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Abstract: Elevator car vibration signals are important information to monitor and diagnose the
operating status of elevators, but during the process of vibration signals acquisition, vibration signals
are always inevitably disturbed by noise, which affects further research. Therefore, aiming at the
vibration signal with noise, we propose a new vibration signal denoising method on the basis of
complementary ensemble empirical mode decomposition (CEEMD) and bilateral filtering. Firstly,
the collected original vibration signals are decomposed by the CEEMD into several inherent mode
functions. Then, the false components are removed by determining the correlation coefficients of
mode components, and then the noise-dominate components are denoised by bilateral filtering.
Finally, the processed inherent mode functions are reconstructed to require the denoised signal. We
test the method through simulation and practical application. The results indicate that the proposed
method can efficaciously reduce the noise in the vibration signal of an elevator car.

Keywords: vibration signal; denoising; CEEMD; bilateral filtering

1. Introduction

With the development of the city, various high-rise buildings continue to appear.
As a kind of transportation equipment, the elevator plays a vital role in these modern
buildings, but it is inevitable that some faults occur in the process of putting the elevator
into operation. If we can take measures to diagnose the failure of the elevator in a shorter
time, we can reduce the losses. Vibration signals are often used to judge the fault type, but
the vibration signals we generally collect are mixed with various noises, so we need to
eliminate noise on the premise of ensuring that the pure signals are not affected.

Fourier transform is a frequently used method to denoise vibration signals. Under the
influence of the Fourier transform, the vibration signal can shift from the time-domain state
with time as the abscissa to the frequency-domain state with frequency as the abscissa. The
process is actually the decomposition process of the signal, and the original signal finally
becomes the combination of multiple sine waves. The premise of the Fourier transform
application is that the signal processed is the stationary signal, but the signal we usually
obtain is not a stationary signal, so it is difficult to obtain satisfactory results by using
Fourier transform. Different from Fourier transform, wavelet transform can place the signal
on the coordinate axis with time as the abscissa and frequency as the ordinate. Based on
the wavelet transform theory of vibration signal, many denoising methods are proposed.
The modulus maximum denoising method [1] calculates the modulus maximum of the
signal after wavelet transformation, selects an appropriate threshold, retains the wavelet
coefficient of the corresponding extreme points, and carries out signal reconstruction to
achieve denoising. The spatial correlation denoising method [2] takes the scale correlation
of signals as the key factor of denoising and determines whether to retain the coefficients
according to the similarity between scales. The wavelet threshold denoising [3] sets the
judgment threshold based on experience or other methods. By comparison and analysis,
the coefficients smaller than the threshold are removed, and the coefficients larger than

Sensors 2022, 22, 6602. https://doi.org/10.3390/s22176602 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176602
https://doi.org/10.3390/s22176602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1030-2593
https://doi.org/10.3390/s22176602
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176602?type=check_update&version=1


Sensors 2022, 22, 6602 2 of 21

the threshold are retained. Finally, the purpose of denoising is achieved through wavelet
inverse transform.

With the development of wavelet denoising, wavelet packet denoising methods have
emerged, and there are more and more improved methods based on wavelet packet
denoising. Li et al. [4] realized the signal denoising by setting the threshold to a variable
value on the basis of wavelet packet decomposition of the signal. Chen et al. [5] combined
sparse knowledge with wavelet packet decomposition to remove noise in the vibration
signal, and the sparse knowledge used can restore wavelet packet coefficients of the pure
signal to a large extent. Regardless of wavelet denoising or wavelet packet denoising, it is
necessary to choose the decomposition layers and wavelet basis, but the selection of these
two parameters usually needs to be based on experience once improper selection will affect
the final denoising effect of the vibration signal.

In addition to wavelet analysis, Huang et al. [6] presented empirical mode decomposi-
tion (EMD) for the first time, which can represent a signal as the sum of multiple modal
components and a residual component. Later, this method was applied in vibration signal
denoising [7]. However, from the perspective of practical application effect, if signal is
decomposed by using empirical mode decomposition, there are false components and alias-
ing components in the obtained components. Based on the problems existing in empirical
mode decomposition, Wu et al. [8] put forward ensemble empirical mode decomposition
(EEMD). The method greatly reduces the aliasing components in the decomposition pro-
cess, but the operation of adding white noise makes the residual noise still exist in the
reconstructed signal. Later, Yeh et al. [9] suggested complementary ensemble empirical
mode decomposition (CEEMD), which greatly reduces the aliasing components. After
that, a series of the improved method has been proposed to overcome the shortcomings of
EMD and its improved algorithms. Dang et al. [10] introduced the method of using EMD
and wavelet transform simultaneously in vibration signal denoising. Chegini et al. [11]
combined EMD and wavelet analysis and applied them to denoise in bearing vibration
signals. Because wavelet packet transform can achieve better analysis of medium- and
high-frequency components of signals, the vibration signal denoising method combining
CEEMD and wavelet packet according to the different characteristics of noise and pure
signals in vibration signals was proposed in [12–17]. The above improved methods mainly
combined empirical mode decomposition or its improved algorithms with wavelet decom-
position or wavelet packet decomposition for denoising. The denoising process would
inevitably involve the selection of wavelet base and the determination of decomposition
layers. Therefore, there might be the same problems with wavelet denoising and wavelet
packet denoising. In 2014, Dragomiretskiy and Zosso [18] proposed the VMD algorithm,
which can decompose the signal into AM and FM component signals. Later VMD algorithm
was applied to signal denoising. Long et al. [19] proposed a denoising method combining
the VMD algorithm and wavelet decomposition. Yu et al. [20] applied the VMD algorithm
to seismic signal denoising. The algorithm has better decomposition precision for complex
data, but the number of decomposition layers and penalty factors need to be set in advance
before using VMD. Once these two parameters are set improperly, the final decomposition
effect will be greatly affected.

