
As automated decision support becomes increasingly accessible in a
wide variety of AI applications, addressing the preference bottleneck is
vital. Specifically, since the ability to make reasonable decisions on
behalf of a user depends on that user’s preferences over outcomes in the
domain in question, AI systems must assess or estimate these preferences
before making decisions. Designing effective preference assessment tech-
niques to incorporate such user-specific considerations (that is, breaking
the preference bottleneck) is one of the most important problems facing
AI.

In this brief survey, we focus on explicit elicitation techniques where a
system actively queries a user to glean relevant preferences.1 Preference
elicitation is difficult for two main reasons. First, many decision prob-
lems have exponentially sized outcome spaces, defined by the possible
values of outcome attributes. As an illustrative example, consider sophis-
ticated flight selection: possible outcomes are defined by attributes such
as trip cost, departure time, return time, airline, number of connections,
flight length, baggage weight limit, flight class, (the possibility of) lost
luggage, flight delays, and other stochastic outcomes. An ideal decision
support system should be able to use, for example, precise flight delay
statistics and incorporate a user’s relative tolerance for delays in making
recommendations. Representing and eliciting preferences for all out-
comes in a case like this is infeasible given the size of the outcome space.
A second difficulty arises due to the fact that quantitative strength of
preferences, or utility, is needed to trade off, for instance, the odds of
flight delays with other attributes. Unfortunately, people are notorious-
ly inept at quantifying their preferences with any degree of precision,
adding to the challenges facing automated utility elicitation.

Within AI, decision analysis, operations research, marketing, and oth-
er areas of research, a number of elicitation techniques have been devel-
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oped that attempt to address these problems. In
this article, we survey a selection of these tech-
niques with a specific focus on two key themes.
First, we focus on the use of factored utility models
(Fishburn 1967; Keeney and Raiffa 1976): these
models decompose a utility function over out-
comes (all combinations of attributes) into local
utility functions over subsets of attributes, which are
then combined to produce a “global” utility func-
tion. This breaks the combinatorial explosion in
representation size and can dramatically reduce
the number of preference parameters that need to
be assessed. Widely used additive models are a prime
example of this.

Second, we deal with methods that provide an
explicit representation of utility function uncertain-
ty. An important trend in preference elicitation,
especially within AI, is the recognition of the trade-
off between obtaining more utility information—
and thus making a better decision—and the cost of
further elicitation effort. Elicitation costs can be
cognitive (human effort in answering questions),
computational (for example, calculating a value of
certain alternative by performing intensive opti-
mization or simulation), financial (for example,
hiring a team of experts to analyze potential busi-
ness strategies), or involve time and opportunity
costs. Often elicitation costs will outweigh the
“value” of the information it provides. In such a
case, decisions should be made with partial utility
information. For instance, suppose a travel-plan-
ning agent has narrowed the list of potentially
optimal flights (measured by, say, willingness to
pay) to Flight A, whose utility is between $800 and
$1000, and Flight B, whose utility is between $980
and $1200. Further utility elicitation could deter-
mine that A is optimal, but at best it can be only
$20 “better” than B (whereas B may be up to $400
better than A). If the cost (time, cognitive, annoy-
ance, and so on) of differentiating these two flights
further is greater than $20, it is best to simply rec-
ommend Flight B. However, such deliberations
require some explicit representation of utility func-
tion uncertainty.

This article provides a brief survey of decision-
making and elicitation techniques for such fac-
tored utility models, with an emphasis on those
methods that maintain an explicit representation
of user utility function uncertainty and make deci-
sions with this representation (as opposed to, say,
point estimates of utility functions). As a result,
heuristic techniques (for example, based on heuris-
tic measures of similarity or product navigation
methods that guide a user through a database with
no quality guarantees) are not reviewed here.
Moreover, we focus our discussion of elicitation on
only a few possible interaction or query methods
whose interpretation is decision-theoretically
unambiguous. We do not claim that these are the

most natural or effective interaction modes; for
instance, recent work on example critiquing (Viap-
piani, Faltings, and Pu 2006) offers promise for
more natural user-directed interaction. But more
research is needed to determine the precise inter-
pretation of, say, example critiquing or “outcome
tweaking” in sound decision-theoretic terms. Our
presentation will focus on intuitive examples and
refer the reader to the relevant literature for key
mathematical details.

We begin with a review of additive and general-
ized additive utility models for discrete domains
and then introduce a few fundamental preference
queries upon which the elicitation methods dis-
cussed here are based. The following two sections
describe two explicit representations of uncertain-
ty as well as associated methods for elicitation:
Bayesian techniques, in which a density is main-
tained over possible utility functions; and feasible
set methods, in which utility function uncertainty
is represented by defining the space of feasible util-
ity functions. We conclude with a short summary
and discussion of future research directions.

Multiattribute Utility 
Representations

We begin with a brief informal review of multiat-
tribute utility theory (MAUT) and the two classic
factored utility models: additive and generalized
additive. We also motivate the importance of
(numerical) utilities over qualitative preferences in
automated decision support and elicitation. The
text of Keeney and Raiffa (1976) remains the defin-
itive exposition for many of these concepts.

Utility Functions
We suppose a user faces the following decision
problem: a decision d must be chosen from a set D
of possible decisions, such as the set of all flights
from Toronto to Seattle on a specific day. We take
D to be finite for this review. Each decision d � D
induces a distribution over a (finite) set of possible
outcomes defined over attributes of interest to the
user. Let attributes X1, X2, …, Xn each have finite
domains; the set of all outcomes X is the Cartesian
product of the attribute domains. In our simple
example, we will use the following attributes: flight
Class (which takes values first, business, coach),
number of Connections (0, 1, 2), total flight Dura-
tion in hours (3, 4, 5, 6, 7+), and flight Delay in
hours (0, 0–1, 1–2, 2–3, 3–5). Note that the flight
choice uniquely determines the first three attrib-
utes; the fourth attribute is stochastic, with the
probability of each outcome determined by flight
statistics. Obviously, many other deterministic (for
example, airline, nominal arrival time, and so on)
and stochastic (for example, lost luggage, cancella-
tion, actual arrival time) attributes may be includ-
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ed as well. In addition, flight Cost is a major attrib-
ute of interest, but we treat this separately below.

