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Abstract

We show that Supergravity in eleven dimensions can be described in terms of
a constrained superfield on the light-cone, without the use of auxiliary fields.
We build its action to first order in the gravitational coupling constant κ, by
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dimensional SuperPoincaré algebra is constructed and a fourth order interaction
is conjectured.
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1 Introduction

N = 1 supergravity in eleven dimensions [1], is the largest supersymmetric
local field theory with maximum helicity two (on reduction to d = 4). This
theory has gained renewed prominence since its recognition as the infrared
limit of M-Theory [2]. Although M-Theory casts well-defined shadows on lower-
dimensional manifolds, its actual structure remains a mystery. We must there-
fore glean all we can from the N = 1 supergravity theory before tackling M-
Theory. N = 1 supergravity is ultraviolet divergent in d = 11 but this diver-
gence is presumably tamed by M-Theory and the hope is that an understanding
of this divergent structure, will give us a window into the workings of M-Theory.

Since M-Theory resides in d = 11, we expect special features of eleven-
dimensional spacetime to be reflected in its physical little group, SO(9). Cur-
tright [3] conjectured that the divergences that occur in (N = 8, d = 4) super-
gravity (obtained by reducing d = 11 supergravity) were a direct consequence
of the group-theoretical properties of SO(9). Indeed, the mismatch between
the eighth-order bosonic and fermionic Dynkin indices seems to support this
conjecture. The best approach to divergence-analysis, keeping the role of the
little group apparent, is on the light-cone. We therefore need to formulate
eleven-dimensional supergravity in light-cone gauge before starting an analysis
of its divergences. Gravity in light-cone gauge has been studied previously by
numerous authors (a partial list includes, [4], [5], [6], [7]).

This paper represents the second step in our research program, initiated in
reference [8], where we described the oxidation of (N = 4, d = 4) SuperYang-
Mills into (N = 1, d = 10) Yang-Mills. In this paper, we start by building the
eleven-dimensional SuperPoincaré generators. We then generalize the notion
of the transverse derivative into superspace and show that this simple gener-
alization, uniquely oxidizes (N = 8, d = 4) Supergravity into the fully eleven-
dimensional N = 1 Supergravity (up to first order in the coupling constant).

In a recent paper Metsaev [9] discussed the same theory in a somewhat
different light-cone formulation, which was originally used by Brink, Green and
Schwarz [10] in their formulation of a light-cone gauge field theory for the d = 10
superstring. We believe that the two approaches are valuable complements in
the study of d = 11 supergravity.
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2 The LC2 Formulation of N = 8

Our starting point for this paper is the 1982 light-cone formulation initiated in
reference [11]. Based on the fact that both the (N = 8, d = 4) Supergravity
theory and the (N = 4, d = 4) SuperYang-Mills theory are maximally super-
symmetric, these authors introduced a constrained superfield for the N = 8
theory. We start with this superfield and show that it may be used to describe
the (N = 1 , d = 11) Supergravity theory in light-cone superspace.

2.1 Field Content

N = 1 Supergravity in eleven dimensions, contains three different massless
fields, two bosonic (gravity and a three-form) and one Rarita-Schwinger spinor.
Its physical degrees of freedom are classified in terms of the transverse little
group, SO(9), with the Graviton G( MN ), transforming as a symmetric second-
rank tensor, the three-form B[ MNP ] as an anti-symmetric third-rank tensor
and the Rarita-Schwinger field as a spinor-vector, ΨM (M,N, . . . are SO(9) in-
dices). This theory on reduction to four dimensions leads to the maximally
supersymmetric N = 8 theory.
In d = 4, any massless particle can be described by a complex field, and its
complex conjugate of opposite helicity under the SO(2) little group. In this
case, the SO(2) comes from the decomposition,

SO(9) ⊃ SO(2) × SO(7) . (1)

All told, after decomposition, the N = 8 theory has a spectrum comprised of
a metric, twenty-eight vector fields, seventy scalar fields, fifty-six spin one-half
fields, eight spin three-half fields and their conjugates [12]. The SO(7) symmetry
is an internal one and can in fact be upgraded to an SU(8) symmetry. However,
it is important to remember that it is really the SO(7) which is relevant when
we “oxidize” the theory to d = 11.

