
“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 1 — #1

Noname manuscript No.
(will be inserted by the editor)

Eliciting Security Requirements and Tracing them to Design:
An Integration of Common Criteria, Heuristics, and UMLsec

Siv Hilde Houmb · Shareeful Islam· Eric Knauss · Jan Jürjens · Kurt Schneider

Received: date / Accepted: date

Abstract Building secure systems is difficult for many rea-
sons. This paper deals with two of the main challenges: (i)
the lack of security expertise in development teams, and (ii)
the inadequacy of existing methodologies to support devel-
opers who are not security experts. The security standard
ISO 14508 (Common Criteria) together with secure design
techniques such as UMLsec can provide the security exper-
tise, knowledge, and guidelines that are needed. However,
security expertise and guidelines are not stated explicitly in
the Common Criteria. They are rather phrased in security
domain terminology and difficult to understand for develop-
ers. This means that some general security and secure design
expertise are required to fully take advantage of the Com-
mon Criteria and UMLsec. In addition, there is the problem

This work was partly supported by the Royal Society Industrial Fellow-
ship onAutomated Verification of Security-Critical Software (VeriSec),
the Royal Society Joint International Project onModel-based Formal
Security Analysis of Crypto-Protocol Implementations, the EU FP7 In-
tegrated ProjectSecurity Engineering for Lifelong Evolvable Systems
and theGerman Research foundation(DFG project InfoFLOW, 2008-
2011).

Siv Hilde Houmb
Connected Objects Laboratory, Service Platform Group, Telenor
GBDR, Otto Nielsens vei 12, 7004 Trondheim, Norway
E-mail: siv-hilde.houmb@telenor.com

Shareeful Islam
Fakultät für Informatik, Technische Universität München,Boltz-
mannstr. 3, 85748 Garching, Germany
E-mail: islam@in.tum.de

Eric Knauss· Kurt Schneider
Software Engineering Group, Leibniz Universität Hannover, Welfen-
garten 1, D-30167 Hannover, Germany
E-mail: {eric.knauss,kurt.schneider}@Inf.Uni-Hannover.de

Jan Jürjens
Chair for Software Engineering(14), Technische Universität Dortmund,
Baroper Straße 301, 44227 Dortmund, Germany
E-mail: http://jurjens.de/jan

of tracing security requirements and objectives into solution
design, which is needed for proof of requirements fulfilment.

This paper describes a security requirements engineering
methodology called SecReq. SecReq combines three tech-
niques: the Common Criteria, the heuristic requirements ed-
itor HeRA, and UMLsec. SecReq makes systematic use of the
security engineering knowledge contained in the Common
Criteria and UMLsec, as well as security-related heuristics
in the HeRA tool. The integrated SecReq method supports
early detection of security-related issues (HeRA), their sys-
tematic refinement guided by the Common Criteria, and the
ability to trace security requirements into UML design mod-
els. A feedback loop helps reusing experience within SecReq
and turns the approach into an iterative process for the secure
system life-cycle, also in the presence of system evolution.

Keywords Security requirement elicitation, Common
Criteria (CC), UMLsec, heuristics, and secure design.

1 Introduction

Modern society heavily relies on networked software sys-
tems. These systems are inherently complex and highly in-
tegrated, and operate in a heterogeneous environment. This
makes the engineering of these systems difficult and exposes
them to security risks that may have serious implications,
such as threatening the privacy of people and the financial
well-being of companies. In addition, these systems must
comply to an increasing number of regulations and standards,
such as Sarbanes Oxley (SOX), the EU Privacy Directive, na-
tional privacy laws, etc.

These serious security risks and the vast amount of le-
gal constraint make it important to address security up-front;
i.e., in the early phases of development. However, system-
atic elicitation, negotiation, and validation of requirements
is in general very difficult [24]. An additional challenge is

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 2 — #2

2

to ensure that the set of identified security requirements is
consistent and complete; i.e., that no necessary security re-
quirements are left undiscovered, and that the set of security
requirements jointly indeed enforces the security needs.

1.1 Security requirements challenges

During requirements elicitation, vague and un-documented
demands and desires from multiple stakeholders must be de-
tected and merged with more conscious and documented re-
quirements. This task is inherently difficult due to the differ-
ent backgrounds, tacit assumptions [62], and styles of com-
munication [52] among stakeholders. Experience has shown
that stakeholders are often unable to voice their requirements
[22]. There is an additional challenge in security: many stake-
holders are not even aware of the threats and the consequent
losses they may face.

Standardization organizations such as the European Tele-
communicationsStandards Institute (ETSI) are committed to
include security requirements in their standards. The indus-
trial background of the work presented in this paper is the
IPTV standardization activities undertaken by ETSI (see Sec-
tion 4.1), and in particular the IPTV security requirements
elicitation activities. While there usually is technical and ar-
chitectural expertise available, security expertise is a scarce
resource, also among the member companies of ETSI. There-
fore, security knowledge and experience need to be made
available to non-security technicians.

Security knowledge and experience can be explicit or
tacit. Explicit information is either documented or somehow
easily accessible. For example, security standards, security
checklists and vulnerability bulletins contain explicit expe-
rience and knowledge. Security experts usually have expe-
rience and tacit knowledge about security issues. They are
not aware of their tacit and unspoken experience, but they
use it all the time. Tacit knowledge is often needed to make
best use of explicit knowledge. Furthermore, the major chal-
lenges in in experience and knowledge management are the
elicitation and the reuse of tacit knowledge. Ideally, secu-
rity experts can turn security principles into guidelines,e.g.,
for identification and authentication of users to a system.
Developers and other stakeholders can then use these guide-
lines and by that reduce the need for involvement of security
experts. However, in many cases this will not be possible:
e.g. key management for cryptographic operations requires
a deep understanding of security that can hardly be captured
by checklists. Thus, there is a need for additional supportive
constructs.

Furthermore, the terminology used in many documents,
even though they present knowledge explicitly, is not in-
tended to be understood by security novices. There are many
reasons for this, one being that there are underlying pro-
cesses and methodologies or ways of thinking or working

that are assumed in these documents, i.e., not stated explic-
itly. One such source is the security standard ISO 15408:2007
Common Criteria for Information Technology Security Eval-
uation [17], here referred to as the Common Criteria. The
Common Criteria provide support in building a secure sys-
tem by offering classes of functional security components
that a developer can select from. These classes address se-
curity principles such as identification and authentication,
encryption, security management, and audit. Together with
the security refinement guidelines, these classes support a
security expert in eliciting security requirements. However,
the Common Criteria are formulated using domain-specific
security terminology, which makes it hard for non-security
developers or stakeholders to take full advantage of the guide-
lines in the standard. Hence, the security requirements elici-
tation support is inherent in the standard, but requires security
knowledge and experience to be accessed. So far there is no
thorough description of the security requirements elicitation
process implied in the Common Criteria, nor an extensive
demonstration of its use in practise, and both are required for
the developer community to benefit from this tacit informa-
tion.

In addition, to ensure correct employment of security
principles in a secure design, the security requirements need
to be unambiguous and specific. Therefore, a Common Cri-
teria based security requirements elicitation methodology
was standardized by ETSI’s standardization program Tele-
coms & Internet converged Services & Protocols for Ad-
vanced Networks (TISPAN). This methodology supports a
non-security expert to hierarchically elicit security require-
ments from overall functional system descriptions and func-
tional requirements. The methodologywas developed during
a series of security requirements projects, and applied within
the IPTV standardization project discussed in this paper (cf.
Section 4.1). The Common Criteria document is large in size
(three parts of together more than 600 pages and a signifi-
cant amount of additional material, such as existing Protec-
tion Profiles [18]), tailored for security evaluation and certi-
fication rather than security requirements elicitation support,
and few people really understand all aspects of the Com-
mon Criteria. Making use of the Common Criteria requires
an understanding of the security assurance paradigm and a
deep general security domain knowledge. To extract the se-
curity requirements, requirements engineering expertiseis
also necessary. In the IPTV project, the methodology used
at ETSI helped structuring the security requirements inter-
pretation and negotiation process, helped in the formulation
of the security requirements, but provided no support for re-
quirement tracing to design. Also, a need for better reuse of
security experience was evident, as the process turned out to
heavily rely on the presence of experts with experience in
both security and requirements engineering to run smoothly.
However, the way the Common Criteria were used proved

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 3 — #3

3

to be effective and has been adopted in the security require-
ments elicitation and tracing methodology described in this
paper.

1.2 Reusing security expertise: SecReq

This paper describes SecReq, a security requirements elicita-
tion and tracing methodology that is built upon the method-
ology applied at ETSI. SecReq enhances the ETSI method-
ology with security requirements elicitation and writing sup-
port, as well as requirements analysis and tracing capabilities.
Those added elements are supported by a systematic use of
different sources of security expertise and experience, and by
integrating three existing techniques, namely the Common
Criteria (from the ETSI methodology), the heuristic require-
ments editor HeRA, and the model-based security engineer-
ing approach UMLsec.

In order to raise awareness early in the requirements pro-
cess, SecReq provides support for identifying potential se-
curity relevant aspects of service descriptions and functional
requirements. This has been identified as being a challeng-
ing and time-consuming task in the ETSI methodology. For
structuring and refining security issues systematically, Se-
cReq contains a more explicit description of the process im-
plied in the Common Criteria.

In this paper we describe the four-fold contributions of
SecReq to security requirements elicitation and tracing:

(i) explicit description and demonstration of the underlying
security requirements elicitation process, guidelines and
refinement steps of the Common Criteria,

(ii) direct support for writing better security requirements by
supporting the information flow between the stakeholders
who are involved,

(iii) support for identifying potential security aspects in ser-
vice descriptions or requirements, and

(iv) security requirements tracing to secure design.

SecReq integrates three techniques that address the four
above-mentionedaspects of security requirements elicitation
and tracing:

(1) The Common Criteria standard, with its underlying se-
curity requirements elicitation process as an extension of
the ETSI methodology, to guide the elicitation process
from identifying overall security objectives to specific
security requirements. This covers (i).

(2) The HeRA (Heuristic Requirements Assistant) tool ap-
plies security-relevant heuristics to requirements and ser-
vice descriptions in order to identify potential security
issues. HeRA raises awareness and provides feedback
while people write requirements. This covers (ii) and (iii).

(3) The UML extension UMLsec to trace security require-
ments to secure design and to analyse and verify that the

design solution complies with the security requirements.
This covers (iv).

1.3 Overview of the three techniques integrated in SecReq

The Common Criteria based security requirements elicita-
tion part of SecReq (technique 1 of SecReq) takes high-level
security needs (objectives) through several refinement steps
to produce specific security requirements, which are at a
refinement level suitable to formulate design solutions. A
demonstration of this is given in Section 5, where SecReq is
explained using the IPTV security requirements elicitation
project mentioned earlier (cf. Section 4.1).

The HeRA tool [50] (technique 2 in SecReq) supports
technical experts, as well as security experts, in identifying
potential security issues. HeRA is integrated with the Com-
mon Criteria based requirements method (technique 1) and
together these two techniques make up the elicitation phase
of SecReq. HeRA contains a requirements editor that al-
lows technicians to enter system functional information such
as service requirements. The input to this editor is checked
against security-related heuristics. In particular, these heuris-
tics search for keywords and patterns that may indicate secu-
rity-relatedness. This search for security keywords are inSe-
cReq used, among other things, to help a developer in se-
lecting appropriate parts of the Common Criteria security
requirements knowledge, and thus, HeRA works closely to-
gether with the Common Criteria based method.

The UML security extension UMLsec (technique 3 in Se-
cReq) contains security principles expressed as UML stereo-
types. Within the SecReq integrated approach, these stereo-
types are incorporated into security-related heuristics within
the HeRA tool. When a stereotype occurs in a text during elic-
itation, HeRA issues a warning or advice. The Common Cri-
teria are another source of heuristics. Furthermore, UMLsec,
together with the Common Criteria refinement process, is
also used for tracing security requirements from elicitation
into UML design models. Finally, the UMLsec analysis mod-
ule is used to analyse and verify that the requirements are met
by the resulting UML design models.

Integrating the Common Criteria, the HeRA tool, and
UMLsec is not straight-forward and posed numerous chal-
lenges. For example: to apply UMLsec in the industrial ap-
plication at hand, we had to extend the set of UMLsec stereo-
types with new ones to deal with the specific security require-
ments in the telecommunication application domain, as ex-
plained in Section 5.3. We envision further extensions to the
UMLsec stereotypes. In order for the HeRA tool to support
the elicitation process, we had to derive the security-related
heuristics based on the UMLsec stereotypes we wanted to
identify. In addition, we had to add facilities to HeRA that
allowed the refinement of security requirements once they
were detected. In order to link UMLsec models to the input

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 4 — #4

4

Fig. 1 Overview of sections: components, application and integration
of techniques in SecReq

from the Common Criteria on the one hand and to the tool-
based process using the HeRA tool on the other, we had to
develop an approach which allows us to incrementally de-
velop the UMLsec models in parallel with the incremental
development of an associated goal-tree, as explained in Sec-
tion 2.3. Also, we developed an approach which allows the
user to trace the security requirements through the SecReq
process using the UMLsec models, as visualized in figure 9.

Nevertheless, SecReq does contribute to making devel-
opers not familiar with security able to elicit security re-
quirements. Furthermore, it provides an effective way to
reuse security experience across projects, and for accessing
tacit security knowledge. This is particularly important in
cases where only limited security expertise is available. For
these cases, SecReq adds synergy that enables stakeholders
to better master the challenging task of developing complex
security-critical systems.

1.4 Overview of this paper

The paper is structured as outlined in Figure 1, which gives
an overview of how the SecReq approach is presented in the
different sections in this paper (referred to in the figure by
their section numbers). In Section 2, we present the three
techniques as components of SecReq. In Section 3 we de-
scribe how SecReq exceeds its components by integrating
them in a non-trivial way: they are “glued together” by flows
of security experience that might otherwise be neglected. In
Section 4, we provide the industrial context under which the
main parts of SecReq were developed, as well as present
the Internet Protocol Television (IPTV) project (the example
project discussed in this paper). Section 5 explains the details
of SecReq and how we applied SecReq in the IPTV project
introduced in the section before.

In Section 6, we provide a critical discussion of the var-
ious parts of SecReq, and outline some of our experiences
from the practical application of SecReq. In Section 7, we
discuss different approaches relevant for SecReq. We con-
clude the paper in Section 8 and give an outlook on future
work.

2 Heuristics, Common Criteria, and UMLsec

This section provides background information related to the
three techniques of the SecReq approach.

2.1 The role of the Common Criteria in security
requirements elicitation

The Common Criteria project was established in 1995 as
a response to the national and regional security evaluation
standardization initiatives. These include:

– Trusted Computer System Evaluation Criteria (TCSEC),
also known as the orange book [25].

– Canadian Trusted Computer Product Evaluation Criteria
(CTCPEC) [35].

– Information TechnologySecurityEvaluationCriteria (IT-
SEC) [26].

The project was led by the International Standardization Or-
ganization (ISO) and the aim was to harmonize these diverse
standardization initiatives (TCSEC, CTCPEC, ITSEC, etc).
In 1999, after four years of rigorous evaluation of the exist-
ing standards and current industrial practise, the projectpub-
lished ISO 15408: Common Criteria for Information Tech-
nology Security Evaluation (Common Criteria) version 2.1
[16]. The standard has since gone through several revisions
until version 3.2 revision 2 [17], which was released in Sep-
tember 2007. This is the version that SecReq is built upon.

The Common Criteria consist of three parts:

Part 1: Introduction and General Model [18],
Part 2: Security Functional Components [19], and
Part 3: Security Assurance Components [20] and an evalu-

ation methodology (CEM) [13].

The CEM methodology is different from parts 1-3 as it is
a guidance tool aimed only at the Common Criteria evalua-
tor, who must be formally certified to carry out evaluations
of IT products. Parts 1-3 provide general guidelines to the
developers and the customers of IT products, as well as to
the evaluators. Note that the Common Criteria operate under
the security assurance paradigm. Security assurance refers to
the level of confidence in that the system delivers the spec-
ified security functionality, rather than the level of security
functionality (often simply referred to as security level).

