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Abstract

We introduce the first large-scale corpus for

long-form question answering, a task requir-

ing elaborate and in-depth answers to open-

ended questions. The dataset comprises 270K

threads from the Reddit forum “Explain Like

I’m Five” (ELI5) where an online community

provides answers to questions which are com-

prehensible by five year olds. Compared to ex-

isting datasets, ELI5 comprises diverse ques-

tions requiring multi-sentence answers. We

provide a large set of web documents to help

answer the question. Automatic and human

evaluations show that an abstractive model

trained with a multi-task objective outper-

forms conventional Seq2Seq, language mod-

eling, as well as a strong extractive baseline.

However, our best model is still far from hu-

man performance since raters prefer gold re-

sponses in over 86% of cases, leaving ample

opportunity for future improvement.1

1 Introduction

Existing question answering datasets have enabled

significant progress in models that provide ex-

tractive or unambigious short answers. However,

less attention has been paid to open-ended ques-

tions that require explanations. In this work, we

present ELI5: a Long Form Question Answer-

ing dataset that emphasizes the dual challenges of

isolating relevant information within long source

documents and generating paragraph-length ex-

planations in response to complex, diverse ques-

tions (see illustrations in Figures 1 and 2).

The first challenge of ELI5 is the length and di-

versity of answers that span multiple sentences:

∗ Equal contribution
‡ Work done while at Facebook AI Research

1Dataset, Pretrained Models, and Additional Informa-
tion is available: https://facebookresearch.

github.io/ELI5, https://github.com/

facebookresearch/ELI5

Question: How do Jellyfish function without brains or ner-
vous systems? [...] (60 words)

Answer: Jellyfish may not have a brain, but they have a rough
nervous system and innate behaviours. However, they are
very simple creatures. They’re invertebrate: creatures with-
out a backbone. Most jellyfish have really short life spans.
Sometimes just a couple of hours. [...] As their name im-
plies, they are largely composed of basically jelly inside a
thin membrane. They’re over 95% water. (327 words)

Documents: [...] Jellyfish do not have brains, and most
barely have nervous systems. They have primitive nerve cells
that help them orient themselves in the water and sense light
and touch. [...] While they dont possess brains, the animals
still have neurons that send all sorts of signals throughout
their body. [...] They may accomplish this through the as-
sistance of their nerve rings. Jellyfish don’t have brains, and
that’s just where things begin. They don’t have many of the
body parts that are typical in other animals. [...] (1070 words)

Figure 1: ELI5 example. Models must write multi-sentence
answers given questions and supporting web documents.

questions are complex and cannot be easily ad-

dressed by a short response (Nguyen et al., 2016)

or by extracting a word or phrase from an evidence

document (Rajpurkar et al., 2016). Answers also

represent one of several valid ways of addressing

the query. Many state-of-the-art question answer-

ing models perform well compared to human per-

formance for extractive answer selection (Radford

et al., 2018; Devlin et al., 2018). However, their

success does not directly carry over to our setting.

The second challenge is the length and diversity

of the content from knowledge sources required

to answer our questions. We leverage evidence

queried from the web for each question. In con-

trast to previous datasets where the human written

answer could be found with lexical overlap meth-

ods (Weissenborn et al., 2017), ELI5 poses a sig-

nificant challenge in siphoning out important in-

formation, as no single sentence or phrase contains

the full answer. While there are some datasets

that do require multi-sentence supporting knowl-

https://facebookresearch.github.io/ELI5
https://facebookresearch.github.io/ELI5
https://github.com/facebookresearch/ELI5
https://github.com/facebookresearch/ELI5
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Figure 2: ELI5 questions by starting word, where box size represents frequency. Questions are open ended and diverse.

edge such as TriviaQA (Joshi et al., 2017), their

answers are still short.