The preferences of a user, on whose behalf deci-
sions are made, are captured by a utility function
u:X R. A utility function serves as a quantitative
representation of strength of preferences. While a
purely qualitative ranking of (in our example)
flight options may seem to suffice, there are sever-
al important reasons to use quantitative utility
functions. First, it is useful to trade off the relative
desirability of flights with their price. Indeed, it is
often reasonable to make a quasilinearity assump-
tion: the utility of an outcome x is given by its
“objective” utility u(x) less its price. This allows
one to focus on the underlying “value” of specific
flight options during elicitation. Without strength
of preference, trade-off against price is not possi-
ble: if Flight A is preferred to B (independent of
price), but B is cheaper than A, some knowledge of
the degree to which A is preferred is required to
make a choice. Second, when some outcome
attributes are stochastic, again trade-offs involving
strength of preference are needed. For example,
suppose A and B are identical on all attributes
except odds of delay: A will almost certainly not be
late while B has a 25 percent chance of being 30
minutes late and a 10 percent chance of arriving
30 minutes early. Without assessing strength of
preference for actual arrival time, the trade-off
between A and B cannot be made. Finally, as we
will see later, since many utility elicitation schemes
rarely insist on pinning down user utilities with
complete precision, the use of quantitative utilities
allows one to provide error or quality estimates
when making decisions without precise utilities in
a way that is not possible with qualitative prefer-
ences.

Importantly, utilities can be seen as reflecting
qualitative preferences over lotteries, or distribu-
tions over outcomes (Keeney and Raiffa 1976),
with one lottery preferred to another if and only if
its expected utility is greater. Let x� � X denote the
best outcome for a specific user (for example, Dur
= 3hrs, Class = first, Conn = 0, Delay = 0) and x�

the worst (for example, Dur = 6hrs, Class = coach,
Conn = 2, Delay = 3–5).2 We use �p, x�; 1 – p, x�� to
denote the lottery or standard gamble where the
best outcome x� is realized with probability p, and
x� with probability 1 – p; we refer to the best and
worst outcomes as anchor outcomes. Since utility
functions are unique up to positive affine transfor-
mations, it is customary to set the utility of the best
outcome x� to 1, and the utility of the worst out-
come x� to 0. If a user is indifferent between some
outcome x and the standard gamble �p, x�; 1 – p,
x��, then u(x) = p. Thus lotteries give us a means to
calibrate utilities (as we will see below) using com-
parisons of outcomes to gambles. Such utilities can
also then be calibrated against price.

Additive and Generalized 
Additive Utilities
In many practical applications, specifying the util-
ity u(x) of each outcome x � X is infeasible since
the outcome space is exponential in the number of
attributes of interest. Fortunately, preferences
often exhibit internal structure that can be used to
express u concisely. Additive independence (Keeney
and Raiffa 1976) is commonly assumed in practice;
in this case u can be written as a sum of single-
attribute subutility functions:

uA(x) = u1(x1 ) + u2(x2) + … + un(xn). (1)

In our example, we would define separate subutil-
ities for each attribute Dur, Class, Conn, and
Delay, and the utility of any outcome would be
given by the sum of the subutilities. For example,
uA(4hrs,coach,0,1hr) =

uDur(4hrs) + uClass(coach) + uConn(0) + uDelay(1hr)

(see figure 1a for a graphical illustration). An addi-
tive decomposition is possible if and only if user
preferences over each attribute are independent of
the values of other attributes.3

Additive models, although popular in practice,
are restrictive in their assumptions of attribute
independence. A more general utility decomposi-
tion, based on generalized additive independence
(GAI), has recently gained attention in AI because
of its additional flexibility (Bacchus and Grove
1995; Boutilier, Bacchus, and Brafman 2001; Gon-
zales and Perny 2004; Braziunas and Boutilier
2005; Boutilier et al. 2006; Engel and Wellman
2007; Braziunas and Boutilier 2007).4 It can model
“flat” utility functions with no internal structure
as well as additive utilities. Most realistic problems
arguably fall somewhere between these two
extremes. For example, for many users the strength
of preference for Class will depend on Dur (with
preference for Class=business increasing with dura-
tion). In such a case, an additive utility function
cannot represent the true preferences. In contrast,
a GAI function with three factors is more expres-
sive:

uGAI(5hrs,business,1,0hr) = uDelay(0hr) +
uDur,Class(5hrs,business) + uClass,Conn(business,1).

One can intuitively think of such factors as a
grouping of preferentially dependent attributes.
Figure 1b illustrates this GAI model and its contrast
with the additive model.

More generally, assume a collection of m factors;
each factor j is associated with a subset of attributes
Ij. We define Xj = �i�Ij Dom(Xi) to be the set of par-
tial outcomes (or suboutcomes) restricted to attrib-
utes in factor j; xj � Xj is a particular instantiation
of attributes in factor j (such as 5hrs,business in the
first factor of our example). GAI models (Fishburn
1967; Bacchus and Grove 1995) additively decom-
pose a utility function over possibly overlapping
factors. The factors are generalized additively inde-
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pendent if and only if the user is indifferent
between any two lotteries with the same marginals
on each factor. Furthermore, if GAI holds, the util-
ity function can be written as a sum of real-valued
functions uj such that (Fishburn 1967):

uGAI(x) = u1(x1) + … + um(xm).

We shall refer to uj as a subutility function for fac-
tor j.

Utility Function Semantics
The presence of additive or GAI structure in pref-
erences allows us to represent utility functions
compactly. However, user utility functions are
rarely known a priori; they must be assessed based
on observed user preferences (for example,
responses to preference queries). Therefore, to
ensure a consistent interpretation of user prefer-
ences—and to design unambiguous queries for use
by elicitation schemes—utility function parame-
ters should have a well-defined decision-theoretic
interpretation. In both additive and GAI models,
parts of the utility function can be assessed locally:
this involves querying only single attributes or

small subsets of attributes. Other parts require
global assessment involving, for example, the com-
parison of complete outcomes over all attributes.
We illustrate the distinctions with additive models
and provide a brief description of similar consider-
ations for GAI models.