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 5 — #5

5

The main contribution of the Common Criteria is a frame-
work that permits comparability between results of indepen-
dent security evaluations. This is done by providing a com-
mon set of requirements for the security functionality of IT
products, and for the assurance measures that are applied to
these products during an evaluation. The evaluation process
is used to establish confidence in the fulfilment of particular
security functionalities. The process also helps the customers
of IT products to determine whether the identified function-
alities meet their security needs. The IT product or its part
being evaluated is referred to as Target of Evaluation (ToE).
A ToE can include any combination of hardware, firmware
or software, the development of these and the operational en-
vironment that they are intended to work in or that they are
being evaluated for. Hence, a ToE is a specific configuration
of an IT product. Details can be obtained from the Common
Criteria portal (http://www.commoncriteria.org).

The three groups with general interest in Common Cri-
teria evaluations are consumers, developers and evaluators.
Consumers are aided by Common Criteria evaluations and
Common Criteria information in procuring IT products. They
may have alternative IT products to choose from and Com-
mon Criteria information can thus be used to compare dif-
ferent IT products. Consumers or developers may also use
Protection Profiles (PP) to specify security requirements.A
PP contains security requirements targeted at a specific type
or group of IT products. Developers use the Common Crite-
ria to help them identify security requirements and to market
their products. An evaluator uses the Common Criteria to aid
in formulating judgements about the conformance of ToEs
to the security requirements in the evaluation of a particular
product.

The Common Criteria standard recognizes two types of
evaluations:

(1) ST/ToE evaluation and
(2) PP evaluation

The standard provides support for developing all three con-
structs (ST (Security Target), ToE, and PP). Here ST denotes
the Security Target, which is the construct used to formulate
the functional security requirements for a particular ToE and
can be considered as the security requirements specification
for a ToE. A PP is the same for a group or a specific type
of ToE, and lists implementation-independent functional se-
curity requirements for a particular IT product type, such
as smart cards. A ToE can also be evaluated against a PP,
which is made implementation-specific by constructing an
ST. Thus, a PP states the security objectives and the general
functional security requirements for an IT product type that
can be made ToE specific in an ST. Figure 2 shows how PP,
ST and ToE relate to the development phases.

Common Criteria Part 2 [19] specifies the security prin-
ciples along with their internal dependencies and supports

�

���������	
����
�����	 �������������	 �������	�	

��

��

���

���������	
����
�����	 �������������	 �������	�	

��

��

���

Fig. 2 PP, ST, and ToE in relation to phases of a development process

with a refinement process to refine high-level security state-
ments to specific security requirements. Part 2 consists of 11
security functionalClasses, each refined into sets ofFami-
lies, ComponentsandElements. In Section 5, we present the
refinement process for the Identification and Authentication
(FIA) class.

Classes are the most general grouping of security require-
ments, which means that all members of a class share a com-
mon general focus. An example of a class is the FIA class,
which is focused at identification of users, authenticationof
users and binding of users as subjects to objects. Classes are
refined into one or more families. A family is a grouping
that shares a more specific focus, but that differs in emphasis
or rigor. An example of a family is the User Authentication
(FIA_UAU) family, which is part of the FIA class. This fam-
ily concentrates on the authentication of users. Each family
within a class contains a set of components to represent in-
creasing strength or capability. The components may be par-
tially ordered but in some cases, there is only one component
in a family and thus ordering is not applicable. An example
of a component is FIA_UAU.3 (Unforgeableauthentication),
which is used to specify unforgeable authentication of sub-
jects to objects. The components are constructed from indi-
vidual elements. An element is the lowest abstraction level
in CC part 2 that is relevant for security requirement elic-
itation and is formulated in such a way that the fulfilment
of an element is verifiable in practise. An example of an el-
ement is FIA_UAU.3.2, which specifies that use of copied
authentication data shall be prevented.

The SecReq approach performs the security requirement
refinement activities along the abstraction levels of classes,
families, components and elements, that, together with the
PP, ST and ToE activities and constructs, define the underly-
ing security requirements elicitation process of the Common
Criteria. The first rule for a refinement is that a security objec-
tive or requirement at some abstraction level has to meet both
the refined and unrefined construct. If a refinement does not
meet this rule, the resulting refined construct is considered to

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 6 — #6

6

be an extended construct and shall be treated as such. For an
example of a valid refinement consider FIA_UAU.2.1: “The
ToE Security Functionality (TSF) shall require each user to
be successfully authenticated before allowing any other TSF-
mediated actions on behalf of that user.” This can be refined
to: “The TSF shall require each user to be successfully au-
thenticated byusername/passwordbefore allowing any other
TSF-mediated actions on behalf of that user.” TSF refers to
the security functionality of a system and is comprised of
all hardware, software, and firmware of the ToE that must
be relied upon for the correct enforcement of the security
requirements. The second rule of refinement is that a refined
requirement shall be related to the original requirement. For
example, refining an audit requirement with an extra element
for masquerade prevention is not allowed.

This hierarchyof security requirements refinement levels
and the associated refinement rules provide the underlying
elicitation process of SecReq.

2.2 Heuristic for security requirements elicitation

When requirements analysis start, stakeholder wishes should
be captured and documented as requirements. These initial
requirements tend to be vague and weakly documented, but
are nevertheless important. In addition, stakeholders may
have conflicting or unclear goals and perspectives. There-
fore, it is crucial that the requirement engineers have good
communication skills and the ability to understand the ongo-
ing processes between stakeholders (which might be explicit
or implicit), as well as to understand the stakeholders’ views
and early requirements. However, as the domain knowledge
and familiarity with the involved stakeholders and customers
may be rather limited at the beginning, this is a challeng-
ing task. Misunderstandings and errors in meeting notes, use
cases, or other requirements-related documents can easily
lead to design flaws or even wrong design that later cause
severe and costly problems. Errors can be simple typos, us-
age of synonyms or homonyms, problematic sentence struc-
tures, and inconsistent process descriptions, that all some-
how makes the requirements imprecise. Furthermore, in e.g.
neuro-linguistic programming (NLP) grammatical patterns
are identified as potential reasons for misunderstanding [8].
Correcting these errors may be costly, but when it comes to
security requirements, errors can even open up for severe se-
curity attacks. Thus, getting the security requirements right
from the early stages on, will save on cost, but will most
probably also reduce the chance of severe security attacks
that may affect company reputation, lead to loss of customer
data, loss of customer privacy, etc.

Security requirements appear throughout the elicitation
process, the stakeholders are simply not aware of them. E.g.,
when stakeholders discuss general requirements in meetings,
they are often not aware that they also discuss security-related

topics. One way to deal with this and to make the stakeholders
aware of the security-relatedness, is to work with a require-
ments support tool that prompts whenever indicator terms or
expressions that relate to security occur. Security-relatedness
can e.g. be recognized by certain words or patterns of words,
such as the combination of “Internet” and “payment”, which
then should be investigated in more detail. Such a prompt
will elicit more considerations and possibly even make hid-
den security requirements explicit. The earlier a securityre-
quirement can be identified, the easier it is to trace and to
cover it throughout implementation. Therefore, rapid feed-
back mechanisms are needed.

HeRA (Heuristic Requirements Assistant) is a tool that
incorporates the concept of heuristic requirements elicitation
[50]. In SecReq, HeRA uses heuristic rules to represent se-
curity related experience. Users of HeRA receive warnings
and hints that are triggered when they type a certain term
or pattern. Rules are created from the experience of security
experts, and from observations in earlier projects [51]. Find-
ings can be codified as rules. E.g., considering the refinement
of requirements, a security expert could specify a rule that
whenevera requirement contains the keyword “authenticate”
a refined requirement with the specific authentication mech-
anism has to exist. HeRA supports writing and editing rules,
and integrates them during run-time. Rules are organized in
layered sets of rules: There is a layer of basic general rules,
with more security-specific layers on top.

HeRA is one instance of a family of tools that are based
on Fischer’s architecture for domain oriented design environ-
ment (DODE) [30]. The central part of this architecture is a
construction component; in the case of HeRA, requirements
are “constructed” using a general-purpose requirements edi-
tor, or a use case editor. Both editors check heuristic rules. In
Figure 10, HeRA’s requirements editor is shown. Each re-
quirement has an ID and a textual description by default, but
additional attributes can be added (e.g., relevant UMLsec
stereotypes). The second DODE component of HeRA that
we use in SecReq is the argumentation component: Security
experts can use HeRA mechanisms to codify their findings
from earlier projects. As a rule set in HeRA, those heuristics
will support future users who are less proficient in security.
HeRA applies these rules to the input in the requirements
editor and then analyses it. Based on this analysis, HeRA’s
argumentation component gives context-sensitive feedback
to the input.

In HeRA, heuristic rules are defined in JavaScript and
can access the data model of the requirements editor. There
are wizards that allow users to generate JavaScript code for
a rule, along with a description and parameters (e.g. certain
keywords). Rules can be changed during runtime and the re-
sults become visible immediately. Figure 3 shows how a rule
can be defined in HeRA, and in Section 5 we will see work-

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 7 — #7

7

Fig. 3 Definition of a heuristic rule in HeRA

ing examples of such rules for detecting security-relatedness;
here referred to as security heuristics.

The underlying idea of requirement tools in the DODE
family is to create awareness and improve feedback about do-
main specific knowledge (coded into the heuristic rules) dur-
ing documentation of requirements. Fischer investigated the
effects of a DODE in different domains and reports its effec-
tivity [30]: The argumentation component analyses the user’s
actions and issues computer-basedcritiques. During an activ-
ity like typing requirements this triggers breakdowns [66]. In
this way, authors are interrupted and made awareof a problem
they may have overlooked. They can decide to fix it, finish
their work and return to the warning later, or give feedback
to the warning. Feedback results in an improved rule set for
the next project. Fischer calls this the SER-cycle [31]:

Seeding A knowledge based system needs to be initialised
with knowledge. Otherwise it would not be helpful; hence
it would not be used.

Evolutionary Growth While the system is being used, ad-
ditional experiences are added in response to warnings.
In HeRA, comments or explanations may be given. Even
ignoring a warning provides feedback. Heuristic rules
can be changed based on feedback.

ReseedingAt some point, the experience base needs to be
cleaned up. In HeRA, the security expert would usually
remove heuristics that were often ignored and change
others that were commented on.

HeRA works with different sets of heuristic rules. The
basic set covers general warnings like typos. Additionally,

there are requirements specific rules, like the detection of
ambiguities. In [49] we investigated how this rule sets can be
used to increase the quality of use case descriptions (basedon
the template and guidelines provided by Cockburn [15]). We
found that HeRA helped to achieve better quality. In fact, the
issues brought up by HeRA were not found during quality
gate reviews in similar projects. Some of the findings in the
reviews never caused a heuristic in HeRA to fire. We con-
cluded that HeRA’s constructive feedback complements an-
alytical quality assurance with constructive assistance [49],
but cannot replace it.

Therefore, in SecReq we define an additional role to make
the elicitation of security requirements more effective. This
role is the security instructor, which ideally should be some-
one with experience and knowledge within both security and
requirements engineering.The reason for this is that an expe-
rienced moderator can guide the stakeholders in how to use
HeRA, as well as capture new security concerns not currently
covered by HeRA. Furthermore, often stakeholders tend not
to see the link to security, even when they are prompted by
HeRA, and a moderator can help mitigating this risk. How-
ever, there is usually a severe shortage of experienced mod-
erators, so SecReq does not depend on one being present.
Figure 4 shows the information flow in a moderated elic-
itation situation. An information flow model according to
the FLOW notation [65] depicts the flow of requirements
within a project. Flow of requirements is denoted by black
arrows. Grey errors indicate the flow of experiences. Unlike
requirements, experiences are not specific to a single project.

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 8 — #8

8

Fig. 4 Information flow in an elicitation situation

FLOW distinguishes between documented information (re-
quirements, experience) and oral or informal communica-
tion. Solid lines and document symbols indicate documented
information, while dashed lines stand for informal or oral rep-
resentation of information, which is called “fluid” in FLOW.
Information and experience people have in mind is fluid.
It is denoted by a face symbol. In Figure 4, an experienced
requirements engineer uses her personal, un-documentedex-
perience (grey dashed arrow) to support stakeholders in their
elicitation effort. Ideally, the stakeholders should receive a
briefing by an experienced security instructor before the elic-
itation starts. The instructor will provide insights (i.e., expe-
riences - grey arrow) and raise awareness for security issues.
The requirements engineer receives information on security
requirements (black arrow) from the elicitation step by lis-
tening to discussions, carrying out interviews, etc. HeRA
supports these needs in an elicitation situation through its
ability to capture the security experience of e.g. a security
expert explicitly by adding new rules to its heuristics, and
by allowing the security instructor (expert) to merely guide
the elicitation process. I.e., it is the stakeholders that perform
the actual elicitation, supported by HeRA, while the security
instructor observes, guides and inserts new heuristic rules if
necessary. E.g., if the security instructor discovers security
concerns in e.g. functional documents not currently covered
by the heuristics of HeRA, he can update the heuristics as
part of the elicitation process. This way, HeRA learns from
new experience.

2.3 UMLsec for security requirements analysis

The Unified Modeling Language (UML) consists of different
types of diagrams for describing different views on a system.
It offers rich extension mechanisms in the form of labels that
can be used to provide additional data. These can be either
stereotypes (written in guillemets or double angle brackets
«stereotype») or tag-value pairs (written in curly brackets
such as {tag=value}). Using these extension mechanisms,
one can construct an extension of the UML notation for a
given application domain.

UMLsec is such a UML profile for security-critical sys-
tems that can be used to express and analyse security require-
ments [45]. The purpose of security analysis is to achieve a

sells goods

buys goods

Customer

Purchase

Business

{start=buys good} {stop=sells good}
Purchase <<fair exchange>>

U fair exchange

Goal tree

Fig. 5 Use case diagram with goal tree

satisfactory level of confidence that the relevant securityre-
quirements are properly fulfilled. For the analysis, the design
solution is expressed using UML diagrams and the security
requirements are expressed as UMLsec stereotypes and tags
and integrated with the diagrams. This way, one can trace the
security requirements into the solution design. Moreover,one
can also backtrack from the solution design to the security
requirements, as each «stereotype» has a precisely defined
semantics that links the design to the requirement.

By developing a security goal tree alongside with the de-
velopment of the solution design specification, the security
objectives are refined in parallel by giving more system de-
tails in subsequent UMLsec diagrams. Goals are refined in
parallel in an iterative fashion by refining the UMLsec dia-
grams with additional system details as they become avail-
able as part of a given UML based development process. The
resulting goal tree and subsequent UMLsec diagrams then
link the solution design to the security objectives.

The UMLsec approach is supported by a number of auto-
mated analysis tools, which are based on a formal semantics
of the relevant fragment of UML [42,43]. It has been applied
to a number of application domains such as service-oriented
systems [56]. In the following, we give a short background
overview of the part of UMLsec relevant for SecReq using
examples.

Requirements CaptureWe employ use case diagrams to cap-
ture security requirements. To start with our example, Figure
5 gives the use case diagram describing the situation to be
achieved together with the (yet trivial) goal tree: a customer
buys goods from a business in a way that should provide a
fair exchange of the goods against the payment. The seman-
tics of the stereotype «fair exchange» is, intuitively, that the
actions “buys goods” and “sells goods” should be linked
in the sense that if one of the two is executed then eventu-
ally the other one will be (where these actions are specified
on the next more detailed level of specification). The “U” in
the goal tree stands for “undetermined” – it is not yet known
whether the goal will besatisfied(“S”) or denied(“D”) [14,
44].

