R. Eeckles. 1985. Congenital folate malabsorption. *Eur. J. Ped.* 143:284-290.
- 33. Stabler, S. P., P. D. Marcell, E. R. Podell, R. H. Allen, and J. Lindenbaum. 1986. Assay of methylmalonic acid in the serum of patients with cobalamin deficiency using capillary gas chromatography-mass spectrometry. *J. Clin. Invest.* 77:1606-1612.
- 34. Stabler, S. P., P. D. Marcell, E. R. Podell, and R. H. Allen. 1987. Quantitation of total homocysteine, total cysteine, and methionine in normal serum and urine using capillary gas chromatographymass spectrometry. *Anal. Biochem.* 162:185-196.
- 35. Marcell, P. D., S. P. Stabler, and R. H. Allen. 1985. Quantitation of methylmalonic acid and other dicarboxylic acids in normal serum and urine using capillary gas chromatography-mass spectrometry. *Anal. Biochem.* 150:58-66.
- 36. Wilcken, D. E. L., V. J. Gupta, and S. G. Reddy. 1980. Accumulation of sulphur-containing amino acids including cysteine-homocysteine in patients on maintenance haemodialysis. *Clin. Sci.* 58:427-430.
 - 37. Kang, S. S., P. W. K. Wong, A. Bidani, and S. Milanez. 1983.

- Plasma protein-bound homocyst(e)ine in patients requiring chronic haemodialysis. Clin. Sci. 65:335-336.
- 38. Finkelstein, J. D., and S. H. Mudd. 1967. Transsulfuration in mammals. The methionine-sparing effect of cystine. *J. Biol. Chem.* 242:873–880.
- 39. Finkelstein, J. D., and J. J. Martin. 1984. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. *J. Biol. Chem.* 259:9508-9513.
- 40. Finkelstein, J. D., and J. J. Martin. 1986. Methionine metabolism in mammals. Adaptation to methionine excess. *J. Biol. Chem.* 261:1582-1587.
- 41. Wilcken, D. E. L., S. G. Reddy, and V. J. Gupta. 1983. Homocysteinemia, ischemic heart disease, and the carrier state for homocystinuria. *Metab. Clin. Exp.* 32:363–370.
- 42. Brattstrom, L. E., J. E. Hardebo, and B. L. Hultberg. 1984. Moderate homocysteinemia: a possible risk factor for arteriosclerotic cerebrovascular disease. *Stroke*. 15:1012–1016.
- 43. Boers, G. H. J., A. G. H. Smals, G. H. S. Antony, F. J. M. Trijbels, B. Fowler, J. A. J. M. Bakkeren, H. C. Schoonderwaldt, W. J. Kleijer, and P. W. C. Kloppenborg. 1985. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N. Engl. J. Med. 313:709-715.

- 44. Frenkel, E. P. 1973. Abnormal fatty acid metabolism in peripheral nerves of patients with pernicious anemia. *J. Clin. Invest.* 52:1237-1245.
- 45. Kishimoto, Y., M. Williams, H. W. Moser, C. Hignite, and K. Biemann. 1973. Branched-chain and odd-numbered fatty acids and aldehydes in nervous system of a patient with deranged vitamin B₁₂-metabolism. J. Lipid Res. 14:69-77.
- 46. Barley, F. W., G. H. Sato, and R. H. Abeles. 1972. An effect of vitamin B₁₂ deficiency in tissue culture. J. Biol. Chem. 247:1270-1276.
- 47. Scott, J. M., J. J. Dinn, P. Wilson, and P. G. Weir. 1981. Pathogenesis of subacute combined degeneration: a result of methyl group deficiency. *Lancet*. ii:334-337.
- 48. Van der Westhuyzen, J., S. V. van Tonder, J. E. Gibson, T. A. Kilroe-Smith, and J. Metz. 1985. Plasma amino acids and tissue methionine levels in fruit bats (*Rousettus aegyptiacus*) with nitrous oxide-induced vitamin B₁₂ deficiency. *Br. J. Nutr.* 53:657-662.
- 49. van der Westhuyzen, J., F. Fernandes-Costa, and J. Metz. 1982. Cobalamin inactivation by nitrous oxide produces severe neurological impairment in fruit bats: protection by methionine and aggravation by folates. *Life Sci.* 31:2001–2010.