Assume an additive model as defined in equa-
tion 1. We can conveniently decompose the subu-
tility functions ui(xi) into local value functions
(LVFs) vi and scaling constants �i, so that ui(xi) = 
�i vi(xi). Then,

uA(x) = �1 v1(x1) � … � �n vn(xn). (2)

This allows us to separate the representation of
preferences into local parameters vi and global
parameters �i (Keeney and Raiffa 1976). Signifi-
cantly, LVFs reflect only the relative strength of
preference among single attribute values, and thus
can be defined using “local” lotteries that involve
no other attributes. Without loss of generality, we
can set vi(xi

�) = 1 and vi(xi
�) = 0, where xi

� and xi
� are

the best and worst levels of attribute i. In our addi-
tive example, assume the best value for Class is
first, so vClass(first) = 1, and the worst value is coach,
so vClass(coach) = 0. If a user is indifferent between
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Figure 1. A Graphical Representation of the (a) Additive and (b) GAI Model from Our Four-Attribute Example.

Each node (oval) is a factor comprising a set of attributes (by definition, single attributes in the additive case). GAI factors are linked if their
attributes overlap, with shared attributes appearing in square boxes.



flying business for sure and the lottery in which he
or she gets first class with 70 percent and coach
with 30 percent, then the LVF for class has
vClass(business) = 0.7. Critically, the user does not
have to consider the values of the remaining attrib-
utes. Under the additive model, this preference
holds for any fixed value of the other attributes.
Thus we can assess the relative strength of prefer-
ence for each value of each attribute independent-
ly, without reference to other attribute values. This
focus on preferences over individual attributes has
tremendous practical significance, because people
have difficulty taking into account more than five
or six attributes at a time (Green and Srinivasan
1978).

The scaling constants �i are required to properly
calibrate LVFs across attributes. If a user has very
strong feelings about the number of connections
(for example, is willing to sacrifice the preferred
value of most other attributes to ensure a direct
flight), then the differences in Conn should have a
much stronger influence on the relative utility of
an outcome than differences in Class. This is
reflected in the scaling constants, which must, by
their very nature, be determined in a “global” fash-
ion, involving queries that use all attributes.

Assessment of scaling constants involves the
notion of a reference outcome, denoted by x0 = (x0

1,
x0

2, …, x0
n). The reference outcome can be any full

outcome. It is common to choose the worst out-
come x� as x0; but generally, any outcome that is
especially salient for the user (for example, the
most commonly taken flight) will prove useful,
and it can be best to let the user choose this. In our
example, let x0 = (4hrs, business, 0, 30min) be the
reference outcome (we indicate reference values by
underlining). We now define x�i to be the full out-
come where the ith attribute is set to its best level
while other attributes are fixed at their reference
levels; we denote its utility as ui

�. In our example,
x�Class = (4hrs, first, 0, 30min). x�i and ui

� are
defined similarly. It suffices to define �i = ui

� – ui
�.

As a consequence, to fully assess scaling constants
�i, we need only elicit the utilities of 2n global out-
comes (x�i and x�i for each attribute i). We discuss
specific query types in the next section. The ease of
representation and assessment makes additive util-
ity the model of choice in most practical applica-
tions.

The key difference between additive and GAI
models with regard to elicitation lies in the seman-
tics of subutility functions ui. In additive models,
the quantities ui(xi) = �ivi(xi) have a clear decision-
theoretic meaning and are unique assuming
straightforward normalization of LVFs and scaling
constants. In contrast, GAI subutility functions are
not unique and, in the absence of further qualifi-
cations, do not have a well-defined semantic inter-
pretation. Intuitively, the overlap in factors means

that a change in one subutility function can be
compensated for by a change in another with
which it shares an attribute, leaving the overall
utility function intact. Indeed, in general there are
infinitely many valid GAI decompositions of a util-
ity function (Braziunas and Boutilier 2005). Fish-
burn (1967) shows how the use of a reference out-
come (as defined previously) can be used to
provide a unique canonical decomposition of a
GAI function (with an implicit elicitation process
that involves global queries). Braziunas and
Boutilier (2005) demonstrate how GAI structure
can be exploited further to determine the LVFs for
GAI models using local queries only and scaling
constants using a small number of global queries.

To illustrate, consider our GAI flight example.
We cannot simply ask a local query about the rel-
ative utilities of the instantiations of factor 1 (Dur,
Class): because of the overlap with factor 2 (Class,
Conn), a user could assign many different relative
preference strengths in factor 1 by compensating
for these in factor 2 (thus giving rise to the same
utility function in each case). However, if we fix
the value of Conn to its reference level (Conn = 0)
when asking local queries about the LVF for factor
1, this is sufficient to cut off any influence on the
user’s strength of preference from the values in
other factors. In general, we can define a unique
conditioning set for each factor consisting of a small
number of attributes (Braziunas and Boutilier
2005). When any local query regarding the LVF for
a factor i is asked, the user is to suppose that the
attributes in the conditioning set are fixed to their
reference levels. In our example, for the (Dur,
Class) factor, queries about the relative preference
of two instantiations (for example, 4hrs,coach ver-
sus 5hrs,business) would be posed in the context
of Conn = 0. As a result, LVFs can be elicited using
the local queries as in the additive model, but with
a small number of extra attributes fixed to provide
context. The scaling constants can be estimated in
exactly the same fashion as in the additive model
(with calibration of 2m global outcomes, that is,
two per factor). We refer to Fishburn (1967), Gon-
zales and Perny (2004), and Braziunas and Boutili-
er (2005) for further details.

Elicitation Queries
Additive and GAI models and the semantics of
their parameters naturally lend themselves to elic-
itation of these parameters using direct utility
queries, where a user is asked to assess the global
(or local) utility of an outcome (or suboutcome
over a single attribute or factor value). Direct utili-
ty queries, however, require direct calibration on
the part of the user. Equivalently, standard gamble
queries can be used, where a user is asked to assess
the probability p with which he or she is (roughly)
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indifferent between some (local or global) outcome
x and a lottery �p, x�; 1 – p, x��. These too are dif-
ficult for a user to answer accurately (Keeney and
Raiffa 1976). Instead, we focus on cognitively sim-
pler bound and comparison queries, with both
local and global variants of each. These queries can
be used in a variety of elicitation schemes as we
discuss in the following sections.