All the physical degrees of freedom of the N = 8 theory are captured by a
single complex superfield [11],

φ (y) =
1

∂+2 h (y) + i θα 1

∂+2 ψ̄α (y) + i θα β 1

∂+
Āα β (y)

− θα β γ 1

∂+
χ̄α β γ (y) − θα β γ δ Cα β γ δ (y) + i θ̃

(5)
α β γ χ

α β γ(y)

+ i θ̃
(6)
α β ∂

+Aα β(y) + θ̃(7)α ∂+ χα(y) + θ̃(8) ∂+2
h̄ (y) , (2)

where,

θα1 ... αn ≡ 1

n!
θα1 . . . θαn , θ̃

(n)
β1 ... β8−n

≡ 1

n!
θα1 ... αn ǫα1 ... αn β1 ... β8−n

. (3)

The γ-matrices allow us to translate bi-spinor indices into vector indices and
vice versa (For our notation and light-cone conventions, we refer the reader to
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the Appendix). For example, the complex Āα β represent,

θα β Āα β = − 1

8
θ γm θ Ām − 1

8
θ γmn θ Ā[mn], (4)

while the real Cα β γ δ may be decomposed as,

θα β γ δ Cα β γ δ =
1

64
θ γm θ

{

θ γp θ C(mp) − θ γmp θ Cp −

− θ γpq θ C[mpq]

}

.

(5)

These tensor fields, make up the two bosonic representations under the de-
composition SO(9)⊂SO(7) × SO(2) of eleven-dimensional supergravity. The
G(MN) (44 of SO(9)), split up as,

44 = 27 + 7 + 7 + 1 + 1 + 1. (6)

C(mp) represents the 27 while Ām, Am represent the 7 + 7. Similarly, the

three-form B[ MNP ] (84 of SO(9)) splits into,

84 = 35 + 21 + 21 + 7. (7)

These correspond to C[mpq], Ā[mn], A[mn] and Cp respectively. All fields are
local in the modified light-cone coordinates

y = (x, x̄, x+, y− ≡ x− − i√
2
θα θ̄α ) . (8)

In this LC2 form, all the unphysical degrees of freedom have been integrated
out. The superfield φ and its complex conjugate φ̄ satisfy the chiral constraints,

dα φ = 0 ; d̄α φ̄ = 0 , (9)

and are related through the “inside-out” constraints,

d̄α d̄β d̄γ d̄η φ =
1

2
ǫαβγηρσξχ d

ρ dσ dξ dχ φ̄ , (10)

The N = 8 Supergravity action, to order κ is then simply [13],

∫

d4x

∫

d8θ d8θ̄L ≡
∫

L , (11)

where,

L = −φ̄ 2

∂+4
φ+ (

4 κ

3 ∂+4 φ ∂̄∂̄ φ ∂
+2
φ− 4 κ

3 ∂+4 φ ∂̄ ∂
+φ ∂̄ ∂+ φ + c.c. )(12)

Grassmann integration is normalized so that
∫

d8θ (θ)
8

= 1.
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A Simpler N = 8 Three-Point Vertex

The three-point vertex in this action, seems highly non-local and cumber-
some. However, its form can be greatly simplified, leading to a single term, very
similar to that in the Yang-Mills case [8]. We start by partially integrating the
first term with respect to ∂̄, to obtain

∫
{

− ∂̄

∂+4 φ ∂̄ φ ∂+2
φ− 1

∂+4 φ ∂̄ φ ∂̄ ∂+2
φ

}

. (13)

The last φ in the first term of equation (13), may be rewritten as a φ, using the
inside-out relation,

φ =
1

2 · 8!
(d)

8 1

∂+4 φ̄ . (14)

We then partially integrate the (d)
8

onto the φ and use the inside-out relation
again. The second term in equation (13) is partially integrated with respect to
∂+ to yield two terms.