In general, the idea of the UMLsec extension is to use
UML diagrams that would also be used for a system that is
not security relevant (such as use case diagrams), and add
the security relevant information as stereotypes or tagged

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 9 — #9

9

Reclaim
payment

Request good

BusinessCustomer

Deliver order

Pay {ttp=TTP}
<<provable>>

[provable(Pay,TTP)]

Wait until
delivery due

{start=Pay} {stop=final}
<<fair exchange>>

U

U

fair exchange

payment provable

[After {fairexchange:buy}
will eventually reach
{fair exchange:deliver}]

Goal tree

Fig. 6 Activity diagram and goal tree

values. Note that there are also diagrammatic notations sim-
ilar to use case diagrams which are specifically used to ex-
press security-relevant information, such as Misuse case di-
agrams [68], Abuse case diagrams [55], or Secure Tropos
diagrams [60,54]. These specialized notations can often be
used successfully together with the UMLsec extension of the
general-purpose notation UML. E.g. for Secure Tropos this is
explained in [61]. However, this is not in scope of the current
paper.

Analysis We use activity diagrams to explain use cases in
more detail. Following our example, Figure 6 explains the
use case of Figure 5 and the associated goal tree in more detail
by giving an activity diagram and a refined goal tree. The
activity diagram is separated in twoswim-lanesdescribing
activities of different parts of a system (hereCustomer and
Business). Two tag-value pairs {start=Pay} and {stop=
final} are used to mark certain actions. Now any such diagram
fulfils the security requirementfair exchange given in the
diagram in Fig. 5 if the condition holds that if one of the start
actions is executed, then eventually one of the stop actions
will be.

Design: object and sequence diagramsAn object is an en-
tity with well-defined boundary and identity that encapsulate
state and behaviour. State is represented by attributes (for in-
stance properties of a user of a system) and behaviour is rep-
resented by operations, methods, and states. Object diagrams
provide instance level information and represent different ob-
jects and their interfaces (e.g. dependencies) to analyse the
system behaviour. Sequence diagrams show the interaction
of objects or components. Both object and sequence diagram
are part of the security analysis and the associated goal tree
is used to trace security objective and sub-security-objective
along with design diagrams. Additionally, relevant stereo-
types are incorporated within these diagrams so that the de-
sign contains security requirements related information.

Implementation: deployment diagramsDeployment dia-
grams describe the underlying physical layer; we use them
to ensure that security requirements on communication are
met by the physical layer. Deployment diagrams consist of
nodes as modelling element represents the system compo-
nents to the physical structure of the system and links among
the nodes. User node specifies the external actor’s compo-
nents, whereas system node specifies the internal system ac-
tor’s components. These components from different nodes
are connected by link stereotype.

3 SecReq overview: integrating security techniques

The goal of SecReq is to assist in all steps in the security
requirements elicitation and to provide mechanisms to trace
security requirements from high-level security objectives to
the design of a secure system. SecReq combines three distinc-
tive techniques that have been integrated to meet this goal.
These techniques are:

– Use of the Common Criteria standard and its underlying
security requirements elicitation and refinement process;

– the HeRA tool with its security-related heuristic rules,
and

– UMLsec stereotypes, secure design principles and the
UMLsec security analysis tool-set.

These three techniques are integrated in a way supporting the
two purposes of SecReq:

(i) security requirements elicitation and
(ii) security requirements tracing and mapping to design, as

shown in Figure 7.

The security requirements elicitation is supported by the
Common Criteria requirements refinement process and by
the HeRA tool. Some heuristic rules in HeRA are derived
from the security principles in the Common Criteria, others
come from UMLsec stereotypes, and others are stimulated
directly by observations of security experts. Tracing security
requirements is enabled by UMLsec and goal trees.

The crucial resource of security expertise and experience
is used to tie all parts of SecReq together. As the grey lines
in Fig. 7 show, the HeRA tool supports security requirement
elicitation and uses the expertise of security engineers and
the experience expressed in stereotypes of UMLsec. The re-
quirements elicitation approach reuses experience from the
elicitation (via the security expert) and is guided by the doc-
umented experience in the Common Criteria etc. UMLsec
can build on a significantly improved input of security re-
quirements as a basis for its analysis. When new security
issues occur, they may be encoded into UMLsec stereotypes
and models. The latter are fed back to HeRA where they
contribute to detect the new kind of issues in stakeholder
interviews.

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 10 — #10

10

Fig. 7 The main elements of the SecReq method as an information flow model. Black parts represent requirements and their flow, while grey
parts stand for experience. Document symbols and solid lines indicate documented information. Dashed lines and human face symbols represent
information that is kept in mind or transferred orally or informally (which is called “fluid” in FLOW terminology [65]). Note the fluid feedback from
Step 6 (UMLsec) to the elicitation activity. Problems identified in UMLsec design models are used to improve heuristics in security requirement
analysis. Other experience reuse mechanisms are depicted above the CC-based method box. Elicitation using HeRA provides input to Steps 1-5:
security issues discovered by applying the heuristics.

The integration of the HeRA tool, the Common Criteria
based requirements elicitation method, and UMLsec goes be-
yond putting one technique next to the other. Instead, the flow
of experience and expertise glues all parts together and facil-
itates an evolutionary learning cycle. The resulting specifica-
tions run through an integrated set of filters. UMLsec stereo-
types convey parts of that experience on security concerns.
They are both used to assist in eliciting security requirements
and in tracing these from high-level security statements (se-
curity objectives) to secure design. Firstly, UMLsec stereo-
types assist in the elicitation activities involving the HeRA
tool: UMLsec stereotypes are incorporated into the heuris-
tic rules of HeRA. Secondly, UMLsec stereotypes are iden-
tified from the security objectives, sub-security-objectives,
security requirements and specific security requirements that
were elicited. UMLsec stereotypes help to make the security
needs (in the objectives and requirements) explicit, verifiable,
and traceable.

3.1 Security requirements elicitation and analysis (SecReq)

SecReq is a security requirements elicitation and tracing
method built on the Common Criteria, the HeRA tool and
UMLsec. The elicitation part consists of five steps that takea
developer through a series of refinement steps starting from
system objectives and functional requirements and ending
with specific security requirements at an early stage.

These requirements should be verifiable and measurable
expressions about the mandatory, desired and optional se-
curity features of the system. Furthermore, the requirements
expressions should be on the refinement level of Common
Criteria elements and according to the SMART principles
[53]. There are several definitions of SMART available. In
SecReq, we use the adaptation of the SMART terminology
of ETSI TC TISPAN. This means that each elicited security
requirement must beSpecific, Measurable, Achievable, Re-
alizable,andTraceable(SMART). Specificmeans that the
requirement must be described in such a way that it is well
defined and clear to anyone who has a basic knowledge of
the project and security requirements.Measurablemeans that
the requirements must be described in such a way that one
can verify whether it has been met.Achievablemeans that the
requirements must be possible to meet and include a descrip-
tion that can be used to determine whether it has been met.
Realizablemeans that the requirements should be possible to
meet given the system and physical constraints, and given the
project resource and schedule constraints.Traceablemeans
that the requirements should be expressed in such a way that
it is possible to trace them into the solution design, and even-
tually into the implementation. The security functional el-
ements of the Common Criteria are the proper abstraction
level to analyse for fulfilment of SMART. This refinement
level further makes it possible to analyse for fulfilment of the
requirements in the solution design using UMLsec, which is
the requirement tracing and analysis activity of SecReq as
shown in Figure 7.

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 11 — #11

11

In the process of going from functional descriptions to
specific security requirements, we make use of the abstrac-
tion levels of the various constructs in the Common Cri-
teria: Class, Family, Component, andElements, the refine-
ment specifications given in Common Criteria part 2, and the
HeRA tool with its security-related heuristics.

The SecReq method consist of the following six steps:

Step 1: Specify security objectives from system objec-
tives and functional requirements
This step involves deriving security objectives from sys-
tem objectives and functional requirements. Other sour-
ces for security objectives are the system architecture,
concept descriptions, or any other relevant system in-
formation available, such as existing standards. Com-
mon Criteria security functional classes offer guidance
throughout this step. HeRA supports this refinement by
identifying security relevant requirements and asking the
right questions for the refinement.

Step 2: Associate a security functional class to each se-
curity objective
During this step, for each security objective, the relevant
security functional requirement class is selected from the
Common Criteria. Again, HeRA could guess an appro-
priate security functional class based on heuristics.

Step 3: Refine security objectives to sub-security-objec-
tives
The task of this step is to refine each security objec-
tive into one or more sub-security-objectives. Each sub-
objective should comply with one or more of the Com-
mon Criteria families contained within the relevant func-
tional class from the previous step. The HeRA tool is also
used to aid this step by identifying additional candidate
sub-security-objectives, and by guiding the refinement
process.

Step 4: Refine sub-security-objectives to security require-
ments
This step involves refining each sub-security-objective
into one or more security requirements supported by the
contained components of the relevant Common Criteria
family (i.e., the family used for thesub-security-objective).
The HeRA tool is also used to aid this step, similar to that
of Step 3.

Step 5: Refine security requirements to specific security
requirements
This is the last step of the requirement elicitation part of
SecReq and refines each security requirement into one or
more specific security requirements supported by the ele-
ments contained in the relevant Common Criteria compo-
nents (i.e., the components used for the security require-
ments). Similar to Step 3 and 4, the HeRA tool supports
this step by identifying potential additional security re-
quirements. Again, it guides the refinement process with
a dialogue based assistant.

Step 6: Analyse the security requirements using UMLsec
This is the analysis part of SecReq. The goal of this step is
to check whether the secure design contains the manda-
tory, desired and optional specific security requirements
that were elicited. This includes checking the UML mod-
els specifying the design for fulfilment of the require-
ments, and it enables tracing from the solution design, via
specific security requirements, back to the security objec-
tives. This analysis requires that all security requirements
elicited in Steps 1–5 be specified on the abstraction level
of Common Criteria security functional elements (spe-
cific security requirements). The security analysis with
UMLsec models is supported by the development of a
security goal tree in parallel to the development of the
UMLsec model.

Security requirements elicitation in SecReqSecurity require-
ments elicitation in SecReq thus consists of a tight integra-
tion of a Common Criteria based requirements refinement
process and the HeRA tool. HeRA contains, among others,
security specific heuristic rules derived from the UMLsec
stereotypes and the security principles of the Common Cri-
teria. In particular, elicitation in SecReq follows the first five
steps of the process described above, which produces specific
security requirements. These requirements are refined from
the high-level system descriptions and security needs, which
are called security objectives. The process is iterative and
whenever new system information becomes available or new
high-level security issues appear, the process iterates back to
the relevant refinement step.

The five steps are refinement steps that follow the hi-
erarchical refinement structure of Common Criteria part 2,
the security functional components. As discussed earlier,the
Common Criteria standard structures security needs or prin-
ciples into five refinement levels, where the most abstract
level is called a security functional class and the most re-
fined level is called security functional element. Note that
elements both represent a security principle abstraction level
and contain specification of the necessary security actionsto
be undertaken by the involved parties. It is this refinement
process that drives the elicitation process, as there is a direct
link between the Common Criteria classes and elements. One
class represents one security principle that is refined in such
a way that following the class structure intuitively results in
specific security requirements that can be mapped directly
to the design. The Common Criteria standard also contains
specification of dependencies between the classes (security
principles), which also guide the elicitation process.

Fig. 8 illustrates the role of the Common Criteria and
the HeRA tool in the five step elicitation process of SecReq.
Drawn in grey, the Common Criteria are considered solid,
documented experience. The Common Criteria control all
five steps, which are indicated by the flows coming in from

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 12 — #12

12

Fig. 8 The role of the Common Criteria and HeRA in the requirements elicitation process

the top. HeRA is supporting all steps at the same time, which
is indicated by arrows from HeRA to the bottom of the steps.
Fig. 8 focuses on these experiences from Common Criteria
and from HeRA. Further input, such as incoming fluid re-
quirements, are omitted in this figure. Note that the iterative
nature of the elicitation process is not shown here.

The HeRA tool is the elicitation support tool of SecReq.
The tool can support all five elicitation steps, but in particular
the difficult Step 1. Heuristic rules derived from experience
notify stakeholders when they describe issues that seem to be
security-related. UMLsec stereotypes are one of the sources
of experience that are captured in heuristic rules in HeRA.
They are most helpful in identifying potential security issues
from system objectives, functional requirements and the like.
HeRA has two main tasks in the elicitation process:

(i) identify potential security issues in system description
of various abstraction levels, such as high-level system
objectives descriptions, service functional requirements
etc. (by means of a security instructor as shown in Fig. 4),
and

(ii) guide the developer in formulating security objectives,
sub-objectives, security requirements and specific secu-
rity requirements, in the five steps respectively.

Task (ii) is crucial to produce formulations that are both spe-
cific and verifiable. The task is supported by the security prin-
ciples and the security functional requirements hierarchyof
Common Criteria part 2.

The heuristics within HeRA are triggered at any of the
elicitation steps when technical experts use the HeRA editors
and run into a suspicious word or pattern. At this point, they
are supposed to discuss related security issues and potentially
pin down additional security requirements. Note that these
additional security requirements must also be on the refine-
ment level of specific security requirements. On this level it

is possible to trace them into the security design. In addition,
we ensure that all security requirements are refined to a detail
level that allows one to analyse their fulfilment in Step 6.

Security requirements tracing to design in SecReqIn addi-
tion to an effective and tool-supported elicitation process, in
Step 6 we move from specific security requirements to secure
design. The goal of this step is to achieve a satisfactory level
of confidence that the design can properly fulfil the security
requirements, and thus meet the security goals. This forward
tracing can be done at an early stage of development. If re-
quired, tracing can also be done backwards from the design
to the requirements, and finally to the security objectives.

Successful security requirements elicitation relies on the
assumption that the requirements are later fulfilled in a secure
design. The design represents the solution space for the re-
quirements. Achieving a satisfactory solution and checking
it for the fulfilment of the requirements involve:

(i) producing a solution representation in the design and
(ii) tracing requirements from the high-level security state-

ments (security objectives), via the elicitation refinements,
to secure design.

Without (i), the security requirements merely represent
good intension, and without (ii), there is no control regarding
whether or how the security requirements are realized. Thus,
there cannot be any security assurance.

SecReq uses UMLsec for advancing security require-
ments to secure design, and for tracing the requirements from
security objectives to design. One part of the requirement
tracing is to specify the relationships between the security ob-
jectives, sub-security-objectives, security requirements and
specific security requirements. This is done using a goal tree,
where security objectives are the goals, and where these goals

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 13 — #13

13

are linked to the specific requirements through the two inter-
mediate refinement levels (sub-security objectives and secu-
rity requirements). By doing so, each goal tree specifies the
dependency among the involved security refinement level
constructs. In addition, the goal tree is integrated with the
UMLsec diagrams and hence the security objectives can be
traced to and enforced by the UML design diagrams.

A UMLsec design specification requires a set of con-
structs that must be identified to map the elicited require-
ments to the design. First, the relevant UMLsec stereotypes
must be identified. As the UMLsec stereotypes are used as
input to the heuristic rules during the elicitation phase, some
of these are already identified. Nevertheless, it is necessary
to go through the goal trees and map the security constructs
to UMLsec stereotypes. When that is done, the involved ac-
tors and their interactions for each UMLsec stereotype must
be identified. Note, however, that any conflicts between the
UMLsec stereotypes identified on any of the layers in the
goal tree must be resolved before the actors and their in-
teraction can be specified. The actors and interactions are
always specified on the refinement level of the specific secu-
rity requirements; i.e., the lowest level in the goal tree. If there
are more than one specific security requirements associated
with a security objective, several sets of actors and interac-
tions are the result of this activity. The final step of moving
requirements into design is to choose the relevant diagram
type. UMLsec is modelled using both behavioural and struc-
tural UML diagrams as discussed in Section 2.3. Depending
on the UMLsec stereotype and the actors and interactions,
one or several UMLsec diagrams are created, which together
represent the realization of the security requirement in the
design.

4 Industrial Context and Case Study

In this section we outline the industrial context that the Se-
cReq methodology was developed and applied within. One
of the projects to which it has been applied is introduced as
an example.