In interactive elicitation settings, the queries we
pose to the user affect not only the difficulty or
accuracy of user responses, but also the modeling
and computational efficacy of elicitation schemes.
Each query response imposes a constraint on the
set of possible utility functions the user could have
in mind. The shape and structure of that space in
turn influences how hard it is to compute an opti-
mal decision or a good elicitation policy. Some
queries are easy to answer, but do not provide
much information, while more informative
queries are often costly (for example, in terms of
cognitive burden on the user).

Local Queries
In decision problems with more than a handful of
attributes, local queries allow the user to concen-
trate only on a small subset of relevant attributes,
namely, the attributes in a specific factor j and its
conditioning set (or in additive models, single
attributes without conditioning variables). The
user does not have to consider the values of
remaining attributes, since such attributes are util-
ity independent of the attributes in factor j (given
an instantiation of the conditioning set). Further-
more, in the types of queries described below, the
user is always asked to assume that the attributes in
the conditioning set are fixed at their reference level.
In our example, as discussed previously, local
queries for parameters of the first factor would
involve instantiations of Dur and Class; the condi-
tioning set contains a single attribute Conn, whose
value would be fixed at its reference level 0 in each
local query.

A local comparison query simply asks a user to
compare two local outcomes: “Would you prefer a
4hrs,business flight to 6hrs,first flight, assuming
Conn = 0?” If the user answers “yes,” then v1
(4hrs,business) ≥ v1 (6hrs,first); otherwise, the first
local value is less than the second. Compared to
other types of queries, local comparison queries are
arguably the most natural and easiest to answer.
Note that the advantage of local queries becomes
especially apparent when the number of domain
attributes is large.

In theory, we could ask the user to directly spec-
ify the local value of some outcome xj by using the
definition of LVFs involving local lotteries. In our
example, suppose the top anchor in the first factor
(that is, best outcome given Conn = 0) is 3hrs,first,
and the bottom anchor is 7+,coach. We could find

the local value v1(6hrs,business) by querying the
user for the probability p at which she or he is
indifferent between flying 6hrs,business for sure
and the lottery �p,(3hrs,first); 1 – p,(7+,coach)�. Of
course, assessing this precise probability p is hard
for a user. Therefore, less informative, but easier to
answer bound queries are of more practical use.
Here, the probability p is fixed in the query, and
the user has only to compare two local outcomes,
for example, “Would you prefer 6hrs,business to
the lottery �0.2,(3hrs,first); 0.8,(7+,coach)�, assum-
ing Conn = 0?” If the answer is “yes” (v1(6hrs,busi-
ness) ≥ 0.2), then the lower bound becomes 0.2, if
“no”, then the upper bound becomes 0.2. Instead
of eliciting the precise indifference level p, we sim-
ply ask the user to bound it.

Global Queries
Global queries are needed to properly calibrate
LVFs across factors by assessing the values of glob-
al parameters u1

�, u1
�, …, um

�, um
�. The anchor utili-

ty uj
� (uj

�) is the global utility of the outcome in
which the jth factor is set to its best (worst) value,
and all the other attributes are fixed at reference
levels. In our four-attribute example, u1

� is the util-
ity of the full outcome (3hrs, first, 0, 30min), since
the best values of the first factor are (3hrs, first),
and the reference outcome is (4hrs, business, 0,
30min).

Global queries do require consideration of all
attribute values and as such should be minimized.
However, for both additive and GAI models, we
need only assess the utilities of 2m anchor out-
comes (two for each factor); furthermore, these
anchor outcomes are not arbitrarya—most of their
attributes are fixed at reference levels. As such,
global queries need only be asked about a small
number of salient outcomes.

As with local queries, direct utility or probabili-
ty queries in the global case are problematic.
Instead of asking users to assess precise parameter
values, we can again employ easier global compari-
son and global bound queries, analogous to local
comparison and bound queries above, in which
users are asked to make a choice (assert a yes or no
preference) between two global outcomes, or a
global outcome and a global lottery. As above,
these impose linear constraints on global parame-
ter values.

There are many other types of queries that can
be used for assessing utility function parameters.5

For example, a comparison query could be extend-
ed to select the most preferred outcome from the
set of k alternatives; such a task would impose k –
1 inequalities among available choices. A total
ranking query expects the user to rank all specified
alternatives, yielding order information relating
every pair of (possibly local) outcomes. Queries
could also be less “explicit”; a decision support sys-
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tem could pose implicit queries by changing the
user environment (such as options available on the
web page), and obtain responses by observing the
user’s behavior (links followed, time spent on the
page, and so on).

Bayesian Elicitation
Representation of uncertainty over user prefer-
ences is a foundational issue in preference elicita-
tion, affecting decision and query selection crite-
ria, and influencing the algorithmic methods used
to compute decisions and queries. Here, we con-
centrate on two distinct explicit uncertainty repre-
sentation paradigms: Bayesian, where uncertainty
over utilities is quantified probabilistically, and
feasible set uncertainty, where the space of feasible
utilities is defined by constraints on a user’s utility
function parameters.

In both cases, two questions have to be
answered. First, if utility function is not fully
known and further elicitation not possible, what
criterion should be used for making good decisions
with the available preference information? Second,
if one can obtain more information about user
preferences, what is the best query to ask next?

Uncertainty Representation
In a Bayesian paradigm, utility functions are mod-
eled as random variables drawn from a prior distri-
bution; so, even though the decision support sys-
tem does not know the user’s exact preferences, it
has probabilistic information regarding his or her
utility function parameters. These “beliefs” are
updated using Bayes’s rule, and the value of any
decision or query is estimated by taking expecta-
tions with respect to possible user utility functions.
An important precondition for representing uncer-
tainty in terms of probability distributions over a
set of utility functions is for these functions to be
extremum equivalent, that is, share the same best
and worst outcomes (Boutilier 2003).

