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Abstract—We propose a framework for designing adaptive choice-based conjoint questionnaires that are robust to response error. It

is developed based on a combination of experimental design and statistical learning theory principles. We implement and test a

specific case of this framework using Regularization Networks. We also formalize within this framework the polyhedral methods

recently proposed in marketing. We use simulations, as well as an online market research experiment with 500 participants, to

compare the proposed method to benchmark methods. Both experiments show that the proposed adaptive questionnaires outperform

the existing ones in most cases. This work also indicates the potential of using machine-learning methods in marketing.

Index Terms—Marketing, machine learning, statistical, interactive systems, personalization, knowledge acquisition.
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1 INTRODUCTION

A central problem in marketing is the understanding of
consumers’ preferences. Various methods have been

developed for this purpose with conjoint analysis [9], [8],
[18], [19], [47] being among the most widely used ones. The
approach is based on asking respondents questions about
their preferences among products (for example, “do you
prefer product A or product B?”) and estimating their
preferences for the features (attributes) of the products based
on their responses. A key issue in conjoint analysis is the
design of the questionnaires. The traditional approach has
been to use nonadaptive questionnaires: The questions are
determined in advance and are not influenced by the
respondents’ answers. With the advent of online marketing
research, researchers and practitioners have become increas-
ingly interested in adaptive questionnaires [21]: Each ques-
tion for every individual is designed in real time based on his
or her responses to earlier questions. Despite their attrac-
tiveness, adaptive questionnaires can be subject to endo-
geneity (as will be illustrated in Section 3.5): Questions are
influenced by the response errors to earlier answers [22]. As
a result, although recently proposed adaptive methods tend
to outperform nonadaptive benchmarks when response
error is low, they typically do not perform as well when
response error is high [43], [44] (as is often the case in online
environments). This suggests the need for questionnaires

that retain the benefits of adaptive interviews while being
robust to response error.

In this paper, we propose a framework for constructing
such questionnaires. It combines some fundamental princi-
ples used in experimental design [10], [17], [25], [32], [40]
and in the recent marketing work by Toubia et al. [43], [44],
with statistical learning theory [45]. Robustness to response
errors is achieved by using complexity control, widely used
in machine learning such as in Support Vector Machines
(SVM) and Regularization Networks (RN) [41], [45]. We
develop and test a specific case within the proposed
framework using RN. We also show how the recently
proposed polyhedral estimation (Poly est) method by
Toubia et al. [44] may be viewed as a special case of our
framework, albeit with an arbitrarily small weight on
complexity control leading to greater sensitivity to response
error. We use simulations as well as a field experiment to
compare our method to the polyhedral method (Poly-Q) by
Toubia et al. [44] and to the widely used nonadaptive
questionnaire design methods. Both experiments show that
the proposed approach performs best in most cases.

The paper is organized as follows: We start in Section 2
with a brief overview of previous related work. We present
the proposed framework in Section 3, where we also discuss
the relation with previous methods. We then compare the
performance of the proposed method to benchmark ques-
tionnaires using simulations (Section 4) and an online
experiment (Section 5) and conclude in Section 6.

2 PROBLEM DEFINITION AND RELATED WORK

2.1 Notations and Definitions

As we use terminology that is standard in marketing but
not in machine learning, to facilitate exposition, we
summarize in Table 1 the definitions of some terms. The
underlying model in conjoint analysis is that the utility that
a consumer derives from a product (also called a profile) is a
function of the attributes of this product (for example, size,
weight, battery life, and so forth). Each attribute may take
different levels, which can be continuous (for example, size
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in inches) or discrete (for example, “small” or “large”). We
represent a product (profile) by a row vector x that has one
entry per continuous attribute and k binary entries for each
discrete attribute with k levels (the number of levels may
vary across attributes), where all k entries are 0 except for
the one corresponding to the level present in the profile
(such representation is called “binary coding” [26]). Our
method is developed for continuous attributes, and we use
an existing transformation to adapt it to discrete attributes.

The utility derived by a consumer from a product x may
be written as a function UðxÞ. A typical assumption is that
the function U is additive [5], [39] and linear: UðxÞ ¼ x �w.
Our approach may be generalized to nonlinear functions
using kernels [45]. The vector w is called the partworths
vector.

In order to estimate the partworths vectors ws of a set of
consumers, a series of questions is asked to each consumer.
Different formats of questions have been developed. We
focus on the popular format of “Choice-Based Conjoint
(CBC) Analysis” [4], [7], [23], [24], [44], in which each
question asked to each consumer consists of choosing one
profile out of a set (that is, indicating which one has the
highest utility). See Fig. 2 for an example. For simplicity, we
first consider binary choices: Question i consists of choosing
among two profiles fxi1;xi2g. Without loss of generality, we
assume that the first profile xi1 is always selected. We
describe the extension to larger choice sets in Section 3 and
use four choices per question in our experiments. The set of
questions asked to a respondent is called a design and is
represented by a matrix called the design matrix Zwith rows

zi ¼ xi1 � xi2. Alternative formats of conjoint questions
include rating [47] or ranking [39] sets of profiles and
numerically comparing sets of pairs of profiles [36], [37], [43].

The accuracy of the estimatedws is driven by two critical
aspects: 1) the method used to construct the questionnaires
and 2) the method used to estimate the respondents’ partworths
based on their responses to the questionnaires. In this paper, we
focus on the first aspect.