Thus the first term in the 3-point vertex is now,

∫
{

− ∂̄ φ ∂̄ φ
1

∂+2 φ+
1

∂+3 φ ∂̄ φ ∂̄ ∂+ φ+
1

∂+4 φ ∂̄ ∂+ φ ∂̄ ∂+ φ

}

. (15)

The third term in this equation exactly cancels the second term in the original
vertex. Next, we eliminate the middle term in the equation above, by recognizing
that,

I =

∫

1

∂+3 φ ∂̄ φ ∂̄ ∂+ φ = −
∫

1

∂+2 φ ∂̄ φ ∂̄ φ − I, (16)

(which follows from a partial integration of the single ∂+ in the numerator).
This allows us to set,

I = −
∫

1

2

1

∂+2 φ ∂̄ φ ∂̄ φ . (17)

We thus obtain, a very concise three-point vertex,

− 3

2
κ

∫

1

∂+2 φ ∂̄ φ ∂̄ φ+ c.c.. (18)

This simple form allows for comparison with the N = 4 SuperYang-Mills three-
point vertex [11],

4

3
g

∫

fabc 1

∂+
φ

a
φb ∂̄ φc + c.c.. (19)

We will exploit this similarity in structure, between the N = 8 and N = 4 cases,
when tackling the four-point vertex.
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2.2 SuperPoincaré Algebra

As usual we will consider the generators of the SuperPoincaré algebra at the
light-cone time x+ = 0. The SuperPoincaré algebra, splits up into kinematical
and dynamical pieces. The kinematical generators are,

• the three momenta,

p+ = − i ∂+ , p = − i ∂ , p̄ = − i ∂̄ , (20)

• the transverse space rotation,

j = x ∂̄ − x̄ ∂ + S12 , (21)

where,

S12 =
1

2
( θα ∂̄α − θ̄α ∂

α ) +
i

4
√

2 ∂+
( dα d̄α − d̄α d

α ) . (22)

This form is different from that in reference [13] through the last term, which
acts as a helicity counter. It also ensures that the chirality constraints are
preserved,

[ j , dα ] = [ j , d̄β ] = 0 . (23)

• and the “plus-rotations”,

j+ = i x ∂+ , j̄+ = i x̄ ∂+ . (24)

j+− = i x− ∂+ − i

2
( θα∂̄α + θ̄α ∂

α ) , (25)

which satisfy,

[ j+− , y− ] = − i y− ,

[ j+− , dα ] =
i

2
dα , [ j+− , d̄β ] =

i

2
d̄β ,

(26)

and thus preserve chirality. Note that it is only for the choice x+ = 0 that the
generator j+− is kinematical, since the dynamical part is multiplied by x+ = 0.

The dynamical generators are,

• the light-cone Hamiltonian,

p− = − i
∂∂̄

∂+
(27)
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• and the dynamical boosts,

j− = i x
∂∂̄

∂+
− i x− ∂ + i

(

θα∂̄α +
i

4
√

2 ∂+
( dα d̄α − d̄α d

α )
) ∂

∂+
,

j̄− = i x̄
∂∂̄

∂+
− i x− ∂̄ + i

(

θ̄β∂
β +

i

4
√

2 ∂+
( dβ d̄β − d̄β d

β )
) ∂̄

∂+
.(28)

The helicity counter added to the expressions above, once again ensures that
they leave chirality and the inside-out relations unaltered because,

[ j− , dα ] =
i

2
dα ∂

∂+
, [ j− , d̄β ] =

i

2
d̄β

∂

∂+
. (29)

These generators also satisfy,

[ j− , j̄+ ] = − i j+− − j , [ j− , j+− ] = i j− . (30)

In a similar fashion, the supersymmetries split into,

• kinematical supersymmetries,

q α
+ = −∂α +

i√
2
θα ∂+ ; q̄+ β = ∂̄β − i√

2
θ̄β ∂

+ , (31)

satisfying
{ q α

+ , q̄+ β } = i
√

2 δα
β ∂

+ , (32)

and anticommuting with the chiral derivatives

{ q α
+ , d̄β } = { dα , q̄+ β } = 0 . (33)

