
ELI: Bare-Metal Performance for I/O Virtualization

Abel Gordon1⋆ Nadav Amit2⋆ Nadav Har’El1

Muli Ben-Yehuda21 Alex Landau1 Assaf Schuster2 Dan Tsafrir2

1IBM Research—Haifa 2Technion—Israel Institute of Technology

{abelg,nyh,lalex}@il.ibm.com {namit,muli,assaf,dan}@cs.technion.ac.il

Abstract

Direct device assignment enhances the performance of guest virtual
machines by allowing them to communicate with I/O devices with-
out host involvement. But even with device assignment, guests are
still unable to approach bare-metal performance, because the host
intercepts all interrupts, including those interrupts generated by as-
signed devices to signal to guests the completion of their I/O requests.
The host involvement induces multiple unwarranted guest/host con-
text switches, which significantly hamper the performance of I/O
intensive workloads. To solve this problem, we present ELI (Exit-
Less Interrupts), a software-only approach for handling interrupts
within guest virtual machines directly and securely. By removing
the host from the interrupt handling path, ELI manages to improve
the throughput and latency of unmodified, untrusted guests by 1.3x–
1.6x, allowing them to reach 97%–100% of bare-metal performance
even for the most demanding I/O-intensive workloads.

Categories and Subject Descriptors C.0 [General]:
Hardware/software interfaces

General Terms Performance

Keywords SR-IOV, I/O Virtualization, Interrupts, I/O Performance,
Device Assignment

1. Introduction

I/O activity is a dominant factor in the performance of virtualized
environments [32, 33, 47, 51], motivating direct device assignment
where the host assigns physical I/O devices directly to guest virtual
machines. Examples of such devices include disk controllers, net-
work cards, and GPUs. Direct device assignment provides superior
performance relative to alternative I/O virtualization approaches,
because it almost entirely removes the host from the guest’s I/O path.
Without direct device assignment, I/O-intensive workloads might
suffer unacceptable performance degradation [29, 32, 37, 51, 53].
Still, direct access does not allow I/O-intensive workloads to ap-
proach bare-metal (non-virtual) performance [9, 15, 26, 31, 51],
limiting it to 60%–65% of the optimum by our measurements. We

∗Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

guest/host context switch (exits and entries)

handling cost (handling physical interrupts and their completions)

bare-metal

baseline

guest

host

time

ELI
delivery

guest

host

ELI
delivery &
completion

guest

host

physical

interrupt
interrupt

completion

(a)

(b)

(c)

interrupt

injection

interrupt

completion

(d)

Figure 1. Exits during interrupt handling

find that nearly the entire performance difference is induced by
interrupts of assigned devices.

I/O devices generate interrupts to asynchronously communicate
to the CPU the completion of I/O operations. In virtualized settings,
each device interrupt triggers a costly exit [2, 9, 26], causing the
guest to be suspended and the host to be resumed, regardless of
whether or not the device is assigned. The host first signals to
the hardware the completion of the physical interrupt as mandated
by the x86 specification. It then injects a corresponding (virtual)
interrupt to the guest and resumes the guest’s execution. The guest
in turn handles the virtual interrupt and, like the host, signals
completion, believing that it directly interacts with the hardware.
This action triggers yet another exit, prompting the host to emulate
the completion of the virtual interrupt and to resume the guest
again. The chain of events for handling interrupts is illustrated in
Figure 1(a).

The guest/host context switches caused by interrupts induce a
tolerable overhead price for non-I/O-intensive workloads, a fact
that allowed some previous virtualization studies to claim they
achieved bare-metal performance [7, 27, 29]. But our measurements
indicate that this overhead quickly ceases to be tolerable, adversely
affecting guests that require throughput of as little as 50 Mbps.
Notably, many previous studies improved virtual I/O by relaxing
protection [6, 24, 27] or by modifying guests [7, 29], whereas we
focus on the most challenging virtualization scenario of guests that
are untrusted and unmodified.

Many previous studies identified interrupts as a major source
of overhead [9, 28, 49], and many proposed techniques to reduce
it, both in bare-metal settings [17, 43, 45, 54] and in virtualized
settings [4, 15, 26, 31, 51]. In principle, it is possible to tune devices
and their drivers to generate fewer interrupts, thereby reducing the

411

related overhead. But doing so in practice is far from trivial [8, 44]
and can adversely affect both latency and throughput. We survey
these approaches and contrast them with ours in Section 2.

Our approach rests on the observation that the high interrupt
rates experienced by a core running an I/O-intensive guest are
mostly generated by devices assigned to the guest. Indeed, we
measure rates of over 150K physical interrupts per second, even
while employing standard techniques to reduce the number of
interrupts, such as interrupt coalescing [4, 43, 54] and hybrid
polling [17, 45]. As noted, the resulting guest/host context switches
are nearly exclusively responsible for the inferior performance
relative to bare metal. To eliminate these switches, we propose
ELI (ExitLess Interrupts), a software-only approach for handling
physical interrupts directly within the guest in a secure manner.

With ELI, physical interrupts are delivered directly to guests,
allowing them to process their devices’ interrupts without host in-
volvement; ELI makes sure that each guest forwards all other inter-
rupts to the host. With x86 hardware, interrupts are delivered using
a software-controlled table of pointers to functions, such that the
hardware invokes the k-th function whenever an interrupt of type
k fires. Instead of utilizing the guest’s table, ELI maintains, manip-
ulates, and protects a “shadow table”, such that entries associated
with assigned devices point to the guest’s code, whereas the other
entries are set to trigger an exit to the host. We describe x86 interrupt
handling relevant to ELI and ELI itself in Section 3 and Section 4,
respectively. ELI leads to a mostly exitless execution as depicted in
Figure 1(c).

We experimentally evaluate ELI in Section 5 with micro and
macro benchmarks. Our baseline configuration employs standard
techniques to reduce (coalesce) the number of interrupts, demon-
strating ELI’s benefit beyond the state-of-the-art. We show that ELI
improves the throughput and latency of guests by 1.3x–1.6x. No-
tably, whereas I/O-intensive guests were so far limited to 60%–65%
of bare-metal throughput, with ELI they reach performance that is
within 97%–100% of the optimum. Consequently, ELI makes it
possible to, e.g., consolidate traditional data-center workloads that
nowadays remain non-virtualized due to unacceptable performance
loss.

In Section 6 we describe how ELI protects the aforementioned
table, maintaining security and isolation while still allowing guests
to handle interrupts directly. In Section 7 we discusses potential
hardware support that would simplify ELI’s design and implementa-
tion. Finally, in Section 8 we discuss the applicability of ELI and
our future work directions, and in Section 9 we conclude.

2. Motivation and Related Work

For the past several decades, interrupts have been the main method
by which hardware devices can send asynchronous events to the
operating system [13]. The main advantage of using interrupts
to receive notifications from devices over polling them is that
the processor is free to perform other tasks while waiting for an
interrupt. This advantage applies when interrupts happen relatively
infrequently [39], as has been the case until high performance
storage and network adapters came into existence. With these
devices, the CPU can be overwhelmed with interrupts, leaving no
time to execute code other than the interrupt handler [34]. When
the operating system is run in a guest, interrupts have a higher cost
since every interrupt causes multiple exits [2, 9, 26].

In the remainder of this section we introduce the existing ap-
proaches to reduce the overheads induced by interrupts, and we
highlight the novelty of ELI in comparison to these approaches. We
subdivide the approaches into two categories.

2.1 Generic Interrupt Handling Approaches

We now survey approaches that equally apply to bare metal and
virtualized environments.

Polling disables interrupts entirely and polls the device for new
events at regular intervals. The benefit is that handling device events
becomes synchronous, allowing the operating system to decide
when to poll and thus limit the number of handler invocations. The
drawbacks are added latency and wasted cycles when no events are
pending. If polling is done on a different core, latency is improved,
yet a core is wasted. Polling also consumes power since the processor
cannot enter an idle state.

A hybrid approach for reducing interrupt-handling overhead
is to dynamically switch between using interrupts and polling [17,
22, 34]. Linux uses this approach by default through the NAPI
mechanism [45]. Switching between interrupts and polling does
not always work well in practice, partly due to the complexity of
predicting the number of interrupts a device will issue in the future.