At present, Image denoising methods commonly used include gaussian filtering,
median filtering, average filtering, and so on. These methods are denoising methods for
two-dimensional signals, and some of them have a good filtering effect on noise points.
Therefore, we can try to transform these methods with better denoising performance to
make them suitable for one-dimensional vibration signals. The Gaussian filtering method
has a good denoising effect for random Gaussian noise in the image, but it will affect the
edge information of the image in the process of denoising so that the final image after
denoising is not clear enough. The median filtering method has a good denoising effect
on isolated noise and does not affect the edge information of the image. However, the
method needs to determine the size of the sliding window according to the actual situation.
Once the improper selection is made, the final image after denoising will become blurred.
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Average filtering affects the restoration of image edges while removing noise. Bilateral
filtering is an evolutionary algorithm of gaussian filtering, which not only considers spatial
proximity but also involves the similarity of pixel values. The method is a kind of nonlinear
filtering technology that can realize edge preserving and denoising. At present, many
images are denoised using a bilateral filtering algorithm [21–23].

The noise in the elevator car comes from the car itself and the external environment,
and its frequency is mainly medium and low frequency. For the noise filtering in the
elevator signal, this paper proposes a denoising method combining bilateral filtering and
CEEMD. In the new method, CEEMD and bilateral filtering are combined for the first time
to denoise the elevator car vibration signal. Firstly, CEEMD is used to decompose the
elevator vibration signal, and the decomposition result is multiple modal components and
a residual component. The paper mainly carries out further processing and analysis of the
decomposed modal components. The correlation coefficient and multi-scale arrangement
entropy are used in the processing, and then the components dominated by noise and
the components dominated by the signal are determined. Because bilateral filtering has a
good filtering effect on medium- and low-frequency signal, it is applied to the components
dominated by noise to remove the noise in the elevator vibration signal. Then, the signal is
reconstructed to obtain the denoised signal. Finally, the method is applied to the simulation
signal and the elevator vibration signal, respectively, which verifies its superiority and
shows that it has a better denoising effect.

The overall structure of this paper is as follows: Section 2 introduces empirical mode
decomposition and its improved algorithm and variational mode decomposition. Section 3
introduces the method we suggest in this paper in detail. Section 4 applies the method
to the simulation analysis of elevator car vibration signals. Section 5 applies the method,
EMD denoising, EEMD denoising, CEEMD denoising, bilateral filtering denoising, and
VMD denoising to the elevator car vibration signal and compares the final denoising effect
of different methods. The last part draws the conclusion of the whole paper.

2. Theoretical Background
2.1. Empirical Mode Decomposition (EMD)

The formula of empirical mode decomposition is as follows:

x(t) =
n
∑

i=1
im fi + r(t) (1)

where im fi is ith inherent modal function, and r(t) is the residual component.
Each modal component needs to meet the following requirements [24]:
(1) The difference between the number of local extremum points and zeros crossing of

the component is 0 or 1;
(2) The upper envelope curve and the lower envelope curve in the component are

composed of maximum points and minimum points, respectively, and one-half of their
sum equals zero.

The steps of empirical mode decomposition are as follows:
Step 1: Determine all maximum and minimum points of the original signal x(t).
Step 2: According to the maximum and minimum points found in Step1, selecting

the cubic spline function to fit them respectively requires the upper envelope U(t) and the
lower envelope D(t), and the mean value m(t) of the two envelopes can be obtained by
Formula (2).

m(t) =
U(t) + D(t)

2
(2)

Step 3: Remove the mean envelope m(t) from the input signal x(t). The final obtained
value is denoted as h1(t), h1(t) = x(t)−m(t). If h1(t) satisfies the condition that the modal
component must have, h1(t) is an inherent modal function, denoted as c1(t), and proceed
with step 4. Otherwise, let x(t) = h1(t), and proceed with step1–step3.
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Step 4: Calculation of residual signal r1(t):

r1(t) = x(t)− c1(t) (3)

Step 5: Let x(t) = r1(t), and begin execution from step1 until the next modal compo-
nent c2(t) is found. After n times of repeated iterations, all modal components and one
residual component rn(t) are finally obtained:

r1(t)− c2(t) = r2(t)
r2(t)− c3(t) = r3(t)

.

.

.
rn−1(t)− cn(t) = rn(t)

(4)

2.2. Ensemble Empirical Mode Decomposition (EEMD)

Ensemble empirical mode decomposition is a modified algorithm for the shortcomings
of EMD. If the signal varies greatly in different time scales, the modal components obtained
by empirical mode decomposition may contain more than the information of the current
time scale, which is called mode aliasing. In order to reduce this phenomenon, EEMD adds
white noise on the basis of unprocessed signals. Because the added signal is characterized
by uniform spectrum distribution, all the signals obtained after ensemble empirical mode
decomposition will be placed on the corresponding time scale. The steps of Ensemble
empirical mode decomposition are shown below [8]:

Step 1: Add white noise to the original signal;
Step 2: The signal after processing in Step 1 is disassembled into a combination of IMF

components by empirical mode decomposition (EMD);
Step 3: Repeat Step1 and Step2 n times;
Step 4: Take the IMF aggregate mean obtained each time as the final result.