2.2 Previous Work on Choice-Based Conjoint (CBC)
Questionnaire Design

2.2.1 Nonadaptive CBC Designs

The literature on nonadaptive CBC questionnaire design
builds primarily on the field of experimental design [10],
[17], [25], [32], [40]. The approach can be summarized as
minimizing a norm of the asymptotic covariance matrix of
the parameter estimates ŵ. If one makes the standard
response error assumption that the probability that a
consumer with partworth vector w will choose profile xi1

over xi2 is Pi1 ¼
exi1 �w

exi1 �wþexi2 �w
, then, in [28], McFadden showed

that the maximum likelihood estimate of w is asymptoti-
cally normal with mean equal to its true value and
covariance matrix equal to the inverse of the information
matrix � given by

� ¼
X

n

i¼1

X

2

j¼1

Pijq
>
ijqij

 !

; ð1Þ

where n is the total number of choice questions, and
qij ¼ xij �

P2
k¼1 xikPik. � is also the Hessian of the loss

function corresponding to maximum likelihood estimation
[30], formulated as (recall that we assume without loss of
generality that xi1 is always selected)

ŵ ¼ argminw

X

n

i¼1

� logðPi1Þ: ð2Þ

An efficient nonadaptive CBC design is defined as one
that minimizes a norm of the asymptotic covariance matrix
��1. Different norms lead to different definitions of
efficiency. The most widely used norm is the determinant,
giving rise to so-called D-efficient designs [4], [23], [25], [26].
D-efficiency minimizes the volume of the confidence
ellipsoid around the maximum likelihood estimate ŵ [20]
defined by fw : ðw� ŵÞ>�ðw� ŵÞ � 1g.

Note that the covariance matrix ��1 is a function of the
true (unknown) w through the probabilities Pij. Until
recently, researchers systematically made the simplifying
assumption that w ¼ 0 (and, hence, that all Pijs are equal),
leading to a set of approximate efficiency measures,
including D0-efficiency which approximates D-efficiency.
D0-efficiency is maximized by orthogonal and balanced de-
signs [1], extensively studied and used in practice. These
designs are such that the confidence ellipsoid around the
estimated w—calculated under the assumption that w ¼ 0

—is spherical (that is, the covariance matrix is proportional
to the identity matrix). Such designs are available only for
specific combinations of the numbers of questions, profiles
per question, attributes, and levels per attribute. Bunch et al.
[7] (see also [23]) provide a method for constructing such
designs when they exist. Algorithms have been developed
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to (approximately) maximize D0-efficiency when orthogonal
and balanced designs do not exist [12], [25], [26], [29].

Conjoint methods that relax the assumption that w ¼ 0

have been recently proposed. In particular, [4], [23], [24],
and [35] consider a nonzero prior on w, obtained in practice
from a set of pretest respondents (in which case, the designs
are adapted between respondents) or from the managers’
beliefs. This prior may be captured by a point estimate or a
probability density function over a set of vectors. Maximiz-
ing D-efficiency over the prior on w leads to so-called
aggregate customization designs. The main characteristic of
aggregate customization designs is utility balance: The
profiles in each choice set are close in utility—utility being
calculated according to the prior on w—making the choices
“a priori” hard (that is, the probabilities Pijs are closer to
one another). Intuitively, utility balance increases the
information provided by each question. Utility balance
has been shown to increase efficiency empirically [4], [23],
[24], [35] and theoretically [22].

2.2.2 Previous Work on Adaptive CBC Designs

The only published method for adaptively designing CBC
questionnaires is Poly-Q in [44]. Note that adaptive conjoint
analysis has been made possible only recently, with the
development of online marketing research. The main idea
behind Poly-Q is that the answer to each choice question
may be interpreted as a set of inequality constraints on w (the
constraints reflect the fact that the selected profile has the
highest utility in the set). The set of ws that satisfy all the
constraints implied by the first n choice questions is a
polyhedron defined by

�n ¼ fw � 0; 1 �w ¼ 100; 8i ¼ 1 � � �n; zi �w � 0g; ð3Þ

where 1 is a vector of 1s, 1 �w ¼ 100 is a scaling constraint,

and zi ¼ xi1 � xi2. If�n is nonempty, thenw is estimated by

the analytic center [38] of �n, ŵn.
1 We describe the general

case (in which �n may be empty) in Section 3.5. The

question selection method proposed by Toubia et al. [44] is

such that this polyhedron never becomes empty.
Choosing the ðnþ 1Þth question is equivalent to choos-

ing the next constraint znþ1 that will define the new
polyhedron �nþ1. The polyhedron �nþ1 may be concep-
tually compared to the confidence ellipsoid around the
estimates used in maximum likelihood estimation (2) (see
above). Just like D0-efficient designs minimize the con-
fidence ellipsoid around the maximum likelihood estimate
and make it spherical, Poly-Q attempts to minimize the
volume of �nþ1 and make it as spherical as possible.
Moreover, to achieve this, Poly-Q also uses utility balance
just like aggregate customization designs. In particular,
Toubia et al. [44] choose the ðnþ 1Þth question according to
the following criteria:

1. Minimize maximum uncertainty. The new constraint
znþ1 should be perpendicular to the longest axis of
the current polyhedron �n. This will tend to make

the next polyhedron �nþ1 as spherical as possible
(see [44, pp. 119-120], for details). The longest axis of
�n can be interpreted as the direction of greatest
uncertainty regarding the location of w. It is
computed using the eigenvector with the smallest
positive eigenvalue of a matrix describing the
polyhedron [44].