4.1 Industrial Context

Parts of the development of SecReq were carried out within
the context of the standardization organization ETSI. ETSI
is the main standardization organization for Telecommuni-
cation (Telco) in Europe and has worldwide influence. ETSI
is based on voluntary contributions from its members, which
are typically companies with interest in Telco standards, such
as companies that provide equipment, software or services
to the Telco domain. ETSI consists of a number of programs,
such as the “Telecoms & Internet convergedServices & Pro-
tocols for Advanced Networks (TISPAN)”. Within TISPAN,

there are eight working groups with different perspectives
and focuses, such as technology, protocols, security, user,
etc. TISPAN’s main aim is to specify the requirements and
architecture for the Next Generation Network (NGN). Due
to the heavy workload of some of the tasks of TISPAN, ETSI
employs a number of experts in various fields each year, in-
cluding security experts. These security experts work at ETSI
for a limited time and are representatives fromthe ETSI mem-
bers. The SecReq approach builds on an approach used by a
group of such security experts. The methodology was later
extended with the HeRA tool, and with additional features of
requirements tracing and fulfilment analysis using the UML
extension UMLsec. This work was done in collaboration with
security experts employed at ETSI.

SecReq was developed in an iterative manner through ac-
tual security requirements elicitation projects in TISPAN. We
use one of these projects, namely the IPTV standardization
project, as a running example to demonstrate the methodol-
ogy. The IPTV project was carried out between March and
August 2007 and resulted in a set of IPTV specific security re-
quirements that achieved formal acceptance by the TISPAN
members. This means that the resulting IPTV security re-
quirements are part of an ETSI standard and will be used by
the ETSI members when implementing IPTV solutions for
NGN.

4.2 Case study: Internet Protocol Television (IPTV)

IPTV is a system where a digital television service is de-
livered by using the Internet Protocol (IP) over a network
infrastructure, which may include delivery by a broadband
connection. A general definition of IPTV is television con-
tent that, instead of being delivered through traditional broad-
cast and cable formats, is received by the viewer through the
technologies used for computer networks. IPTV is one of the
subsystems of the NGN and provides a variety of services,
such as Video on Demand (VoD) for residence users, and
may be bundled with Internet services such as Web access
and VoIP. More information can be found in [71,72].

There are several other standardization efforts for NGN
in general and IPTV in particular, such as that of ATIS1,

1 ATIS isaUnitedStatesbasedbodycommitted to rapidlydeveloping
and promoting technical and operations standards for the communica-
tions and related information technologies industry worldwide using a
pragmatic, flexible, and open approach.

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 14 — #14

14

International Telecommunication Union (ITU-T)2, and Open
Mobile Alliance (OMA)3.

Standardization deals with specifying concepts at a gen-
eral level. The goal is to derive specifications that make it
possible for all stakeholders involved to together provide
services to the end-users. This involves describing what the
underlying network looks like, how the system should use
the network, how end-users should relate to the service, etc.
Therefore, future providers of the different parts of NGN in
relation to IPTV have interest in and participate in the IPTV
standardization efforts. This includes companies such as ac-
cess network providers, service providers, IPTV providers,
and content providers. This leads to a development context
with multiple stakeholders havingdifferent, oftenconflicting,
goals. This situation is common in standards development,
as well as industrial development, and puts constraints on the
elicitation process.

SecReq deals with this challenge by performing require-
ments elicitation in a step-wise manner, which makes it pos-
sible to continuously communicate concrete results at vari-
ous levels of abstraction, and hence gain repeatable feedback
from the core stakeholders throughout the elicitation process.
The process allows its users to iterate back at any point in time
and provides results that can be used as a basis for discussion
from early on in the elicitation.

5 SecReq and its application at IPTV

This section explains the SecReq process outlined in Sec-
tion 3 in more detail, and describes how it was applied in the
IPTV standardization project introduced in Section 4.

5.1 Overview of the application of SecReq to IPTV

The SecReq approach supports eliciting and tracing the spe-
cific security requirements with the help of the Common Cri-
teria and the heuristics in the HeRA tool to secure design. In
the IPTV case, we identified specific security requirements to
ensure non-forgeable identities so that end-users and named
groups of end-users can be successfully identified and au-
thenticated before being allowed to perform any service ac-
tion. Steps 1 to 5 of SecReq support identifying and refin-
ing the security requirements by using the Common Criteria

2 ITU is the leading United Nation’s agency for information and
communication technologies. As the global focal point for governments
and the private sector, ITU’s role in helping the world communicate
spans three core sectors: radio communication, standardisation, and
development. ITU also organizes TELECOM events and was the lead
organizing agency of the World Summit on the Information Society.

3 OMA is the leading industry forum for developing market driven,
interoperable mobile service enablers. OMA focuses on service enabler
architectures and open enabler interfaces that are independent of the
underlying wireless networks and platforms.

and security-related heuristics. In step 6, a set of UMLsec
stereotypes are identified from the security objectives, sub-
security-objectives, and refined security requirements that
were elicited in order to trace the specific security require-
ment into secure design diagrams, and by that achieve the
security objective.

Figure 9 gives an overall view of how the SecReq ap-
proach was applied in the IPTV case study. The left part
of the figure shows the activities needed for the security re-
quirement elicitation supported by the Common Criteria and
the heuristics, and includes the relevant security objectives,
heuristics, and the security requirements that were elicited.
The right part of the figure shows the activities followed to
create the secure design supported by UMLsec, and includes
the relevant stereotypes and UMLsec diagrams. E.g., the se-
curity objectives identified, such as access control, which
are addressed by the specific security requirement: “Suc-
cessful authentication and identification before any action
is permitted”. This again is based on the refinement process
provided by the Common Criteria through its classes, fami-
lies, componentsand functionalelements, and assisted by the
security-relevant heuristics of HeRA. As described earlier,
these heuristics represent security expertise and knowledge
and are used to identify potential security aspects from e.g.
functional requirements.

Furthermore, the security objectives and specific secu-
rity requirements are traced to the UML design diagrams
by identifying the relevant UMLsec stereotypes (such as
«fair service delivery»,«authentication provable», «non
forgeable identity», «secure links», etc), and by develop-
ing the associated goal tree to ensure that the UMLsec models
keep track of all security requirements that are needed. The
stereotype «fair service delivery» represents the elicited
security requirement from the IPTV application that end-
users and named groups of end-users require to subscript
and prove identity and authenticity before requesting any
IPTV service action. Also, the service providers are supposed
to deliver the service requested by the legitimate user in a
manner that is fair for both involved parties. The stereotype
«authentication pro vable» specifies that users are required
to prove the authenticity whenever requesting any service ac-
tion. Furthermore, the provider is required to send authenti-
cation provable information to the successful authenticated
user before starting the delivery of service. This gives the
user the possibility to reclaim the service in cases where the
service delivery is interrupted or not delivered accordingto
agreement. The stereotype «non forgeable identity» spec-
ifies that every subscribed user shall have unique identity to
support the IPTV specific security requirement. The stereo-
type «secure links» enforces security to the communica-
tion link established between the user and the provider. Both
«authentication provable» and «non forgeable identity»
refine the «fair service delivery» stereotype. All identified

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 15 — #15

15

<<internet(H)>>

<<fair service

delivery>>

Heuristic

UMLsecCommon Criteria

access

control

<<secure links>>

R
e

fi
n

e
 t
o

 S
u

b
-

s
e

c
u

ri
ty

 o
b

j.

tracing

<<rent(H)>>

specify security

objective

elicit security

req.

refine to

specific

security req.

design system

behaviour
analysis

security req.

view system

implementation

use case,

activity
deploymentobject,

sequence

Legends

artefacts

activity

<<UMLsec

stereotype>>

<<heuristic(H)>>

authentication

before action from

FIA_UAU.2

successful

authentication

before action

FIA_UAU.2.1

<<non forgeable

identity>>

successful

identification

before action

FIA_UID.2.1

identification

before action from

FIA_UID.2

authentication

properties from

FIA_UAU

identification

properties from

FIA_UID
<<encrypted>>

<<authentication

provable>>

re
fin

e

ste
re

o
typ

e

 Security requirements elicitation Secure design

Fig. 9 UML diagrams and UMLsec stereotypes in SecReq

UMLsec stereotypes support the IPTV security, sub-security-
objective and relevant specific security requirements. Since
these stereotypes have a precise semantic meaning, they can
also be used to trace back from the UMLsec analysis phase
(Step 6 of the SecReq process; cf. Section 3.1) to the original
specific security requirements (Steps 4 and 5), and eventually
back to the security objectives (Steps 1 and 2). In the next
sections, we will demonstrate parts of SecReq by discussing
how it was applied to the IPTV project.

5.2 Steps 1–5: Common Criteria supported Security
Requirements Elicitation

In the SecReq method, five steps lead through the process
of specifying security requirements. The goal is to define re-
quirements in a way that allows for requirements tracing and
fulfilment analysis using UMLsec, and to generate feedback
from the analysis. This demands high quality and a high-
level of details for the requirements specified. The HeRA
tool supports requirements engineers in this task throughout
the five steps, by identifying potential security requirements,
and by means of providing support to the refinement activ-
ities of each step. The kind of support offered differs only
in details between each step. Therefore, we start by explain-
ing how the Common Criteria are used in aiding security

requirements elicitation, and then we walk through an exam-
ple demonstrating how HeRA was applied. This separation
in the demonstration of Steps 1-5 does not reflect that there
is an actual separation in practise, but is merely done for
readability purposes.

5.2.1 Step 1: Specify security objectives from system
objectives and functional requirements

Step 1 starts with collecting and refining the necessary infor-
mation about the system at the appropriate abstraction level.
As a minimum, the information should contain some high-
level description of the main objectives of the system and
some functional descriptions, such as some details on the
system architecture and/or the assumptions posed upon it,
and the functional requirements. These pieces of informa-
tion are then analysed with the aim of specifying the set of
system objectives, and to get an overview of the functional
requirements already specified, as these can be used as the
starting point when specifying security objectives.

DefinitionSystem Objective is a high-level goal of the sys-
tem in meeting the expectations of the end-users of the
system.

A system objective is the highest level of abstraction and
is met by a set of functional requirements. Existing system

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 16 — #16

16

objectives may give rise to additional functional require-
ments and vice versa. Both system objectives and functional
requirements are useful in the process of deriving the specific
security requirements, which are needed in order to comply
with the SMART principles. The output of Step 1 is a set of
security objectives.

Definition Security Objective is a high-level goal of the sys-
tem in providing a secure environment for end-users of
the system for a particular system objective.

There might be several security objectives relevant for
one system objective. This means that one might have to add
more than one security enhancement to each core function-
ality of the system. The number of security objectives will
vary from system to system. In the following, we use the
IPTV project as a case study to elaborate on the relationship
between system objective and security objective.

Looking at our IPTV case study, one of the main func-
tional services offered by IPTV is Video on Demand (VoD).
An example of a narrative system objective for VoD is given
below.

IPTV System Objective: IPTV should offer all categories of
end-users (note there might be more than one category,
e.g., parental control) to select and watch video and clip
content over some Internet connection as part of an in-
teractive television system.

The system objective is either extracted from existing
functional requirements or from the high-level description
of the system given as input to Step 1. If the first case, we
use the existing functional requirements to abstract system
objectives. As the set of functional requirements might not
be complete, additional system objectives may be specified
from the available high-level description of the system or
system goals. Please note that to abstract means to move one
abstraction layer up.

IPTV Functional Requirement VoD.1: IPTV shall offer the
ability to specify different service groups for VoD to al-
low for categorizing of end-users.

From the above functional requirement, we can deduce
that IPTV service providers would like to offer different ser-
vice levels for VoD, i.e., to provide higher service levels at
higher charges. We can also deduce that there are categories
of end-users and that these need to be distinguishable, i.e.
parental control. The latter is particularly relevant for secu-
rity.

From the above system objective and functional require-
ment, we can derive the relevant high-level security goals
or security objectives. For simplicity reasons, we limit the
example to one security objective.

IPTV Security Objective: The IPTV service should restrict
the access to services for end-users and named groups
of end-users according to a pre-defined access control
policy.

5.2.2 Step 2: Associate a security functional class to each
security objective

The above security objective addresses the issue of end-users
or groups of end-users need to be distinguishable and sepa-
rable to the system. Therefore, the system needs to be able
to uniquely identify end-users, and to ensure that the iden-
tified end-users are properly authenticated to the system, as
specified in the VoD.1 functional requirement. We use the
Common Criteria part 2 security functional classes as sup-
port when formulating the above security objective. More
specifically, we examine the security objective to identify
the relevant security functional class or classes (which means
that there might be several classes that are of relevance). This
is Step 2 of SecReq. That is, we do a concept match be-
tween each of the security functional classes and the security
objective. In this context, the security functional class FIA
(Authentication and Identification) is highly relevant.

We can derive more security objectives relevant for the
functional requirement VoD.1. By examining the functional
classes, we see that the classes Security Management (FMT,
dealing with management of user roles) and ToE Access
(FTA, dealing with the control of user sessions) also are of
relevance. However, to focus the demonstration of SecReq,
we limit the security requirement elicitation to the FIA class.

5.2.3 Step 3: Refine security objectives to
sub-security-objectives

Step 3 takes the security objectives from Step 2 and refines
each into sub-security-objectives, which are expressionsof
the security goals of the system at a grainer level of abstrac-
tion. As it is not easy to choose the appropriate abstraction
level, we use Common Criteria part 2 to support this re-
finement as well. In particular, we use the refinement pro-
cess between component classes and their contained compo-
nent families to go from a security objective to sub-security-
objectives.

Definition:A Sub-Security-Objective is a refinement of a
security objective and is a detailed description of the rel-
evant part of the secure environment for end-users of the
system specified by the security objective.

The relationship between security objectives and sub-
security-objectives in SecReq is an extension to the refine-
ment step from class to family in Common Criteria Part 2.
The specifics of the relationships are:

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 17 — #17

17

– A security objective can be refined intoOne or moresub-
security-objectives connected by the operator “and”,

– A security objective can be refined intoOne or moresub-
security-objectives connected by the operator “or”, and

– A security objective can be refined into a set ofat least
threesub-security-objectives connected by the operators
“and” and “or”.

– Nothing else is a sub-security-objective.

If we examine the IPTV security objective from above
we see that the security features needed are identification
and authentication of end-users and named groups of end-
users. The two directly relevant FIA families are: FIA_UID
(user identification) and FIA_UAU (user authentication). The
other families of this class are also relevant, but to focus the
demonstration of SecReq they are not considered further in
this paper.

To ease the process of selecting the relevant families from
a class, we use the functional requirement to support the pro-
cess. If we look at the functional requirement VoD.1, the
focus is primarily on the actual user identification and au-
thentication activities, and for this only the FIA_UID (user
identification) and FIA_UAU (user authentication) are di-
rectly relevant. The other families are also of relevance, but
only indirectly. In practise, several of the security objectives
and functional requirements will interrelate and thus other se-
curity objectives will ensure the proper protection of secrets
etc.

IPTV Sub-Security-Objective 1: The IPTV service shall in-
clude features to define identification properties of end-
users and named groups of end-users (derived from
FIA_UID).

IPTV Sub-Security-Objective 2: The IPTV service shall in-
clude features to define authentication properties of end-
users and named groups of end-users (derived from
FIA_UAU).

5.2.4 Step 4: Refine sub-security-objectives to security
requirements

Step 4 takes the result from Step 3 and refines the sub-
security-objectives into security requirements supported by
the refinement step between functional families and func-
tional components in the Common Criteria. This means that
the security requirements should be stated at an abstraction
level similar to the security functional components of Com-
mon Criteria. The abstraction level should also align with the
abstraction level of the functional requirements.

Looking at the IPTV case again, we start by examining
the specification of the functional components of the two
functional families FIA_UID and FIA_UAU.