• dynamical supersymmetries, which may be obtained by boosting the kinemat-
ical ones

qα
− ≡ i [ j̄− , q α

+ ] =
∂̄

∂+
q α

+ , q̄− β ≡ i [ j− , q̄+ β ] =
∂

∂+
q̄+ β . (34)

They obey,

{ qα
− , q̄− β } = i

√
2 δ α

β

∂∂̄

∂+
, (35)

{qα
+ , q̄− β } = i

√
2 δ α

β ∂ . (36)

Except for the changes to ensure chirality, these operators all appear in refer-
ence [13]. In the next section, we generalize this four-dimensional algebra to
eleven dimensions.

6



3 Eleven Dimensions

The main aim of this paper is to show that the fully interacting (N = 8, d = 4)
theory can be restored to its eleven-dimensional progenitor, without altering the
superfield. This enables us to formulate the (N = 1, d = 11) theory without
auxiliary fields.

The first step is to generalize the transverse variables to nine. In the Yang-
Mills case, the compactified SO(6) was easily described by SU(4) parameters
and we made use of the convenient bi-spinor notation. In the present case, the
compactified SO(7) has no equivalent unitary group so we simply introduce
additional real coordinates, xm and their derivatives ∂m(where m runs from
4 through 10). The chiral superfield remains unaltered, except for the added
dependence on the extra coordinates

h(y) = h(x, x̄, xm, y−) , etc... . (37)

These extra variables will be acted on by new operators that will restore the
higher-dimensional symmetries.

3.1 The SuperPoincaré Algebra in 11 Dimensions

The SuperPoincaré algebra needs to be generalized from its four-dimensional
version. The SO(2) generators stay the same and we propose generators of the
coset SO(9)/(SO(2) × SO(7)), of the form,

Jm = − i (x∂m − xm ∂ ) +
i

2
√

2
∂+ θα ( γm)α β θ

β − i√
2 ∂+

∂α ( γm)α β ∂
β

+
i

2
√

2 ∂+
dα ( γm)α β d

β (38)

J
n

= − i ( x̄ ∂n − xn ∂̄ ) +
i

2
√

2
∂+ θ̄α ( γn)α β θ̄β − i√

2 ∂+
∂̄α ( γn)α β ∂̄β

+
i

2
√

2 ∂+
d̄α ( γn)

α β
d̄β (39)

which satisfy the SO(9) commutation relations,

[

J , Jm
]

= Jm ,
[

J , J̄n
]

= − J̄n

[

Jpq , Jm
]

= δpm Jq − δqm Jp

[

Jm , J̄n
]

= i Jmn + δmn J, (40)

where J is the same as before, J = j and the SO(7) generators read,

Jmn = − i (xm ∂n − xn ∂n ) + θα (γm)
α β

(γn)
β σ

∂̄σ

+ θ̄α (γm)
α β

(γn)
β σ

∂σ − 1√
2 ∂+

dα (γm)
α β

(γn)
β σ

d̄σ . (41)
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The full SO(9) transverse algebra is generated by J , Jmn , Jm and J̄n. All
rotations are specially constructed to preserve chirality. For example,

[ Jm , d̄α ] = 0 ; [ J̄n , dα ] = 0 . (42)

The remaining kinematical generators do not get modified,

J+ = j+ , J+− = j+− , (43)

while new kinematical generators appear,

J+ m = i xm ∂+ ; J̄+ n = i x̄n ∂+ . (44)

We generalize the linear part of the dynamical boosts to,

J− = i x
∂∂̄ + 1

2 ∂
m ∂m

∂+
− i x− ∂ + i

∂

∂+

{

θα ∂̄α +
i

4
√

2 ∂+
(dα d̄α − d̄α d

α)
}

− 1

4

∂m

∂+

{

∂+ θα ( γm)α β θ
β − 2

∂+
∂α ( γm)α β ∂

β +
1

∂+
dα ( γm)α β d

β

}

(45)