2. Utility balance. The new constraint znþ1 should go
through the analytic center (ŵn) of the current
polyhedron �n, that is, znþ1 � ŵn ¼ 0. Toubia et al.
[44, p. 119] argue that this minimizes the expected
volume of the polyhedron �nþ1.

These two criteria, motivated by the theory of nonadaptive
experimental design discussed above, will also be used in
our framework, which we describe next.

3 ADAPTIVE DESIGN OF ROBUST CHOICE

QUESTIONNAIRES

3.1 Presentation of the Method

Our framework is motivated by the combination of the two
experimental design criteria summarized above on one
hand and statistical learning principles (which we now
briefly review) on the other.

A standard approach to conjoint estimation is to
maximize some measure of fit. However, this may lead to
overfitting, and the estimates may be sensitive to response
errors, especially if they are based on limited data (for
example, few choices per respondent). Statistical learning
theory [45], introduced to marketing in [16] and [14], has
addressed this issue by introducing the fundamental notion
that the estimates should reflect a trade-off between
maximizing fit and minimizing the complexity of the
estimated model. In particular, after n questions, we
estimate w as the minimizer of a loss function of the
following general form:

minw LnðwÞ ¼
X

n

i¼1

V ðw; fzigÞ þ �JðwÞ; ð4Þ

where V ðw; fzigÞ (with zi ¼ xi1 � xi2) measures the fit, and
J controls (penalizes) the complexity of the partworths. The
parameter �, called the regularization parameter, reflects
the trade-off between fit and complexity (we set it to 1

n
—see

below). This parameter may also be chosen using cross
validation or a validation set [45]. Different specifications of
V and J lead to different machine-learning methods. Our
approach can be applied to any loss function (4) that is
convex and twice differentiable with respect to w. We will
adopt a specific formulation known as RN [41], [45], [15],
which leads to closed form solutions that are fast to
compute—see below. We note that a special case of (4) that
is widely used in machine learning is SVM [13], [45]. Our
framework does not apply to SVM because that loss
function is not twice differentiable, which is a requirement
as shown below.

Let us now combine the loss function (4) with the two
design criteria outlined at the end of Section 2. Let us
assume that n � 1 questions have been asked thus far2
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1. For a polyhedron written in standard form as � ¼ fw � 0;Aw ¼ bg,
the analytic center is defined as argminw

Pp
i¼1 � lnðwiÞ subject to Aw ¼ b,

where p is the number of positivity constraints—dimensionality of w in this
case.

2. Clearly, for n ¼ 0, we have no data, hence, we cannot use our (or any
adaptive) method. As in previous work (for example, [44]), we design the
first question randomly.
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and that the loss function Ln is minimized by our
estimate ŵn. Notice that the loss function only depends
on the zi ¼ ðxi1 � xi2Þs. Therefore, for products with real-
valued attributes, we only need to determine znþ1 in
order to generate the next question (and choose any two
profiles such that znþ1 ¼ ðxnþ1;1 � xnþ1;2Þ). In creating the
next question, we adapt the two criteria outlined at the
end of Section 2 as follows:

. Minimize maximum uncertainty. We choose a direc-
tion for znþ1 along which the current loss function
LnðwÞ is as flat as possible. The flatness of the loss
function is by definition given by its second derivate
matrix, the Hessian, and it may be interpreted as a
measure of uncertainty in the partworth estimates.
For example, in the case of maximum likelihood
estimation (see Section 2), the Hessian of the loss
function (2) is asymptotically equal to the inverse of
the covariance matrix of the estimates [30]. The
flattest direction can also be seen as a generalization
of the longest axis of the polyhedron in the Poly-Q
method in [44].

. Utility balance. We create a question involving a
set of products that are “a priori” equally
attractive. In the case of binary choices, this
implies xnþ1;1 � ŵn ¼ xnþ1;2 � ŵn, or znþ1 � ŵn ¼ 0.

Let us now formalize these two criteria. The estimated
utility vector is the only point ŵn that satisfies rLnðwÞ ¼ 0,
wherer is the gradient operator. The loss function Ln being
strictly convex and twice differentiable, its “flatness” (or
convexity) around that minimum is given by its second
derivative matrix (Hessian) r2Ln½ �i;j:¼

@2Ln

@wi@wj
. More pre-

cisely, the convexity along a direction z is given by
zr2Lnz

>.
In order to find the direction of the smallest convexity

(first criterion) orthogonal to ŵn (second criterion), we
therefore solve the following optimization problem:

minz zr2LnðŵnÞz
>

Subject to zŵn ¼ 0; zz> ¼ 1;
ð5Þ

where zz> ¼ 1 is a scaling constraint. After projecting the

Hessian matrix onto the hyperplane orthogonal to ŵn by the

equation Bn :¼ Ip �
ŵnŵ

>
n

ŵ>
n ŵn

� �

r2LnðŵnÞ, where p is the di-

mensionality of w and Ip is the p� p identity matrix, this

problem reduces to choosing ẑnþ1 as the eigenvector of Bn

with the smallest positive eigenvalue. Note that both ẑnþ1

and �ẑnþ1 minimize the loss function, that is, switching the

labels of the profiles x̂nþ1;1, and x̂nþ1;2 is not consequential.
Thus stated, this strategy is very general and can be

applied to any estimation procedure of the form (4) as long
as V and J are such that the loss function is convex and
twice differentiable. We adopt a specific formulation based
on RN. RN estimation (RN est) solves the following
minimization problem:

minw RnðwÞ ¼
X

n

i¼1

ð1� ðxi1 � xi2Þ �wÞ2 þ �kwk2; ð6Þ

where the constant of 1 in the square error plays a scaling
role for w. The estimate ŵn after n questions is [45]
ŵn ¼ Z>

n Zn þ �Ip
� ��1

Z>
n 1n, where 1n is a vector of 1s and

Zn is the design matrix after n questions (the ith row of Zn is
ðxi1 � xi2Þ). The next question is designed using the
eigenvector with the smallest positive eigenvalue of