The user identification family (FIA_UID) defines the
conditions under which users shall be required to identify

themselves before performing any other actions that are to
be mediated by the security functions of IPTV, and which
require user identification. The user identification familyis
made up of two sequential components: FIA_UID.1 and
FIA_UID.2, where the latter represents a stricter enforce-
ment than the first. FIA_UID.1 specifies timing of identifi-
cation and is used in situations where one can allow users
to perform certain actions before being identified to the sys-
tem. FIA_UID.2 is used to specify that users must identify
themselves before they can perform any other actions on the
system. For the IPTV functional requirement that we are ex-
amining in this paper, it is necessary to prevent any actions
of the user before identifying and authenticating them to the
IPTV service. The reason for this is that we want to restrict
the browsing of the VoD catalogue so that children can only
view content pre-approved by the parents. This gives the fol-
lowing security requirement:

IPTV security requirement 1: The IPTV service shall have
features to ensure that end-users and named groups of
end-users always are identified before any other actions
are allowed (FIA_UID.2).

The user authentication family (FIA_UAU) consists of
eight components, where the first two are similar to the UID
components in their specification of timing. These are
FIA_UAU.1 (Timing of authentication) and FIA_UAU.2
(User authentication before any action).

Similar to user identification, we want to prevent any
IPTV service action before user identification and authenti-
cation is performed successfully. This means that we need to
specify the timing of the authentication the same way we did
for the identification. Hence, we choose FIA_UAU.2 rather
than FIA_UAU.1, as component 2 is used to restrict all ac-
tions and to disallow any action before authentication.

IPTV security requirement 2: The IPTV service shall have
features to ensure that end-users and named groups of
end-users always are authenticated before any other ac-
tion is allowed (FIA_UAU.2).

5.2.5 Step 5: Refine security requirements to specific
security requirements

Step 5 follows the same type of refinement process as for the
other steps. The only difference is that the targeted abstrac-
tion layer consists of the security functional elements. The re-
sult of Step 5 should be specific security requirements; i.e., re-
quirements expressions that are specific, measurable, achiev-
able, realizable, and traceable (following the SMART prin-
ciple discussed in Section 3.1). Please note that the SMART
principle is not used to validate the requirements, but onlyto
guide the formulation of the specific security requirements.

Going back to the IPTV case study we have two secu-
rity requirements that we need to refine. We perform this

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 18 — #18

18

refinement by examining the associated functional compo-
nents of each security requirement. For IPTV security re-
quirement 1, we see that the FIA_UID.2 component has one
associated functional element, which is FIA_UID.2.1. This
element specifies that the security features of a system shall
require each user to be successfully identified before allow-
ing any other actions on behalf of that user. Tailored for the
IPTV service and security requirement number 1, this gives
the following specific security requirement:

IPTV specific security requirement 1: The IPTV service
shall require all end-users and named groups of end-users
to be successfully identified before allowing any IPTV
service actions to be executed on behalf of that end-user.

Specific security requirement number 2 is derived from
the FIA_UAU.2 component, which also has one functional
element, namely FIA_UAU.2.1. This element specifies that
the security features of a system shall require each user to be
successfully authenticated before allowing the executionof
any other actions on behalf of the end-user. Tailoring this to
the IPTV service by taking security requirement number 2
into consideration gives the following:

IPTV specific security requirement 2: The IPTV service
shall require all end-users and named groups of end-
users to be successfully authenticated before allowing
any IPTV service actions to be executed on behalf of that
end-user.

As can be seen from the above specific security require-
ments, there are still some security decisions left to be made.
E.g., the mechanisms for identity control need to be specified.

Conforming to the SMART principle does not guaran-
tee anything in respect to the actual fulfilment of a security
requirement. Also, there may be dependencies and interre-
lations between the security requirements. As identification
is a pre-requisite for authentication, there is clearly a de-
pendency between these two specific security requirements.
These issues are handled in the analysis step of SecReq (Step
6) discussed in Section 5.3. However, first we will give a short
example of how the security-related heuristics and HeRA
were used to support the activities of Steps 1-5.

5.2.6 Step 1 – 5: Heuristic Support for Security
Requirements

Throughout Steps 1-5 of the SecReq process, the HeRA tool
offers support. The HeRA tool observes requirements input
and raises warnings and hints when security-related input
is detected. This additional layer facilitates reflection and
raises awareness for security issues whenever requirements
are captured and documented. It also helps in classifying
requirements according to their abstraction level.This isdone
by dialogue based wizards.

Preparation: Before the HeRA heuristical editor can anal-
yse and criticise security-requirements-elicitation, ithas to
beseededwith an initial set of heuristics from the security
domain. We start with the stereotypes and tags provided in
UMLsec, to create an initial set of heuristics. These heuris-
tics range from a certain pattern of interaction in a Use Case
to simple keywords (e.g. web, online, etc.).

HeRA can observe a wide range of heuristic rules. To get
started, we only need to create an initial set that is useful in our
context. Additional security related patterns and keywords
will appear over time and lead to an evolutionary growth of
the rule set when more experience is collected.

The advantage of starting with UMLsec stereotypes as a
seed is that these are directly linked to a pre-defined and well
tested set of security related issues. Furthermore, UMLsec
makes a good starting point as we can configure the secu-
rity related advices in HeRA based on the definition of the
UMLsec stereotypes and thus make direct use of the implicit
security experience captured in UMLsec. E.g., by linking the
security requirement to one of the UMLsec keywords we can
provide step-by-step support in formulating security require-
ments to fulfil the SMART principles. In addition, UMLsec
includes analysis mechanisms that can be used for tracing
security requirements into solution design.

Identification of potential security requirements:We illus-
trate how the HeRA tool supports any of the five steps with
a simplified example. The example starts with a discussion
with the technical experts involved in the IPTV project. Dur-
ing this discussion, one of the domain experts formulates a
requirement - she is not aware whether it contains security-
related aspects:

Customers should be able to rent a movie over the
Internet. This will be movie-on-demand.
(Statement 1)

One of the participating domain experts from a company
types this requirement into the HeRA heuristic-based editor.
The editor automatically applies the related set of heuristics
and fires two reactions:

(heuristic 1) «rent» You seem to talk about a rental
service. Is it supposed to be fair service delivery?

(heuristic 2) «Internet» Use of the Internet makes
this a security-challenged requirement. Youmay want
to consider different options.

The HeRA screen is shown in Figure 10, where the typed
text is on the left-hand side and the HeRA reaction is on
the right-hand side. In a group of domain experts with little
security experience, this reaction may cause confusion and
in-depth discussions. They may not know what “fair service
delivery” means, so they press “more” and access the ad-
ditional information shown in Figure 10. Further comments

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 19 — #19

19

Fig. 10 Screenshot of a heuristic security warning in HeRA.

explain the issue of fair service delivery. By the next warning
of the same type, the domain experts will know the mean-
ing of this already and will not need to read the explanation
again. Domain experts agree: they want to ensurefair service
deliveryin this case.

Domain expert clicks on "yes" button: fair service
delivery. (Statement 2)

By using the UMLsec stereotypes andassociate tags (such
as «fair service delivery», «Internet») during the elicitation
of general requirements we are able to mark and link state-
ment (1), the decision made in statement (2), and the UMLsec
capabilities of dealing with design models for fair servicede-
livery. Adding administrative data on participants, time,etc.,
provides an excellent basis for tracing, despite the informal
and open setting.

Refinement of identified security requirements:In the sce-
nario, statement (2) triggers an assistant that enriches the
security information by asking follow-up questions:

(heuristic 1.2)You specified this requirement (1), is
it supposed to be a ’fair service delivery’?
Please indicate which action causes the exchange to
start (e.g. payment) and which action concludes it
(e.g. delivery).

At that point, the fair service delivery annotation will be
used to remind the designer when he starts building design
UML models. Note that this mechanism can be used through-
out the different abstraction levels in the steps 1 – 5 in order
to map requirements to corresponding UMLSec stereotypes.
The information captured by HeRA can be handed to the
UMLSec Tools via XMI.

5.3 Step 6: Security Requirements Analysis with UMLsec

We now continue withStep 6of the SecReq approach in
order to analyse the security requirements. We capture the
specific security requirements and integrate them into UML

diagrams by using the UMLsec stereotypes. In parallel to the
UMLsec models, we develop a security goal tree that keeps
track of the security objectives and their sub-objectives that
need to be enforced, and their mutual dependencies. Our aim
is thus to provide a satisfactory level of confidence that the
design will correctly enforce the security requirements, in a
way that allows one to trace back to the security requirements
from the security design models.

5.3.1 Requirements: use case diagrams

To initiate the security analysis, use case diagrams are used
to capture the IPTV security requirements that were elicited
in Steps 1-5 of the SecReq approach, as explained in the pre-
vious subsections. Continuing with the IPTV case study at
Step 6 of the SecReq approach, Figure 11 gives the use case
diagram describing the situation to be achieved together with
the initial (trivial) goal tree. An end-user or named group of
end-users may request IPTV services (e.g. Video on Demand
(VoD), Internet services (VoIP), etc.) from the providers (e.g.
access network provider, service provider, IPTV providerand
content provider). Prior to the service request, the user needs
to complete the subscription formalities for any service or
group of services. When subscribed, the user needs to prove
her identity to the provider before carrying out the servicere-
quest. If the service delivery is initiated, this means thatthe
provider has already successfully recognised the user. De-
pending on the service type, the provider continues to deliver
the service and finally finishes delivery whenever requested
by the user. Service delivery and the end of the delivery need
to occur in such a way that the transaction is fair from the
point of view of both ends (in that the user only pays for
the services requested and received, and in that the service
provider delivers exactly what the user pays for). This se-
curity requirement can be specified using the «fair service
delivery» stereotype, which has the associated tagged values
{ start}, { continue}, and {stop} with system actions as val-
ues. More specifically, this stereotype is supposed to capture
the requirement that, when the workflow of the transaction
will be later specified (i.e. using an activity diagram), that

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 20 — #20

20

U

Fig. 11 Use case diagram and goal tree

workflow will also have to satisfy the «fair service deliv-
ery» property, as defined below in Sect. 5.3.2. Correspond-
ingly, the security goal is at this stage in the goal tree marked
with “U”, which stands for “undetermined”; that is, it is not
yet known whether the goal will besatisfied(“S”) or denied
(“D”) [14].

5.3.2 Analysis: activity diagrams

The use case diagrams that capture the IPTV specific security
requirements are now elaborated further using activity dia-
grams. Figure 12 elaborates the use case of Figure 11 using
an activity diagram, and provides the associated and refined
goal tree. As can be seen in the figure, the stereotype «fairser-
vice delivery» with the associated tags {start}, { continue},
and {stop} has now been refined. All three tags take (ser-
vice, action) pairs as values, where service specifies the type
of service that the user request and action specifies the possi-
ble actions involved within the requested service, and possi-
ble actions are: subscription request, service request, deliver
service and finish delivery.

The refined scenario and analysis start with the user re-
questing an IPTV service using the taggedvalue {start=subs-
cription request}. This request is eventually approved by the
provider upon fulfilment of certain pre-defined conditions
(such as payment, signature of agreement etc.). We omit the
details here and just mention that this happens between the
’subscription requests’ activity on the user side and the ’id
& auth data’ activity on the provider side in Fig. 12. Then,
the provider generates and sends identification and authen-
tication data to the user. Upon reception of the user identi-
fication and authentication data from the provider, the user
approves the subscription. The user then issues a service re-
quest and sends the earlier received subscription authoriza-
tion user identity and authentication data. If the authorization
is successful, the user receives authentication provable infor-
mation from the provider as a proof of authentication. This
is shown by the «authentication provable» stereotype with
tags {action} and {data}. This stereotype specifies that the
user has to provide proof of authenticity before the provider
initiates the delivery of service and is therefore specifiedas a
security requirement in Fig. 12. The {action} tag holds the

list of actions (e.g. subscription request, generate IDAuth,
service request, prove authentication, authSucceed, service
delivery, and finish deliver). The {data} tag contains a list
of values associated with the actions (e.g. authenticationand
identification, authentication proved). The security require-
ment («authentication provable») is satisfied if each exe-
cution of the activity diagram fulfils the following two con-
ditions:

– whenever the {action=service request} is executed by
the subscribed user, then the{action=prove authentica-
tion} is eventually executed by the provider;

– whenever the user has successfullyauthenticatedbysend-
ing {data= identification and authentication}, the pro-
vider is required to send {data=authentication proved}
and continue with {action=service deliver}.

These two constraints specify the conditions that need
to be satisfied for the requirement («authentication prov-
able») to be meet, which can be by automatically verified us-
ing the UMLsec tool suite [74]. What the UMLsec tool suite
does is to check whether the activity diagram satisfies these
constraints. The stereotype «authentication provable» re-
fines the «fair service delivery» stereotype with associate
tags {start}, { continue}, and {stop}. We therefore extend
the goal tree addressing «fair service delivery» and define
’authentication provable’ as a sub-security objective of ’fair
service delivery’.

5.3.3 Design: object diagrams

We consider every end-user to have received identity and
authenticity data at the time of subscription. This identity
information needs to be unique so that each user can pro-
vide a non-forgeable identity to the provider. The stereo-
type «non forgeable identity» has associated tags {group},
{ subscription}, and {user_identity}. Tag {subscription=
subs_number} specifies the subscription number. We as-
sume that every group would be under a specific subscription
number. Therefore tag {group=subs_number.group_num-
ber} identifies user group. User can be individual end user
directly under a specific subscription or under a group. The
tag {user_identity} requires two different valuessubs_info
andID. Thesubs_infodetermines whichsubscription the user
belongs to (e.g. directly under subscription or under a group).
TheID is used to ascertain that each user should have unique
identity values. This because subscriptions are used to spec-
ify the services available to a specific user or group of users.
Figure 13 shows an object diagram that displays an example
for a possible combination between end users (who may be
members of certain groups) and their IDs. It further extends
our goal tree with the objectivenon-forgeable identity as a
sub-objective of «authentication provable», in order to be
able to uniquely identify every user. Prior to any service ac-
tion specified by the stereotype «fair service delivery», the

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 21 — #21

21

authentication

provable

ProviderUser

service request

auth. proved data

wait for delivery

subscription request

subscription approve

id & auth data

send auth. & iden. data

auth. succeed

permit service act.

receive content

cont. service delivery

fair service

delivery
U

U

Goal tree

<<authentication provable>>

{action= subscription, generateIDAuth,service

request, prove auth., authSucceed, delivery, finish}

{data= auth. & Iden., auth. proved }

finish delivery

prove auth.

Fig. 12 Activity diagram and goal tree

subscribed user is required to prove non-forgeable identity
and authenticity.

Figure 13 shows unique user identity within groups or in-
dividuals under specific subscription. The relevant formulas
for the unique user identity derive from the Figure 13 and
are given below:

– ∀ user1, user2 · (user1 6= user2 ⇒ IDu1 6= IDu2)

– ∀ group1 · user3, group1 · user4 · (user3 6= user4 ⇒
IDu3 6= IDu4)

– ∀ group1 ·user3, group2 ·user5 · (group1 6= group2∧

user3 6= user5 ⇒ IDu3 6= IDu5)

– ∀ subscription1 · user1, subscription2 · user6 ·
(subscription1 6= subscription2 ∧ user1 6= user6 ⇒

IDu1¬IDu6)

– ∀subscription1·group1·user3, subscription2·group3·

user7 · (subscription1 6= subscription2 ∧ group1 6=

group3 ∧ user3 6= user7 ⇒ IDu3 6= IDu7)

The relevant rules based on the formulas are given below:

– Two different end-users under the same subscriptionshould
have different user IDs.

– Two different end-users belonging to the same group and
under the same subscription should have different user
IDs.

2

u2

1
2

4

u4

3

u3

1 32

5

u5

1

u1

6

u6

7

u7

Fig. 13 Object diagram for unique user identity and goal tree

– Two different end-users belonging to different groups and
under the same subscription should have different user
IDs.

– Two different end-users belonging to different groups and
under different subscriptions should have different user
IDs.

– Two different end-users under the different subscription
should have different user IDs.