The other boosts may be obtained by using the SO(9)/(SO(2) × SO(7)) rota-
tions,

J−m = [ J− , Jm ] ; J̄−n = [ J̄− , J̄n ] . (46)

We do not show their explicit forms as they are too cumbersome. The dynamical
supersymmetries are obtained by boosting

[ J− , q̄+ η ] ≡ Qη = − i
∂

∂+
q+ η − i√

2
( γn ) η ρ q

ρ
+

∂n

∂+
,

[ J̄− , qα
+ ] ≡ Qα = i

∂̄

∂+
q+

α +
i√
2

( γm )α β q̄+ β

∂m

∂+
. (47)

They satisfy,

{Qα , qη
+ } = − ( γm )

α η
∂m , (48)

and the supersymmetry algebra,

{Qα , Q η } = i
√

2 δα
η

1

∂+

(

∂ ∂ +
1

2
∂m ∂m

)

. (49)

A few central charges fit nicely into this framework. The d = 11 theory is known
to have 517 central charges; 7 of these, may be introduced by simply replacing
the seven derivatives ∂m, by c-numbers Zm. The remaining 510 charges have
an eleven-dimensional origin.
Having constructed the free N = 1 SuperPoincaré generators in eleven dimen-
sions which act on the chiral superfield, we turn to building the interacting
theory.
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3.2 The Generalized Derivatives

The cubic interaction in the N = 8 Lagrangian explicitly contains the transverse
derivative operators ∂ and ∂̄. To achieve covariance in eleven dimensions, we
proceed to generalize these operators as we did for N = 4 Yang-Mills. We
propose the generalized derivative

∇ = ∂̄ +
σ

16
d̄α ( γm )

α β
d̄β

∂m

∂+
, (50)

which naturally incorporates the coset derivatives ∂m. Here σ is a parameter,
still to be determined. We use the coset generators to produce its rotated
partner ∇ by,

[ ∇ , Jm ] ≡ ∇m = − i ∂m +
i σ

16
d̄α ( γm )

α β
d̄β

∂

∂+
. (51)

It remains to verify that the original derivative operator is reproduced by un-
doing this rotation; indeed we find the required closure,

[ ∇m , J
p

] = δm p ∇

The new derivative ( ∇ , ∇m ), thus transforms as a 9-vector under the lit-
tle group in eleven dimensions. We note that σ is not determined by these
algebraic requirements. Instead, its value will be fixed in the next section, by
requiring that our generalized vertex, satisfy invariance requirements. We define
the conjugate derivative ∇, by requiring that

∇ φ̄ ≡ (∇φ) . (52)

This tells us that,

∇ ≡ ∂ +
σ∗

16
dα ( γn )

α β
dβ ∂n

∂+
(53)

This construction is akin to that for the N = 4 Yang-Mills theory, but this
time it applies to the “oxidation” of the (N = 8, d = 4) theory to (N = 1,
d = 11) Supergravity. This points to remarkable algebraic similarities between
the two theories, with possibly profound physical consequences. It remains to
show that the simple replacement of the transverse derivatives ∂, ∂̄ by ∇,∇ in
the (N = 8, d = 4) interacting theory yields the fully covariant Lagrangian in
eleven dimensions.
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3.3 Invariance of the Action

While the covariant (N = 8, d = 4) Supergravity Lagrangian is known to all
orders in the gravitational coupling, its light-cone superspace expression has
only been constructed to first order in κ (three-point coupling). We note that
the four-point gravity vertex is indeed known, in component form [14][15] but
a superfield expression remains elusive. We will work with the theory to cubic
order in this section and in the next section, propose a quartic interaction term
for the theory. The kinetic term is trivially made SO(9)-invariant by including
the seven extra transverse derivatives in the d’Alembertian.
We start from our simplified version (18) of the N = 8 three-point vertex. We
propose that the eleven-dimensional vertex is of the same form, but with the
transverse derivatives replaced by the generalized derivatives, introduced in the
previous section:

V = − 3

2
κ

∫

d11x

∫

d8θ d8θ̄
1

∂+2 φ ∇φ ∇φ , (54)

together with its complex conjugate. To show SO(9) invariance, it suffices to
consider the variations