Ip �
ŵnŵ

>
n

ŵ>
n ŵn

� �

Z>
n Zn þ �Ip

� �

: ð7Þ

Indeed, simple linear algebra shows that Rn (6) and its
derivatives can be written in matrix form as follows:

rRnðwÞ ¼ 2 Z>
n Zn þ �Ip

� �

w� 2Z>
n 1n and

r2RnðwÞ ¼ 2 Z>
n Zn þ �Ip

� �

:

These lead to the expressions above.
In summary, for the RN loss function (6), the proposed

conjoint analysis method consists of the following two steps
at each iteration (question) n: Step 1: Compute the estimate
of the partworths ŵn ¼ Z>

n Zn þ �Ip
� ��1

Z>
n 1n. Step 2: The

next question (difference vector znþ1) is defined by the
eigenvector associated with the smallest positive eigenvalue
of the matrix given by (7). Note that all of the expressions
are in closed form and only require the inversion of a matrix
of size equal to the number of partworths (dimensionality of
w). Hence, this method is very fast computationally and can
be used, for example, for real-time online market research.
We label it RN-Q.

3.2 Practical Issues

3.2.1 Choosing the Parameter � in (4)

As discussed above (see also [45]), the “trade-off” para-
meter � in (4) is often chosen in practice using a small
validation set or using cross validation. Although this is a
feasible ex post when estimating the partworths, this is not a
feasible ex ante when designing questions. In this paper, we
set � to 1

n
, where n is the number of questions. This

formulation addresses the concern that � should decrease as
the amount of data increases [45]. Future work on how to
better (possibly adaptively, using data across respondents)
set parameter � may further improve the performance of
our method.

3.2.2 Designing Questions with More than Two Profiles

Whenmore than two profiles per question are needed,we do
as in Poly-Q [44]: We consider not only the smallest positive
eigenvalue of the Hessian (7) but also the second smallest,
third, and so forth and the corresponding eigenvectors. For
example, to construct a choice set with four profiles as in the
experiments, we use two difference vectors znþ1;1 and znþ1;2

corresponding to the smallest and second smallest positive
eigenvalues of the Hessian matrix (7).

3.2.3 Designing Profiles with Discrete Attributes

The approach outlined above generates a continuous
difference vector znþ1. In many cases, attribute levels are
discrete, and it is not possible to find two profiles such that
znþ1 ¼ ðxnþ1;1 � xnþ1;2Þ. As this is not the focus of this
paper, we address this issue by simply replicating the
approach in [44]. Such replication also makes the empirical
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comparisons with Poly-Q below fair. Other discrete
transformations may be used, but this is beyond the scope
of this paper.

The idea behind the method used in [44] is to construct
two binary profiles xnþ1;1 and xnþ1;2 such that ðxnþ1;1 �
xnþ1;2Þ is as close as possible to being proportional to znþ1

while preserving utility balance (ðxnþ1;1 � xnþ1;2Þ � ŵn � 0).
This is done in two steps: First, two vectors cnþ1;1 and cnþ1;2

are constructed such that cnþ1;1 � cnþ1;2 is proportional to
znþ1. Second, two binary profile vectors xnþ1;1 and xnþ1;2 are
created to be as close as possible to cnþ1;1 and cnþ1;2 while
satisfying ðxnþ1;1 � xnþ1;2Þ � ŵn � 0.

For the first step [44], select cnþ1;1 and cnþ1;2 to be
maximally different while being within the feasible poly-
hedron �n of (3). Ensuring that the points stay within the
polyhedron is important in [44] because it implies that the
polyhedron �n never becomes empty. Although this is
irrelevant to our framework, in order not to confound the
comparisons, we follow [44] and use cnþ1;1 ¼ ŵn þ �znþ1

and cnþ1;2 ¼ ŵn � �znþ1, where � and � are chosen as

� ¼ maxf� : ŵn þ �znþ1 � 0; zi � ðŵn þ �znþ1Þ � 0; 8i � ng

(similarly for �), where the zis are the profile differences
from the previous n questions. We exclude data points that
are misclassified by our estimate, that is, for which
zi � ŵn < 0.

The second step is achieved by solving two knapsack
problems (for i ¼ 1; 2): maximize xnþ1;i � cnþ1;i subject to
xnþ1;i � ŵn � M, where M is a random budget constraint,
and xnþ1;i is constrained to be a binary vector of the
appropriate format. Intuitively, xnþ1;1 and xnþ1;2 are the
binary vectors closest to cnþ1;1 and cnþ1;2 such that
xnþ1;1 � ŵn � M � xnþ1;2 � ŵn. If more than two profiles per
question are needed, we obtain one pair of points cnþ1;i per
eigenvector and, similarly, associate one profile xnþ1;i with
each point, using the same ŵn and M in all the Knapsack
problems. In our experiments, in which the number of
profiles per question was four, if all the resulting xnþ1;is
were not distinct, we drew another M and repeated the
procedure up to 10 times (for computational efficiency
reasons). If the profiles were still not distinct after these
10 draws of M, we simply used the nondistinct set of xnþ1;is
as our question set. This is the procedure used in [44].