2.3. Complementary Ensemble Empirical Mode Decomposition (CEEMD)

CEEMD improves the modal aliasing problem in the signal processing process. The
difference between this method and EEMD is that the latter adds multiple white noises to
the signal before decomposition, while the former adds pairs of white noise with opposite
signs to the signal before decomposition, which can not only decrease the effect of noise on
the decomposition result but also enhance the computational efficiency.

The main steps of CEEMD are as follows [25]:
Step 1: Add a pair of noise signals to the input signal, and the added white noise has

the same amplitude. [
Mi

1
Mi

2

]
=

[
1 1
1 −1

][
X
Ni

]
(5)

where X is the original input signal, and Ni is the white noise added for the ith time.
Step 2: After adding white noise for the ith time, EMD decomposition of Mi

1 and
Mi

2 is performed to require the corresponding components ci
1,j and ci

2,j, as well as the

corresponding residuals ri
1 and ri

2.
Step 3: Take the average values of modal components and residuals, respectively.

ci
j =

1
2

(
ci

1,j + ci
2,j

)
(6)

ri =
1
2

(
ri

1 + ri
2

)
(7)
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Step 4: Similarly, if n pairs of white noise with the opposite sign are added, the final
IMF is:

cj =
1
n

n

∑
i=1

ci
j (8)

2.4. Variational Mode Decomposition (VMD)

The core of variational mode decomposition is to construct and solve variational
problems, which is an adaptive, completely non-recursive signal processing method. The
method determines the frequency center and bandwidth of each component by iteratively
searching for the optimal solution of the variational model in the process of obtaining
the decomposed components so that the frequency domain division of the signal and the
effective separation of each component can be adaptively realized.

The variational mode decomposition can decompose the signal into multiple amplitude-
frequency modulated signals, and the decomposition formula is as follows:

f (t) =
K

∑
k=1

uk(t) (9)

uk(t) = Ak(t) cos(ϕk(t)) (10)

where f (t) is the original signal and uk(t) is the kth harmonic signal, Ak(t) is the amplitude
of the kth harmonic signal, ϕk(t) is the phase of the kth component, and K is the number of
modal components obtained by decomposition.

The specific decomposition steps of the variational modal decomposition algorithm
are as follows [26,27]:

(1) Hilbert transform for each modal signal is as follows:(
δ(t) +

j
πt

)
∗ uk(t) (11)

where δ(t) is the dirac distribution, j is the imaginary part, ∗ is the convolution symbol.
(2) The spectrum of each mode is modulated to the corresponding fundamental

frequency band. [(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jwkt (12)

where wk represents the center frequency of the kth mode component.
(3) Calculate the square root of the L2 norm gradient of the demodulated signal

and estimate the bandwidth of each modal signal. The variational problem is expressed
as follows:

min
{uk}, {wk}

{
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt‖2

2

}
s.t. ∑

k
uk(t) = f

(13)

where ∂t represents the partial derivative of the function with respect to time, δ(t) is the
unit pulse function.

The quadratic penalty factor α and the lagrangian penalty operator λ(t) are intro-
duced to convert the constrained problem into the unconstrained problem. The extended
Lagrangian expression is as follows:

L ({uk}, {wk}, λ) = α ∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt‖2

2

+‖ f (t)−∑
k

uk(t)‖2
2 + 〈λ(t), f (t)−∑

k
uk(t)〉

(14)

where α represents the bandwidth parameter.
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The Alternating Direction Method of Multipliers (ADMM) is used to solve the varia-
tional problem. By updating un+1

k , wn+1
k and λn+1, we can find the Lagrangian saddle point,

obtain the optimal solution of un+1
k (w) and wn+1

k (w), and substitute them into ADMM to
obtain a complete VMD algorithm. The specific steps are as follows:

Step 1: Initialize u1
k , w1

k , λ1 and initializes n to 0.
Step 2: Update uk, wk.

un+1
k (w)

=
f (w)−∑K

i=1,i<k un+1
i (w)−∑K

i=1,i<k un
i (w)+ λn(w)

2

1+2α(w−wn
k )

2
(15)

wn+1
k =

∫ ∞
0 w

∣∣∣un+1
k (w)

∣∣∣2dw∫ ∞
0

∣∣∣un+1
k (w)

∣∣∣2dw
(16)

Step 3: Update λ.

λn+1(w) = λn(w) + τ

[
f (w)−

K

∑
k=1

un+1
k (w)

]
(17)

where τ represents the noise tolerance parameter. When the signal contains strong noise,
we can set τ = 0.

Step 4: Repeat Step 2 and Step 3 until the following iteration constraints are satisfied.

K

∑
k=1

‖un+1
k − un

k ‖
2
2

‖un
k ‖

2
2

< ε (18)

where ε = 10−6.

3. Vibration Signal Denoising Method Based on CEEMD

In the paper, we take advantage of the CEEMD to decompose the vibration signal
into several intrinsic mode functions. Then remove the false components by calculating
the correlation coefficient of the IMFs. Because there is still noise in the remaining signal,
the remaining signal is divided into two parts by multi-scale permutation entropy, and
then the signal in the dominant position of noise is denoised by bilateral filtering. Finally,
the processed signal is refactored to require the final denoising Signal. Figure 1 shows the
vibration signal denoising flow chart combining CEEMD and bilateral filtering.