Another approach is interrupt coalescing [4, 43, 54], in which
the OS programs the device to send one interrupt in a time interval
or one interrupt per several events, as opposed to one interrupt per
event. As with the hybrid approaches, coalescing delays interrupts
and hence might suffer from the same shortcomings in terms of
latency. In addition, coalescing has other adverse effects and cannot
be used as the only interrupt mitigation technique. Zec et al. [54]
show that coalescing can burst TCP traffic that was not bursty
beforehand. It also increases latency [28, 40], since the operating
system can only handle the first packet of a series when the last
coalesced interrupt for the series arrived. Deciding on the right
model and parameters for coalescing is complex and depends on the
workload, particularly when the workload runs within a guest [15].
Getting it right for a wide variety of workloads is hard if not
impossible [4, 44]. Unlike coalescing, ELI does not reduce the
number of interrupts; instead it streamlines the handling of interrupts
targeted at virtual machines. Coalescing and ELI are therefore
complementary: coalescing reduces the number of interrupts, and
ELI reduces their price. Furthermore, with ELI, if a guest decides
to employ coalescing, it can directly control the interrupt rate and
latency, leading to predictable results. Without ELI, the interrupt rate
and latency cannot be easily manipulated by changing the coalescing
parameters, since the host’s involvement in the interrupt path adds
variability and uncertainty.

All evaluations in Section 5 were performed with the default
Linux configuration, which combines the hybrid approach (via
NAPI) and coalescing.

2.2 Virtualization-Specific Approaches

Using an emulated or paravirtual [7, 41] device provides much flexi-
bility on the host side, but its performance is much lower than that of
device assignment, not to mention bare metal. Liu [31] shows that
device assignment of SR-IOV devices [16] can achieve throughput
close to bare metal at the cost of as much as 2x higher CPU utiliza-
tion. He also demonstrates that interrupts have a great impact on
performance and are a major expense for both the transmit and re-
ceive paths. For this reason, although applicable to the emulated and
paravirtual case as well, ELI’s main focus is on improving device
assignment.

Interrupt overhead is amplified in virtualized environments. The
Turtles project [9] shows interrupt handling to cause a 25% increase
in CPU utilization for a single-level virtual machine when compared
with bare metal, and a 300% increase in CPU utilization for a nested
virtual machine. There are software techniques [3] to reduce the
number of exits by finding blocks of exiting instructions and exiting
only once for the whole block. These techniques can increase the
efficiency of running a virtual machine when the main reason for
the overhead is in the guest code. When the reason is in external

412

interrupts, such as for I/O intensive workloads with SR-IOV, such
software techniques do not alleviate the overhead.

Dong et al. [15] discuss a framework for implementing SR-IOV
support in the Xen hypervisor. Their results show that SR-IOV can
achieve line rate with a 10Gbps network interface controller (NIC).
However, the CPU utilization is 148% of bare metal. In addition,
this result is achieved using adaptive interrupt coalescing, which
increases I/O latency.

Like ELI, several studies attempted to reduce the aforementioned
extra overhead of interrupts in virtual environments. vIC [4] dis-
cusses a method for interrupt coalescing in virtual storage devices
and shows an improvement of up to 5% in a macro benchmark.
Their method decides how much to coalesce based on the number of
“commands in flight”. Therefore, as the authors say, this approach
cannot be used for network devices due to the lack of information
on commands (or packets) in flight. Furthermore, no comparison is
made with bare-metal performance. Dong et al. [14] use virtual in-
terrupt coalescing via polling in the guest and receive side scaling to
reduce network overhead in a paravirtual environment. But polling
has its drawbacks, as discussed above, and ELI improves the more
performance-oriented device assignment environment.

In CDNA [51], the authors propose a method for concurrent and
direct network access for virtual machines. This method requires
physical changes to NICs akin to SR-IOV. With CDNA, the NIC
and the hypervisor split the work of multiplexing several guests’
network flows onto a single NIC. In the CDNA model the hypervisor
is still involved in the I/O path. While CDNA significantly increases
throughput compared to the standard paravirtual driver in Xen, it is
still 2x–3x slower than bare metal.

SplitX [26] proposes hardware extensions for running virtual
machines on dedicated cores, with the hypervisor running in parallel
on a different set of cores. Interrupts arrive only at the hypervisor
cores and are then sent to the appropriate guests via an exitless
inter-core communication mechanism. In contrast, with ELI the
hypervisor can share cores with its guests, and instead of injecting
interrupts to guests, programs the interrupts to arrive at them directly.
Moreover, ELI does not require any hardware modifications and runs
on current hardware.

NoHype [24, 48] argues that modern hypervisors are prone to
attacks by their guests. In the NoHype model, the hypervisor is a
thin layer that starts, stops, and performs other administrative actions
on guests, but is not otherwise involved. Guests use assigned devices
and interrupts are delivered directly to guests. No details of the
implementation or performance results are provided. Instead, the
authors focus on describing the security and other benefits of the
model. In addition, NoHype requires a modified and trusted guest.

In Following the White Rabbit [52], the authors show several
interrupt-based attacks on hypervisors, which can be addressed
through the use of interrupt remapping [1]. Interrupt remapping
can stop the guest from sending arbitrary interrupts to the host; it
does not, as its name might imply, provide a mechanism for secure
and direct delivery of interrupts to the guest. Since ELI delivers
interrupts directly to guests, bypassing the host, the hypervisor is
immune to certain interrupt-related attacks.

3. x86 Interrupt Handling

ELI gives untrusted and unmodified guests direct access to the
architectural interrupt handling mechanisms in such a way that
the host and other guests remain protected. To put ELI’s design
in context, we begin with a short overview of how interrupt handling
works on x86 today.

3.1 Interrupts in Bare-Metal Environments

x86 processors use interrupts and exceptions to notify system
software about incoming events. Interrupts are asynchronous events

generated by external entities such as I/O devices; exceptions are
synchronous events—such as page faults—caused by the code being
executed. In both cases, the currently executing code is interrupted
and execution jumps to a pre-specified interrupt or exception handler.

x86 operating systems specify handlers for each interrupt and
exception using an architected in-memory table, the Interrupt De-
scriptor Table (IDT). This table contains up to 256 entries, each
entry containing a pointer to a handler. Each architecturally-defined
exception or interrupt have a numeric identifier—an exception num-
ber or interrupt vector—which is used as an index to the table. The
operating systems can use one IDT for all of the cores or a separate
IDT per core. The operating system notifies the processor where
each core’s IDT is located in memory by writing the IDT’s virtual
memory address into the Interrupt Descriptor Table Register (IDTR).
Since the IDTR holds the virtual (not physical) address of the IDT,
the OS must always keep the corresponding address mapped in
the active set of page tables. In addition to the table’s location in
memory, the IDTR also holds the table’s size.

When an external I/O device raises an interrupt, the processor
reads the current value of the IDTR to find the IDT. Then, using
the interrupt vector as an index to the IDT, the CPU obtains the
virtual address of the corresponding handler and invokes it. Further
interrupts may or may not be blocked while an interrupt handler
runs.

System software needs to perform operations such as enabling
and disabling interrupts, signaling the completion of interrupt han-
dlers, configuring the timer interrupt, and sending inter-processor
interrupts (IPIs). Software performs these operations through the Lo-
cal Advanced Programmable Interrupt Controller (LAPIC) interface.
The LAPIC has multiple registers used to configure, deliver, and sig-
nal completion of interrupts. Signaling the completion of interrupts,
which is of particular importance to ELI, is done by writing to the
end-of-interrupt (EOI) LAPIC register. The newest LAPIC interface,
x2APIC [20], exposes its registers using model specific registers
(MSRs), which are accessed through “read MSR” and “write MSR”
instructions. Previous LAPIC interfaces exposed the registers only
in a pre-defined memory area which is accessed through regular
load and store instructions.

3.2 Interrupts in Virtual Environments

x86 hardware virtualization [5, 50] provides two modes of operation,
guest mode and host mode . The host, running in host mode, uses
guest mode to create new contexts for running guest virtual machines.
Once the processor starts running a guest, execution continues in
guest mode until some sensitive event [36] forces an exit back
to host mode. The host handles any necessary events and then
resumes the execution of the guest, causing an entry into guest
mode. These exits and entries are the primary cause of virtualization
overhead [2, 9, 26, 37]. The overhead is particularly pronounced
in I/O intensive workloads [26, 31, 38, 46]. It comes from the
cycles spent by the processor switching between contexts, the time
spent in host mode to handle the exit, and the resulting cache
pollution [2, 9, 19, 26].

This work focuses on running unmodified and untrusted operat-
ing systems. On the one hand, unmodified guests are not aware they
run in a virtual machine, and they expect to control the IDT exactly
as they do on bare metal. On the other hand, the host cannot easily
give untrusted and unmodified guests control of each core’s IDT.
This is because having full control over the physical IDT implies
total control of the core. Therefore, x86 hardware virtualization ex-
tensions use a different IDT for each mode. Guest mode execution
on each core is controlled by the guest IDT and host mode execution
is controlled by the host IDT. An I/O device can raise a physical
interrupt when the CPU is executing either in host mode or in guest
mode. If the interrupt arrives while the CPU is in guest mode, the

413

CPU forces an exit and delivers the interrupt to the host through the
host IDT.