3.3 Relation with Nonadaptive Experimental
Designs

As reviewed in Section 2, the large literature on experi-
mental designs typically attempts to construct designs that
minimize a norm of the asymptotic covariance matrix of the
estimates (��1 in (1)), which is equal to the inverse of the
Hessian of the loss function (2) minimized by maximum
likelihood estimation. Let us consider our first design
criterion, “minimize maximum uncertainty.” It is imple-
mented by selecting the direction of the next question znþ1

as the eigenvector associated with the smallest eigenvalue
of the Hessian of the loss function (6). We can show that this
maximally decreases with each question the largest eigen-
value of the inverse of this matrix. The largest eigenvalue of
a matrix being a norm on the set of positive semidefinite
matrices, our first criterion may also be interpreted as

(greedily) leading toward the minimization of a norm of the
inverse of the Hessian of the loss function. Indeed, the
Hessian r2Rnþ1 of (6) after the ðnþ 1Þth question is simply
r2Rnþ1 ¼ r2Rn þ z>nþ1znþ1. If znþ1 is the eigenvector with
the smallest positive eigenvalue of r2Rn, then any
eigenvector of r2Rn is also an eigenvector of r2Rnþ1 with
the same eigenvalue, except znþ1. The latter is also an
eigenvector of r2Rnþ1 but with eigenvalue equal to
�n þ kznþ1k

2 ¼ �n þ 1, where �n is the eigenvalue of
r2Rn corresponding to znþ1. Hence, the smallest eigenvalue
ofr2Rn (equal to the inverse of the largest eigenvalue of the
inverse of the Hessian) is maximally increased by 1. When
combining the first design criterion with the second
criterion of utility balance, our method is equivalent to
performing a change of (orthogonal) basis with ŵn as one of
the new axes and applying the first criterion to the
projection of the Hessian on the other axes. Note that
another interpretation of utility balance is that we restrict
the first criterion only to uncertainty regarding the direction
of w (that is, the relative importance of the product
attributes), not its norm. Reducing uncertainty along ŵn

would only change the norm of our estimate, not its
direction.

Let us now stress two key differences between our method
and nonadaptive methods. First, the nonadaptive methods
minimize the norm of the asymptotic covariance matrix ex-
ante, whereas we decrease a comparable matrix adaptively
based on the additional information provided by the
respondent’s previous choices. Second, more importantly,
we use complexity control. Because maximum likelihood
estimation does not control for complexity, the adaptive
approach used in this paper does not appear promising for
maximum likelihood estimation. The lack of complexity
control would result in designs that are sensitive to
response errors like those obtained from Poly-Q as we
show below.

3.4 Relation with Active Learning

The problem of designing conjoint questionnaires is
comparable to that of active learning [42], [11], [46], [34].
However, in active learning, the problem is typically3 stated
as follows: Given a (usually small) set of (so-called)
unlabeled data (for example, candidate questions to ask),
select one for which to ask the label/output (for example,
the dependent variable y in a regression problem). In our
case, we are not given any set of unlabeled data, but,
instead, we design the next data point/question.

The method we develop here is motivated by principles
from the experimental design literature. Interestingly, these
principles have been used in active learning as well: For
example, utility balance has been used in [42], where the
data point/question selected at every step is the one for
which there is maximal uncertainty regarding the response.
There are also active learning methods that attempt to
minimize the variance of the estimates, where various
measures of variance can be used [11], [34]. However, we do
not know of any active learning method that uses the
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3. This is a matter of definition. In the most general definition, active
learning can include our problem as a special case [11], but that is not the
typical definition.
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Hessian of the regularized loss function (4)—which includes
the complexity control kwk2—while achieving utility
balance. Our approach may be adopted to develop a novel
active learning method, but we do not develop this avenue
further and, instead, focus on the marketing problem at
hand. We also note that an implicit goal of this work is to
explore possible links between machine learning and
marketing. Future work may explore this interaction
further.

3.5 Relation with Polyhedral Adaptive CBC Methods

Our method and that in [44] use the same criteria:
1) minimize the maximum uncertainty on the partworths
estimates and 2) utility balance. Formally, in both cases, the
optimal direction is defined by the smallest positive
eigenvector of a matrix describing the space of partworth
solutions. However, there is a key difference: Although we
use a regularized loss function (4), the method in [44] does
not consider a proper trade-off between fit and complexity
as we now show.

In its general form, Poly est consists of finding the
analytic center of the polyhedron:

�n ¼ fw � 0;1 �w ¼ 100; 8i ¼ 1 � � �n; zi �w � ��	g;

where 1 is a vector of 1s, 1 �w ¼ 100 is a scaling constraint,
zi ¼ xi1 � xi2 (we again assume binary choices for ease of
notation), and �	 is an estimate of noise obtained by solving

minw;��

Subject to zi �w � �� for all i; 1 �w ¼ 100; w � 0; � � 0:

We formalize this two-stage estimation method within the
statistical learning theory framework by writing it as the
limit case when � ! 0 of

minw;�

1

�
� �

Xn

i¼1
ln zi �wþ �ð Þ �

Xp

i¼1
lnðwiÞ

Subject to 1p �w ¼ 100; � � 0:

ð8Þ

Hence, the Poly est method can be seen as a special case of
the general regularized estimation method (4), where fit is
measured by � and complexity by