5.3.4 Design: sequence diagrams

As part of the security analysis, one can specify the system
behaviour using UML sequence diagrams, which in the case
of the IPTV example are used to describe the communication
between the end-user and the provider. We assume the com-
munication link to be untrustworthy on the underlying phys-
ical layer (e.g. an unprotected Internet link). We thus need
to design protection to prevent an intruder from attempting
to gain unauthorised access, or to obtain user authentication
information.

Figure 14 explains the sequence of messages exchanged
between the user and the IPTV service provider using a se-
quence diagram. The user subscription request is approved
using the user profile management function by sending the
unique ID and authentication data. Thus, only valid sub-
scribed users can prove identity and authenticity. The se-
quence of message exchanges between the userand the provi-
der needs to be secure. Therefore, we need to attain the se-
curity objective ’communication secure’ so that message ex-
change between user and providers through the unprotected
Internet link is prevented from any unauthorised access.

Our goal tree is thus extended by including the additional
sub security objective «communication secure», as shown
on the right side of Figure 14. To achieve this sub objective,
we need to include cryptographic operations for encrypting

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 22 — #22

22

key

confidentality

U: user P: user profile mana.

 function

P: service selection

function

request subscription

generate ID & auth
provide data (iden. & auth. data)

msg6: request service

prove subscription

prove iden. & auth.

provide data (Iden. & auth.)

auth

[authOK]

[else]

auth succeed

msg7: provide(auth. proved data) & service delivery

error

approved subscription check & approve subs.

U

fair service

delivery

U U

U U

U U

communication

secure
authentication

provable

non

forgeable

identity

signature

authenticity

signature

integrity

Goal tree

auth failed

Fig. 14 Sequence diagram and goal tree

and signing messages and by that ensure secrecy of the infor-
mation contained in the messages and message authenticity
to prevent masquerade attacks and identity theft. Therefore,
our goal tree further includeskey confidentialityfor encryp-
tion, signature authenticityfor non-forgeable identity, and
signature integrityso that the non-forgeable identities can-
not be modified during transmission. We formalise two con-
straints that need to be satsfied before any service action can
be executed:

– ∀ h ∈ Histories (∃ t ·ht = msg6UE ⇒ ∃t′ < t ·h′

t =

generateIDAuthUE)

– ∀ h ∈ Histories (∃ t ·ht = msg7SSF ⇒ ∃t′ < t ·h′

t =
authSucceededUP)

The above equations based on Fig. 14 specify that no
user-initiated request for service action by means of mes-
sagemsg6UE are processed before identification and authen-
tication data have been generated bygenerateIDAuthUE.
Similarly, providers deliver the requested service by message
msg7SSF only after the user has successfully authenticated,
which results in the generation of theauthSucceededUP

message. If the authentication fails for any reason, an er-
ror message is sent to the user instead of delivering of ser-
vice. Note that this is an additional security objective to that
identified in the previous subsections, which means that the
UMLsec analysis has discovered additional security aspects,
namely the need forsecure communication.

In Figure 14, the actors of the IPTV system (i.e.,User
andProvider) exchange messages to support fair service de-
livery. The message exchange involves cryptographic oper-
ations (such as public-key encryption combined with digital
signature) to ensure non-forgeable user authentication, and
to make sure that the message exchange between the rele-

vant objects is secure. Initially, the provider’s user profile
management functionUPMF sends the user unique ID and
authenticity datad encrypted with user public keyK (de-
noted by{d}K) when the user subscription is approved. The
user decrypts the data with her private keyK−1 resulting
in {d}K−1 (for simplicity we assume the use of RSA type
encryption). When the subscribed userU requests a service
action, again the provider’s user profile management func-
tionP:PPMF responds and requests the user to prove identity
and to authenticate before the service action. This time the
provider’s user profile management functionP:PPMF sends
a session keyKs encrypted with the user public keyK. Thus,
all further communication between the user and the provider
can take place using this session key for the given requested
session. The subscribed userU sends her unique ID and au-
thentication data signed with her private key and encrypted
with the session keyKs . P decrypts the received message
with the same session keyKs, verifies the signature withU’s
public key, and finally recovers the message. This way, the
User’s non-forgeable identity and integrity can be ensured.

5.3.5 Implementation: deployment diagram

Deployment diagrams describe the underlying physical layer.
In SecReq, we use these to ensure that security requirements
to the communication are met by the physical layer. Con-
tinuing with the IPTV case study, Figure 15 shows the
deployment diagram for the physical layer of the commu-
nication link between the end-user node and the provider
management function and service control node. Here, we as-
sume that the end-user equipment node is connected with the
provider nodes using the Internet Protocol over a network in-
frastructure with stereotype «Internet». Different nodes of

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 23 — #23

23

<<Internet>>

Application Functions

ServiceSelection

Function

ServiceDiscovery

Function

User Equipment

End-user

Functions

Service Control

Service control

functions

ServiceUserProfile

Functions

<<secure links>>
U

fair service

delivery

U U

U U

U U

communication

secure
authentication

provable

non

forgeable

identity

key

confidentality

signature

authenticity

signature

integrity

Goal tree

<< encrypted >>

<<secure links>>

<
<

 e
n

c
ry

p
te

d
 >

>

Fig. 15 Deployment diagram and goal tree

the provider, such as the management function node and the
service content control node, may be connected via Intranet
or Internet. The system specification requires that the data
exchanged in this invocation is guaranteed confidentiality,
which is specified using the stereotype «secure links». This
stereotype is used to ensure that security requirements on
the communication between the nodes are supported by the
physical situation. This stereotype requires the «encrypted»
stereotype on the underlying communication link in cases of
an Internet connection, as all user identification and authen-
tication information must be protected from unauthorised
users.

This concludes Step 6 of the SecReq approach, which
has been demonstrated using the IPTV application.

6 Discussion

This section gives an overview of the lessons learnt from us-
ing SecReq for security requirements elicitation in the IPTV
project, and provides a general discussion of SecReq by high-
lighting some of the strengths and weaknesses of the method-
ology.

6.1 Lessons learnt from the IPTV project

Elicitation following the methodology resulted in 46 IPTV
security requirements, where 19 were common IPTV secu-
rity requirements, 13 were content specific requirements, 9
were network and service specific requirements, and 3 were
availability specific requirements.

The IPTV work was reasonably successful compared to
similar efforts. The reason for this was three-folded: (1) the

methodology used was step-wise in an iterative and facili-
tated rapid feedback loop, (2) the requirements engineering
team worked closely together with the rest of the develop-
ment (standardization) team, which is a result of the working
method of ETSI with formal meetings and approval proce-
dures, (3) some of the members of the requirements engi-
neering team had good connections with the stakeholders
involved and were good communicators. Overall, the time
spent on elicitation was effective and relatively short com-
pared to similar projects that did not follow the step-wise
process. This was because the methodology forced a partic-
ular structure on the elicitation process and made it possible
to set reasonable deadlines. What was not achieved was a
complete tracing and analysis of the requirements, as this
part of SecReq was developed later. This is now being done,
but has yet to be completed.

The IPTV project had a small core requirements draft-
ing group, which seems to comply well with the underlying
iterative and feedback-oriented process of SecReq. Rather
than having a large elicitation group, our experience using
the methodology indicates that it might be more effective to
separate into a core and a supportive elicitation group. Such
a distribution of roles makes the people involved accountable
for the progress. This ensures that everybody involved knows
who is responsible for what and when and in which form it
should be delivered. This avoids deadlocks, which happens
when several activities rely on the presence of one or a few
persons (such as a security expert or instructor). SecReq en-
ables and encourages feedback between core and supportive
groups at the end of each step. However, the methodology
does not directly specify any distribution of work or roles.
This was made explicit for the IPTV case. A desired exten-
sion of the methodology would be to enable the users of the

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 24 — #24

24

methodology to specify and model the distribution of roles
and responsibilities, and for SecReq to keep track of these.
In addition, it will ease the use of SecReq in practise if the
methodology is extended with a precise description of the
expected abstraction level of the input and output from each
step, and how these relate to the activities of each step.

6.2 Evaluation of strengths and weaknesses of SecReq

From a technical point of view, the most difficult task of the
methodology is step 1, where security objectives are identi-
fied from functional descriptions, such as functional require-
ments. This has been the observation from several projects
using SecReq to elicit security requirements. Step 1 requires
expertise on at least three dimensions: (i) information struc-
turing and analysis, (ii) requirements engineering, and (iii)
security. The reason is that it is rarely intuitive what the over-
all security goals and objectives are, and it is not easy to sim-
ply extract these from highly abstract system information,
incomplete sets of functional requirements and early draft
system architecture. HeRA provides some support, but there
is definitively room for improvement. The obvious cases are
easy to identify. However, often the security association is
not as obvious as that demonstrated in Section 5. Hence, fu-
ture work includes investigating the details of the activities
involved in Step 1 to better understand how this step can be
supported, and in particular how HeRA can be extended to
provide even better support for identifying potential security
aspects from functional descriptions. The success rate of this
activity is currently not satisfactory and it is still so that the
presence of a security expert or instructor is crucial for the
successful execution of this step. However, as more security
knowledge and experience are formulated as security-related
heuristics in HeRA, we foresee that step 1 will be less de-
pendent on the presence of security expertise.

The disadvantage of the Common Criteria is its size and
that it requires security expertise to benefit from its advices.
SecReq deals with this problem to some extent by adopt-
ing parts of the ETSI method which include guidelines on
how to affiliate the security functional component part of the
standard (part 2) when eliciting security requirements. How-
ever, there is still work to be done before stakeholders with
none or little security expertise can take full advantage ofthe
Common Criteria. One possibility is to work out a security
requirement repository from the security functional compo-
nents and formulate these as security-related heuristics in
HeRA.

Nevertheless, even if one is able to elicit the correct set
of security requirements, there is still no guarantee that these
requirements will be correctly represented in first the solu-
tion design and then the implementation. This gives rise to
the need for tracing security requirements to the solution

design and finally to the implementation. Hence, it is im-
portant not only to be able to elicit security requirements,
it is equally important to ensure requirements fulfilment at
the later stages of the development. The first transformation
in this perspective is from security requirements to secure
design. SecReq uses UMLsec for requirements tracing and
fulfilment analysis. The main advantage of using UMLsec
is that it includes tool-support that can automatically verify
whether the security requirements are correctly addressed
by the design. UMLsec thus extends SecReq from being a
pure elicitation technique to become an elicitation and trac-
ing technique. This is a strong benefit for SecReq in practical
use, and means that SecReq can be used to bridge the gap
between security requirements elicitation activities andde-
velopment activities. Often these two types of activities are
carried out separately with little or no interaction, whichmay
result in that the end product contain few or even none of the
identified security requirements.

However, SecReq is limited to supporting the design
phase with UML notation, and hence, solution designs must
be specified using UML diagrams. This is reasonable as the
industry does use UML in development. However, the level
of diagram details needed for a proper requirements analysis
is not usually provided. E.g., often, only UML class and se-
quence diagrams are used in industrial developmentprojects.
This means that to exploit the full abilities of the UMLsec
security analysis tools, the user would need to construct the
missing diagrams. However, this additional investment may
be worthwhile, depending on the required level of assurance.
In terms of industrial application of an approach like SecReq,
it is important to keep in mind that development projects of-
ten have many both conflicting and political issues that must
be dealt with under limited time, resource and budget con-
straints. On the other hand, in case of limited resources, one
can still apply the UMLsec analysis tools at whatever models
that are available, which already deliver some (if relatively
limited) level of assurance.

Security requirements must be unambiguous to set up
a realistic analysis environment. More specifically, security
requirements can be usefully categorized according to the
SMART principles. This is true even though the current anal-
ysis activity in SecReq cannot, in its current version, address
theR (Realizable) attribute of SMART in its every possible
aspect: To check whether a security requirement is realiz-
able the following two core questions are of most interest:
(i) can the security requirement be satisfied given the sys-
tem and physical constraints, and (ii) can the security re-
quirement be satisfied given the project resource and sched-
ule constraints. UMLsec does not cover(ii) and this must be
checked otherwise, i.e., by checking resource and time em-
ployment estimates against the project resource and sched-
ule plan. UMLsec can however address the first issue: One
can for example use UMLsec to check for conflicts between

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 25 — #25

25

the security requirement and the existing design or physi-
cal infrastructure (for example modelled using a deployment
diagram).

7 Related work

The proposed SecReq combines three different techniques,
and this section discusses work of relevance to each of these.
We first discuss the security standards, then related work
about information flow modeling and heuristics, and finally
security requirement elicitation and model based securityen-
gineering.

Security Standards:Security standards cover security man-
agement, risk management and secure systems development.
The aims of these standards are either to support the over-
all and detailed security management in an organisation, or
to support secure systems development by providing princi-
ples for security requirements specification and composition,
building a security architecture, and creating secure code. Se-
curity management and risk management are not within the
scope of our approach. So, we focus on security standards
relating to secure system development.

Security evaluation standards concern the process of se-
cure software development and give recommendation for this
task. These standards target the IT product creation process
(including requirements elicitation, design, implementation,
and maintenance). Trusted Computer System Evaluation Cri-
teria (TCSEC) [25] is the oldest known standard for evalua-
tion and certification of information security in IT products.
The standard was developed by the Department of Defence
(DoD) in the United States in the 1980s. TCSEC evaluates
systems according to the six predefined classes: C1, C2, B1,
B2, B3 and A1. These classes are hierarchically arranged,
meaning that A1 is the strongest and C1 is the weakest (actu-
ally TCSEC groups these classes into four categories; A, B,
C and D, but category D is not used for certification). Each
class contains both functional and assurance requirements.
The functional requirements are divided into authentication,
role based access control, obligatory access control and log-
ging and reuse of objects. TCSEC was also known as the
Orange Book and targeted military IT systems development.
The standard was to some extent also used to evaluate indus-
trial IT products without much success.

The United Kingdom, Germany, France and the Nether-
lands produced versions of their own national evaluation cri-
teria as a response to the developmentof TCSEC. These were
harmonised and published in 1991 under the name Informa-
tion Technology Security Evaluation Criteria (ITSEC) [26].
ITSEC certification of a software product means that users
can rely on an assured level of security for any product they
are about to purchase. As for TCSEC, ITSEC certifies prod-
ucts according to the predefined classes of security (E0, E1,

E2, E3, E4, E5 and E6). The standard was mainly a European
standard. In addition, there is the Canadian Trusted Computer
Product Evaluation Criteria (CTCPEC) [35]. CTCPEC com-
bined the TCSEC and ITSEC approaches and was published
in 1993 by the Canadian intelligence agency Communica-
tions Security Establishment (CSE).

TCSEC, ITSEC and CTCPEC have since been harmo-
nized into the standard ISO 15408:2005 “Common Criteria
for Information Technology Security Evaluation” [17] (or
short: Common Criteria) by the International Organization
for Standardization (ISO). The idea behind the Common Cri-
teria was to merge the existing approaches into a world-wide
framework for evaluating security properties of IT products
and systems. The standard incorporates experience from TC-
SEC, ITSEC, CTCPEC and other relevant standards and in-
dustrial experience, and provides a common set of require-
ments for the security functions of IT products and systems.
The standard also provides a program called “Arrangement
on the Recognition of Common Criteria Certificates in the
field of IT Security (CCRA)” and an evaluation methodol-
ogy called “Common Methodology for IT Security Evalu-
ation (CEM)”. Together these ensure equality and quality
of security evaluations, and that results from independent
evaluations can be compared to aid decision makers (e.g.
customers) in choosing among alternative IT products.

Lately several attempts have been made on tailoring the
Common Criteria to various application domains. ETSI has
undertaken several years of work on tailoring the Common
Criteria to the Telco domain in the TISPAN program.SecReq
builds on this experience and has adapted parts of the ETSI
method [73,40]. SecReq extends the ETSI method by mak-
ing the underlying requirement refinement process explicitin
our step-wise process and by semi-automatic requirements
identification and formulation support and by requirements
tracing to secure design.