Guests receive virtual interrupts, which are not necessarily related
to physical interrupts. The host may decide to inject the guest with a
virtual interrupt because the host received a corresponding physical
interrupt, or the host may decide to inject the guest with a virtual
interrupt manufactured by the host. The host injects virtual interrupts
through the guest IDT. When the processor enters guest mode after
an injection, the guest receives and handles the virtual interrupt.

During interrupt handling, the guest will access its LAPIC. Just
like the IDT, full access to a core’s physical LAPIC implies total
control of the core, so the host cannot easily give untrusted guests
access to the physical LAPIC. For guests using the first LAPIC
generation, the processor forces an exit when the guest accesses
the LAPIC memory area. For guests using x2APIC, the host traps
LAPIC accesses through an MSR bitmap. When running a guest,
the host provides the CPU with a bitmap specifying which benign
MSRs the guest is allowed to access directly and which sensitive
MSRs must not be accessed by the guest directly. When the guest
accesses sensitive MSRs, execution exits back to the host. In general,
x2APIC registers are considered sensitive MSRs.

3.3 Interrupts from Assigned Devices

The key to virtualization performance is for the CPU to spend
most of its time in guest mode, running the guest, and not in the
host, handling guest exits. I/O device emulation and paravirtualized
drivers [7, 25, 41] incur significant overhead for I/O intensive
workloads running in guests [9, 31]. The overhead is incurred by
the host’s involvement in its guests’ I/O paths for programmed I/O
(PIO), memory-mapped I/O (MMIO), direct memory access (DMA),
and interrupts.

Direct device assignment is the best performing approach for
I/O virtualization [15, 31] because it removes some of the host’s
involvement in the I/O path. With device assignment, guests are
granted direct access to assigned devices. Guest I/O operations
bypass the host and are communicated directly to devices. As
noted, device DMA’s also bypass the host; devices perform DMA
accesses to and from guests; memory directly. Interrupts generated
by assigned devices, however, still require host intervention.

In theory, when the host assigns a device to a guest, it should
also assign the physical interrupts generated by the device to that
guest. Unfortunately, current x86 virtualization only supports two
modes: either all physical interrupts on a core are delivered to the
currently running guest, or no physical interrupts are delivered to the
currently running guest (i.e., all physical interrupts in guest mode
cause an exit). An untrusted guest may handle its own interrupts,
but it must not be allowed to handle the interrupts of the host and
the other guests. Consequently, before ELI, the host had no choice
but to configure the processor to force an exit when any physical
interrupt arrives in guest mode. The host then inspected the incoming
interrupt and decided whether to handle it by itself or inject it to the
associated guest.

Figure 1(a) describes the interrupt handling flow with baseline
device assignment. Each physical interrupt from the guest’s assigned
device forces at least two exits from guest to host: when the
interrupt arrives (causing the host to gain control and to inject the
interrupt to the guest) and when the guest signals completion of the
interrupt handling (causing the host to gain control and to emulate
the completion for the guest). Additional exits might also occur
while the guest handles an interrupt. As we exemplify in Section 5,
interrupt-related exits to host mode are the foremost contributors to
virtualization overhead for I/O intensive workloads.

hypervisor

shadow
IDT

interrupt
handler

assigned
interrupt

physical

interrupt

non-assigned
interrupt
(exit)ELI

delivery

guest
IDT

VM

Figure 2. ELI interrupt delivery flow

4. ELI: Design and Implementation

ELI enables unmodified and untrusted guests to handle interrupts
directly and securely. ELI does not require any guest modifications,
and thus should work with any operating system. It does not rely on
any device-specific features, and thus should work with any assigned
device. On the interrupt delivery path, ELI makes it possible for
guests to receive physical interrupts from their assigned devices
directly while still forcing an exit to the host for all other physical
interrupts (Section 4.1). On the interrupt completion path, ELI makes
it possible for guests to signal interrupt completion without causing
any exits (Section 4.4). How to do both securely, without letting
untrusted guests compromise the security and isolation of the host
and guests, is covered in Section 6.

4.1 Exitless Interrupt Delivery

ELI’s design was guided by the observation that nearly all physical
interrupts arriving at a given core are targeted at the guest running on
that core. This is due to several reasons. First, in high-performance
deployments, guests usually have their own physical CPU cores (or
else they would waste too much time context switching); second,
high-performance deployments use device assignment with SR-
IOV devices; and third, interrupt rates are usually proportional to
execution time. The longer each guest runs, the more interrupts
it receives from its assigned devices. Following this observation,
ELI makes use of available hardware support to deliver all physical
interrupts on a given core to the guest running on it, since most
of them should be handled by that guest anyway, and forces the
(unmodified) guest to reflect back to the host all those interrupts
which should be handled by the host.

The guest OS continues to prepare and maintain its own IDT.
Instead of running the guest with this IDT, ELI runs the guest in
guest mode with a different IDT prepared by the host. We call this
second guest IDT the shadow IDT. Just like shadow page tables can
be used to virtualize the guest MMU [2, 7], IDT shadowing can be
used to virtualize interrupt delivery. This mechanism, depicted in
Figure 2, requires no guest cooperation.

By shadowing the guest’s IDT, the host has explicit control over
the interrupt handlers invoked by the CPU on interrupt delivery. The
host can configure the shadow IDT to deliver assigned interrupts
directly to the guest’s interrupt handler or force an exit for non-
assigned interrupts. The simplest method to cause an exit is to
force the CPU to generate an exception, because exceptions can be
selectively trapped by the host and can be easily generated if the host
intentionally misconfigures the shadow IDT. For our implementation,

414

we decided to force exits primarily by generating not-present (NP)
exceptions. Each IDT entry has a present bit. Before invoking an
entry to deliver an interrupt, the processor checks if that entry is
present (has the present bit set). Interrupts delivered to not-present
entries raise a NP exception. ELI configures the shadow IDT as
follows: for exceptions and physical interrupts belonging to devices
assigned to the guest, the shadow IDT entries are copied from the
guest’s original IDT and marked as present. Every other entry in the
shadow IDT should be handled by the host and is therefore marked
as not present to force a not-present exception when the processor
tries to invoke the handler. Additionally, the host configures the
processor to force an exit from guest mode to host mode whenever
a not-present exception occurs.

Any physical interrupt reflected to the host appears in the host as
a not-present exception and must be converted back to the original
interrupt vector. The host inspects the cause for the not-present
exception. If the exit was actually caused by a physical interrupt, the
host raises a software interrupt with the same vector as the physical
interrupt, which causes the processor to invoke the appropriate IDT
entry, converting the not-present exception into a physical interrupt.
If the exit was not caused by a physical interrupt, then it is a true
guest not-present exception and should be handled by the guest. In
this case, the host injects the exception back into the guest. True
guest not-present exceptions are rare in normal execution.

The host also sometimes needs to inject into the guest virtual
interrupts raised by devices that are emulated by the host (e.g., the
keyboard). These interrupt vectors will have their entries in the
shadow IDT marked not-present. To deliver such virtual interrupts
through the guest IDT handler, ELI enters a special injection mode by
configuring the processor to cause an exit on any physical interrupt
and running the guest with the original guest IDT. ELI then injects
the virtual interrupt into the guest, which handles the virtual interrupt
as described in Section 3.2. After the guest signals completion of the
injected virtual interrupt, ELI leaves injection mode by reconfiguring
the processor to let the guest handle physical interrupts directly
and resuming the guest with the shadow IDT. As we later show
in Section 5, the number of injected virtual interrupts is orders of
magnitude smaller than the number of physical interrupts generated
by the assigned device. Thus, the number of exits caused by physical
interrupts while the guest is running in injection mode is negligible.

Instead of changing the IDT entries’ present bits to cause reflec-
tion into the host, the host could also change the entries themselves
to invoke shadow interrupt handlers in guest mode. This alterna-
tive method can enable additional functionality, such as delaying or
batching physical interrupts, and is discussed in Section 8.

Even when all the interrupts require exits, ELI is not slower than
baseline device assignment. The number of exits never increases
and cost per exit remains the same. Changes in the IDT are rare
and the guest OS does not normally modify the IDT content after
system initialization. The processor reconfiguration to enter and
leave injection mode requires only two memory writes, one to
change the IDT pointer and the other to change the CPU execution
mode.

4.2 Placing the Shadow IDT

There are several requirements on where in guest memory to place
the shadow IDT. First, it should be hidden from the guest, i.e.,
placed in memory not normally accessed by the guest. Second,
it must be placed in a guest physical page which is always mapped
in the guest’s kernel address space. This is an x86 architectural
requirement, since the IDTR expects a virtual address. Third, since
the guest is unmodified and untrusted, the host cannot rely on any
guest cooperation for placing the shadow IDT. ELI satisfies all
three requirements by placing the shadow IDT in an extra page of a
device’s PCI BAR (Base Address Register).