�
X

n

i¼1

lnðzi �wþ �Þ �
X

p

i¼1

lnðwiÞ:

(Note that this problem may not be solvable efficiently.) A
positive value of �would ensure a proper trade-off between
fit and complexity. However, the estimation method in [44]
corresponds to the case when � ! 0: In this case, the
optimal solution of (8) is equal to the optimal solution of the
two-stage method in [44] outlined above. Hence, the
relative weight on fit goes to þ1 in a Poly est. Therefore,
a proper trade-off between fit and complexity control is not
achieved. As a result, the polyhedron defining the feasible
estimates and, hence, its longest axis and center are
sensitive to the errors in the previous responses. Because
this longest axis and center are used to implement the two
criteria reviewed above, the adaptive designs of [44] are
sensitive to response error. In particular, once a wrong answer
is given, the analytic center of the polyhedron will never
converge to the true partworths value since the latter will be

left outside of all subsequent polyhedra (hence, analytic

center estimation is inconsistent). In contrast, our method

reduces the endogeneity issues inherent in adaptive designs

[22] by introducing a more proper trade-off between fit and

complexity.
We use simulations to illustrate this difference and study

the evolution of estimation error as a function of the

number of questions. The simulations are designed simi-

larly to the ones we discuss in Section 4, which are in turn

designed based on past studies—see Section 4. We

randomly generated partworths for 500 respondents from

a Gaussian with mean ð0:5�; �; 1:5�; 2�Þ and diagonal

covariance matrix with all diagonal elements equal to �.

Because the method in [44] requires positive partworths, we

used the absolute value of the partworths generated from

the Gaussian. Using each method (Poly-Q and RN-Q), we

simulated 16 questions per respondent, each between four

profiles (with four continuous attributes each). We used the

logistic model standard in choice modeling [3], [33] to

simulate the answers: The probability of selecting product j

in question i is

Pij ¼
exij�w

P4
k¼1 e

xik�w
:

With that assumption, the parameter � in the above

Gaussian distribution is a “magnitude” parameter that

controls the response error (noise). We chose � conserva-

tively such that the probability that an individual makes an

error (does not choose the product with the maximum

“true” utility) is, on the average, approximately the same as

in the high-magnitude (low noise) case in the simulations

reported in Section 4. This leads to � ¼ 8. We measured the

estimation error using the Root Mean Square Error (RMSE)

of the estimated partworths from the true (generated) ones.

Both estimated and true partworths were normalized before

computing the RMSE such that their absolute values

summed to 1.
Fig. 1 plots the average RMSE of the estimates as a

function of the number of questions used for estimation. We

observe that, although the accuracy of the RN-Q estimates

continually improves after every question, the Poly-Q

estimates stop improving after a few questions. As

discussed above, once a wrong answer is given to a

question, from that point on, Poly-Q will not converge to

the true partworths vector as it will always try to find an

estimate that is in agreement with the wrong answer given.

In the theoretical scenario where response error is reduced

to exactly 0 (not shown in the figure), this phenomenon is

not observed, and Poly-Q also converges to the true

partworths values.4
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4. In that case, one could also improve the performance of RN-Q by
using a smaller value for �—much like a larger value of � may improve
performance if the response error is higher—as known for RN estimation.
However, as noted above, such adjustment of � is not possible a priori when
no prior data is available before the questionnaire. The selection of the
parameter � is a central and heavily researched problem in machine-
learning methods like RN or SVM. Future research may further improve the
performance of our method through a better selection of �.
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4 SIMULATIONS

We now empirically compare the performance of RN-Q to

that of previously published adaptive and nonadaptive

methods. We use simulations often used in past research

(described in this section), as well as an online field

experiment (reported in the next section). The design of

both experiments follows the marketing tradition.

4.1 Simulation Design

We compare the performance of the following four types of

questionnaire design methods (two adaptive and two

nonadaptive):

. orthogonal and balanced designs (that is, D0-efficient

designs),
. aggregate customized designs [4], [23], [35] where

aggregate customization was based on the true mean
of the population distribution, and relabeling and
swapping were used to improve utility balance (see
[4] for details),

. adaptive designs obtained from Poly-Q, and

. adaptive designs obtained from RN-Q.

For each of these four questionnaires, we estimated the

partworths using three different estimation methods:5

. Poly est method in [44],

. RN est (see (6)), and

. Hierarchical Bayes (HB) estimation (HB est) [3], [33],
[27], which is considered to be the state-of-the-art
conjoint estimation method in marketing and widely
used in practice. Unlike Poly est and RN est, HB
simultaneously estimates the partworths for all
respondents—hence, it is not an individual-level
estimation method. Because it uses more information

to estimate each individual partworths vector, we
expect the HB est method to outperform the RN est
and Poly est methods. Recall that the focus of this
paper is not on estimation but on questionnaire design.
Including HB in our simulations allows us to
examine how the proposed questionnaire method
performs when coupled with the state-of-the-art
estimation method.

Each estimation method may be applied to each type of
questionnaire in practice (independent of possible theore-
tical reasons not to do so). Hence, following previous
research, we consider all the combinations of design �
estimation method. Note that, in many commercial applica-
tions, HB is used as the estimation method irrespective of
the questionnaire design method.