The main steps of the new method are as follows:
(1) Let the noisy signal be y(t), and divide the signal into several intrinsic modal

functions and one residual component through CEEMD.

y(t) =
n

∑
i=1

im fi(t) + rn(t) (19)

(2) Determine the correlation coefficient of each component and the original signal
and distinguish between false component and true component. The correlation coefficient
quantitatively describes the degree of correlation between each modal component and
the original signal. The larger the correlation coefficient of the modal component is, the
more similar it is to the original signal. The smaller the correlation coefficient of the modal
component, the greater the difference between the modal component and the original
signal. if the correlation coefficient of the modal component is small, it indicates that the
modal component is a false component, which needs to be discarded, and the remaining
IMFs are reserved. In this paper, our research object is the elevator car vibration signal,
and the experiments involved are also only related to the characteristics of the elevator



Sensors 2022, 22, 6602 7 of 21

vibration signal. Therefore, considering the results of multiple denoising experiments
for the elevator signal, we set the threshold of the correlation coefficient to 0.1~0.2 of
the maximum correlation coefficient. Because the paper does not carry out experimental
verification on other equipment except the elevator, the current setting of this threshold
is only applicable to the vibration signal of the elevator car. δ in Figure 1 indicates the
threshold of the correlation coefficient.

ρi =

∫ +∞
−∞ im fi(t)y(t)dt√∫ +∞

−∞ im fi(t)2dt
√∫ +∞
−∞ y(t)2dt

(20)

where ρi is the correlation coefficient between the im fi and the input signal, |ρi| ≤ 1,
i = 1 . . . . . . n.
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(3) Determine the multi-scale permutation entropy of the remaining IMF components
and divide the signals into the signal-dominated IMF components and the noise-dominated
IMF components. Multi-scale permutation entropy is the permutation entropy of a signal
at different scales. Multi-scale permutation entropy can represent the characteristics of
signals at different scales, determine the complexity and randomness of signals, and
highlight the small changes in signals. It is an important parameter for analyzing and
processing vibration signals generated by mechanical equipment. The process is to coarse-
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grain the original time series to construct a multi-scale time series and then calculate the
permutation entropy at each scale. The smaller the permutation entropy is, the more
regular the time series is. The higher the permutation entropy, the more complex the time
series. Therefore, we calculate the multi-scale permutation entropy of IMF components to
determine their categories.

The calculation steps of multi-scale arrangement entropy of each modal component
are as follows:

Let the time series of each modal component be X = {x(i), i = 1, 2, 3, . . . . . . , n}, where
n is the number of sampling points.

Step 1: The time series are coarsely granulated to obtain the processed sequences.

ys(j) =
1
s

js

∑
i=(j+1)s+1

x(i) (21)

where s is the scale factor, and ys(j) is the time series under different scale factors.
Step 2: Reconstruct the time series ys(j).

Ys
t =

{
ys

t , ys
t+τ , . . . , ys

t+(m−1)τ

}
(22)

where m stands for embedding dimension, and τ stands for delay time. If the above
formula is sorted in ascending order, there are m! permutations in multi-scale order. The
probabilities of time series at each scale are calculated:

Ps
t =

K
n
s −m + 1

(23)

where K represents the number of occurrences of each type, and the permutation entropy
of each scale is:

Hs
P = −

m!

∑
i=1

Ps
t lnPs

t (24)

Normalize the above equation:

hs
P =

Hs
P

ln(m!)
(25)

The calculated multi-scale permutation entropy of the IMF component is denoted as
MPE(i), i = 1, 2, . . . , q. q represents the number of IMF components.

If MPE(i) is large, it indicates that the IMF component corresponding to this value
is a noise-dominated component. If MPE(i) is small, the IMF component corresponding
to this value is the signal-dominated component. The experimental object of this paper
is the elevator car vibration signal. After many tests, it is more appropriate to set the
threshold value of MPE between 0.7 and 0.8. ε in Figure 1 indicates the threshold of the
MPE. Similar to δ, the value of ε we selected this time is only applicable to the elevator car
vibration signal.

(4) Keep the signal-dominated components and remove noise from components con-
taining a lot of noise by bilateral filter.

Bilateral filtering is a nonlinear filter, which is usually used to process image noise.
When processing adjacent pixel values, it takes into account the proximity relationship in
the distance and the similarity in gray scale at the same time. It realizes adaptive filtering by
nonlinear combination of spatial proximity and pixel value similarity [28]. The expression
of bilateral filter is as follows [29]:

g(u) =
∑(x,y)εMi,j

w(i, j, x, y) f (x, y)

∑(x,y)εMi,j
w(i, j, x, y)

(26)



Sensors 2022, 22, 6602 9 of 21

w(i, j, x, y) = wd(i, j) ∗ wr(i, j) (27)

wd(i, j) = e
− |i−x|2+|i−y|2

2σ2
d (28)

wr(i, j) = e
− | f (i,j)− f (x,y)|2

2σ2
r (29)

where g(u) is the image after bilateral filtering, Mi,j indicates the pixel set of (2N + 1)×
(2N + 1) spatial neighborhood centered on (i, j), f (x, y) indicates the pixel value of (x, y) in
Mi,j, wd(i, j) is the spatial proximity Gaussian function, wr(i, j) is the pixel value similarity
Gaussian function, σd is the spatial distance standard deviation, and σr is the numerical
similarity standard deviation.