Information flow modelling:Information flow models were
used by Winkler to increase traceability in software projects
in [78]. In [23], Damian et al. use social networks to de-
scribe communication in software projects. She differenti-
ates media from transfer information, and identifies patterns
like "bottleneck". In [65], Schneider et al. propose a simple
graphical notation for describing the flow (path) of informa-
tion such as requirements. Security requirements are a spe-
cial case of requirements. This work distinguishes between
so-called "solid" (document-based) and "fluid" (e.g. spoken,
email, informal) representations. Unlike the work of Win-
kler in [78], fluid information is modelled explicitly. Dashed
lines and faces denote flow and storage of fluid information,
whereas solid lines and document symbols represent solid
information representation. In [70], Stapel et al. show inter-
esting observations on this modelling approach in a financial
institution. In [4], Allmann et al. and in [69], Stapel et al.

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 26 — #26

26

further used it in the automotive industry to describe and im-
prove the relationship between a car company (OEM) and
its subcontractors. Specific support tools can be built once
an information flow problem has been identified [64]. How-
ever, making information flow explicit across solid and fluid
representations stimulates heuristic approaches that canbe
applied before any given solid document exists. In this pa-
per, figure 4 shows informationflow model, and figures 7 and
8 show solid and fluid information flow within the context of
the Common Criteria and the SecReq approach.

Heuristics: Computer-based feedback on requirement doc-
uments has often been reported to enhance quality of require-
ments specifications. Most of these approaches are focused
on automatic evaluation of the Software Requirements Spec-
ifications (SRS) [29,77,58].

In [77], Wilson et al. define this approach as a quality
model for the SRS and computer accessible indicators of the
quality, as in the ARM tool. These indicators can point to
possible issues in the SRS. Indicators are mostly not only
based on keyword lists, but also include some more sophis-
ticated natural language (NL) processing (e.g. for detecting
under-specification in the QuARS tool [28,29]).

In [28], Fabrini et al. report that QuARS criteria can ef-
fectively evaluate SRS’s quality. They also claim that QuARS
not only helps to assess the quality of the SRS, but also helps
to improve it. However, no quantitative evaluation of this as-
pect can be found. In [58], Melchisedech takes this approach
one step further: ADMIRE relies upon specific process and
information models that allow one to evaluate the dependen-
cies between requirements more closely. As opposed to these
approaches, we do not analyse the requirements after their
creation to improve the documentation. Instead, we aim at
constructively enhancing the knowledge about the system to
construct. In addition, we focus on the narrowed domain of
elicitation of security related requirements. This helps to cap-
ture experiences of security experts and apply them very early
during requirements engineering – potentially even before
comprehensive documentation exists that could be reviewed
by these experts.

In [10], Breaux et al. work on extracting the security re-
quirements from legal documents. Like our heuristics, their
work is also based on analysing natural language. However,
their work concentrates on the gap between legal and prod-
uct requirements. We do consider legal documents to be a
valuable source of security requirements, but in this paperwe
concentrate on another source: implicit security requirements
hidden within the product requirements. We also concentrate
on capturing the experience of security experts, which leaves
us with a heuristic approach as opposed to the systematic
analysis of codes of law.

HeRA has been presented in previous work [49,50] by
Knauss et al., where the main focus was on using heuris-

tics to constructively improve quality of requirement arte-
facts. In [49], we showed how HeRA could be integrated
with complementing analytical quality assurance measures.
In the SecReq approach, we extend the use of HeRA, and in
particular HeRA’s established mechanisms to identify poten-
tial requirements, with security relevant heuristics. In [49],
Knauss demonstrated the ability to improve a requirement de-
fect based on local feedback. However, this is not sufficient
for SecReq that uses and refines knowledge about possible
security requirements at all stages throughout the develop-
ment process. The Common Criteria help to refine such secu-
rity requirements candidates, if necessary. These refinement
steps can be supported by HeRA for the refinement of the col-
lected additional information. This information is handedto
the UMLsec approach, where it is used to consistently insert
tagged values in the UMLsec models. Based on this informa-
tion, we can automatically create traceability links from the
initial requirements over the refined security requirements to
the UMLsec models.

Security PatternsSecurity patterns help to leverage expe-
riences during design and implementation of systems [67].
By organising these experiences as patterns, developers can
judge whether the pattern matches the given situation. This
leads to the problem that developers need to know the pattern,
which cannot be assumed by non-security-experts. Thus, it
could pay off to create heuristics based on the security pat-
terns. This is not currently part of our approach but will be
addressed in future work.

Security Requirement Elicitation:Over the last few years, a
significant amount of work has been carried out on security
requirements elicitation. We discuss those approaches that
are closely related to our approach.

In [75], Toval et al. discuss the Spanish Public Admin-
istration’s adaptation of the Common Criteria framework,
MAGERIT, and an extension that focuses on requirements
reuse, SIREN (SImple REuse of software requiremeNts).
While MAGERIT focuses on risk identification and man-
agement and includes processes to control such activities,
SIREN provides a reuse repository that structures security
requirements into categories and hierarchies. Among other
things, this repository can be used to support the treatmentas-
signment part of MAGERIT. E.g., security measures used to
treat the identified risks in MAGERIT can be translated into
reusable security requirements in SIREN. SIREN also pro-
vides requirements tracing by means of inclusive and exclu-
sive dependencies, and forwards and backwards tracing. In-
clusive dependencies specify ’AND’ conditions between two
or more requirements, also across requirements documents,
while exclusive dependencies specify ’OR’ conditions be-
tween requirements, i.e., mutually exclusive. Forwards trac-
ing are from requirements to later development artifacts, such

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 27 — #27

27

as design, and backwards tracing are from lower refinement
levels to more abstract expressions. The authors also talk
about providing explicit tracing by using UML notation. Se-
cReq is similar to SIREN, but provides requirements reuse by
means of security related heuristics stored in HeRA. HeRA
also provides semi-automatic requirements elicitation and
formulation support, which SIREN does not, and SecReq in-
cludes a formal requirements tracing process and notation
using the UML notation UMLsec.

In [60], Mouratidis et al. introduce Secure Tropos as a
security goal driven approach for integrating security re-
lated concepts into the Tropos methodology. The approach
considers security constraints such as privacy, integrity, etc.
throughout the development stage, from the early require-
ments analysis to the implementation. These constraints can
be effective in eliciting and analysing the security require-
ments. In [61], Mouratidis et al. combine Secure Tripos with
the UML security extension UMLsec [45] and by that ad-
vance Secure Tropos from merely dealing with architectural
design to also handle detailed design.

In [21], Crook et al. and in [36], Haley et al. formulate a
vision for the requirements engineering community towards
providing a “bridge between the well-ordered world of the
software project informed by conventional requirements and
the unexpected world of anti-requirements associated with
the malicious user”. In [36], Haley et al. propose a framework
for representation and analysis of security requirements.It
allows the security engineer to represent and analyse security
requirements. In [33,34], Giorgini et al. and in [54], Massacci
et al. propose an extension of the i*/Tropos requirements
engineering framework to deal with security requirements.

In [68], Sindre et al. propose a misuse case driven ap-
proach to elicit security requirements at an early stage. A vi-
sual link is established between use cases and misuse cases
that are used to guide the analysis of functional require-
ments against security requirements and the threat environ-
ment. In [59], Mellado et al. propose a Common Criteria
based Security Requirements Engineering Process (SREP).
SREP makes use of several Common Criteria constructs,
such as the security functional components, protection pro-
file, and security assurance components to elicit and analysis
security requirements. Another approach similar to SREP
is the Security Quality Requirement Engineering Methodol-
ogy (SQUARE) [57]. SREP and SQUARE are asset-based
and risk-driven methods both providing a nine steps pro-
cedure for eliciting, categorising, and prioritising security
requirements. However, SREP differs from SQUARE as it
integrates knowledge and experience from the Common Cri-
teria and Information Security Standards, such as ISO/IEC
27001 [1], while eliciting security requirements. In [39],Is-
lam et al. identify a set of security risks and its impact to
software quality attributes and investigate how elicitingse-
curity requirements at an early stage can address these risks.

Human factors relating to overall organisational securityin
particular with security risk management are represented by
Islam et al. in [38].

In [76], Whittle et al. present an executable misuse case
modelling language which allows modellers to specify mis-
use case scenarios in a formal yet intuitive way and to execute
the misuse case model in tandem with a corresponding use
case model. In [79], Yskout et al. present an approach for the
transformationof security requirements to software architec-
tures. In [5], Arenas et al. discuss the use of requirements-
engineering techniques in capturing security requirements
for a Grid-based operating system. In [27], Elahi et al. ex-
amine how conceptual modelling can provide support for
analysing security trade-offs, using an extension to the i*
framework. In [32], Flechais et al. present an approach which
integrates security and usability into the requirements and de-
sign process, based on a UML meta-model for defining and
reasoning over the system’s assets.

The work presented here differs from these approaches
in that SecReq provides explicit support for tracing security
requirements to security design, provides heuristics-based
tool-support for reusing security knowledge, and includes
Common Criteria best practises developed at ETSI for secu-
rity requirements elicitation and specification support.

Model-based Security Engineering:In [6], Baldwin et al.
and in [48], Kearney et al. use UML for risk-driven security
analysis that focuses on the assessment of risk and analy-
sis of requirements for operational risk management. In [63]
Ray et al. and in [37] Houmb et al. propose to use aspect-
oriented modelling for addressing access control concerns.
Functionality that addresses a pervasive access control con-
cern is defined in an aspect. The remaining functionality is
specified in a so-called primary model. Composing access
control aspects with a primary model then gives a system
model that addresses access control concerns.

In [7], Basin et al. and in [12], Brucker et al. show how
UML can be used to specify access control in an application
and how one can then generate access control mechanisms
from the specifications. The approach is based on role-based
access control and gives additional support for specifying
authorisation constraints. In [3], Alam et al. present usage
scenarios for access control in contemporary health care sce-
narios and show how to unify them in a single security pol-
icy model. Based on this model, the SECTET [2] framework
for Model Driven Security is specialised towards a domain-
specific approach for the health care scenarios, including the
modelling of access control policies, a target architecture
for their enforcement, and model-to-code transformations. A
formally based process for model-based security engineering
was presented in [11].

The approach for model-basedsecurityengineering using
UML used in this work (namely UMLsec) is presented in

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 28 — #28

28

[45]. Tool support for UMLsec is presented in [47] and some
industrial applications were reported in [9,41,46].

In order to integrate the UMLsec method into the SecReq
approach presented in this paper, it had to be adapted and ex-
tended in non-trivial ways. For example, linking the UMLsec
models to the input from the Common Criteria on the one
hand and using the HeRA-toolset as tool-based process on
the other, SecReq incrementally develops the UMLsec mod-
els in parallel with the incremental development of an asso-
ciated goal-tree, as explained in Section 2.3. Also, we had
to develop an approach which allows the user to trace the
security requirements through the SecReq process using the
UMLsec models, as visualized in Fig. 9. Finally, to apply
UMLsec in the industrial application at hand, we had to ex-
tend it with several new stereotypes which deal with specific
security requirements in the telecommunication application
domain, as explained in Section 5.3 (as is usually the case
when applying UMLsec to a new domain; compare [9,41,
46] for similar situations).

8 Conclusion and Future work

The paper presents SecReq, a Common Criteria driven se-
curity requirements elicitation and tracing approach. SecReq
consists of the following three techniques:

(i) Common Criteria to support security requirements elici-
tation, and in particular, the underlying security require-
ments elicitation process of Common Criteria,

(ii) The HeRA tool with its security-related heuristics, which
are used to discover additional security aspects in func-
tional descriptions that are not covered or simply over-
looked, and

(iii) UMLsec for security requirements fulfilment and trace-
ability analysis.

The main aim of SecReq is to extend security require-
ments engineering by seamlessly integrating elicitation,trace-
ability and analysis activities. The motivation for this isthat
requirements engineering activities are often executed by
other people than those writing the code, and often without
much contact between the two groups. This applies in par-
ticular to security requirements, which is a major quality at-
tribute of today’s systems. It is therefore important to develop
both the ability of the people involved in the development to
identify potential security aspects, and the capabilitiesof the
development team to solve these needs in practice through
secure design. Currently, SecReq uses UMLsec analysis for
tracing between requirements and design and vice versa. Fu-
ture work includes extending the analysis capabilities into the
code development phase, along the lines described in [80].

Future work also includes extending the heuristics with
relevant regulatory constraints, suchas SarbanesOxley (SOX),
the EU Privacy Directive and similar. We also plan to look

into how to use the heuristic concepts implemented in the
HeRA tool to externalise a generic threat analysis. This canbe
done to some extent by having heuristics interact with users
based on past experiences. Security experts should be able
to phrase things like “Every time I have to explain the same
threats associated with a fair exchange again” as a heuris-
tic. This way the stakeholders not experts in security will
profit as they get feedback at the earliest possible stage. Se-
curity experts will also profit, as they then can insert generic
security expertise in a reusable manner, which leaves more
resources to concentrate on the more project specific issues.
Furthermore, SecReq already supports system evolution to
some degree by means of a feedback loop. Currently, this
helps reusing experience within SecReq and turns the ap-
proach into an iterative process for the secure system life-
cycle. However, there is still work to be done on making this
more seamlessly, and hence we plan to further investigate the
challenge of system evolution for the case of secure systems
development.

When it comes to the security-related heuristics, both
the Common Criteria and UMLsec provide input to these.
However, we still have not been able to fully explore the ca-
pabilities of Common Criteria. E.g., the security functional
componentscan also be used as a security requirement repos-
itory, which would make the elicitation activities in Steps1-
5 easier. We plan to look into additional ways that we can
support the first five steps of SecReq, and particularly the
identification of the relevant classes, families, components
and elements of the security functional components.

However, SecReq does not yet fully explore the capabil-
ities inherited from the Common Criteria. E.g., the security
functional components can also be used as a security require-
ments repository, which would make the elicitation activities
in Steps 1–5 easier. We plan to look into additional ways to
support the first five steps of SecReq, and particularly the
identification of the relevant classes, families, components
and elements from Common Criteria part 2.

References

1. ISO/IEC 27001:2005 Specification for Information Security Man-
agement, October 2005.

2. M. Alam, M. Hafner, and R. Breu. Model-driven security engi-
neering for trust management in SECTET.Journal of Software,
2(1), February 2007.

3. M. Alam, M. Hafner, M. Memon, and P. Hung. Modeling and
enforcing advanced access control policies in healthcare sys-
tems with SECTET. In J. Sztipanovits, R. Breu, E. Ammen-
werth, R. Bajcsy, J.C. Mitchell, and A. Pretschner, editors, Work-
shop on Model-based Trustworthy Health Information Systems
(MOTHIS@Models), 2007.

4. C. Allmann, L. Winkler, and T. Kölzow. The Requirements Engi-
neering Gap in the OEM-Supplier Relationship.Journal of Uni-
versal Knowledge Management, 1(2):103–111, 2006.

5. A. Arenas, B. Aziz, J. Bicarregui, B. Matthews, and E. Y. Yang.
Modelling security properties in a grid-based operating system

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 29 — #29

29

with anti-goals. InProceedings of the 2008 Third International
Conference on Availability, Reliability and Security(ARES), pages
1429–1436, 2008.

6. A. Baldwin, Y. Beres, S. Shiu, and P. Kearney. A model based
approach to trust, security and assurance.BT Technology Journal,
24(4):53–68, October 2006.

7. D.A. Basin, J. Doser, and T. Lodderstedt. Model driven security:
From UML models to access control infrastructures.ACM Trans-
actions on Software Engineering and Methodology (TOSEM),
15(1):39–91, 2006.

8. V. Berzins, L. C. Martell, and P. Adams. Innovations in Natural
Language Document Processing for Requirements Engineering. In
Barbara Paech and C. Martell, editors,Innovations for Requirement
Analysis. From Stakeholders’ Needs to Formal Designs: 14thMon-
terey Workshop 2007, Lecture Notes In Computer Science, pages
125–146, Berlin, Heidelberg, 2008. Springer-Verlag.