We based the design of our simulations on previously
published simulation studies. In particular, in order to
ensure complete orthogonal and aggregate customization
designs, we followed [4], [44], [16] and assumed 16 ques-
tions per respondent, each between four alternatives
described by four discrete attributes with four levels each,
and used logistic probabilities to simulate the answers. Like
these other papers, we also considered two levels of
response accuracy and two levels of respondent hetero-
geneity (that is, how similar respondents’ partworths are),
giving rise to four conditions. We considered different
heterogeneity levels because one of the estimation methods,
HB, is affected by the level of similarity among respondents.

In each response accuracy � heterogeneity case, we
generated five sets of 100 respondents, with partworths
drawn from a normal distribution with mean

ð��;�
1

3
�;

1

3
�; �Þ

for each attribute and with variance �2
�. The magnitude

parameter � was set to 0.5 and 2 in the low-accuracy and
high-accuracy cells, respectively. The parameter �2

� controls
heterogeneity and was set, respectively, to �2

� ¼ 0:5� and
�2� ¼ 2� in the low and high-heterogeneity cells. Those
values were used in the published simulations mentioned
above and capture the range of response error and
heterogeneity observed in practice [4], [44]. Our perfor-
mance metric was the RMSE of the estimated partworths
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Fig. 1. The horizontal axis is the number of questions. The vertical axis is
the average RMSE of the estimated utility functions from the true ones
(among the 500 individuals). Poly-Q is the dotted line. The RN-based
method (RN) is the solid line. The questions are for products with four
real-valued attributes (see text).

Fig. 2. Example screen shot from the online experiment. An example of

a choice-based question.

5. The polyhedral estimation method by default uses information about
the lowest level for each discrete attribute. We used this information as well
for the RN and HB methods, the former by using virtual examples [16] and
the latter by redrawing the partworths from the Metropolis Hastings
algorithm until they satisfied the corresponding constraints [2].
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from the true (generated) ones. Both estimated and true
partworths were normalized before computing the RMSE
such that the partworths of each attribute summed to 0 and
that their absolute values summed to 1.

4.2 Simulation Results

We summarize the results in Table 2. We compare
estimation methods first (for completeness) and question
selection methods second (our focus).

4.2.1 Estimation

Our results confirm previous findings (for example, [16],
[44]) that HB outperforms other conjoint estimationmethods.
HB estimates the utilities of all respondents simultaneously,
hence, implicitly “combining” information across respon-
dents. Unlike HB, the RN est and Poly est methods are
individual-level ones. In our case, HB provides the (sig-
nificantly) lowest RMSE in all four Magnitude � Hetero-
geneity cells. In turn, RN est performs better than the other
individual-level estimation method, Poly est: Out of the
16Magnitude�Heterogeneity�Question selection method
cells, RN est is significantly better (at the p < 0:05 level) in 11,
tied in 2, and significantly worse in 3. Note that these
significance tests, comparing the first two columns in Table 2,
are not reported in Table 2.

These results suggest that performance may be improved
further by applying our general framework to other loss
functions that pool information across respondents. Because
HB does not minimize a loss function but rather samples
from a posterior distribution, which is not given in closed
form, the proposed framework is not directly applicable to
HB est. Future research may construct estimation methods
that combine data from multiple respondents and that are
compatible with our framework.

4.2.2 Question Design

The more relevant comparisons for this paper are the
comparisons between the questionnaire design methods.
The results suggest that the RN-based questionnaire design

method is the best overall: It is significantly the best or tied
with the best in eight of 12 Magnitude � Heterogeneity �
Estimation method cells and the best or tied with the best in
three of the four Magnitude � Heterogeneity cells. (The
latter comparisons consider the best performance across all
estimation methods.)

We have argued that one of the main contributions of our
approach is to produce adaptive CBC designs that are
robust to response error. Two types of comparisons are
possible in order to test this claim. Comparing RN-Q to the
other adaptive method (Poly-Q) allows us to evaluate
whether the RN-based designs are more robust to noise
than the other choice-based adaptive designs. Comparing
RN-Q to the nonadaptive methods also allows us to evaluate
conditions under which the benefits from adaptive ques-
tionnaires overweight endogeneity issues.

Let us start with the first comparison. RN-Q is signifi-
cantly better than Poly-Q in 10, tied in 1, and significantly
worse in one of the 12 Magnitude � Heterogeneity �
Estimation Method cells. More importantly, RN-Q is
significantly better than Poly-Q in all six low magnitude
(high-response error) cells. Using HB est (the best estimation
method), RN-Q performs on the average 11.9 percent better
than Poly-Q in the high-response-error conditions, whereas
it performs only 2.9 percent better on the average, in the low-
response-error conditions.

We finally compare RN-Q to the nonadaptive benchmarks
(orthogonal and customized designs). In the high-magni-
tude conditions, RN-Q (as well as Poly-Q—hence, both
adaptive designs) systematically outperforms both nonadap-
tive benchmarks, confirming the attractiveness of adaptive
methods when response error is low, established in
previous simulations (for example, [44]). The more inter-
esting comparisons are when response error is high (low
magnitude). RN-based questionnaires perform better than
both nonadaptive methods in three of the six low magnitude
� Heterogeneity � Estimation method cells and one of two
low magnitude � Heterogeneity cells. This shows that, with
RN-based adaptive designs, the benefits from adaptive
questionnaires can overweight endogeneity issues even
under high levels of response error. RN-based question-
naires achieve the lowest performance relative to nonadap-
tive benchmarks in the low-magnitude � low-heterogeneity
condition. In that case, two factors work against adaptive
methods as discussed in [44]. First, the endogeneity effects
are amplified due to the higher response error. Second, as
discussed in [44] and confirmed by our simulations,
adaptive methods (Poly-Q and RN-Q) do not perform
relatively as well relative to nonadaptive benchmarks (Orth
and Cust) under lower levels of heterogeneity, as the
similarity among respondents makes it more attractive to
use a single questionnaire for everyone.