The signal studied in the paper is one dimension vibration signal. In order to illustrate
how to apply bilateral filtering to vibration signal, the following example is given [30]:

Given a vibration signal Y with noise, where S is the noiseless signal and N is the
noise signal.

Y = S + N (30)

For this vibration signal, the bilateral filtering formula is changed as follows, which
represents the normalized weighted average value of neighborhood points with the size of
2R + 1:

S(ξ) =
∑R

x=−R W[ξ, x]γ[ξ − x]

∑R
x=−R W[ξ, x]

(31)

where γ[ξ − x] represents the amplitude of the vibration signal at ξ − x, W[ξ, x] is the
weight coefficient of bilateral filtering, which is the product of Wd[ξ, x] and Wr[ξ, x]. The
formulas for the two parameters are as follows:

Wd[ξ, x] = e
− d2(|ξ|,|ξ−x|)

2σ2
d = e

− x2

2σ2
d (32)

Wr[ξ, x] = e
− d2(γ[ξ],γ[ξ−x])

2σ2
r = e

− γ[ξ]−γ[ξ−x]2

2σ2
r (33)

(5) Finally, reconstruct the processed signal to obtain the denoising signal y′(t). Ac-
cording to the above description, Algorithm 1 summarizes the new denoising method
proposed in the paper.

Algorithm 1: The workflow of new method

Input: y(t), δ, ε

Output: y′(t)
Procedure:
Decompose y(t) to n modes by CEEMD
the decomposed modes are denoted as im fi(t) (i = 1, 2, . . . . . . n)
For i = 1 : n
Determine the correlation coefficient between im fi(t) and the original signal
the correlation coefficient is denoted as ρi
If ρi < δ

Discard im fi(t)
Else
Determine the multi-scale arrangement entropy of im fi(t)
the multi-scale arrangement entropy is denoted as MPE(i)
If MPE(i) > ε()
Bilateral filtering is needed to denoise
Else
Remain original im fi(t)
Reconstruct the denoised signal y′(t).
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4. Simulation Signal Verification

Because the frequency of elevator vibration signal is usually 0.5~80 Hz, we set an
analog signal to simulate its vibration signal and add Gaussian white noise to the analog
signal as the noise in the signal. The formula for obtaining the signal is as follows:

Y = X + N (34)

X = A ∗
n

∑
i=1

amp(i) ∗ sin(2 ∗ π ∗ f (i) ∗ t) (35)

where Y is the signal with added noise, X is the original signal, N is the gaussian white
noise signal, and A is a constant value. amp(i) is the corresponding amplitude of vibration
signal with frequency of f (i), respectively: 13, 3, 4, 8, 5, 7, 4, and 3; f is the frequency of
vibration signals, respectively: 10, 20, 30, 40, 50, 60, 70, and 80.

The time domain signal diagram of the original signal and the noisy signal is shown
in Figure 2, and the frequency domain signal diagram is shown in Figure 3.
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from Figure 4, the IMF components obtained after EMD and EEMD decomposition always
have the problem of modal aliasing, while the components obtained after CEEMD decom-
position only contain one time scale characteristic component from IMF4, which effectively
alleviates the problem of modal aliasing and is conducive to subsequent noise elimination.
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We apply the newly proposed method (CEEMD-BF), EMD, EEMD, CEEMD, bilateral
filtering, and VMD to the noisy elevator vibration signal. The overall denoising results are
shown in Figure 5a. The amplifications of signals at the positions marked by the three red
circles in Figure 5a are Figure 5b–d from left to right.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 22 
 

 

 
(c) 

Figure 4. Decomposition diagram of noisy signal: (a) EMD decomposition; (b) EEMD decomposi-
tion; (c) CEEMD decomposition. 

We apply the newly proposed method (CEEMD-BF), EMD, EEMD, CEEMD, bilateral 
filtering, and VMD to the noisy elevator vibration signal. The overall denoising results are 
shown in Figure 5a. The amplifications of signals at the positions marked by the three red 
circles in Figure 5a are Figure 5b–d from left to right. 

 
(a) 

Figure 5. Cont.



Sensors 2022, 22, 6602 13 of 21

Sensors 2022, 22, x FOR PEER REVIEW 14 of 22 
 

 

 
(b) 

 
(c) 

Figure 5. Cont.



Sensors 2022, 22, 6602 14 of 21

Sensors 2022, 22, x FOR PEER REVIEW 15 of 22 
 

 

 
(d) 

Figure 5. Frequency domain diagram after denoising: (a) global signals; (b) locally amplified sig-
nals-1; (c) locally amplified signals-2; (d) locally amplified signals-3. 

As can be seen from Figure 5, EMD, EEMD, CEEMD, bilateral filtering, VMD, and 
our newly proposed method can reduce the signal amplitude of medium and high fre-
quency, that is, reduce or eliminate the medium- and high-frequency noise, but the top 
five methods will greatly reduce the signal amplitude at the main frequency, resulting in 
the loss of useful information in the signal. The method proposed in this paper can ensure 
that the amplitude of the main frequency signal is kept unchanged or slightly increased 
to the maximum extent, which is conducive to the further analysis and processing of the 
signal, and with the increase in noise frequency, the noise reduction effect of vibration 
signal obtained by using the method proposed in this paper is more obvious. Therefore, 
in general, the method proposed in this paper has a better denoising effect and is suitable 
for elevator signal denoising. 