PCI devices which expose their registers to system software as
memory do so through BAR registers. BARs specify the location and
sizes of device registers in physical memory. Linux and Windows
drivers will map the full size of their devices’ PCI BARs into the
kernel’s address space, but they will only access specific locations
in the mapped BAR that are known to correspond to device registers.
Placing the shadow IDT in an additional memory page tacked onto
the end of a device’s BAR causes the guest to (1) map it into its
address space, (2) keep it mapped, and (3) not access it during normal
operation. All of this happens as part of normal guest operation and
does not require any guest awareness or cooperation. To detect
runtime changes to the guest IDT, the host also write-protects the
shadow IDT page. Other security and isolation considerations are
discussed in Section 6.

4.3 Configuring Guest and Host Vectors

Neither the host nor the guest have absolute control over precisely
when an assigned device interrupt fires. Since the host and the guest
may run at different times on the core receiving the interrupt, both
must be ready to handle the same interrupt. (The host handles the
interrupt by injecting it into the guest.) Interrupt vectors also control
that interrupt’s relative priority compared with other interrupts. For
both of these reasons, ELI makes sure that for each device interrupt,
the respective guest and host interrupt handlers are assigned to the
same vector.

Since the guest is not aware of the host and chooses arbitrary
interrupt vectors for the device’s interrupts, ELI makes sure the
guest, the host, and the device all use the same vectors. ELI does
this by trapping the guest’s programming of the device to indicate
which vectors it wishes to use and then allocating the same vectors
in the host. In the case where these vectors were already used in
the host for another device, ELI reassigns that device’s interrupts
to other (free) vectors. Finally, ELI programs the device with the
vectors the guest indicated. Hardware-based interrupt remapping [1]
can avoid the need to re-program the device vectors by remapping
them in hardware instead, but still requires the guest and the host to
use the same vectors.

4.4 Exitless Interrupt Completion

As shown in Figure 1(b), ELI IDT shadowing delivers hardware
interrupts to the guest without host intervention. Signaling interrupt
completion, however, still forces (at least) one exit to host mode.
This exit is caused by the guest signaling the completion of an
interrupt. As explained in Section 3.2, guests signal completion by
writing to the EOI LAPIC register. This register is exposed to the
guest either as part of the LAPIC area (older LAPIC interface) or as
an x2APIC MSR (the new LAPIC interface). With the old interface,
nearly every LAPIC access causes an exit, whereas with the new
interface, the host can decide on a per-x2APIC-register basis which
register accesses cause exits and which do not.

Before ELI, the host configured the CPU’s MSR bitmap to force
an exit when the guest accessed the EOI MSR. ELI exposes the
x2APIC EOI register directly to the guest by configuring the MSR
bitmap to not cause an exit when the guest writes to the EOI register.
No other x2APIC registers are passed directly to the guest; the
security and isolation considerations arising from direct guest access
to the EOI MSR are discussed in Section 6. Figure 1(c) illustrates
that combining this interrupt completion technique with ELI IDT
shadowing allows the guest to handle physical interrupts without
any exits on the critical interrupt handling path.

Guests are not aware of the distinction between physical and
virtual interrupts. They signal the completion of all interrupts the
same way, by writing the EOI register. When the host injects a
virtual interrupt, the corresponding completion should go to the host
for emulation and not to the physical EOI register. Thus, during

415

injection mode (described in Section 4.1), the host temporarily traps
accesses to the EOI register. Once the guest signals the completion
of all pending virtual interrupts, the host leaves injection mode.

Trapping EOI accesses in injection mode also enables ELI to
correctly emulate x86 nested interrupts. A nested interrupt occurs
when a second interrupt arrives while the operating system is
still handling a previous interrupt. This can only happen if the
operating system enabled interrupts before it finished handling the
first interrupt. Interrupt priority dictates that the second (nested)
interrupt will only be delivered if its priority is higher than that of the
first interrupt. Some guest operating systems, including Windows,
make use of nested interrupts. ELI deals with nested interrupts by
checking the interrupt in service LAPIC register. This register holds
the highest interrupt vector not yet completed (EOI pending) and lets
ELI know whether the guest is in the middle of handling a physical
interrupt. If it is, ELI delays the injection of any virtual interrupt with
a priority that is lower than the priority of that physical interrupt.

4.5 Multiprocessor Environments

Guests may have more virtual CPUs (vCPUs) than available physical
cores. However, multiplexing more than one guest vCPU on a single
core will lead to an immediate drop in performance, due to the
increased number of exits and entries [30]. Since our main goal is
virtual machine performance that equals bare-metal performance, we
assume that each guest vCPU has a mostly-dedicated physical core.
Executing a guest with multiple vCPUs, each running on its own
mostly-dedicated core, requires that ELI support interrupt affinity
correctly. ELI allows the guest to configure the delivery of interrupts
to a subset of its vCPUs, just as it does on bare metal. ELI does this
by intercepting the guest’s interrupt affinity configuration changes
and configuring the physical hardware to redirect device interrupts
accordingly.

5. Evaluation

We implement ELI, as described in the previous sections, within the
KVM hypervisor [25]. This section evaluates the functionality and
performance of our implementation.

5.1 Methodology and Experimental Setup

We measure and analyze ELI’s effect on high-throughput network
cards assigned to a guest virtual machine. Network cards are the
most common use-case of device assignment, due to: (1) their higher
throughput relative to other devices (which makes device assignment
particularly appealing over the slower alternatives of emulation and
paravirtualization); and because (2) SR-IOV network cards make it
easy to assign one physical network card to multiple guests.

We use throughput and latency to measure performance, and we
contrast the results achieved by virtualized and bare-metal settings
to demonstrate that the former can approach the latter. As noted
earlier, performance-minded applications would typically dedicate
whole cores to guests (single virtual CPU per core). We limit our
evaluation to this case.

Our test machine is an IBM System x3550 M2, which is a dual-
socket, 4-cores-per-socket server equipped with Intel Xeon X5570
CPUs running at 2.93 GHz. The chipset is Intel 5520, which includes
an IOMMU as required for device assignment. The system includes
24GB of memory and an Emulex OneConnect 10Gbps NIC. We
use another similar remote server (connected directly by 10Gbps
fiber) as workload generator and a target for I/O transactions. We
set the Maximum Transmission Unit (MTU) to its default size of
1500 bytes; we do not use jumbo Ethernet frames.

Guest mode configurations execute with a single vCPU. Bare-
metal configurations execute with a single core enabled, so as
to have comparable setups. We assign 1GB of memory for both

types of configurations. We disable the IOMMU in bare-metal
configurations, such that the associated results represent the highest
attainable performance. We use the IOMMU for device assignment
in virtualized configuration, but do not expose it to guests [6]. We
disable Dynamic Voltage and Frequency Scaling (DVFS) to avoid
power features related artifacts. Both guest and bare-metal setups
run Ubuntu 9.10 with Linux 2.6.35.

We run all guests on the KVM hypervisor (which is part of Linux
2.6.35) and QEMU-KVM 0.14.0. We run them with and without ELI
modifications. To check that ELI functions correctly in other setups,
we also deploy it in an environment that uses a different device (a
Broadcom NetXtreme II BCM5709 1Gbps NIC) and a different OS
(Windows 7); we find that ELI indeed operates correctly.

Unless otherwise stated, we configure the hypervisor to back the
guest’s memory with 2MB huge pages [35] and two-dimensional
page tables. Huge pages minimize two-dimensional paging over-
head [11] and reduce TLB pressure. We note that only the host uses
huge pages; in all cases the guest still operates with the default 4KB
page size. We later quantify the performance without huge pages,
finding that they improve performance of both baseline and ELI
runs.

Recall that ELI makes use of the x2APIC hardware to avoid exits
on interrupt completions (see Section 4.4). x2APIC is a relatively
new feature available in every Intel x86 CPU since the release of
the Sandy Bridge microarchitecture. Alas, the hardware we used
for evaluation did not support x2APIC. To nevertheless measure
the benefits of ELI utilizing x2APIC hardware, we slightly modify
our Linux guest to emulate the x2APIC behavior. Specifically, we
expose the physical LAPIC and a control flag to the guest, such
that the guest may perform an EOI on the virtual LAPIC (forcing
an exit) or the physical LAPIC (no exit), depending on the value
of the control flag. We verified that our approach conforms to the
published specifications.