While most recent work on decision making
using distributions over utility functions has been
done within the AI community (Chajewska and
Koller 2000; Chajewska, Koller, and Parr 2000;
Boutilier 2002; Braziunas and Boutilier 2005), the
origins of this approach can be traced back to
much earlier research in game theory and decision
theory: probabilistic modeling of possible payoff
functions provides the foundation to the well-
established field of Bayesian games (Harsanyi 1967;
1968); a related concept of adaptive utility is dis-
cussed in Cyert and de Groot (1979); de Groot
(1983); and Weber (1987) proposes using expecta-
tions over utility functions as a possible criterion
for decision making with incomplete preference
information. The hierarchical Bayesian techniques
used in the marketing field of conjoint analysis (we

discuss special forms of conjoint analysis in the
next section as well) also treat utilities as random
variables, drawn from a distribution that aggre-
gates the utilities of users from a specific popula-
tion.

An important issue in the Bayesian approach to
modeling uncertainty over utility functions is the
choice of prior probability distributions. Ideally,
the probability model would be closed under
updates (otherwise, it needs to be refit after each
response) and flexible enough to model arbitrary
prior beliefs. Mixtures of Gaussians (Chajewska,
Koller, and Parr 2000), mixtures of truncated Gaus-
sians (Boutilier 2002), mixtures of uniforms
(Boutilier 2002; Wang and Boutilier 2003; Braziu-
nas and Boutilier 2005), and Beta distributions
(Abbas 2004) are among possibilities proposed in
the literature. Priors can also be learned from data:
Chajewska et al. (1998), for example, cluster utili-
ty functions using a database of utilities from a
medical domain.

Decisions with Partial Information
Generally speaking, good (or even optimal) deci-
sions can be realized without complete utility
information. If a prior density π over the utility
function parameters is available, the best decision
with respect to the prior is

Here, Prd(x) is the probability that outcome x is
realized under decision d. Figure 2a offers an intu-
itive illustration of the expected utility of a deci-
sion given a density representing utility function
uncertainty (with a sum or integral over possible
utility functions and their probability depending
on whether the set of possible utility functions is
discrete or continuous).

To illustrate, consider the example in table 1
(ignoring flight attributes for simplicity). Suppose
we’ve narrowed down a user’s preferences for
flights from Toronto to Seattle to one of two utili-
ty functions, u1 and u2, with “willingness to pay”
for the only three available flights listed in table 1. 

If the system believed that the user possessed
utility function u1 with probability 0.6 and u2 with
probability 0.4, then if no additional information
were available (or were deemed too costly), Flight
C would be recommended (since its expected val-
ue is 0.6 � $300 + 0.4 � $600 = $420, compared to
$380 for both A and B).

In the case of GAI utilities, we might assume a
prior distribution over the anchor utilities uj

� and
uj

� and the LVF parameters vj. Because of GAI struc-
ture, the optimal (in expectation) outcome x* can
usually be computed efficiently by some variant of
the variable elimination algorithm (Braziunas and
Boutilier 2005; Boutilier et al. 2006).

d Pr E u xd D d
x

= ( ) ( )[ ]∈ ∑arg max x π
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Elicitation Strategies
If uncertainty over utilities is quantified proba-
bilistically, the value of a query can be computed
by considering the values of updated belief states
(one for each possible query response) and weight-
ing those values by the probability of correspon-
ding responses. This leads to a simple elicitation
algorithm: at each step, the query with the highest
expected value of information (EVOI) is asked, and
the distribution over utilities is updated based on
user responses; the process stops when the expect-
ed value of a decision meets some termination cri-
terion. Figure 2b illustrates the update of utility
function beliefs given possible responses to a (in
this case binary) query.

In our simple three-flight example above, sup-
pose a query q regarding some outcome attribute
might be answered positively (response r1) with
probability 0.8 and negatively (r2) with probability
0.2 if the user has utility u1; but positively with p =
0.1 if the user has utility u2. By Bayes’s rule, if the
user responds r1—which, given the system’s
beliefs, will happen with p = 0.52—the beliefs
regarding u1 and u2 become roughly (0.92, 0.08),
and the expected value $396 makes flight A the
best decision. Conversely, response r2 would pro-
duce beliefs (0.25, 0.75) over these utility func-
tions, leading to flight B (with expected value
$537) being assessed the best. Thus the query q is
quite valuable: no matter what the user responds,
the system’s decision will change (from C to A or

B). The EVOI of this query is $44: this is the
amount by which the expected value of the post-
query decision, $464 = 0.52 � $396 + 0.48 � $537,
improves the expected value of the prequery deci-
sion, $420.

Sequential EVOI takes into consideration all pos-
sible future questions and answers, providing an
optimal trade-off between query costs (the burden
of elicitation) and the potentially better decisions
one can make with additional preference informa-
tion. Computing a sequential elicitation policy
amounts to solving a partially observable Markov
decision process (POMDP) with a continuous state
space (Boutilier 2002). The state space of the elici-
tation POMDP is the set of possible utility func-
tions U; actions are either queries or (terminal)
decisions from the set D; and, the observations in
the POMDP are the possible user responses to
queries, which are related to the user’s underlying
utility function (perhaps stochastically if the pos-
sibility of erroneous responses is admitted). The
advantage of the sequential POMDP model lies in
its ability to determine the value of a sequence of
queries, where myopic methods (see below) may
see no value in any single query in that sequence.

Of course, solving any POMDP is generally com-
putationally difficult, and elicitation POMDP is no
exception. Chajewska et al. (1998) instead com-
pute an offline querying policy by greedily con-
structing a decision tree that assigns an unknown
utility function to one of the “prototypical” clus-
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a b

Decision d1

Density over Utility Functions
Initial Beliefs

Query Response r1 Query Response r2

Updated Beliefs | r1 Updated Beliefs | r2

Exp.Util. if u1:               EU(d1, u1) 
Exp.Util. if u2:        EU(d1, u2)
Exp.Util. if u3:    EU(d1, u3)
on so on ...

EV(d1) = P(u1)EU(d1, u1) + P(u2)EU(d1, u2) + ...

Figure 2. Utility Functions.