9. B. Best, J. Jürjens, and B. Nuseibeh. Model-based security engi-
neering of distributed information systems using UMLsec. In 29th
International Conference on Software Engineering (ICSE 2007),
pages 581–590. ACM, 2007.

10. T. D. Breaux and A. I. Antón. Analyzing regulatory rules for
privacy and security requirements.IEEE Transactions on Software
Engineering, Special Issue on Software Engineering for Secure
Systems, 34(1):5–20, 2008.

11. R. Breu, K. Burger, M. Hafner, J. Jürjens, G. Popp, G. Wimmel,
and V. Lotz. Key issues of a formally based process model for se-
curity engineering. In16th International Conference “Software &
Systems Engineering & their Applications” (ICSSEA 2003), 2003.

12. A.D. Brucker, J. Doser, and B. Wolff. A model transformation
semantics and analysis methodology for SecureUML. InMoDELS
2006, volume 4199 ofLecture Notes in Computer Science, pages
306–320. Springer-Verlag, 2006.

13. ISO 15408:2007 Common Criteria for Information Technology Se-
curity Evaluation: Evaluation Methodology, Version 3.1, Revision
2, CCMB-2007-09-004, September 2007.

14. L. Chung. Dealing with Security Requirements During theDe-
velopment of Information Systems. In5th International Confer-
enceonAdvanced InformationSystemsEngineering (CAiSE 1993),
pages 234–251. Springer, 1993.

15. A. Cockburn.Writing Effective Use Cases. Addison-Wesley Pro-
fessional, January 2000.

16. Common Methodology for Information Technology Security Eval-
uation, Evaluation methodology, Version 3.2, Revision 2, CCMB-
2009-09-004, September 2007.

17. ISO 15408:2007 Common Criteria for Information Technology
Security Evaluation, Version 3.1, Revision 2, CCMB-2007-09-001,
CCMB-2007-09-002 and CCMB-2007-09-003, September 2007.

18. ISO 15408:2007 Common Criteria for Information Technology Se-
curity Evaluation, Version 3.1, Revision 2: Part 1; GeneralModel,
CCMB-2007-09-001, September 2007.

19. ISO 15408:2007 Common Criteria for Information Technology Se-
curity Evaluation, Version 3.1, Revision 2: Part 2; Security Func-
tional Components, CCMB-2007-09-002, September 2007.

20. ISO 15408:2007 Common Criteria for Information Technology
Security Evaluation, Version 3.1, Revision 2: Part 3; Security As-
surance Components, CCMB-2007-09-003, September 2007.

21. R. Crook, D.C. Ince, L. Lin, and B. Nuseibeh. Security require-
mentsengineering: Whenanti-requirementshit the fan. InProceed-
ings of the 10th Anniversary IEEE Joint International Conference
on Requirements Engineering, pages 203–205. IEEE Computer
Society, 2002.

22. D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness in the
Wild: Why Communication Breakdowns Occur. InProceedings of
Second International Conference on Global Software Engineering,
pages 81–90, Munich, Germany, 2007.

23. D. Damian, S. Marczak, and I. Kwan. Collaboration Patterns and
the Impact of Distance on Awareness in Requirements-Centred

Social Networks. InProceedings of 15th IEEE International Re-
quirements Engineering Conference (RE 2007), New Delhi, India,
2007.

24. A. M. Davis.Just Enough Requirements Management: Where Soft-
ware Development meets Marketing. Dorset House Publishing,
2005.

25. Department of Defense. DoD 5200.28-STD: Trusted Computer
System Evaluation Criteria, August 15 1985.

26. Department of Trade and Industry. The National Tech-
nical Authority for Information Assurance, June 2003.
http://www.itsec.gov.uk/.

27. G. Elahi and E. Yu. A goal oriented approach for modeling and
analyzing security trade-offs. InER 2007, volume 4801 ofLecture
Notes inComputerScience, pages 375–390. Springer-Verlag, 2007.

28. F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An Automatic Qual-
ity Evaluation for Natural Lan-guage Requirements. InProceed-
ings of the Seventh In-ternational Workshop on RE: Foundation for
Software Quality (REFSQ 2001), Interlaken, Switzerland, 2001.

29. F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The Linguistic
Approach to the Natural Language Requirements Quality: Benefit
of the use of an Automatic Tool. InSEW ’01: Proceedings of
the 26th Annual NASA Goddard Software Engineering Workshop,
page 97, Washington, DC, USA, 2001. IEEE Computer Society.

30. G. Fischer. Domain-Oriented Design Environments.Automated
Software Engineering, 1:177–203, 1994.

31. G. Fischer. Seeding, Evolutionary Growth and Reseeding: Con-
structing, Capturing and Evolving Knowledge in Domain-Oriented
Design Environments.Automated Software Engineering, 5:447–
464, 1998.

32. I. Flechais, C. Mascolo, and M. A. Sasse. Integrating security and
usability into the requirements and design process.International
Journal of Electronic Security and Digital Forensics, 1(1):12–26,
2007.

33. P. Giorgini, F. Massacci, and J. Mylopoulos. Requirement engi-
neeringmeetssecurity: A casestudy on modellingsecure electronic
transactions by VISA and Mastercard. In I.-Y. Song, S.W. Liddle,
T.W. Ling, and P. Scheuermann, editors,22nd International Con-
ference on Conceptual Modeling (ER 2003), volume 2813 ofLec-
ture Notes in Computer Science, pages 263–276. Springer-Verlag,
2003.

34. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone.Modeling
security requirements through ownership, permission and delega-
tion. InProceedings of the 13th IEEE International Conference on
Requirements Engineering, pages 167–176. IEEE Computer Soci-
ety, 2005.

35. Government of Canada. The Canadian Trusted Computer Product
Evaluation Criteria, January 1993.

36. C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh. Secu-
rity requirements engineering: A framework for representation and
analysis.IEEE Transactions on Software Engineering, 34(1):133–
153, 2008.

37. S. H. Houmb., G. Georg, R. B. France, J. M. Bieman, and J. Jürjens.
Cost-benefit trade-off analysis using BBN for aspect-oriented risk-
driven development. InProceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems, pages
195–204. IEEE Computer Society, 2005.

38. S. Islam and W. Dong. Human factors in software security risk
management. InLMSA ’08: Proceedings of the first international
workshop on Leadership and management in software architecture,
pages 13–16, New York, NY, USA, 2008. ACM.

39. S. Islam and W. Dong. Security Requirements Addressing Se-
curity Risks for Improving Software Quality. InWorkshop-Band
Software-Qualitätsmodellierung und -bewertung (SQMB ’08),
Technical Report TUM-I0811, Technische Universität München,
2008,Munich, Germany, 2008.

40. J. E. Rossebø and S. Cadzow and P. Sijben. eTVRA, a Threat,
Vulnerability and Risk Assessment Method and Tool for eEurope.

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 30 — #30

30

In ARES ’07: Proceedings of the The Second International Con-
ference on Availability, Reliability and Security, pages 925–933.
IEEE Computer Society, 2007.

41. J.Jürjens and R.Rumm. Model-based Security Analysis ofthe
German Health Card Architecture.Methods of Information in
Medicine, 47(5):409–416, 2008. Special section on Model-based
Development of Trustworthy Health Information Systems.

42. J. Jürjens. Secure information flow for concurrent processes. In
C. Palamidessi, editor,CONCUR 2000 (11th International Con-
ference on Concurrency Theory), volume 1877 ofLecture Notes in
Computer Science, pages 395–409. Springer-Verlag, 2000.

43. J. Jürjens. Formal semantics for interacting UML subsystems. In
B. Jacobs and A. Rensink, editors,5th International Conference
on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2002), pages 29–44. International Federation for In-
formation Processing (IFIP), Kluwer Academic Publishers,2002.

44. J. Jürjens. Using UMLsec and goal-trees for secure systems de-
velopment. In G.B. Lamont, H. Haddad, G. Papadopoulos, and
B. Panda, editors,Proceedings of the 2002 Symposium of Applied
Computing (SAC), pages 1026–1031. ACM Press, 2002.

45. J. Jürjens.Secure Systems Development with UML. Springer, 2004.
46. J. Jürjens, J. Schreck, and P. Bartmann. Model-based security anal-

ysis for mobile communications. In30th Intern. Conference on
Software Engineering (ICSE 2008). ACM, 2008.

47. J. Jürjens and P. Shabalin. Tools for secure systems development
with UML. Intern. Journal on Software Tools for Technology
Transfer, 9(5–6):527–544, October 2007. Invited submission to
the special issue for FASE 2004/05.

48. P. Kearney and L. Brügger. A risk-driven security analysis method
and modelling language.BT Technology Journal, 25(1), January
2007.

49. E. Knauss and T. Flohr. Managing Requirement Engineering
Processes by Adapted Quality Gateways and critique-based RE-
Tools. InProceedings of Workshop on Measuring Requirements for
Project and Product Success, Palma de Mallorca, Spain, November
2007. in conjunction with the IWSM-Mensura Conference.

50. E. Knauss, D. Lübke, and S. Meyer. Feedback-Driven Require-
ments Engineering: The Heuristic Requirements Assistant.In In-
ternational Conference on Software Engineering (ICSE’09), For-
mal Research Demonstrations Track, Vancouver, Canada, 2009.

51. E. Knauss, K. Schneider, and K. Stapel. Learning to WriteBetter
Requirements through Heuristic Critiques. InProceedings of 17th
IEEE Requirementes Engineering Conference (RE 2009), Atlanta,
USA, 2009.

52. S. N. Lindstaedt and K. Schneider. Bridging the Gap between
Face-to-Face Communication and Long-term Collaboration.In
Proceedings of the international ACM SIGGROUP conference on
Supporting group work, Phoenix, USA, Nov 1997. ACM.

53. M. Mannion and B. Keepence. SMART Requirements.ACM SIG-
SOFT: SE Notes, 20(2):42–47, April 1995.

54. F. Massacci, J. Mylopoulos, and N. Zannone. Computer-aided
support for secure tropos.Automated Software Engineering,
14(3):341–364, 2007.

55. J. P. McDermott andC. Fox. UsingAbuseCaseModels forSecurity
Requirements Analysis. InProceedings of the 15th Annual Com-
puter Security Applications Conference, pages 55–. IEEE Com-
puter Society, 1999.

56. M.Deubler, J.Grünbauer, J.Jürjens, and G.Wimmel. Sound devel-
opment of secure service-based systems. In Marco Aiello, Mikio
Aoyama, Francisco Curbera, and Mike P. Papazoglou, editors, Pro-
ceedings of the 2nd international conference on Service oriented
computing(ICSOC), pages 115–124. ACM, 2004.

57. N.R. Mead and T. Steheny. Security quality requirementsengineer-
ing (square) methodology.SIGSOFT Softw. Eng. Notes, 30(4):1–7,
2005.

58. R. Melchisedech.Verwaltung und Prüfung natürlichsprachlicher
Spezifikationen. PhD thesis, Fakultät Informatik, Universität
Stuttgart, Stuttgart, 2000.

59. D. Mellado, E. Medina, and M. Piattini. A common criteriabased
security requirements engineering process for the development
of secure information system.Computer standards & interfaces,
29:244–253, June 2007.

60. H. Mouratidis, P. Giorgini, and G.A. Manson. Integrating secu-
rity and systems engineering: Towards the modelling of secure
information systems. In J. Eder and M. Missikoff, editors,15th
International Conference on Advanced Information SystemsEngi-
neering (CAiSE 2003), volume 2681 ofLecture Notes in Computer
Science, pages 63–78. Springer-Verlag, 2003.

61. H. Mouratidis, J. Jürjens, and J. Fox. Towards a Comprehensive
Framework for Secure Systems Development. In Eric Dubois and
Klaus Pohl, editors,CAiSE, volume 4001 ofLecture Notes in Com-
puter Science, pages 48–62. Springer, 2006.

62. M. Polanyi.The Tacit Dimension. Doubleday, Garden City, NY,
1966.

63. I. Ray, R.B. France, Na Li, and G. Georg. An aspect-based ap-
proach to modeling access control concerns.Information & Soft-
ware Technology, 46(9):575–587, 2004.

64. K. Schneider. Generating Fast Feedback in RequirementsElic-
itation. In Requirements Engineering: Foundation for Software
Quality (REFSQ 2007), 2007.

65. K. Schneider, K. Stapel, and E. Knauss. Beyond Documents: Vi-
sualizing Informal Communication. InProceedings of Third In-
ternational Workshop on Requirements Engineering Visualization
(REV 08), Barcelona, Spain, 9 2008.

66. D.A. Schön.The Reflective Practitioner: How Professionals Think
in Action. Basic Books, New York, 1983.

67. M. Schumacher, E. F. Buglioni, D. Hybertson, F. Buschmann, and
P. Sommerlad.Security Patterns: Integrating Security and Systems
Engineering. John Wiley & Sons Ltd., 2006.

68. G. Sindre and A. L. Opdahl. Eliciting security requirements with
misuse cases.Requirements Engineering Journal, 10(1):34–44,
2005.

69. K. Stapel, E. Knauss, and C. Allmann. Lightweight Process Docu-
mentation: Just EnoughStructure inAutomotive Pre-Development.
In Rory V. O’Connor, Nathan Baddoo, Kari Smolander, and
Richard Messnarz, editors,Proceedings of the 15th European Con-
ference, EuroSPI, Communications in Computer and Information
Science, pages 142–151, Dublin, Ireland, 9 2008. Springer.

70. K. Stapel, K. Schneider, D. Lübke, and T. Flohr. Improving an In-
dustrial Reference Process by Information Flow Analysis: ACase
Study. InProceedings of PROFES 2007, volume 4589 ofLNCS,
pages 147–159, Riga, Latvia, 2007. Springer-Verlag BerlinHei-
delberg.

71. ETSI TISPAN. ETSI TS 182 027 V.2.0.0: IPTV Architecture;IPTV
functions supported by the IMS subsystem. Standard, February
2008.

72. ETSI TISPAN. ETSI TS 182 028 V.2.0.0: IPTV Architecture;
Dedicated subsystem for IPTV functions. Standard, January2008.

73. TISPAN, ETSI. Telecommunications and Internet converged Ser-
vices and Protocols for Advanced Networking (TISPAN): Methods
and Protocols; Part 1: Method and Proforma for Threat, Risk,Vul-
nerability Analysis. Technical Report ETSI TS 102 165-1 V4.2.1,
European Telecommunications Standards Institute, 2006.

74. UMLsec tool, 2001-08.http://www.umlsec.de.
75. A. Toval, J. Nicolás, B. Morosa, andF. García. RequirementsReuse

for Improving Information Systems Security: A Practitioner’s Ap-
proach.Requirements Engineering Journal, 6:205–219, 2002.

76. J. Whittle, D. Wijesekera, and M. Hartong. Executable misuse
cases for modeling security concerns. InICSE ’08: Proceedings of
the 30th international conference on Software engineering, pages
121–130, New York, NY, USA, 2008. ACM.

77. W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Automated
quality analysis of Natural Language requirement specifications.
In Proceedings of PNSQC Conference, 1996.

“JRE_SR_Elicitation” — 2009/9/10 — 16:47 — page 31 — #31

31

78. S. Winkler. Information Flow Between Requirement Artifacts. In
Proceedings of REFSQ 2007 International Working Conference
on Requirements Engineering: Foundation for Software Quality,
volume 4542 ofLecture Notes in Computer Science, pages 232–
246, Trondheim, Norway, 2007. Springer Berlin / Heidelberg.

79. K. Yskout, R. Scandariato, B. D. Win, andW. Joosen. Transforming
security requirements into architecture. InInternational Confer-
ence on Availability, Reliability and Security, pages 1421–1428,
2008.

80. Y. Yu, J. Jürjens, and J. Mylopoulos. Traceability for the main-
tenance of secure software. In24th International Conference on
Software Maintenance (ICSM). IEEE Computer Society, 2008.