5.2 Throughput

I/O virtualization performance suffers the most with workloads that
are I/O intensive, and which incur many interrupts. We start our
evaluation by measuring three well-known examples of network-
intensive workloads, and show that for these benchmarks ELI pro-
vides a significant (49%–66%) throughput increase over baseline
device assignment, and that it nearly (to 0%-3%) reaches bare-metal
performance. We consider the following three benchmarks:

1. Netperf TCP stream, is the simplest of the three bench-
marks [23]. It opens a single TCP connection to the remote
machine, and makes as many rapid write() calls of a given
size as possible.

2. Apache is an HTTP server. We use ApacheBench to load the
server and measure its performance. ApacheBench runs on the
remote machine and repeatedly requests a static page of a given
size from several concurrent threads.

3. Memcached is a high-performance in-memory key-value stor-
age server [18]. It is used by many high-profile Web sites for
caching results of slow database queries, thereby significantly
improving the site’s overall performance and scalability. We used
the Memslap benchmark, part of the libmemcached client library,
to load the server and measure its performance. Memslap runs
on the remote machine, sends a random sequence of memcached
get (90%) and set (10%) requests to the server and measures
the request completion rate.

We configure each benchmark with parameters which fully load
the tested machine’s CPU (so that throughput can be compared),
but do not saturate the tester machine. We configure Netperf to do
256-byte writes, ApacheBench to request 4KB static pages from 4

416

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0G

1G

2G

3G

4G

5G

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

T
h
ro

u
g
h
p
u
t
(b

p
s
)

Baseline ELI
delivery

only

ELI

Netperf

55% 63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0K

2K

4K

6K

8K

10K

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

R
e
q
u
e
s
ts

 /
 s

e
c
o
n
d

Baseline ELI
delivery

only

ELI

Apache

33%
49%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0K

20K

40K

60K

80K

100K

120K

140K

160K

180K

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

T
ra

n
s
a
c
ti
o
n
s
 /
 s

e
c
o
n
d

Baseline ELI
delivery

only

ELI

Memcached

37%

66%

Figure 3. Performance of three I/O intensive workloads (described in the main text). We compare the throughput measured when using
baseline device assignment, delivery-only ELI and full ELI, scaled so 100% means bare-metal throughput. Throughput gains over baseline
device assignment are noted inside the bars.

concurrent threads, and Memslap to make 64 concurrent requests
from 4 threads (with other parameters set to their default values).
We verify that the results do not significantly vary when we change
these parameters.

Figure 3 illustrates how ELI improves the throughput of these
three benchmarks. Each of the benchmarks was run on bare metal
(no virtualization) and under three virtualized setups: baseline device
assignment, device assignment with ELI delivery only, and device
assignment with full ELI (avoiding exits on both delivery and
completion of interrupts). The results are based on averaging ten
identical runs, with the standard deviation being up to 0.9% of the
average for the Netperf runs, up to 0.5% for Apache, and up to 2.6%
for Memcached.

The figure shows that baseline device assignment performance is
still considerably below bare-metal performance: Netperf throughput
on a guest is at 60% of bare-metal throughput, Apache is at 65%,
and Memcached at 60%. With ELI, Netperf achieves 98% of the
bare-metal throughput, Apache 97%, and Memcached 100%. As
mentioned above, it is meaningful to compare the throughputs, and
not CPU usage, because the CPU is fully utilized in all these setups.

It is evident from the figure that using ELI gives a significant
throughput increase, 63%, 49%, and 66% for Netperf, Apache, and
Memcached, respectively. The measurements also show that ELI
delivery-only gives most of the performance benefit of the full ELI.
For Apache, ELI delivery-only gives a 33% throughput increase,
and avoiding the remaining completion exits improves throughput
by an additional 12%.

As noted, these results are obtained with the huge pages fea-
ture enabled, which means KVM utilizes 2MB host pages to back
guests’ memory (though guests still continue to use normal-sized
4KB pages). Backing guests with huge pages gives an across-the-
board performance improvement to both baseline and ELI runs. To
additionally demonstrate ELI’s performance when huge pages are
not available, Figure 4 contrasts results from all three benchmarks
with and without huge pages. We see that using ELI gives a signifi-
cant throughput increase, 128%, 42%, and 59% for Netperf, Apache,
and Memcached, respectively, even without huge pages. We further
see that bare-metal performance for guests requires the host to use
huge pages. This requirement arises due to architectural limitations;
without it, pressure on the memory subsystem significantly hampers
performance due to two-dimensional hardware page walks [11].

Netperf Base- ELI Bare
statistic line delivery ELI metal

Exits/s 102222 43832 764
Time in guest 69% 94% 99%
Interrupts/s 48802 42600 48746 48430
handled in host 48802 678 103

Injections/s 49058 941 367
IRQ windows/s 8060 686 103
Throughput mbps 3145 4886 5119 5245

Apache Base- ELI Bare
statistic line delivery ELI metal

Exits/s 90506 64187 1118
Time in guest 67% 89% 98%
Interrupts/s 36418 61499 66546 68851
handled in host 36418 1107 195

Injections/s 36671 1369 458
IRQ windows/s 7801 1104 192
Requests/s 7729 10249 11480 11875
Avg response ms 0.518 0.390 0.348 0.337

Memcached Base- ELI Bare
statistic line delivery ELI metal

Exits/s 123134 123402 1001
Time in guest 60% 83% 98%
Interrupts/s 59394 120526 154512 155882
handled in host 59394 2319 207

Injections/s 59649 2581 472
IRQ windows/s 9069 2345 208
Transactions/s 112299 153617 186364 186824

Table 1. Execution breakdown for the three benchmarks, with
baseline device assignment, delivery-only ELI, and full ELI.

5.3 Execution Breakdown

Breaking down the execution time to host, guest, and overhead
components allows us to better understand how and why ELI
improves the guest’s performance. Table 1 shows this breakdown
for the above three benchmarks.

Intuitively, guest performance is better with ELI because the
guest gets a larger fraction of the CPU (the host uses less), and/or

417

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0G

1G

2G

3G

4G

5G

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

T
h
ro

u
g
h
p
u
t
(b

p
s
)

4K 2M 4K 2M 4K 2M

Baseline ELI delivery ELI

111%

55%

128%

63%

(a) Netperf

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0K

2K

4K

6K

8K

10K

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

R
e
q
u
e
s
ts

 /
 s

e
c
o
n
d

4K 2M 4K 2M 4K 2M

Baseline ELI delivery ELI

26%

33%
42%

49%

(b) Apache

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0K
20K
40K
60K
80K
100K
120K
140K
160K
180K

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

T
ra

n
s
a
c
ti
o
n
s
 /
 s

e
c
o
n
d

4K 2M 4K 2M 4K 2M

Baseline ELI delivery ELI

34%

37%
59%

66%

(c) Memcached

Figure 4. ELI’s improvement for each of the workloads, with normal (4K) and huge (2M) host pages. Gains over baseline device assignment
with normal pages or huge pages are noted inside the respective bars.

because the guest runs more efficiently when it gets to run. With
baseline device assignment, only 60%–69% of the CPU time is
spent in the guest. The rest is spent in the host, handling exits or
performing the world-switches necessary on every exit and entry.

With only ELI delivery enabled, the heavy “interrupts handled
in host” exits are avoided and the time in the guest jumps to 83%–
94%. Although EOI exit handling is fairly fast, there are still many
exits (43832–123402 in the different benchmarks), and the world-
switch times still add up to a significant overhead. Only when ELI
completion eliminates most those exits and most world-switches,
do both time in host (1%–2%) and number of world-switches (764–
1118) finally become low.

In baseline device assignment, all interrupts arrive at the host
(perhaps after exiting a running guest) and are then injected to the
guest. The injection rate is slightly higher than interrupt rate because
the host injects additional virtual interrupts, such as timer interrupts.

With ELI delivery, only the 678–2319 interrupts that occur while
the host is running, or during exits, or while handling an injected
interrupt, will arrive at the host—the rest will be handled directly by
the guest. The number of interrupts “handled in host” is even lower
(103–207) when ELI completion is also used, because the fraction
of the time that the CPU is running the host or exiting to the host is
much lower.

Baseline device assignment is further slowed down by “IRQ
window” exits: on bare metal, when a device interrupt occurs
while interrupts are blocked, the interrupt will be delivered by the
LAPIC hardware some time later. But when a guest is running, an
interrupt always causes an immediate exit. The host wishes to inject
this interrupt to the guest (if it is an interrupt from the assigned
device), but if the guest has interrupts blocked, it cannot. The x86
architecture solution is to run the guest with an “IRQ window”
enabled, requesting an exit as soon as the guest enables interrupts.
In the table, we can see 7801–9069 of these exits every second in the
baseline device assignment run. ELI mostly eliminates IRQ window
overhead, by eliminating most injections.