δJm φ =
i√
2
ωm ∂+ θα ( γm)α β θ

β φ , (55)

δJm φ =ωm

{

i

2
√

2
∂+ θα ( γm)α β θ

β − i√
2 ∂+

∂α ( γm)α β ∂
β

+
i

2
√

2 ∂+
dα ( γm)α β d

β

}

φ ,

(56)

δJm ∇ = −ωm ∇m , (57)

where ωm are the parameters of the SO(9)/(SO(7)× SO(2)) coset transforma-
tions. The SO(2) invariance is clear from the work in d = 4 and the SO(7)
invariance is covariantly realized so if we can show the invariance under the
SO(9)/(SO(7) × SO(2)) transformations we have shown invariance under the
full SO(9).

3.3.1 The Variation

We split the calculation into three parts, based on which superfield is being
varied. Terms that involve ∂̄ ∂̄ or ∂m ∂n, cancel trivially.
The remaining terms all involve a single SO(2) derivative and a single ∂m. We
list the contributions from the variations below,

Contribution from
∫

1
∂+2

(

δJ φ

)

∇φ ∇φ:

10



∫

i σ

2
√

2

{

8

∂+3 φ ∂̄ φ ∂
m ∂+ φ − 4

∂+3 φ ∂̄ φ ∂
m ∂+ φ

− 1

∂+3 φ ∂̄ φ (γm)
βκ

(γn)
κχ
θβ d̄χ ∂

n ∂+ φ

− 1

∂+3 φ θ
β ∂̄ ∂+ φ (γm)

βκ
(γn)

κχ
d̄χ ∂

n φ

}

(58)

Contribution from
∫

1
∂+2 φ

(

δJ ∇
)

φ ∇φ:

∫

2 i

∂+2 φ ∂̄ φ ∂
m φ (59)

Contribution from
∫

1
∂+2 φ ∇

(

δJ φ

)

∇φ:

∫

i σ

2
√

2

{

4

∂+2 φ ∂̄ φ ∂
m φ − 1

∂+2 φ θ
β ∂̄ φ (γm)

βκ
(γn)

κχ
d̄χ ∂

n φ

}

, (60)

These results are further simplified, by use of the magical identity,

∫

1

∂+3 φ ∂̄ φ ∂
m ∂+ φ =

∫

1

∂+3 φ∂
m φ ∂̄ ∂+ φ, (61)

which follows from the duality constraint and numerous partial integrations.
The final form of the variation then reads,

δJ V ∝
∫

(

i σ√
2

+ i

)

1

∂+2 φ ∂̄ φ ∂
m φ , (62)

Eleven-dimensional Poincaré invariance requires that this variation vanish. This
determines σ and hence the generalized derivative,

∇ = ∂̄ − 1

8
√

2
d̄α ( γm )

α β
d̄β

∂m

∂+
. (63)

This completes the proof of SO(9) invariance for the three-point function. It
is rather remarkable that this simple replacement of the transverse derivatives,
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renders the action covariant in eleven dimensions. In this light-cone form, the
Lorentz invariance in eleven dimensions is automatic once the little group in-
variance has been established. We have therefore proven eleven-dimensional
invariance to order κ.

4 Extension to Order κ2

The next step in this program, is to extend the oxidation procedure to order
κ2. However, the starting point for this process, the (N = 8, d = 4) four-point
interaction (in light-cone superspace) is unknown. In this section, we outline a
general procedure to derive the four-dimensional quartic interaction. Once this
vertex is determined, we expect the oxidation procedure to follow along very
similar lines (thus yielding, the (N = 1, d = 11) action to order κ2).