We benchmark the performance of several ex-

tractive, retrieval, and generative models. Evalua-

tion of our task, and of multi-sentence text genera-

tion in general, is challenging. We draw upon sev-

eral evaluation metrics that quantify performance

on intermediary fill-in tasks that lead up to the full

answer generation. The overall answer generation

quality is measured with ROUGE (Lin, 2004) and

various human evaluation studies.

We develop a strong abstractive baseline by

training a Seq2Seq model on multiple tasks over

the same data: language modeling, masked word

prediction (Devlin et al., 2018) and answer genera-

tion. We show this approach outperforms conven-

tional Seq2Seq and language modeling, as well as

a strong extractive baseline based on BidAF (Seo

et al., 2017) but generalized to multi-sentence out-

put. However, our best-performing model is still

far from the quality of human written answers,

with raters preferring the gold answers 86% of the

time. Further, we show that model performance

is strongly limited by the ability to comprehend

long multi-document input and generate long out-

puts to form a comprehensive answer, leaving this

challenge for future research.

2 Related Work

Various QA datasets have been proposed in

roughly two categories: extractive answers and

short abstractive answers (see Table 1).

Extractive QA Extractive question an-

swering datasets such as TREC (Voorhees,

2003), SQuAD (Rajpurkar et al., 2016, 2018),

NewsQA (Trischler et al., 2017), SearchQA (Dunn

et al., 2017), and QuAC (Choi et al., 2018) con-

strain the answer to a word or short phrase from

the input and evaluate using exact match or F1

with the ground truth span. HotpotQA (Yang

et al., 2018) extends this approach by building

questions which challenge models to conduct

multi-hop reasoning across multiple paragraphs,

but the answer is still a short span. Further,

the answer must be straightforward, as it needs

to be copied from the supporting evidence —

precluding most “how” or “why” type questions.

Abstractive QA Abstractive datasets include

NarrativeQA (Kocisky et al., 2018), a dataset of

movie and book summaries and CoQA (Reddy

et al., 2018), a multi-domain dialogue dataset.

Both collect responses with crowdworkers and

find that written answers are mostly extractive

and short. MS MARCO (Nguyen et al., 2016),

a dataset of crowdsourced responses to Bing

queries, has written answers around 1 sentence

long with short input passages. TriviaQA (Joshi

et al., 2017) contains longer multi-document web

input, collected using Bing and Wikipedia. As the

dataset is built from trivia, most questions can be

answered with a short extractive span.

Multi-document summarization The ELI5

task of writing a paragraph length response

from multiple supporting documents can be

seen as a form of query-based multi-document

summarization (Tombros and Sanderson, 1998).

Summarization tasks such as DUC 20042 involve

long input and multi-sentence generation, but

contain much less training data compared to

ELI5. WikiSum (Liu et al., 2018) proposes

writing Wikipedia articles as a multi-document

summarization task. ELI5 requires more directed

2https://duc.nist.gov/duc2004/

https://duc.nist.gov/duc2004/
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Dataset Average # of Words 1st Question Word Frequency (%)

Question Document(s) Answer Why How What When Where Who Which OTHER # Q-A Pairs

ELI5 42.2 857.6 (212K) 130.6 44.8 27.1 18.3 11.3 2.0 1.8 0.8 6.1 272K

MS MARCO v2 (Nguyen et al., 2016) 6.4 56 13.8 1.7 16.8 35.0 2.7 3.5 3.3 1.8 35.3 183K

TriviaQA (Joshi et al., 2017) 14 2895 2.0 0.2 3.9 32.6 2.0 2.1 16.8 41.8 0.6 110K

NarrativeQA (Kocisky et al., 2018) 9.8 656 4.7 9.8 10.7 38.0 1.7 7.5 23.4 2.2 6.8 47K

CoQA (Reddy et al., 2018) 5.5 271 2.7 2 5 27 2 5 15 1 43 127K

SQuAD (2.0) (Rajpurkar et al., 2018) 9.9 116.6 3.2 1.4 8.9 45.3 6.0 3.6 9.6 4.4 17.6 150K

HotpotQA (Yang et al., 2018) 17.8 917 2.2 0.1 2.6 37.2 2.8 2.2 13.8 28.5 12.8 113K

Table 1: Comparing large-scale QA datasets. ELI5 has answers an order of magnitude longer and more open-ended questions.

text generation to answer a question, rather than

to write about a general topic. In addition, ELI5

contains a diverse set of questions which can

involve more than one Wikipedia concept.