(a) Expected utility of a decision given a density representing utility function uncertainty. (b) Update of beliefs about utility functions giv-
en possible responses to a query.



ters of utility functions from a database of utilities.
Other approaches use myopic online strategies for
query selection. A myopic strategy selects a query
that greedily maximizes its EVOI without consid-
ering the impact of future queries (Chajewska,
Koller, and Parr 2000; Braziunas and Boutilier
2005). Intuitively, at each elicitation step, the
query is selected as if it were the last query to be
asked before a decision is made. In figure 2b, just as
in our simple example above, the myopic value of
a query is determined by the values of the subse-
quent belief states, each weighted by the probabil-
ity of receiving the corresponding query response
from the user (which itself depends on the prior
beliefs).

For GAI models, if the priors over LVF parame-
ters are specified using independent mixtures of
uniforms, it can be shown that the best myopic
bound query can be computed analytically (Brazi-
unas and Boutilier 2005). This is due to the fact
that mixtures of uniforms are closed under updates
resulting from bound queries, which makes it pos-
sible to maintain an exact density over utility
parameters throughout the elicitation process. An
extension to comparison and other types of
queries is still an open research question.

Elicitation with Feasible Utility Sets
Another way to model uncertainty over utilities is
to maintain an explicit representation of a set U of
feasible utility functions, namely, those consistent
with our knowledge of the user’s preferences (for
example, based on responses to elicitation queries
asked so far). We refer to this form of “set-based”
uncertainty as strict uncertainty, following French
(1986). The set U is updated—reduced in size—
when new preference information is received dur-
ing the elicitation process. Unlike the Bayesian
case, we do not have probabilistic information
about the relative likelihood of the different u � U.
If attention is restricted to the types of queries
described in the Elicitation Queries section previ-
ously, the space U is conveniently characterized by
a set of linear constraints on utility function
parameters; if each parameter is bounded, U is sim-
ply a convex polytope in utility parameter space
(see figure 3a).

As in Bayesian elicitation, two main issues have
to be addressed: how to make decisions with the
feasible utility set and how to select good elicita-
tion queries when a user is willing to provide addi-
tional preference information.

Decision Criteria
In the Bayesian case, maximizing expected utility
by taking expectations over possible user utility
functions is a natural objective for making deci-
sions under utility function uncertainty. Without

probabilistic information, the choice of an appro-
priate decision criterion is much less obvious. In
this section, we discuss a sample of the most com-
mon rules for decision making under strict utility
function uncertainty. Since different decision rules
generally prescribe different alternatives, little con-
sensus exists in this area. French (1986) provides
an extensive critique of various decision criteria
under strict uncertainty.

To illustrate the various concepts presented in
this section, we use the simple three-flight example
from the previous section, detailed in table 1. If a
decision support system were to recommend a
flight without knowing the user’s utility function
(either u1 or u2), what criterion should it use?

Undominated Outcomes. Imprecisely specified
multiattribute utility theory (ISMAUT) (White,
Dozono, and Scherer 1983; White, Sage, and
Dozono 1984; Anandalingam and White 1993) is
one well-studied model for decision making with
partial preference information. Similar frameworks
have been explored in Fishburn (1964); Sarin
(1977); Kirkwood and Sarin (1985); Hazen (1986);
Weber (1987); and Blythe (2002). ISMAUT gener-
ally applies to situations where the set of feasible
outcomes X is of computationally manageable
size. Prior information on local value functions,
scaling constants, and comparisons between pairs
of outcomes is used to narrow down the set of out-
comes to those that are undominated by any other
alternative. We say one outcome dominates anoth-
er if its utility is greater for any u � U (in our exam-
ple, none of the flights is pairwise dominated by
another flight).6 This smaller set of nondominated
alternatives is then presented to the decision mak-
er; the optimal outcome is guaranteed to be in it.
ISMAUT does not propose a decision criterion;
however, its main ideas have strongly influenced
further developments in preference elicitation.

Maximin Return. Without distributional infor-
mation about the set of possible utility functions
U, it might seem reasonable to select an outcome
whose worst-case return is highest:
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Flight A Flight B Flight C
u1 $400 $200 $300
u2 $350 $650 $600

Table 1. An Illustrative Example for Decision and Elicitation Criteria. 

u1 and u2 are two possible utility functions, with different valuations of the
three flight outcomes. In general, the set of possible utility functions is con-
tinuous.



In this section, for simplicity, we assume that each
decision d � D leads to a distinct outcome x � X,
so the decision and outcome spaces are equivalent.
Maximin decision is robust because it provides a
minimum utility guarantee. In our example, the
maximin optimal flight is Flight A, with a guaran-
teed minimum utility of $350. Maximin was intro-
duced by Wald (1950), and proposed in 2004 by
Salo and Hamalainen7 as a possible criterion for
dealing with uncertain utilities.

Uniform Distribution. This criterion dates back to
Laplace and Bernoulli, who maintained that com-
plete lack of knowledge about the likelihood of
world states should be treated as if all states have
equal probability. Following this principle, an opti-
mal decision maximizes the mean value (over pos-
sible u � U) of possible outcomes. Flight C would
be optimal in our example with an average utility
of $450. The uniform distribution criterion is also
known as the central weights decision rule in rea-
soning with utility function uncertainty (Salo and
Hamalainen 2001), and is implicitly employed in
Iyengar, Lee, and Campbell (2001) and Ghosh and
Kalagnanam (2003), as well as in polyhedral con-
joint analysis (Toubia, Hauser, and Simester 2004).
The feasible utility set is represented by a convex
polytope in the space of multiattribute utility
parameters. The “center” of such a polytope then
serves as a representative utility function for the
whole feasible set.