4.1 Conjectured Quartic Vertex

The similarity between the three-point functions of the N = 4 Yang-Mills and
N = 8 Supergravity theories is quite suggestive. Based on this comparison, we
conjecture that the (N = 8, d = 4) four-point vertex is simply,

V = κ2

∫
{

φ φ ∂̄ φ ∂ φ + β
1

∂+2 ( ∂̄ φ ∂+2
φ )

1

∂+2 ( ∂ φ ∂+2
φ )

}

(64)

where β remains to be fixed. A direct check of this result can be achieved by
comparison with the component form of light-cone gravity. As mentioned in
the previous section, the four-point function for gravity in light-cone gauge is
known [14], but there exists no expression for the quartic(or higher) vertices
in terms of superfields in the literature. In component form, it is well known
that the light-cone time derivative ∂+, makes an appearance at every order
and needs to be eliminated via field-redefinitions. This redefinition needs to
be understood from a superspace point of view. We hope to return to these
issues in a future publication [16]. Assuming this four-point vertex (in four
dimensions), its “oxidized” eleven-dimensional version is conjectured to be,

V = κ2

∫
{

φ φ ∇φ∇φ + β
1

∂+2 (∇φ ∂+2
φ )

1

∂+2 (∇φ∂+2
φ )

}

. (65)

It remains to be seen if this simple form reproduces the full quartic vertex of
eleven-dimensional supergravity.

4.2 Supersymmetry Variations

A possible way to determine the four-point vertex is to start from the known
two- and three-point vertices and require invariance of the action (to order
κ2) under the non-linear dynamical SuperPoincaré transformations. Simplest
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among these are the dynamical supersymmetry generators, already derived up
to first order in the coupling constant for the (N = 8, d = 4) theory in reference
[13].

δq̄
−

0 φ =
∂

∂+
q̄+ φ

δq̄
−

κ φ = − 2 κ
1

∂+

{

∂̄
∂

∂ θ
φ ∂+2

φ − ∂+ ∂

∂ θ
φ ∂+ ∂̄ φ

}

.

(66)

This variation, clearly preserves the chirality of the superfield it acts on. Note
that we can replace the ∂

∂ θ
in the above expression by d̄ or q̄+. This is possible

because the additional θ̄ ∂+ piece cancels between the two terms in the variation.

To determine the four-point function, we need the dynamical supersymmetry
variation at order κ2. We do not yet know its exact form but have narrowed it
down, based on the following requirements:

• Helicity = + 5
2 (based on the variations at order 0 and κ)

• Dimensions = [L]
1
2 (again, based on the earlier variations)

• The chirality of the superfield it acts on must not be affected

• Finally, it must preserve the “inside-out” superfield constraints.

The requirement that it leave chirality invariant, is satisfied through Chiral-
ization, a procedure we explain in section 4.3. The first three constraints offer
an Ansatz for the variation,

δq̄
−

κ2

φ ∝ κ2 1

∂+n

{

∂+a
d̄β φ∂

+b
φ∂+c

∂ φ̄

}

+ · · · (67)

with the restriction, a + b+ c = 3 + n (the · · · signify that more terms need
to be added to ensure chirality). Once this expression is known, the four-point
interaction is easy to determine. In a future publication [16], we will derive the

exact form of δq̄
−

κ2

and prove in addition, closure of the supersymmetry algebra
with the SuperPoincaré generators.

The lowest order dynamical supersymmetry variations for the (N = 1, d = 11)
theory were detailed in equation (47). We conjecture that at first order in
coupling, the variations are obtained by simply oxidizing the four-dimensional
result above. That is,

δQ̄
−

κ φ = − 2 κ
1

∂+

{

∇ ∂

∂ θ
φ ∂+2

φ − ∂+ ∂

∂ θ
φ ∂+ ∇φ

}

(68)

This result needs to be checked but we believe it to be correct since it serves as
a bridge between the two- and three-point vertices.
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4.3 Chiralization

“Chiralization” is a descent procedure whereby non-chiral expressions are ren-
dered chiral. For any general non-chiral expression of the form, AB̄ (where A
is any compound chiral function and B̄ a compound anti-chiral function), we
define a “chiral product” through a descent relation in chiral derivatives,

C (AB̄ ) = AB̄ +

8
∑

n=1

(−1)
n

n!

d̄α1 ... αn

(− i
√

2 ∂+)
n (Adαn ... α1 B̄ ), (69)

where d̄α1 ... αn
= d̄α1

. . . d̄αn
and dαn ... α1 = dαn . . . dα1 .