3 Making a Long Form QA Dataset

3.1 Creating the Dataset from ELI5

There are several websites which provide forums

to ask open-ended questions such as Yahoo An-

swers, Quora, as well as numerous Reddit forums,

or subreddits. We focus on the subreddit Explain

Like I’m Five (ELI5) where users are encouraged

to provide answers which are comprehensible by a

five year old.3 ELI5 is appealing because answers

are supposed to be entirely self contained, and thus

rely less on pre-existing knowledge of the world

and use simpler language that is easier to model.

Questions and answers. We select a set of ques-

tions and answers from the ELI5 forum up to July

2018 and then filter it based on how users rated

these pairs. First, we only retain questions which

have a score of at least two, that is two more ‘up-

votes’ than ‘down-votes’. Second, there must be at

least one answer with a score of at least two. This

yields a final number of 272K questions, and en-

sures that at least one person other than the author

has read the thread and deemed it appropriate. For

each thread, we select the answer with the high-

est voting score as the reference. Note that 63%

have one or more other valid answers by our up-

vote criteria, potentially doubling the size of the

available training data.

Preparing supporting information. Next, we

collect web sources for every question to pro-

vide relevant information that a system can draw

upon when generating an answer. Wikipedia has

been found effective for factoid-oriented questions

(Joshi et al., 2017; Chen et al., 2017). However,

3https://www.reddit.com/r/

explainlikeimfive

early experiments in our setting showed it to be in-

sufficient to cover the wide range of topics present

in ELI5 and to address the open-ended nature of

the questions. Instead, we use web data pro-

vided by Common Crawl.4 Specifically, we con-

sider each of the individual pages in the July 2018

archive (roughly one per URL) as a single docu-

ment. The data is tokenized with Spacy5 and we

select English documents with FastText language

identification (Bojanowski et al., 2017). Finally,

we index the data with Apache Lucene.6

Creating support documents. We query the in-

dex for the 272K questions and gather the 100

most relevant web sources for each question, ex-

cluding Reddit. Each web source is the extracted

text of one page in Common Crawl. This leads to

supporting text for each question of a few hundred

thousand words. There is a good chance that the

supporting text contains the necessary information

to answer the question, but the sheer amount of

data is far beyond the scope of what many mod-

ern models can handle. We therefore filter the 100

web sources by selecting specific passages using

a simple heuristic: we split each web source into

sentences, find sentences with the highest TFIDF

similarity with respect to the question, add some

local context for each of these, and concatenate

the result into a single support document, with

special tokens indicating non-contiguous passages

and document shifts. Each support document is

the result of this processing to concatenate rele-

vant information from the web sources.

We find that extracting 15 passages with a con-

text of one sentence before and after the initial se-

lection provides the best trade-off between support

document length and likelihood of containing rel-

evant information, where relevance is measured as

the likelihood of containing a sentence which has

4http://commoncrawl.org
5https://spacy.io
6http://lucene.apache.org

https://www.reddit.com/r/explainlikeimfive
https://www.reddit.com/r/explainlikeimfive
http://commoncrawl.org
https://spacy.io
http://lucene.apache.org
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% Correct Human Answers 94.5
% Correct Human Answers with Explanation 90.2

% Support Document contains Answer 65.0
% Support Document contains Relevant Info 92.0

Table 2: Annotated subset of ELI5 to assess answerability.

high ROUGE with the answer. We release all 100

Common Crawl IDs for each question and a script

to create the support document so future research

can use the support document or choose to further

investigate the information retrieval problem.