5 AN ONLINE EXPERIMENT

Wenext tested the proposed framework using an online field
experiment. The sets of question selection methods and
partworths estimation methods tested in this experiment
were the same as those tested in the previous simulations
(question selection methods: Orthogonal design, Aggregate
customization,6 Poly-Q, and RN-Q; estimation methods:
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TABLE 2
Simulation Results (RMSE of Estimated

from True Utility Functions)

Bold numbers indicate best or not significantly different from the best at
p < 0:05 for each (magnitude � heterogeneity � estimation method)
combination. Orth is the orthogonal and balanced design, Cust is the
aggregate customized one, Poly-Q is the adaptive design in [44], and
RN-Q is the proposed one.

6. The prior used by aggregate customization was obtained from a
pretest involving 50 students from a large US university.
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Poly est, RN est, andHB est). Five hundred respondents from
an online panel were randomly assigned to one of the four
question selection methods, resulting in 125 respondents per
questionnaire. Each respondent completed a 16-question
design obtained by the corresponding method, followed by
four randomly designed holdout questions (the transition
from the questionnaire to the holdouts was seamless), a filler
task (as a transition), and an external validity ranking task. In
this last task, the respondents were asked to rank six profiles
(from the most to least preferred), randomly selected from a
16 profile orthogonal and balanceddesign (different from the
one used for the questionnaire). See Figs. 2 and 3 for example
screen shots from the experiment.

The product chosen for this experiment was digital
cameras. We focused on five attributes with four levels
each: Price ($500, $400, $300, and $200), Resolution (2, 3, 4,
and 5 Megapixels), Battery Life (150, 300, 450, and
600 pictures), Optical Zoom (2�, 3�, 4�, and 5�), and
Camera Size (SLR, Medium, Pocket, and Ultra compact).
The attributes were introduced and described to the
respondents before the questionnaire. Each choice question
comprised four profiles.

We measured performance using the following three
metrics:

1. the percentage of the four holdouts correctly
predicted (“Holdout hit rate”),

2. the correlation between predicted and observed
rankings in the external validity task (“Choice
correlation”), and

3. the proportion of first choices correctly predicted in
the external validity task (“Choice hit rate”).

We report the results in Table 3. In agreement with the
simulations and past research, HB was again the best
estimation method in all cases; hence, for simplicity, we

only report the performance of the HB estimates for the four
types of questionnaires. We estimate the partworths based
on three to 16 questions and compute the performance of
each intermediate estimate. To test the relative performance
of the different questionnaires when there are few versus
more questions, we report the average performance for
questions 3-8 (not including questions 1 and 2, the first
being a random one) and questions 9-16. Moreover, we
report both the mean and the median (across respondents)
of the performance, the latter being less sensitive to possible
“outlier respondents.”

We use bold numbers in Table 3 to indicate the best
performing method in each performance metric � (3-8
versus 9-16 questions) � (mean versus median) combina-
tion. Table 3 shows that the proposed question design
method is the best in eight out of the 12 cases, more than
any other method. In terms of the median, it is the best in
five out of six cases. A series of pairwise Mann-Whitney
U-tests to compare RN-Q to each of the other questionnaires
shows that RN-Q is never significantly worse and is
significantly better (at the 0.05 level) than each of the other
questionnaires in at least one of the (3-8 versus 9-16) �

(performance metric) possible comparisons. In conclusion,
the experiment confirms the relative advantage offered by
the proposed questionnaire design method.

6 CONCLUSIONS

We have developed a framework for designing robust
adaptive CBC questionnaires, an important problem in
marketing, based on experimental design and statistical
learning theory principles. We have shown how to use
complexity control to design questionnaires that are less
affected by response error and endogeneity. We have
validated our framework using simulations, as well as a
field experiment, and discussed similarities and differences
between our method and previous nonadaptive and
adaptive ones. The recently proposed adaptive polyhedral
CBC estimation method [43], [44] can be seen as a special
case within our framework, albeit with an arbitrarily small
weight on complexity control leading to greater sensitivity
to response error.
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Fig. 3. Screen shot from the online experiment: The final external validity

ranking task.

TABLE 3
Comparison of the Question Selection Methods

Mean and median (across 125 respondents) of the average perfor-
mance across questions 3-8 and 9-16. The estimation method used is
HB. The higher a number, the better.
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Various research questions can be explored in the future.

For example, one could explore ways of better tuning the

parameter � adaptively as respondents answer questions.

There are also open theoretical questions such as the study

of the nonasymptotic rate of convergence and the consis-

tency properties of our methods. Another exciting area for

future research is the exploration of alternative definitions

of complexity that capture the “cognitive” complexity of

making decisions. In particular, a lot of work in consumer

research indicates that people use various heuristics for

making choices [31], [6]. Such heuristics may be modeled as

penalties or constraints on the estimated utility functions,

much along the lines of the standard complexity control

penalty kwk2 used in machine learning. A fundamental

premise of a large body of work in machine learning

supports that constraints (for example, in the forms of

penalties) on the partworths (such as the complexity control

kwk2) lead to estimates that are more accurate and robust to

noise (see, for example, [45]). Other constraints (for

example, other complexity controls), based on prior knowl-

edge about how people make choices, may further improve

performance.
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