Minimax Regret. The minimax regret criterion
was first described by Savage (1951) in the context
of uncertainty over world states, and has been
advocated more recently for robust decision mak-
ing with incompletely specified utility functions
(Boutilier, Bacchus, and Brafman 2001; Salo and
Hamalainen 2001; Boutilier et al. 2006). It requires
that our system recommend an outcome x* that
minimizes maximum regret with respect to all pos-
sible realizations of the user’s utility function. This
guarantees worst-case bounds on the quality of the
decision made under strict uncertainty and is
therefore reasonable in many real-world scenarios
(Wang and Boutilier 2003; Boutilier, Sandholm,
and Shields 2004; Boutilier et al. 2006; Braziunas
and Boutilier 2007). The pairwise regret of choosing
x instead of x� given the feasible utility set U is R(x,
x�, U) = maxu�U u(x�) – u(x). The maximum regret
of choosing outcome x is MR(x, U) = maxx �X R(x,
x�, U). Finally, the outcome that minimizes max
regret is the minimax optimal decision:

In our example, the max regret of choosing Flight
A is $300: if we recommend A, the user may in fact
have utility u2, in which case A is $300 worse than
B, the optimal flight given u2. Similarly, Flight B

x xx X
* arg max min ,= ( )∈ MR U

x xx X
* arg max min= ( )∈ ∈u U u has a max regret of $200, and Flight C $100. Thus

C is the minimax optimal choice as it has the small-
est max regret. Flight A and utility function u1
serve as the “adversarial witnesses” that “prove”
how much we could regret recommending C (since
under u1, A is $100 better than C).

In a GAI model, utility structure can be exploit-
ed in order to express pairwise regret as a sum of
“local” factor regrets. Employing the type of
queries described above (and thus ensuring the
locality of constraints on utility parameters) allows
us to efficiently compute pairwise regret using lin-
ear programming. It can then be shown that the
maximum regret and minimax regret optimiza-
tions can be effectively solved using suitable
mixed-integer formulations (Boutilier et al. 2006;
Braziunas and Boutilier 2007).

Elicitation Strategies
When further utility information can be elicited, a
natural question is what query to ask next. With
feasible utility sets, we can distinguish two general
elicitation paradigms: uncertainty reduction and
decision quality improvement.

Uncertainty Reduction. Many methods exist in
diverse research areas, such as conjoint analysis
and ISMAUT, whose central idea is to choose
queries according to criteria based on the size and
shape of the feasible utility set. In most cases, a
normalized additive utility function is assumed
(see equation 2) in which either scaling constants
�i or local value parameters vi (but not both)8 are
not fully known. Figure 3a provides a graphical
representation of the feasible utility polytope.
Information about utility parameters can be
obtained by using bound queries on parameter val-
ues, or, more commonly, by asking the user to
compare pairs of full outcomes. In classical
ISMAUT, the elicitation strategy problem is not
addressed; instead, the user is asked to order ran-
domly selected pairs of outcomes until the set of
nondominated alternatives is reduced to accept-
able size.

More recent methods consider several heuristic
query strategies based on the size and shape of the
convex polytope that represents possible utility
parameter values. The queries are limited to full
outcome comparison queries. The Q-Eval algo-
rithm (Iyengar, Lee, and Campbell 2001) follows a
querying strategy whose goal is to reduce the vol-
ume of the utility polytope U as quickly as possible.
Since a response to a query is not known before-
hand, Q-Eval (heuristically) chooses the query that
comes closest to bisecting the polytope into two
equal parts. A similar approach is proposed by
Ghosh and Kalagnanam (2003); the differences lie
in approximations used to implement the query-
ing strategy. Both methods are myopic, since they
do not consider the impact of a sequence of
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queries. Holloway and White (2003) present a
POMDP model for sequentially optimal elicitation
in an ISMAUT-like setting, where an optimal poli-
cy can minimize the number of queries to reach a
provably optimal decision.

Recent developments in conjoint analysis also
fall under uncertainty reduction category. Con-
joint analysis is a set of techniques for measuring
consumer tradeoffs among multiattribute products
and services. Despite differences in terminology
and methodology, conjoint analysis and multiat-
tribute decision analysis (in particular, ISMAUT)
deal with similar issues in preference elicitation
and modeling. Adaptive query design for individ-
ual users in the manner of ISMAUT was first con-
sidered in Toubia et al. (2003) and Toubia, Hauser,
and Simester (2004). Just as in ISMAUT, this
approach, termed the polyhedral method, works by
iteratively constraining the polytope of feasible
utility parameter values as a result of responses to
comparison queries. The goal is to reduce the vol-
ume of the polytope as fast as possible, while also
considering the polytope’s shape. The polytope is
approximated by a bounding ellipsoid centered at
the analytic center of the polytope (a point with
maximal distance from each facet), as illustrated in
figure 3b. Queries are designed to partition the
bounding ellipsoid into approximately equal parts;
in addition, shape heuristics are used to favor cuts
that are perpendicular to the longest axes of the
ellipsoid. The rationale is not only to reduce over-

all uncertainty, but also to balance uncertainty in
each dimension. Consider the example in figure
3b, where the two longest axes are shown (assume
that axes in other dimensions are shorter). Proto-
type utility functions are designated where these
axes intersect the boundaries of the polytope. Then
a choice query is posed using specially designed
(generally hypothetical) product configurations
that are optimal for these prototypes and whose
indifference profiles roughly equally bisect the
polytope between the prototypes. Figure 3c shows
the indifference profiles for product x1 (which is
optimal at u1) versus the other three profiles (x2,
x3, and x4). The user is presented with the choice
query “Which of x1, x2, x3 or x4 do you prefer?” If
he or she answers x1, then the shaded region
(where the inequalities u(x1 ) ≥ u(xi), i � 1 hold) is
the new feasible region.

The main limitation of uncertainty reduction
methods is the absence of decision quality consid-
erations in elicitation. For instance, one can be
quite confident in the quality of a decision (for
example, even possibly confirming its optimality)
despite the fact that considerable uncertainty
exists in the user utility function. Next, we discuss
one way of guiding utility elicitation using deci-
sion quality.

Decision Quality Improvement. The minimax
regret criterion can be used both for making robust
decisions under strict uncertainty and for guiding
the elicitation process itself. In contrast to Bayesian
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Figure 3. Elicitation with the Feasible Utility Polytope. 

(a) A two-dimensional utility polytope induced by responses to elicitation queries; (b) the analytic center c and bound-
ing ellipsoid used in polyhedral conjoint analysis—the intersection of its axes with the polytope boundaries define util-
ity prototypes; (c) the indifference hyperplanes between product profile x1 (optimal for u1) and the other three prod-
uct profiles, and the feasible region (shaded) that remains if x1 is preferred to the other three.



elicitation, the quality (difference from optimal) of
the minimax-optimal decision can be bounded;
and these bounds can be tightened with further
elicitation. We can query the user until minimax
regret reaches an acceptable level, elicitation costs
become too high, or some other termination crite-
rion is met. Each response to a preference query
results in a new decision situation inducing a new
level of minimax regret (note that regret cannot
increase with more preference information).