Finalizing the data set. If the training data con-

tains questions that are too similar to the valida-

tion and test data, a model may perform well on

these examples by memorizing related examples.

We prevent this by building the validation and test

set to contain questions that are sufficiently differ-

ent from the training data. We compute the TFIDF

similarity between each pair of questions in the

entire dataset and sample the validation and test

set from the subset which has no close neighbor

by TFIDF score. The final dataset contains 237K

train examples, 10K for valid, and 25K for test.

3.2 Dataset Analysis

Table 1 compares ELI5 to related datasets in terms

of the length of the question, support document,

answer, as well as statistics on the question types.

First, ELI5 questions are much longer than in

other datasets. This is because the initial question

is often followed by a clarifying paragraph detail-

ing what aspect of the general theme should be

addressed or the question’s starting assumptions,

which need to be considered to answer well. To

get a rough idea of the different questions, we cat-

egorize them based on interrogative words. ELI5

focuses on open-ended queries which are less rep-

resented in other extractive or abstractive datasets.

Figure 2 shows examples of ELI5 questions split

by type and Appendix Figure 11 displays random

examples from the ELI5 training set. Interestingly,

even What questions tend to require paragraph-

length explanations (What is the difference. . . ).

Support documents contain 22-60 sentences or

on average 858 words, which puts ELI5 on the

higher end of published datasets for document

length. ELI5 contains long-form answers with an

average length of 6.6 sentences, or 130 words.

Next, we analyze a random subset of ELI5 to

assess the feasability of answering the questions

in the dataset. We judge if the question is answer-

able by reading each question, the gold answer,

and the support document we have created with

TF-IDF extraction. Note that questions can have

multiple parts and all parts of the question must

be answered. We sample 500 randomly question-

answer pairs from the training set and find that

94.5% of gold answers fully address the question

(Table 2) based on the information in the support

document. Figure 12 in Appendix F displays ex-

amples of human answers that do not correctly an-

swer the question. A small proportion of answers

are correct but do not explain the answer. On the

support document side, 65% of the support docu-

ments we construct provide the answer to the ques-

tion, and 92% of support documents provide infor-

mation relevant to the question.

4 Evaluation Methods

Evaluating long-form answers. There are sev-

eral aspects to quality: answers should be topi-

cal and accurate, fluent, and coherent from start to

end. We judge the accuracy aspect by comparing

to the gold answer. ROUGE (Lin, 2004) measures

similarity between a model output and one or sev-

eral references, and is often used in summariza-

tion. While our task presents different challenges,

such as the diversity of possible answers to a ques-

tion, we still find the corpus-level metric to be use-

ful to rank different related models (§6). We report

F1 for ROUGE-1, ROUGE-2, and ROUGE-L.

Abstractive model metrics. For generative

models, perplexity (PPL) measures the ability to

predict the next word in a sequence given its con-

text. For a variant which focuses on semanti-

cally important words, we report FILL-1, the ac-

curacy at which models generate different Nouns,

Verbs, and Adjectives given the correct preceding

tokens in the first 2K examples of the test set. Fi-

nally, ROUGE-20% measures the model’s abil-

ity to complete an answer given the first 80% of

the reference answer, the question, and the sup-

port document. Specifically, we generate a num-

ber of tokens corresponding to 20% of the aver-

age answer length in the validation set, and mea-

sure ROUGE between these and the last 20% of

the reference. We mentioned that there are several

valid ways to answer most questions. This mea-

sure abstracts away this variability and evaluates a

system’s ability to complete an answer.
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Extractive: But none of these hypotheses make much sense for a jellyfish because they do nt have brains at all. They just have
a nerve net — a loose ring of neurons that runs around the rim of their pulsating bells. They have an unusual nervous system,
because jellyfish are not bilaterally symmetrical — that is, they dont have a left side and a right side. Jellyfish don’t have brains,
but their nervous systems detect smells, light and other stimuli, and they coordinate their physical responses.