As expected, ELI slashes the number of exits, from 90506–
123134 in the baseline device assignment runs, to just 764–1118.
One might guess that delivery-only ELI, which avoids one type
of exit (on delivery) but retains another (on completion), should
result in an exit rate halfway between the two. But in practice, other
factors play into the ELI delivery-only exit rate: the interrupt rate
might have changed from the baseline case (we see it significantly
increased in the Apache and Memcached benchmarks, but slightly
lowered in Netperf), and even in the baseline case some interrupts
might have not caused exits because they happened while the host
was running (and it was running for a large fraction of the time).

The number of IRQ window exits is also different, for the reasons
discussed above.

As can be seen in Figures 3 and 4, the time saved by eliminating
the exits due to interrupt delivery and completion varies. The host
handling of interrupts is a complex operation, and it is avoided by
ELI delivery. What ELI completion then avoids is the host handling
of EOI, but that handling is quick when ELI is already enabled—it
basically amounts to issuing an EOI on the physical LAPIC (see
Section 4.4).

5.4 Impact of Interrupt Rate

The benchmarks in the previous section demonstrated that ELI
significantly improves throughput over baseline device assignment
for I/O intensive workloads. But as the workload spends less of its
time on I/O and more of its time on computation, it seems likely
that ELI’s improvement might be less pronounced. Nonetheless,
counterintuitively, we shall now show that ELI continues to provide
relatively large improvements until we reach some fairly high
computation-per-I/O ratio (and some fairly low throughput). To
this end, we modify the Netperf benchmark to perform a specified
amount of extra computation per byte written to the stream. This
resembles many useful server workloads, where the server does
some computation before sending its response.

A useful measure of the ratio of computation to I/O is cycles/byte,
the number of CPU cycles spent to produce one byte of output;
this ratio is easily measured as the quotient of CPU frequency (in
cycles/second) and workload throughput (in bytes/second). Note, cy-
cles/byte is inversely proportional to throughput. Figure 5(a) depicts
ELI’s improvement as a function of this ratio, showing it remains
over 25% until after 60 cycles/byte (which corresponds to through-
put of only 50Mbps). The reason underlying this result becomes
apparent when examining Figure 5(b), which shows the interrupt
rates measured during the associated runs from Figure 5(a). Contrary
to what one might expect, the interrupt rate is not proportional to
the throughput (until 60 cycles/byte); instead, it remains between
30K–60K. As will be shortly exemplified, rates are kept in this range
due to the NIC (which coalesces interrupts) and the Linux driver
(which employs the NAPI mechanism), and they would have been
higher if it were not for these mechanisms. Since ELI lowers the
overhead of handling interrupts, its benefit is proportional to their
rate, not to throughput, a fact that explains why the improvement is
similar over a range of computation-I/O values. The fluctuations in
interrupt rate (and hence in ELI improvement) shown in Figure 5
for cycles/byte < 20 are not caused by virtualization; they are also
present in bare metal settings and have to do with the specifics of
the Linux NIC driver implementation.

418

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 50 100 150 200 250 300

E
L
I’
s
 t
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t

Computation-I/O ratio (cycles/byte)

(a) ELI’s throughput improvement

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300

In
te

rr
u
p
ts

 /
 s

e
c
o
n
d

Computation-I/O ratio (cycles/byte)

(b) Baseline interrupt rate

Figure 5. Modified-Netperf workloads with various computation-I/O ratios.

0%

20%

40%

60%

80%

100%

120%

10K 20K 30K 40K 50K 60K 70K 80K

E
L
I’
s
 t
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t

Interrupts / second

16

24

32
40485664

72

80

88

96

Figure 6. Throughput improvement and interrupt rate for Netperf
benchmark with different interrupt coalescing intervals (shown in
labels).

We now proceed to investigate the dependence of ELI’s im-
provement on the amount of coalescing done by the NIC, which
immediately translates to the amount of generated interrupts. Our
NIC imposes a configurable cap on coalescing, allowing its users to
set a time duration T , such that the NIC will not fire more than one
interrupt per Tµs (longer T implies less interrupts). We set the NIC’s
coalescing cap to the following values: 16µs, 24µs, 32µs, . . ., 96µs.
Figure 6 plots the results of the associated experiments (the data
along the curve denotes values of T). Higher interrupt rates imply
higher savings due to ELI. The smallest interrupt rate that our NIC
generates for this workload is 13K interrupts/sec (with T=96µs),
and even with this maximal coalescing ELI still provides a 10%
performance improvement over the baseline. ELI achieves at least
99% of bare-metal throughput in all of the experiments described in
this subsection.

5.5 Latency

By removing the exits caused by external interrupts, ELI substan-
tially reduces the time it takes to deliver interrupts to the guest.
This period of time is critical for latency-sensitive workloads. We
measure ELI’s latency improvement using Netperf UDP request-
response, which sends a UDP packet and waits for a reply before
sending the next. To simulate a busy guest that always has some
work to do alongside a latency-sensitive application, we run a busy-

Average % of
Configuration latency bare-metal

Baseline 36.14 µs 129%
ELI delivery-only 30.10 µs 108%
ELI 28.51 µs 102%
Bare-metal 27.93 µs 100%

Table 2. Latency measured by Netperf UDP request-response
benchmark.

loop within the guest. Table 2 presents the results. We can see that
baseline device assignment increases bare metal latency by 8.21µs
and that ELI reduces this gap to only 0.58µs, which is within 98%
of bare-metal latency.

6. Security and Isolation

ELI’s performance stems from the host giving guests direct access
to privileged architectural mechanisms. In this section, we review
potential threats and how ELI addresses them.

6.1 Threat Model

We analyze malicious guest attacks against the host through a
hardware-centric approach. ELI grants guests direct control over sev-
eral hardware mechanisms that current hypervisors keep protected:
interrupt masking, reception of physical interrupts, and interrupt
completion via the EOI register. Using these mechanisms, a guest
can disable interrupts for unbounded periods of time, try to consume
(steal) host interrupts, and issue interrupt completions incorrectly.

Delivering interrupts directly to the guest requires that the guest
be able to control whether physical interrupts are enabled or disabled.
Accordingly, ELI allows the guest to control interrupt masking, both
globally (all interrupts are blocked) and by priority (all interrupts
whose priority is below a certain threshold are blocked). Ideally,
interrupts that are not assigned to the guest would be delivered to
the host even when the guest masks them, yet x86 does not currently
provide such support. As a result, the guest is able to mask any
interrupt, possibly forever. Unless addressed, masking high-priority
interrupts such as the thermal interrupt that indicates the CPU is
running hot, may cause the system to crash. Likewise, disabling and
never enabling interrupts could allow the guest to run forever.

While ELI configures the guest shadow IDT to trigger an exit for
non-assigned physical interrupts, the interrupts are still first delivered
to the guest. Therefore, we must consider the possibility that a

419

guest, in spite of ELI, manages to change the physical IDT. If this
happens, both assigned interrupts and non-assigned interrupts will
be delivered to the guest while it is running. If the guest manages to
change the physical IDT, a physical interrupt might not be delivered
to the host, which might cause a host device driver to malfunction.

ELI also grants the guest direct access to the EOI register.
Reading EOI is prevented by the CPU, and writes to the register
while no interrupt is handled do not affect the system. Nevertheless,
if the guest exits to the host without signaling the completion of
in-service interrupts, it can affect the host interruptibility, as x86
automatically masks all interrupts whose priority is lower than the
one in service. Since the interrupt is technically still in service, the
host may not receive lower-priority interrupts.

6.2 Protection

ELI’s design addresses all of these threats. To protect against
malicious guests stealing CPU time by disabling interrupts forever,
ELI uses the preemption timer feature of x86 virtualization, which
triggers an unconditional exit after a configurable period of time
elapses.

To protect host interruptibility, ELI signals interrupt completion
for any assigned interrupt still in service after an exit. To maintain
correctness, when ELI detects that the guest did not complete any
previously delivered interrupts, it falls back to injection mode until
the guest signals completions of all in-service interrupts. Since all
of the registers that control CPU interruptibility are reloaded upon
exit, the guest cannot affect host interruptibility.

To protect against malicious guests blocking or consuming criti-
cal physical interrupts, ELI uses one of the following mechanisms.
First, if there is a core which does not run any ELI-enabled guests,
ELI redirects critical interrupts there. If no such core is available,
ELI uses a combination of Non-Maskable-Interrupts (NMIs) and
IDT limiting.

Non-Maskable-Interrupts (NMIs) trigger unconditional exits;
they cannot be blocked by guests. ELI redirects critical interrupts to
the core’s single NMI handles. All critical interrupts are registered
with the NMI handler, and whenever an NMI occurs, the NMI
handler calls all registered interrupt vectors to discern which critical
interrupt occurred. NMI sharing has a negligible run-time cost
(since critical interrupts rarely happen). However, some devices
and device drivers may lock up or otherwise misbehave if their
interrupt handlers are called when no interrupt was raised.