One way to choose queries is described in Brazi-
unas and Boutilier (2007). The basis of this heuris-
tic myopic strategy is a generalization of the cur-
rent solution (CS) elicitation strategy (Boutilier et
al. 2006), which has been shown empirically to be
very effective in quickly reducing minimax regret
in several domains (Boutilier et al. 2006; Boutilier,
Sandholm, and Shields 2004). The CS strategy con-
siders only parameters involved in defining mini-
max regret and asks a query about the parameter
that offers the largest potential reduction in regret.
In our example, the current solution consists of the
minimax-optimal outcome Flight C and the wit-
ness outcome Flight A. Therefore, the CS strategy
would ask only queries that involve the attribute
instantiations occurring in either Flight A or Flight
C, but not B (or any other flight). Instead of reduc-
ing uncertainty uniformly across the feasible utili-
ty space, the CS method concentrates elicitation
effort on relevant regions of utility space. In Brazi-
unas and Boutilier (2007), the CS method is devel-
oped for GAI models, using both the local and
global queries described above. Heuristic tech-
niques for making tradeoffs involving estimated
regret reduction and the cognitive difficulty of
queries (for example, where global queries are con-
sidered more difficult than local queries) are also
investigated.

Summary and Future Directions
We have provided an overview of factored utility
representations and several techniques for prefer-
ence elicitation designed specifically for multiat-
tribute models. Our emphasis has been on models
that maintain an explicit representation of utility
function uncertainty and use this model both to
make decisions and to determine which queries to
pose to a user. We divide these techniques into two
broad classes. Bayesian models require a prior
probability distribution over user utility functions.
Optimal decisions and elicitation strategies are pre-
scribed by the natural application of well-accepted
notions like maximum expected utility and
expected value of information. Feasible set meth-
ods avoid problems of prior distributions and com-
plicated computational approximations by assum-
ing no distributional knowledge about user
utilities. In most cases, the feasible set of utility

functions is represented by a convex polytope in
utility parameter space. Among the possible crite-
ria for optimization and query selection, minimax
regret stands out because of its focus on decision
quality improvement rather than simple utility
uncertainty reduction.

Preference elicitation research touches many
disciplines, from AI, operations research, and eco-
nomics, to human-computer interaction, behav-
ioral psychology and marketing. While progress
has been significant in recent years, a number of
fascinating research challenges must be tackled to
extend the reach of preference elicitation, whether
scaling to larger domains, or improving the nature
of user interaction. We list a few important re -
search directions here.

Obviously, computational improvements in
both Bayesian and feasible set approaches will con-
tinually be required to scale to domains with large
numbers of attributes and outcomes. Improving
user interaction can be dealt with on a number of
fronts. First, we can try to minimize the number of
user queries by computing optimal sequential
query policies. Almost all current approaches are
myopic, focusing on the single next best query to
ask (one exception being (Boutilier 2002)). Con-
sidering new modes of interaction is also vital. For
instance, integrating elicitation methods that
focus on simple-to-answer queries could be com-
bined with more user-directed exploration meth-
ods such as example critique (Viappiani, Faltings,
and Pu 2006), especially if the “open-ended”
responses of users can be given a precise semantic
interpretation. Other hybrid preference assessment
techniques could combine elicitation specific to a
particular user with collaborative filtering methods
(in which the preferences of a user are partially
induced by extrapolating the preferences of other
users). Methods for active collaborative filtering
(Boutilier, Zemel, and Marlin 2003; Jin and Si
2004) can be viewed as taking a step in this direc-
tion, but currently use only impoverished utility
models. Similarly, integrating active elicitation
with methods for inferring preferences from pas-
sive observation is especially important for the
long-term, repeated interaction with individual
users. The careful experimental study of query
costs for different modes of interactions will cer-
tainly influence the future design of elicitation
schemes.

Notes
1. Passive or “active” observation of user behavior, social
filtering techniques like collaborative filtering (Konstan
et al. 1997), or their combination with direct preference
elicitation (Pennock and Horvitz 2000; Boutilier, Zemel,
and Marlin 2003) can also be used to assess preferences.

2. These are the best and worst outcomes ignoring price,
reflecting our quasilinearity assumption. Note that pref-
erences need not be monotonic in quantitative attrib-
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utes; for example, a 7+ hour flight may be preferred to a
6-hour flight by a certain user (possibly dependent on the
number of connections) because it provides a better
opportunity to sleep.

3. Formally, attributes should be additively independent of
each other; that is, a user should be indifferent between
any two lotteries whose marginal probability distribu-
tions for each attribute domain are identical. For exam-
ple, if a user’s preferences over two Boolean attributes A
and B were additively independent, then the user would
be indifferent between receiving: (1) outcomes ab and ab
each with p = 0.5; and (2) ab, ab, ab, and ab each with p
= 0.25. In each lottery, the marginal distributions over A
(p(a) = p(a) = 0.5) and B are the same.

4. Fishburn (1967) used the term interdependent value
additivity; Bacchus and Grove (1995) dubbed the same
concept GAI, which is more commonly used in the AI lit-
erature currently.

5. An extensive survey of various query types is provided
by Farquhar (1984).

6. Note, however, that C is setwise dominated, in the
sense that, for either utility function u1 or u2, there exists
a better flight than C.

7. See Preference Programming by A. Salo and R. P.
Hamalainen. Manuscript available at www.sal.hut.fi/Pub-
lications/pdf-files/msal03b.pdf.

8. If both parameters were unknown, then responses to
full outcome comparison queries would impose quadrat-
ic, rather than linear constraints on parameters, thus
complicating the uncertainty representation and the
computation of optimal decisions.
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Join Us for IJCAI-09 and IAAI-09
in Pasadena, California!

Please mark your calendars now for the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-09) and
the Twenty-First Innovative Applications of Artificial Intelli-
gence Conference (IAAI-09)! The conferences will be held July
11–17, at the Pasadena Convention Center in Pasdena, Cali-
fornia. 