Language Model: They don’t have brains. They have a nervous system. They do not have a brain. They are not conscious.
They can not move. They move. Their nervous system is not a muscle. They use their muscles to move. The nervous system
does not have any nerves. They just have a nerve. They also have a muscle that is very similar to a muscle in that it is very
much like a muscle, but instead of a muscle it is a muscle and it is like a nerve, but it is not muscle. The nerve is like the muscle,
it is just a muscle but it has a nerve and it has nerves. The nerves are like the muscles, but they have nerves.

Multi-task Seq2Seq: Jellyfish don’t have brains. Jellyfish have a nervous system. They know how to swim, they don’t even
know what to do with their bodies. They have a “nervous system”, which is basically a bunch of nerve cells that connect to the
body. The nervous system is made up of neurons, neurons, nerves, etc. Each neuron doesn’t have a specific set of “neurons”,
it just has a different set of nerves. It has a set of sensory neurons, which are all connected to each other. It just knows that it
does react to the stimulus, and it knows that the stimulus is there. They have a bunch of nervous systems that act like a filter to
get information back.

Figure 3: Example answers from the extractive BidAF model, Question + Document + Answer language model, and Multi-task
Seq2Seq model for the question “How do Jellyfish function without brains or nervous systems?” (cf. Figure 1).

Human evaluation. We use crowdworkers to

conduct three assessments. First, evaluators rate

the fluency of human and model generated answers

on a 5-point Likert Scale, from “very poorly writ-

ten” to “easily readable” (500 evaluations). Sec-

ond, evaluators are given question-answer pairs

and are asked if the answer is correct (500 eval-

uations) 7. We also evaluated a smaller subset

ourselves while additionally looking at the support

documents (100 evaluations) to assess answer ac-

curacy. Lastly, crowdworkers are given the ques-

tion and answers from two models and asked to

decide which answer they prefer while consider-

ing readability and accuracy (1000 evaluations).

Each crowdworker assessment is made by 3 dif-

ferent evaluators. The same questions are used for

all models and must be at least 5 words long.

5 Models

5.1 Extractive and Retrieval Models

Retrieval baseline and oracle. We report

ROUGE for a retrieval system that returns the

answer of the closest question in the training

set. Specifically, we perform a nearest neigh-

bor search (Johnson et al., 2017) over the aver-

age word embeddings of the question using FAST-

TEXT (Bojanowski et al., 2017). We also compute

an approximate oracle score for extractive systems

by using the reference answer to select similar sen-

tences from the support document to maximize

ROUGE. Computing ROUGE between the ref-

erence and all sets of sentences from the source

7We experimented with a variant where crowdworkers
were allowed to select a third I don’t know option, but found
it was used only around 8% of the time.

is intractable. Instead, we perform a beam search

that adds sentences maximizing TFIDF with re-

spect to the answer. The final beam is re-ranked

using ROUGE with respect to the reference an-

swer. We run this algorithm on our support doc-

ument and on the full set of web sources for each

validation and test question, selecting up to 10 sen-

tences with a beam of size 10.

Extractive models. The first baseline we ex-

plore simply returns the 7 sentences from the sup-

port document which have the highest TFIDF sim-

ilarity with the question. We also evaluate mod-

els which score sentences from the support doc-

ument based on the question and return the high-

est scoring sentences in their original order (the

number is tuned on the validation set to maximize

ROUGE). We train a model based on BidAF (Seo

et al., 2017). We create an extractive training set

by finding the span of up to 5 contiguous sentences

in the support document which have the highest

ROUGE with respect to the reference answer, and

sub-sample other support document sentences so

that the final training document is shorter than 400

words. We then train a BidAF model to predict the

extracted span in the sub-sampled support docu-

ment based on the question. For test, we compute

the span score for each individual sentence, and

return the 5 with the highest score as it performed

best compared to returning 3 or 7 sentences.