C (AB̄ ) is now a chiral function and satisfies, d C = 0. Clearly, the descent
series involves as many terms as there are supersymmetries in the theory.

This procedure is equally applicable to other non-chiral forms. For example,
the product, d̄ AB where both A and B are chiral functions, is chiralized by the
addition of the term,

− ∂+A
d̄

∂+
B (70)

Similarly, the addition of the two terms,

− ∂+ d̄ A
d̄

∂+
B + ∂+2

A
d̄ d̄

∂+2 B (71)

to the expression d̄ d̄ AB, chiralizes it and so on.

This procedure is invaluable when dealing with variations (with respect to
supersymmetry and the boosts) at higher orders. This simple recipe ensures
that all variations, respect the superfield chirality structure.

5 Conclusions

Eleven-dimensional Supergravity has been successfully formulated in light-cone
superspace to order κ. Once again, the key to this formulation is the generalized
derivative whose components transform as an SO(9) vector. Further progress
necessarily requires the determination of the quartic interaction. We will de-
scribe the procedure to derive these higher-point vertices in superspace, in a
future publication [16].

Based on Curtright’s reasoning[3], the divergence of the (N = 8, d = 4)
theory may be attributed to the incomplete cancelation of the Dynkin in-
dices(starting with the eighth-order invariant) of the SO(9) representations.
The eighth-order invariant first appears at three loops and hence the divergent

14



nature of the theory necessarily begins at three loops or higher. Our formula-
tion of the N = 8 theory provides an ideal framework to verify this explicitly,
because the role of the little-group is made apparent on the light-cone. We hope
to come back to this analysis and compare our results with existing predictions
in the literature. In reference [17] for example, the authors argue that no three-
loop divergence appears and further, that the first counterterm occurs at five
loops.
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APPENDIX

With the space-time metric (−,+,+, . . . ,+), the light-cone coordinates and
their derivatives are

x± =
1√
2

(x0 ±x3 ) ; ∂± =
1√
2

(− ∂0 ± ∂3 ) ; (A-1)

x =
1√
2

(x1 + i x2 ) ; ∂̄ =
1√
2

( ∂1 − i ∂2 ) ; (A-2)

x̄ =
1√
2

(x1 − i x2 ) ; ∂ =
1√
2

( ∂1 + i ∂2 ) , (A-3)

such that
∂+ x− = ∂− x+ = − 1 ; ∂̄ x = ∂ x̄ = +1 . (A-4)

Anti-commuting Grassmann variables θα and their conjugates, θ̄α(α = 1, 2, . . . , 8)
are defined by,

{ θα , θβ } = {θ̄α , θ̄β } = {θ̄α , θ
β } = 0 , (A-5)

θα transforms according to the real spinor representation of SO(7). Despite the
reality of the spinor representation, we continue to use the “up” and “down”
indices for notational convenience. Their derivatives are written as

∂̄α ≡ ∂

∂ θα
; ∂β ≡ ∂

∂ θ̄β

, (A-6)

with canonical anticommutation relations

{ ∂α , θ̄β } = δα
β ; { ∂̄α , θ

β } = δα
β . (A-7)
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Under conjugation, upper and lower spinor indices are interchanged, so that
θα = θ̄α, while

(∂̄α) = − ∂α ; (∂β) = − ∂̄β . (A-8)

Also, the order of the operators is interchanged; that is θαθβ = θ̄β θ̄α, and

∂α ∂β = ∂̄β ∂̄α.
The chiral derivatives in superspace are,

dα = −∂α − i√
2
θα ∂+ ; d̄β = ∂̄β +

i√
2
θ̄β ∂

+ , (A-9)

and satisfy,

{ dα , d̄β } = −i
√

2 δα
β ∂

+ . (A-10)

The SO(7) γ-matrices are defined by

Tr ( γm γn ) = 8 δmn. (A-11)

We also define,

γmn =
1

2
[ γm , γn ] , m 6= n. (A-12)
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