For critical interrupts whose handlers must only be called when
an interrupt actually occurred, ELI uses a complementary coarse
grained IDT limit mechanism. The IDT limit is specified in the IDTR
register, which is protected by ELI and cannot be changed by the
guest. IDT limiting reduces the limit of the shadow IDT, causing
all interrupts whose vector is above the limit to trigger the usually
rare general purpose exception (GP). GP is intercepted and handled
by the host similarly to the not-present (NP) exception. Unlike
reflection through NP (Section 4.1), which the guest could perhaps
subvert by changing the physical IDT, no events take precedence
over the IDTR limit check [21]. It is therefore guaranteed that all
handlers above the limit will trap to the host when called.

For IDT limiting to be transparent to the guest, the limit must
be set above the highest vector of the assigned devices’ interrupts.
Moreover, it should be higher than any software interrupt that is in
common use by the guest, since such interrupts will undesirably
trigger frequent exits and reduce performance. Therefore, in practice
ELI sets the threshold just below the vectors used by high-priority
interrupts in common operating systems [12, 42]. Since this limits
the number of available above-the-limit handlers, ELI uses the IDT
limiting for critical interrupts and reflection through not-present
exceptions for other interrupts.

7. Architectural Support

The overhead of interrupt handling in virtual environments is due
to the design choices of x86 hardware virtualization. The imple-
mentation of ELI could be simplified and improved by adding a few
features to the processor.

First, to remove the complexity of managing the shadow IDT
and the overhead caused by exits on interrupts, the processor should
provide a feature to assign physical interrupts to a guest. Interrupts
assigned to a guest should be delivered through the guest IDT
without causing an exit. Any other interrupt should force an exit to
the host context. Interrupt masking during guest mode execution
should not affect non-assigned interrupts. To solve the vector sharing
problem described in Section 4.3, the processor should provide a
mechanisms to translate from host interrupt vectors to guest interrupt
vectors. Second, to remove the overhead of interrupt completion,
the processor should allow a guest to signal completion of assigned
interrupts without causing an exit. For interrupts assigned to a guest,
EOI writes should be directed to the physical LAPIC. Otherwise,
EOI writes should force an exit.

8. Applicability and Future Work

While this work focuses on the advantages of letting guests handle
physical interrupts directly, ELI can also be used to directly deliver
all virtual interrupts, including those of paravirtual devices, emulated
devices, and inter-processor interrupts (IPI). Currently, hypervisors
deliver these interrupts to guests through the architectural virtual
interrupt mechanism. This mechanism requires multiple guest exits,
which would be eliminated by ELI. The only requirement for using
ELI is that the interrupt vector not be used by the host. Since interrupt
vectors tend to be fixed, the host can in most cases relocate the
interrupts handlers it uses to other vectors that are not used by
guests.

ELI can also be used for injecting guests with virtual interrupts
without exits, in scenarios where virtual interrupts are frequent.
The host can send an IPI from any core with the proper virtual
interrupt vector to the target guest core, eliminating the need for
exits due to interrupt-window, interrupt delivery, and completion.
The host can also inject interrupts into the guest from the same
core by sending a self-IPI right before resuming the guest, so the
interrupt will be delivered in the guest context, saving at least the
exit currently required for interrupt completion.

ELI can also be used for direct delivery to guests of LAPIC-
triggered non-critical interrupts such as the timer interrupt. Once the
timer interrupt is assigned to the guest, the host can use the architec-
tural preemption timer (described in Section 6) for preempting the
guest instead of relying on the timer interrupt.

The current ELI implementation configures the shadow IDT
to force an exit when the guest is not supposed to handle an
incoming physical interrupt. In the future, we plan to extend our
implementation and configure the shadow IDT to invoke shadow
interrupt handlers—handler routines hidden from the guest operating
system and controlled by the host [10]. Using this approach, the
shadow handlers running host code will be executed in guest mode
without causing a transition to host mode. The code could then
inspect the interrupt and decide to batch it, delay it, or force an
immediate exit. This mechanism can help to mitigate the overhead
of physical interrupts not assigned to the guest. In addition, shadow
handlers can also be used for function call injection, allowing the
host to run code in guest mode.

9. Conclusions

The key to high virtualization performance is for the CPU to spend
most of its time in guest mode, running the guest, and not in the host,
handling guest exits. Yet current approaches to x86 virtualization

420

induce multiple exits by requiring host involvement in the critical
interrupt handling path. The result is that I/O performance suffers.
We propose to eliminate the unwarranted exits by introducing ELI,
an approach that lets guests handle interrupts directly and securely.
Building on many previous efforts to reduce virtualization overhead,
ELI finally makes it possible for untrusted and unmodified virtual
machines to reach nearly bare-metal performance, even for the most
I/O-intensive and interrupt-heavy workloads.

ELI also demonstrates that the rich x86 architecture, which in
many cases complicates hypervisor implementations, provides ex-
citing opportunities for optimization. Exploiting these opportunities,
however, may require using architectural mechanisms in ways that
their designers did not necessarily foresee.

Acknowledgments

The research leading to the results presented in this paper is par-
tially supported by the European Community’s Seventh Framework
Programme ([FP7/2001-2013]) under grant agreements #248615
(IOLanes) and #248647 (ENCORE).

References

[1] ABRAMSON, D., JACKSON, J., MUTHRASANALLUR, S., NEIGER, G.,
REGNIER, G., SANKARAN, R., SCHOINAS, I., UHLIG, R., VEMBU,
B., AND WIEGERT, J. Intel virtualization technology for directed I/O.
Intel Technology Journal 10, 3 (2006), 179–192.

[2] ADAMS, K., AND AGESEN, O. A comparison of software and hardware
techniques for x86 virtualization. In ACM Architectural Support for

Programming Languages & Operating Systems (ASPLOS) (2006).

[3] AGESEN, O., MATTSON, J., RUGINA, R., AND SHELDON, J. Software
techniques for avoiding hardware virtualization exits. Tech. rep.,
VMware, 2011.

[4] AHMAD, I., GULATI, A., AND MASHTIZADEH, A. vIC: Interrupt
coalescing for virtual machine storage device IO. In USENIX Annual

Technical Conference (ATC) (2011).

[5] AMD INC. AMD64 Architecture Programmer’s Manual Volume 2:
System Programming, 2011.

[6] AMIT, N., BEN-YEHUDA, M., TSAFRIR, D., AND SCHUSTER, A.
vIOMMU: efficient IOMMU emulation. In USENIX Annual Technical

Conference (ATC) (2011).

[7] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and
the art of virtualization. In ACM Symposium on Operating Systems

Principles (SOSP) (2003).

[8] BEN-YEHUDA, M., BOROVIK, E., FACTOR, M., ROM, E., TRAEGER,
A., AND YASSOUR, B.-A. Adding advanced storage controller func-
tionality via low-overhead virtualization. In USENIX Conference on

File & Storage Technologies (FAST) (2012).

[9] BEN-YEHUDA, M., DAY, M. D., DUBITZKY, Z., FACTOR, M.,
HAR’EL, N., GORDON, A., LIGUORI, A., WASSERMAN, O., AND

YASSOUR, B.-A. The Turtles project: Design and implementation of
nested virtualization. In USENIX Symposium on Operating Systems

Design & Implementation (OSDI) (2010).

[10] BETAK, T., DULEY, A., AND ANGEPAT, H. Reflective virtualiza-
tion improving the performance of fully-virtualized x86 operating
systems. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.129.7868.

[11] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE, S. Ac-
celerating two-dimensional page walks for virtualized systems. In
ACM Architectural Support for Programming Languages & Operating

Systems (ASPLOS) (2008).

[12] BOVET, D., AND CESATI, M. Understanding the Linux Kernel, Second

Edition. O’Reilly & Associates, Inc., 2002.

[13] CODD, E. F. Advances in Computers, vol. 3. New York: Academic
Press, 1962, pp. 77–153.

[14] DONG, Y., XU, D., ZHANG, Y., AND LIAO, G. Optimizing network
I/O virtualization with efficient interrupt coalescing and virtual receive
side scaling. In IEEE International Conference on Cluster Computing

(CLUSTER) (2011).

[15] DONG, Y., YANG, X., LI, X., LI, J., TIAN, K., AND GUAN, H.
High performance network virtualization with SR-IOV. In IEEE

International Symposium on High Performance Computer Architecture

(HPCA) (2010).

[16] DONG, Y., YU, Z., AND ROSE, G. SR-IOV networking in Xen:
architecture, design and implementation. In USENIX Workshop on

I/O Virtualization (WIOV) (2008).