5.2 Abstractive Models

Language and Seq2Seq models. We train sev-

eral models based on the Transformer architec-

ture (Vaswani et al., 2017), both in its language

model and sequence-to-sequence (Seq2Seq) con-
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Model PPL ROUGE
1 2 L

Support Document - 16.8 2.3 10.2

Nearest Neighbor - 16.7 2.3 12.5

Extractive (TFIDF) - 20.6 2.9 17.0

Extractive (BidAF) - 23.5 3.1 17.5

Oracle support doc - 27.4 2.8 19.9

Oracle web sources - 54.8 8.6 40.3

LM Q + A 42.2 27.8 4.7 23.1

LM Q + D + A 33.9 26.4 4.0 20.5

Seq2Seq Q to A 52.9 28.3 5.1 22.7

Seq2Seq Q + D to A 55.1 28.3 5.1 22.8

Seq2Seq Multi-task 32.7 28.9 5.4 23.1

Table 3: Comparison of oracles, baselines, retrieval, extrac-
tive, and abstractive models on the full proposed answers.

Model FILL-1 acc. ROUGE-20%
N V A 1 2 L

LM Q + A 31.0 29.6 20.6 26.5 7.0 21.1
LM Q + D + A 30.9 28.9 19.9 26.3 7.8 21.3
S2S Q to A 21.7 23.0 15.5 33.6 11.5 29.5
S2S Q + D to A 27.6 26.3 19.4 32.7 10.7 28.6
S2S Multi-task 27.9 26.7 19.9 37.2 14.6 33.0

Table 4: Intermediary fill-in tasks for sequential generation.

figurations. To investigate how much information

from the document the model uses, we train a lan-

guage model on the concatenation of Question,

Support Document, and Answer (Q + D + A) as

well as on the Question and Answer (Q + A). Sim-

ilarly, one Seq2Seq configuration goes from Q to

A, and the other from Q + D to A. In all cases, Q,

D, and A are separated by special tokens.

Multi-task training. Language models are

trained to predict all tokens in the question,

web source, and answer. However, the standard

Seq2Seq model only receives training signal from

predicting the answer which is much less than

the language model gets. This can contribute to

learning poor quality representations compared

to language models. To address this, we train

a multi-task Seq2Seq model: during training,

we multi-task between several generation tasks,

including language modeling of Q + D + A by the

decoder and variations of source/target pairs (see

Appendix A). We add a masked word prediction

task (Devlin et al., 2018) where 15% of tokens in

the input are masked and must be recovered by the

model in the correct order, and append a marker

at the start of each sequence to indicate the task.

Data processing. To reduce the vocabulary, we

apply byte-pair encoding (Sennrich et al., 2016)

to generate 40K codes which are applied to all

datasets. We model a vocabulary of 52,863 to-

kens for answer generation. We use the Trans-

former implementation of fairseq-py (Gehring

et al., 2017) and train with the big architecture fol-

lowing the details in (Vaswani et al., 2017). Given

our data length, we train with a large batch size by

delaying gradient updates until a sufficient number

of examples have been seen (Ott et al., 2018).

Generation. We generate from abstractive mod-

els using beam search with beam 5. We disal-

low repeated trigrams to prevent repetition, a tech-

nique commonly used in multi-sentence summa-

rization (Paulus et al., 2017; Fan et al., 2018). For

the full answer generation task, we tune a mini-

mum and maximum length for generation on the

valid set and apply these settings to the test set.

6 Results

6.1 Overview of Model Performance

Full answer ROUGE. Table 3 shows that the

nearest neighbor baseline performs similarly to

simply returning the support document which in-

dicates that memorizing answers from the train-

ing set is insufficient. For extractive models,

the oracle provides an approximate upper bound

of 27.4 ROUGE-1. The BidAF model is the

strongest (23.5), better than TFIDF between the

question and the support document to select sen-

tences. However, these approaches are limited by

the support document, as an oracle computed on

the full web sources achieves 54.8.

Abstractive methods achieve higher ROUGE,

likely because they can adapt to the domain shift

between the web sources and the ELI5 subreddit.