In order to express the denoising effect of different methods more intuitively in the 
form of data, we employ two evaluation indicators to judge the denoising effect. The eval-
uation indicators involved include signal-to-noise ratio and root mean square error. The 
SNR is equal to the effective power of the signal divided by the effective power of the 
noise, and the greater the value of SNR, the better the denoising effect. The RMSE is the 
square root of the variance between the original signal and the denoised signal, and the 
smaller the value of RMSE, the stronger the denoising ability. SNR = 10 log ቈ ∑ 𝑥௜ଶே௜ୀଵ∑ (𝑥పෝ − 𝑥௜)ଶே௜ୀଵ ቉ (36)

RMSE = ඩ1𝑁 ෍(𝑥పෝ − 𝑥௜)ଶே
௜ୀଵ  (37)

where N indicates the number of data, 𝑥௜ indicates pre-noised signals, and 𝑥పෝ  indicates 
post-noised signals. 

The final denoising evaluation index value is shown in Table 1. It can be seen from 
the table that compared with the other five methods, the signal-to-noise ratio of the 

Figure 5. Frequency domain diagram after denoising: (a) global signals; (b) locally amplified
signals-1; (c) locally amplified signals-2; (d) locally amplified signals-3.

As can be seen from Figure 5, EMD, EEMD, CEEMD, bilateral filtering, VMD, and our
newly proposed method can reduce the signal amplitude of medium and high frequency,
that is, reduce or eliminate the medium- and high-frequency noise, but the top five methods
will greatly reduce the signal amplitude at the main frequency, resulting in the loss of useful
information in the signal. The method proposed in this paper can ensure that the amplitude
of the main frequency signal is kept unchanged or slightly increased to the maximum
extent, which is conducive to the further analysis and processing of the signal, and with
the increase in noise frequency, the noise reduction effect of vibration signal obtained
by using the method proposed in this paper is more obvious. Therefore, in general, the
method proposed in this paper has a better denoising effect and is suitable for elevator
signal denoising.

In order to express the denoising effect of different methods more intuitively in the
form of data, we employ two evaluation indicators to judge the denoising effect. The
evaluation indicators involved include signal-to-noise ratio and root mean square error.
The SNR is equal to the effective power of the signal divided by the effective power of the
noise, and the greater the value of SNR, the better the denoising effect. The RMSE is the
square root of the variance between the original signal and the denoised signal, and the
smaller the value of RMSE, the stronger the denoising ability.

SNR = 10 log

[
∑N

i=1 x2
i

∑N
i=1(x̂i − xi)

2

]
(36)

RMSE =

√√√√ 1
N

N

∑
i=1

(x̂i − xi)
2 (37)

where N indicates the number of data, xi indicates pre-noised signals, and x̂i indicates
post-noised signals.

The final denoising evaluation index value is shown in Table 1. It can be seen from the
table that compared with the other five methods, the signal-to-noise ratio of the denoised
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signal obtained by the method proposed in the paper is large, and the root mean square
error is small, indicating that the denoising effect of this method is better.

Table 1. Evaluation index of denoising.

Signal-to-Noise Ratio Root Mean Square Error

CEEMD-BF 7.3515 0.0064

EMD denoising 5.1834 0.0074

EEMD denoising 5.1177 0.0074

CEEMD denoising 6.1136 0.0066

Bilateral filtering denoising 3.9266 0.0085

VMD denoising 4.9947 0.0075

In addition, in order to verify the denoising effect of CEEMD-BF under different SNR,
we add different levels of noise to the signal to obtain the SNR and root mean square error
of the denoised signal. The results are shown in Table 2.

Table 2. The denoising effect of CEEMD-BF under different noises.

Signal-to-Noise Ratio
of Noise

Signal-to-Noise Ratio
of Denoised Signal

Root Mean Square Error
of Denoised Signal

60 13.1633 0.0033

55 13.0197 0.0033

50 12.4061 0.0036

45 10.9547 0.0042

40 7.3515 0.0064

35 2.8969 0.0107

As can be seen from Table 2, as the SNR increases, the SNR of the denoised signal
becomes larger and larger, and the corresponding root mean square error becomes smaller
and smaller. Therefore, the larger the SNR is, the better the denoising effect will be.

5. Elevator Vibration Signal Denoising

In order to verify the function of the method proposed in the paper in the denoising of
elevator vibration signal, we collected the vibration signal of an elevator car. The equipment
used to collect data in the experiment is LE-300, as shown in Figure 6. The signal acquisition
frequency is 256 Hz, and the collected vibration signal in the horizontal direction of elevator
is shown in Figure 7. Because the vibration signals of the X-axis and Y-axis of elevator
vibration signal have little difference, the paper firstly focuses on the comparison and
analysis of the vibration signals of the X-axis elevator and then verifies the denoising effect
of the new method on the Y-axis signal. The number of points collected is 1024.

We first use EMD, EEMD, CEEMD, bilateral filtering, VMD denoising, and the method
proposed in the paper to denoise from the X-axis vibration signal. The time domain
diagram and frequency domain diagram after denoising are shown in Figures 8 and 9.
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Figure 7. Elevator horizontal vibration signal: (a) X-axis vibration signal; (b) Y-axis vibration signal.