[17] DOVROLIS, C., THAYER, B., AND RAMANATHAN, P. HIP: hybrid
interrupt-polling for the network interface. ACM SIGOPS Operating

Systems Review (OSR) 35 (2001), 50–60.

[18] FITZPATRICK, B. Distributed caching with memcached. Linux Journal,
124 (2004).

[19] GAVRILOVSKA, A., KUMAR, S., RAJ, H., SCHWAN, K., GUPTA, V.,
NATHUJI, R., NIRANJAN, R., RANADIVE, A., AND SARAIYA, P. High-
performance hypervisor architectures: Virtualization in HPC systems.
In Workshop on System-level Virtualization for HPC (HPCVirt) (2007).

[20] INTEL CORPORATION. Intel 64 Architecture x2APIC Specification,
2008.

[21] INTEL CORPORATION. Intel 64 and IA-32 Architectures Software
Developer’s Manual, 2010.

[22] ITZKOVITZ, A., AND SCHUSTER, A. MultiView and MilliPage—
fine-grain sharing in page-based DSMs. In USENIX Symposium on

Operating Systems Design & Implementation (OSDI) (1999).

[23] JONES, R. A. A network performance benchmark (revision 2.0). Tech.
rep., Hewlett Packard, 1995.

[24] KELLER, E., SZEFER, J., REXFORD, J., AND LEE, R. B. Nohype:
virtualized cloud infrastructure without the virtualization. In ACM/IEEE

International Symposium on Computer Architecture (ISCA) (2010),
ACM.

[25] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LIGUORI, A.
KVM: the Linux virtual machine monitor. In Ottawa Linux Symposium

(OLS) (2007).

[26] LANDAU, A., BEN-YEHUDA, M., AND GORDON, A. SplitX: Split
guest/hypervisor execution on multi-core. In USENIX Workshop on

I/O Virtualization (WIOV) (2011).

[27] LANGE, J. R., PEDRETTI, K., DINDA, P., BRIDGES, P. G., BAE, C.,
SOLTERO, P., AND MERRITT, A. Minimal-overhead virtualization of a
large scale supercomputer. In ACM/USENIX International Conference

on Virtual Execution Environments (VEE) (2011).

[28] LARSEN, S., SARANGAM, P., HUGGAHALLI, R., AND KULKARNI,
S. Architectural breakdown of end-to-end latency in a TCP/IP net-
work. In International Symposium on Computer Architecture and High

Performance Computing (2009).

[29] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GÖTZ, S. Unmodified
device driver reuse and improved system dependability via virtual
machines. In USENIX Symposium on Operating Systems Design &

Implementation (OSDI) (2004).

[30] LIAO, G., GUO, D., BHUYAN, L., AND KING, S. R. Software
techniques to improve virtualized I/O performance on multi-core
systems. In ACM/IEEE Symposium on Architectures for Networking

and Communications Systems (ANCS) (2008).

[31] LIU, J. Evaluating standard-based self-virtualizing devices: A per-
formance study on 10 GbE NICs with SR-IOV support. In IEEE

International Parallel & Distributed Processing Symposium (IPDPS)

(2010).

[32] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. K. High perfor-
mance VMM-bypass I/O in virtual machines. In USENIX Annual

Technical Conference (ATC) (2006), pp. 29–42.

[33] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G., AND

ZWAENEPOEL, W. Diagnosing performance overheads in the Xen vir-
tual machine environment. In ACM/USENIX International Conference

on Virtual Execution Environments (VEE) (2005), pp. 13–23.

421

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.7868
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.7868

[34] MOGUL, J. C., AND RAMAKRISHNAN, K. K. Eliminating receive
livelock in an interrupt-driven kernel. ACM Transactions on Computer

Systems (TOCS) 15 (1997), 217–252.

[35] NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A. Practical,
transparent operating system support for superpages. In USENIX

Symposium on Operating Systems Design & Implementation (OSDI)

(2002).

[36] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements for
virtualizable third generation architectures. Communications of the

ACM (CACM) 17 (1974), 412–421.

[37] RAJ, H., AND SCHWAN, K. High performance and scalable I/O
virtualization via self-virtualized devices. In International Symposium

on High Performance Distributed Computer (HPDC) (2007).

[38] RAM, K. K., SANTOS, J. R., TURNER, Y., COX, A. L., AND RIXNER,
S. Achieving 10Gbps using safe and transparent network interface
virtualization. In ACM/USENIX International Conference on Virtual

Execution Environments (VEE) (2009).

[39] ROSS, T. L., WASHABAUGH, D. M., ROMAN, P. J., CHEUNG, W.,
TANAKA, K., AND MIZUGUCHI, S. Method and apparatus for per-
forming interrupt frequency mitigation in a network node. US Patent
6,115,775, 2000.

[40] RUMBLE, S., ONGARO, D., STUTSMAN, R., ROSENBLUM, M., AND

OUSTERHOUT, J. It’s time for low latency. In USENIX Workshop on

Hot Topics in Operating Systems (HOTOS) (2011).

[41] RUSSELL, R. virtio: towards a de-facto standard for virtual I/O devices.
ACM SIGOPS Operating Systems Review (OSR) 42, 5 (2008), 95–103.

[42] RUSSINOVICH, M. E., AND SOLOMON, D. A. Microsoft Windows In-

ternals, Fourth Edition: Microsoft Windows Server(TM) 2003, Windows

XP, and Windows 2000 (Pro-Developer). Microsoft Press, 2004.

[43] SALAH, K. To coalesce or not to coalesce. International Journal of

Electronics and Communications 61, 4 (2007), 215–225.

[44] SALAH, K., AND QAHTAN, A. Boosting throughput of Snort NIDS
under Linux. In International Conference on Innovations in Information

Technology (IIT) (2008).

[45] SALIM, J. H., OLSSON, R., AND KUZNETSOV, A. Beyond Softnet.
In Anual Linux Showcase & Conference (2001).

[46] SANTOS, J. R., TURNER, Y., JANAKIRAMAN, J. G., AND PRATT, I.
Bridging the gap between software and hardware techniques for I/O
virtualization. In USENIX Annual Technical Conference (ATC) (2008).

[47] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Virtualizing
I/O devices on Vmware workstation’s hosted virtual machine monitor.
In USENIX Annual Technical Conference (ATC) (2001), pp. 1–14.

[48] SZEFER, J., KELLER, E., LEE, R. B., AND REXFORD, J. Eliminating
the hypervisor attack surface for a more secure cloud. In ACM

Conference on Computer and Communications Security (CCS) (2011).

[49] TSAFRIR, D., ETSION, Y., FEITELSON, D. G., AND KIRKPATRICK,
S. System noise, OS clock ticks, and fine-grained parallel applications.
In ACM International Conference on Supercomputing (ICS) (2005),
pp. 303–312.

[50] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MARTINS,
F. C. M., ANDERSON, A. V., BENNETT, S. M., KAGI, A., LEUNG,
F. H., AND SMITH, L. Intel virtualization technology. Computer 38, 5
(2005), 48–56.

[51] WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER, S.,
COX, A. L., AND ZWAENEPOEL, W. Concurrent direct network access
for virtual machine monitors. In IEEE International Symposium on

High Performance Computer Architecture (HPCA) (2007).

[52] WOJTCZUK, R., AND RUTKOWSKA, J. Following the
White Rabbit: Software attacks against Intel VT-d technol-
ogy. http://invisiblethingslab.com/resources/2011/
Software%20Attacks%20on%20Intel%20VT-d.pdf. (Accessed
Jul, 2011).

[53] YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O. Direct
device assignment for untrusted fully-virtualized virtual machines. Tech.
Rep. H-0263, IBM Research, 2008.

[54] ZEC, M., MIKUC, M., AND ŽAGAR, M. Estimating the Impact
of Interrupt Coalescing Delays on Steady State TCP Throughput.
In International Conference on Software, Telecommunications and

Computer Networks (SoftCOM) (2002).

422

http://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf

	Introduction
	Motivation and Related Work
	Generic Interrupt Handling Approaches
	Virtualization-Specific Approaches

	x86 Interrupt Handling
	Interrupts in Bare-Metal Environments
	Interrupts in Virtual Environments
	Interrupts from Assigned Devices

	ELI: Design and Implementation
	Exitless Interrupt Delivery
	Placing the Shadow IDT
	Configuring Guest and Host Vectors
	Exitless Interrupt Completion
	Multiprocessor Environments

	Evaluation
	 Methodology and Experimental Setup
	Throughput
	Execution Breakdown
	Impact of Interrupt Rate
	Latency

	Security and Isolation
	Threat Model
	Protection

	Architectural Support
	Applicability and Future Work
	Conclusions