In general, Seq2Seq models perform better than

language models and the various Seq2Seq settings

do not show large ROUGE differences. Figure 3

shows an example of generation for the language

model and the best Seq2Seq and extractive settings

(see Appendix F for additional random examples).

Perplexity and fill-in tasks. Tables 3 and 4

present metrics specific to sequential generation

models: perplexity of the answer, accuracy of

the model’s FILL-1 word prediction for Nouns,

Verbs, and Adjectives, and ROUGE of the con-

ditional generation of the last 20% answer words.

The language model perplexity is much lower than

that of the standard Seq2Seq setting – this is likely

linked to the number of output tokens the system
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Figure 4: Human evaluation of answer fluency and accuracy — with and without access to supporting evidence documents

Figure 5: Human preferences for pairwise comparisons. The
better model’s % preference is bolded. * indicates statistical
significance.

is required to predict at training time. The multi-

task Seq2Seq experiment, in which the Seq2Seq

decoder is trained to predict the question and the

document, in addition to the answer, can reach the

same perplexity as the language model. ROUGE-

20% shows a much starker contrast between lan-

guage modeling and Seq2Seq, as well as between

standard Seq2Seq and multi-task training. The lat-

ter achieves strong performance of 37.2 ROUGE-

1. However, both versions of the language model

are still better at FILL-1. These results suggest

that the Seq2Seq model is better than the language

model in maintaining coherence and that Seq2Seq

relies on information over many time steps.

Human evaluation. Human answers are rated

highest in terms of fluency (Figure 4, left). The ex-

tractive model outputs human-written text which

is likely fluent but with the failure mode of con-

catenating unrelated sentences. The multi-task

model performs similarly to the extractive model

which indicates that abstractive methods can gen-

erate coherent answers. The language model and

standard Seq2Seq trail behind.

To get a sense of the stability of our results, we

analyzed the standard deviation of three indepen-

dent fluency trials conducted on separate days and

we find low variation (Appendix E, Figure 10).

We also measure agreement between crowdwork-

ers in selecting positive (scores 4 and 5), negative

(1 and 2), or neutral (3) choices on the 5-point

Likert scale, and find that 2 crowdworkers agree

almost 100% of the time (Appendix E, Figure 10).

In answer accuracy (Figure 4, middle), there is

a large gap between human performance and all

models. The language model is almost never accu-

rate, while the extractive model is slightly more so

than the multi-task model. Crowdworkers assess-

ing accuracy do not have the support document.

We evaluate accuracy ourselves with the support

document in Figure 4, right. Similar to crowd-

workers, we find 40% of extractive answers to be

accurate. We find only 19% of multi-task model

answers are fully accurate; even if the model out-

put answers the question, it can generate a sen-

tence with an incorrect statement. In contrast, the

extractive model copies sentences from human-

written text. However, the multi-task model is bet-

ter at generating relevant answers (84% relevancy

compared to 68% for extractive), as the extractive

model is constrained by the support document.

Figure 5 presents pairwise preference judg-

ments of human annotators shown answers from

two of the five systems. The reference answer is

preferred over the output of all of our trained mod-

els in at least 85.5% of cases, indicating there is

substantial room for improvement. The multi-task

abstractive setting comes next, closely followed by

the extractive (multi-task is only preferred in 57%

of comparisons), then the standard Seq2Seq and

finally the language model, considered worse than

any other setting in at least 91% of cases.

We use a two-tailed binomial test to test statis-

tical significance of the pairwise judgments and it

shows that all judgments are statistically signifi-

cant at p = 0.05.

6.2 Quantitative and Qualitative Analysis

Discussion of the proposed metrics. We

present a number of metrics which provide insight

into various model behaviors. We recommend
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Figure 6: Attention over the question and supporting evidence for the Multi-task Seq2Seq model and Question + Document +
Answer language model. Attention is shown for the first word of answer generation.

future work to report full ROUGE and ROUGE-

20%. Perplexity and FILL-1 focus on local

prediction and are poor indicators of overall

appropriateness for the full task. Full answer

ROUGE discriminates reasonably well between

models with the same general architecture, but

cannot rate an abstractive system against an

extractive one. The ROUGE-20% measure

abstracts away some variability and focuses on

coherence between the beginning and end of

an answer. This metric correlates with human

judgments of quality but can only be reported for

sequential generation.