The horizontal vibration frequency of the elevator is generally 0.5~80 Hz. As can
be seen from Figure 9a, the collected elevator vibration signals are mainly concentrated
at 0.5~70 Hz. The vibration amplitude of the elevator car signal is larger at 5.25 Hz and
38.25 Hz, and other major frequency components are 18.5 Hz, 28.25 Hz, 51.25 Hz, and
65.25 Hz. As can be seen from Figure 9b–d, the denoising effects of vibration signals
obtained by using EMD, EEMD, and CEEMD have no significant difference. When the
frequency is close to 40 Hz, the amplitude of the vibration signal tends to 0, while the
horizontal vibration frequency of the elevator vibration signal collected in the paper is
0.5~70 Hz. Therefore, these three denoising methods will lose some vibration information of
the elevator. According to the time domain diagram in Figure 8d, it seems that the denoising
effect of bilateral filtering is better than that of other methods. However, combined with
the frequency domain diagram in Figure 9e, when the frequency is greater than 20 Hz, the
amplitude of the main frequency decreases greatly. Therefore, in a comprehensive view,
bilateral filtering filters out many useful signals and cannot ensure that the information
of the original signal is not affected by the denoising operation. The VMD denoising in
Figure 9f can remove the noise after 80 Hz, but has almost no effect on the noise before 80 Hz.
There is no obvious difference between the time-domain graphs of the vibration signal
before and after denoising in Figure 8e, so the denoising effect of the VMD de-noising
method is not obvious and cannot be used for the denoising of elevator car vibration
signals. Therefore, comprehensively, the method proposed in this paper can ensure that
the amplitude at the main frequency of the signal is kept at a large value to the maximum
extent, and the noise exceeding the normal vibration frequency range of the elevator can be
effectively removed. The denoising results of the method proposed in this paper are good.
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We also applied the new method to the y-axis vibration signal of the elevator. The
time-domain and frequency-domain diagrams before and after denoising are shown in
Figures 10 and 11. From the time-domain and frequency-domain diagrams, we can see
that this method is not only applicable to the x-axis vibration signal denoising but also
applicable to the y-axis vibration signal denoising. It can retain the useful information in
the signal to the maximum extent, remove the noise, and obtain a good denoising effect.
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6. Conclusions

In the paper, an elevator car vibration signal denoising method based on CEEMD
and bilateral filtering is presented. Firstly, the method decomposes vibration signal into
several inherent modal functions by CEEMD. CEEMD can better solve the problem of
mode aliasing in signal decomposition. Next, the method determines the false components
on the basis of computing the correlation coefficients. Then, the method determines the
partial mean value of the multi-scale permutation entropy of the remaining components. If
the partial mean value of IMF is large, it indicates that noise is the dominant component
in the IMF and needs bilateral filtering to remove the noise. Finally, the vibration signal
after denoising is obtained through signal reconstruction. The effectiveness and efficiency
of this method are testified by simulation and experiment. Compared with EMD denoising,
EEMD denoising, CEEMD denoising, bilateral filtering denoising, and VMD denoising,
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the method can not only retain the useful signal better but also filter out more noise. In
the following research, we will focus on the signal processing speed of this method and
how to achieve better results in the signal processing process of different specifications
of elevators.

Author Contributions: Conceptualization, D.N.; methodology, J.W.; software, J.W.; validation, J.W.;
formal analysis, J.W.; investigation, J.W.; resources, D.N.; data curation, D.N.; writing—original draft
preparation, J.W.; writing—review and editing, D.N.; visualization, J.W.; supervision, D.N.; project
administration, D.N.; funding acquisition, D.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China and the Fundamental Research Funds for Central Universities (No. N2104028).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell.

1989, 11, 674–693. [CrossRef]
2. Xu, Y.; Weaver, J.B.; Healy, D.M.; Lu, J. Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE

Trans. Image Process. A Publ. IEEE Signal Process. Soc. 1994, 3, 747–758.
3. Donoho, D.L.; Johnstone, I.M. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika 1994, 81, 425–455. [CrossRef]
4. Li, C.J.; Yang, Q.F.; Zhou, S.R.; Li, Z.J.; Yang, X.L. Signal Denoising Based on Slip Threshold Value of Wavelet Packets. Appl. Mech.

Mater. 2014, 556–562, 4971–4974. [CrossRef]
5. Chen, X.; Lin, G.; Zhang, Y. Denoising Method Based on Sparse Representation for WFT Signal. J. Sens. 2014, 2014, 145870.

[CrossRef]
6. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode

decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998,
454, 903–995. [CrossRef]

7. Falco, C.M.; Chang, C.-C.; Jiang, X.; Wu, W.; Peng, H. A new denoising approach based on EMD. In Proceedings of the Sixth
International Conference on Digital Image Processing (ICDIP 2014), Athens, Greece, 5–6 April 2014.

8. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal.
2009, 1, 1–41. [CrossRef]

9. Yeh, J.-R.; Shieh, J.-S.; Huang, N.E. Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data
Analysis Method. Adv. Adapt. Data Anal. 2011, 2, 135–156. [CrossRef]

10. Dang, S.; Tian, W.; Qian, F. EMD- and LWT-based stochastic noise eliminating method for fiber optic gyro. Measurement 2011, 44,
2190–2193. [CrossRef]

11. Chegini, S.N.; Bagheri, A.; Najafi, F. Application of a new EWT-based denoising technique in bearing fault diagnosis. Measurement
2019, 144, 275–297. [CrossRef]

12. Zuo, L.-Q.; Sun, H.-M.; Mao, Q.-C.; Liu, X.-Y.; Jia, R.-S. Noise Suppression Method of Microseismic Signal Based on Com-
plementary Ensemble Empirical Mode Decomposition and Wavelet Packet Threshold. IEEE Access 2019, 7, 176504–176513.
[CrossRef]

13. Yan, Y.; Xing, H. Small Floating Target Detection Method Based on Chaotic Long Short-Term Memory Network. J. Mar. Sci. Eng.
2021, 9, 651. [CrossRef]

14. Zhang, X.; Zheng, Z.; Wu, X. A novel regional annual precipitation predicting model. Desalination Water Treat. 2020, 191, 100–109.
[CrossRef]

15. Xing, H.; Yan, Y. Detection of Low-Flying Target under the Sea Clutter Background Based on Volterra Filter. Complexity 2018,
2018, 1513591. [CrossRef]

16. Li, J.; Cai, J.; Tang, J.-T.; Li, G.; Zhang, X.; Xu, Z.-M. Magnetotelluric signal-noise separation method based on SVM–CEEMDWT.
Appl. Geophys. 2019, 16, 160–170. [CrossRef]

17. Wang, J.; He, X.; Ferreira, V.G. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement. Sensors 2015, 15,
19416–19428. [CrossRef]

18. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [CrossRef]
19. Long, J.C.; Wang, X.P.; Dai, D.D.; Tian, M.; Zhu, G.W.; Zhang, J. Denoising of UHF PD signals based on optimised VMD and

wavelet transform. IET Sci. Meas. Technol. 2017, 11, 753–760. [CrossRef]

http://doi.org/10.1109/34.192463
http://doi.org/10.1093/biomet/81.3.425
http://doi.org/10.4028/www.scientific.net/AMM.556-562.4971
http://doi.org/10.1155/2014/145870
http://doi.org/10.1098/rspa.1998.0193
http://doi.org/10.1142/S1793536909000047
http://doi.org/10.1142/S1793536910000422
http://doi.org/10.1016/j.measurement.2011.07.016
http://doi.org/10.1016/j.measurement.2019.05.049
http://doi.org/10.1109/ACCESS.2019.2957877
http://doi.org/10.3390/jmse9060651
http://doi.org/10.5004/dwt.2020.25764
http://doi.org/10.1155/2018/1513591
http://doi.org/10.1007/s11770-019-0760-7
http://doi.org/10.3390/s150819416
http://doi.org/10.1109/TSP.2013.2288675
http://doi.org/10.1049/iet-smt.2016.0510


Sensors 2022, 22, 6602 21 of 21

20. Yu, S.W.; Ma, J.W. Complex Variational Mode Decomposition for Slop-Preserving Denoising. IEEE Trans. Geosci. Remote Sens.
2018, 56, 586–597. [CrossRef]

21. Zhang, M.; Gunturk, B.K. Multiresolution bilateral filtering for image denoising. IEEE Trans Image Process. 2008, 17, 2324–2333.
[CrossRef]

22. Yu, H.; Zhao, L.; Wang, H. Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the
spatial domain. IEEE Trans Image Process 2009, 18, 2364–2369. [PubMed]

23. Wu, G.; Luo, S.; Yang, Z. Optimal weighted bilateral filter with dual-range kernel for Gaussian noise removal. IET Image Process.
2020, 14, 1840–1850. [CrossRef]

24. Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst.
Signal Process. 2013, 35, 108–126. [CrossRef]

25. Gu, J.; Peng, Y.X. An improved complementary ensemble empirical mode decomposition method and its application in rolling
bearing fault diagnosis. Digit. Signal Prog. 2021, 113, 103050. [CrossRef]

26. Civera, M.; Surace, C. A Comparative Analysis of Signal Decomposition Techniques for Structural Health Monitoring on an
Experimental Benchmark. Sensors 2021, 21, 1825. [CrossRef]

27. Nassef, M.G.A.; Hussein, T.M.; Mokhiamar, O. An adaptive variational mode decomposition based on sailfish optimization
algorithm and Gini index for fault identification in rolling bearings. Measurement 2021, 173, 108514. [CrossRef]

28. Shreyamsha Kumar, B.K. Image denoising based on gaussian/bilateral filter and its method noise thresholding. Signal Image
Video Process. 2013, 7, 1159–1172. [CrossRef]

29. Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the 6th International Conference on
Computer Vision, Bombay, India, 4–7 January 1998; Narosa Publishing House: Bombay, India, 1998; pp. 839–846.

30. Liu, N.; Schumacher, T. Improved Denoising of Structural Vibration Data Employing Bilateral Filtering. Sensors 2020, 20, 1423.
[CrossRef]

http://doi.org/10.1109/TGRS.2017.2751642
http://doi.org/10.1109/TIP.2008.2006658
http://www.ncbi.nlm.nih.gov/pubmed/19586815
http://doi.org/10.1049/iet-ipr.2018.6272
http://doi.org/10.1016/j.ymssp.2012.09.015
http://doi.org/10.1016/j.dsp.2021.103050
http://doi.org/10.3390/s21051825
http://doi.org/10.1016/j.measurement.2020.108514
http://doi.org/10.1007/s11760-012-0372-7
http://doi.org/10.3390/s20051423

	Introduction 
	Theoretical Background 
	Empirical Mode Decomposition (EMD) 
	Ensemble Empirical Mode Decomposition (EEMD) 
	Complementary Ensemble Empirical Mode Decomposition (CEEMD) 
	Variational Mode Decomposition (VMD) 

	Vibration Signal Denoising Method Based on CEEMD 
	Simulation Signal Verification 
	Elevator Vibration Signal Denoising 
	Conclusions 
	References