Analysis of extractive, LM and Seq2Seq

models. Language models perform better than

Seq2Seq in terms of perplexity and FILL-1, while

being significantly worse at ROUGE-20% and

human evaluations. To investigate this, we visu-

alize the attention mechanism at the start of an-

swer generation in Figure 6. The attention of

the language model is strongly focused on nearby

context when generating the first word of the an-

swer, whereas the multi-task Seq2Seq model at-

tends more evenly to relevant information in the

question and the document. This validates our as-

sumption that the language model’s focus on local

context is insufficient for high quality answers.

In Figure 7 (left), we further investigate how the

relevance and quality of the support document ex-

traction step affects the answers provided by the

extractive and abstractive setting. The ROUGE

score is displayed for data subsets, partitioned by

percentile of word overlap of the answer with the

support document (e.g. how many answer words

appear). While both models perform better for

documents with higher ROUGE overlap between

support document and human answer, the abstrac-

tive setting is much better at compensating for

when the support document has lower relevance.

Data size and initial selection. There is a large

difference between the extractive oracle ROUGE

using our support document and the oracle on full

Figure 7: (left) Model score by document-answer similarity.
(right) Seq2Seq multi-task score by amount of training data.

Figure 8: (left) TFIDF rank of source passage for oracle sen-
tences. (right) Highest rank used per question.

web sources. This suggests that the initial selec-

tion of our support document severely limits ac-

cess to relevant information. To assess the impact

of support document size, we re-run the selection

step for 1000 examples to extract 500 passages in-

stead of 20, and run the oracle on these new inputs.

Figure 8 shows the TFIDF rank of the passages

from which sentences are selected. While slightly

more sentences are extracted from the higher rank-

ing passages, less than 9% come from the first 20,

and most oracles have at least one sentence from

the last 100. For a model to perform best, it would

have to handle inputs tens of thousands of words

long. In Table 3, we show an oracle computed

on the full web sources has much higher ROUGE

than an oracle computed on the support document.

We analyze the impact of data size on perfor-

mance in Figure 7. We train the multi-task model

on 25%, 50%, and 75%, and the all of the data

to compare performance. ROUGE increases as a

function of the data used and even though ELI5 is

one of the larger QA datasets (§3), this shows that

collecting more still helps. While we only used

one reference answer per question here, recall that

over half of them have multiple answers, which

could be leveraged to train better models.
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Combining challenges. Our task blends the

inter-dependent challenges of retrieving informa-

tion, reasoning, and writing long outputs. Study-

ing each of these aspects in context is particularly

important. For example, we show that the abstrac-

tive model’s ability to compensate for a (realisti-

cally) imperfect support document is essential to

its relative success over extractive methods. The

fluency gap between the reference and the extrac-

tive system in human evaluation also suggests that

the latter may require sequential decision capabil-

ities. This kind of decision making is necessary to

address the dual challenges of reasoning over sev-

eral supporting facts and generating long coherent

outputs. We see our task’s need to combine com-

plementary systems as critical to gaining insights

into their individual behaviors.

7 Conclusion

We introduce the first large-scale long form ques-

tion answering dataset of open-ended queries with

explanatory multi-sentence answers. We show

that abstractive models generate coherent answers

and are competitive with extractive models in hu-

man evaluation. Proposed models are far from

human performance, in part due to the inability

to exploit the long full web text. We hope ELI5

will inspire future work in all aspects of long-form

QA, from the information extraction problem of

obtaining information from long, multi-document

input to generating more coherent and accurate

paragraph-length answers.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL, 5:135–146.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. Quac: Question answering in context.
In EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
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