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Eliminating accidental deviations to minimize generalization error and maximize
replicability: applications in connectomics and genomics

Eric W. Bridgeford1, Shangsi Wang1, Zhi Yang2, Zeyi Wang1, Ting Xu3, Cameron Craddock3,

Jayanta Dey1, Gregory Kiar1, William Gray-Roncal1, Carlo Colantuoni1, Christopher Douville1,

Stephanie Noble4, Carey E. Priebe1, Brian Caffo1, Michael Milham3, Xi-Nian Zuo2,5, Consortium

for Reliability and Reproducibility, Joshua T. Vogelstein1,6∗

Abstract. Replicability, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility. Trou-

blingly, we are in the midst of a replicability crisis. A key to replicability is that multiple measurements of the same

item (e.g., experimental sample or clinical participant) under fixed experimental constraints are relatively similar to

one another. Thus, statistics that quantify the relative contributions of accidental deviations—such as measure-

ment error—as compared to systematic deviations—such as individual differences—are critical. We demonstrate

that existing replicability statistics, such as intra-class correlation coefficient and fingerprinting, fail to adequately

differentiate between accidental and systematic deviations in very simple settings. We therefore propose a novel

statistic, discriminability, which quantifies the degree to which an individual’s samples are relatively similar to one

another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statistic, we introduce

the possibility of optimizing experimental design via increasing discriminability and prove that optimizing discrim-

inability improves performance bounds in subsequent inference tasks. In extensive simulated and real datasets

(focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability improves perfor-

mance on all subsequent inference tasks for each dataset. We therefore suggest that designing experiments and

analyses to optimize discriminability may be a crucial step in solving the replicability crisis, and more generally,

mitigating accidental measurement error.

Author Summary In recent decades, the size and complexity of data has grown exponentially. Unfor-

tunately, the increased scale of modern datasets brings many new challenges. At present, we are in the

midst of a replicability crisis, in which scientific discoveries fail to replicate to new datasets. Difficulties in

the measurement procedure and measurement processing pipelines coupled with the influx of complex

high-resolution measurements, we believe, are at the core of the replicability crisis. If measurements

themselves are not replicable, what hope can we have that we will be able to use the measurements

for replicable scientific findings? We introduce the “discriminability” statistic, which quantifies how dis-

criminable measurements are from one another, without limitations on the structure of the underlying

measurements. We prove that discriminable strategies tend to be strategies which provide better accu-

racy on downstream scientific questions. We demonstrate the utility of discriminability over competing

approaches in this context on two disparate datasets from both neuroimaging and genomics. Together,

we believe these results suggest the value of designing experimental protocols and analysis procedures

which optimize the discriminability.

1 Introduction Understanding variability, and the sources thereof, is fundamental to all of data sci-

ence. Even the first papers on modern statistical methods concerned themselves with distinguishing

accidental from systematic variability [1]. Accidental deviations correspond to sources of variance that

are not of scientific interest, including measurement noise and artefacts from the particular experiment

(often called “batch effects” [2]). Quantifying systematic deviations of the variables of interest, such as

variance across items within a study, is often the actual goal of the study. Thus, delineating between

these two sources of noise is a central quest in data science, and failure to do so, has been problematic

in modern science [3].

Scientific replicability, or the degree to which a result can be replicated using the same methods
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applied to the same scientific question on new data [4], is key in data science, whether applied to

basic discovery or clinical utility [5]. As a rule, if results do not replicate, we can not justifiably trust

them [4] (though replication does not imply validation necessarily [6]). The concept of replicability is

closely related to the statistical concepts of stability [7] and robustness [5]. Engineering and operations

research have been concerned with reliability for a long time, as they require that their products are

reliable under various conditions. Very recently, the general research community became interested in

these issues, as individuals began noticing and publishing failures to replicate across fields, including

neuroscience and psychology [8–10].

A number of strategies have been suggested to resolve this “replicability crisis.” For example, the

editors of “Basic and Applied Social Psychology” have banned the use of p-values [11]. Unfortunately,

an analysis of the publications since banning indicates that studies after the ban tended to overstate,

rather than understate, their claims, suggesting that this proposal possibly had the opposite effect [12].

More recently, the American Statistical Association released a statement recommending banning the

phrase “statistically significant” for similar reasons [13, 14].

A different strategy has been to quantify the repeatability of one’s measurements by measuring

each sample (or individual) multiple times. Such “test-retest reliability” experiments quantify the relative

similarity of multiple measurements of the same item, as compared to different items [15]. Approaches

which investigate measurement repeatability quantify the degree to which measurements obtained in

one session are similar to a set of measurements obtained in a second session, to test replicability

[4]. This practice has been particularly popular in brain imaging, where many studies have been de-

voted to quantifying the repeatability of different univariate properties of the data [16–19]. In practice,

however, these approaches have severe limitations. The Intraclass Correlation Coefficient (ICC) is an

approach that quantifies the ratio of within item variance to across item variance. The ICC is univariate,

with limited applicability to high-dimensional data, and its interpretation suffers from limitations due to

its motivating Gaussian assumptions. Previously proposed generalizations of ICC, such as the Image

Intraclass Correlation Coefficient (I2C2), generalize ICC to multivariate data, but require large sample

sizes to estimate high-dimensional covariance matrices. Further, motivating intuition of I2C2 makes

similar Gaussian parametric assumptions as ICC, and therefore exhibits similar limitations. The Fin-

gerprinting Index (Fingerprint) provides a nonparametric and multivariate technique for quantifying

test-retest reliability, but its greedy assignment leads it to provide counter-intuitive results in certain con-

texts. A number of other approaches such as NPAIRS [20, 21] provide general frameworks for evaluat-

ing activation-based neuroimaging timeseries experiments, which can be extended to other modalities

[22, 23]. A thorough discussion and analysis of these and similar approaches is provided in Supporting

Information S1.

Perhaps the most problematic aspect of these approaches is clear from the popular adage, “garbage

in, garbage out” [24]. If the measurements themselves are not sufficiently replicable, then scalar sum-

maries of the data cannot be replicable either. This primacy of measurement is fundamental in statis-

tics, so much so that one of the first modern statistics textbook, R.A. Fisher’s, “The Design of Experi-

ments” [25], is focused on taking measurements. Motivated by Fisher’s work on experimental design,

and Spearman’s work on measurement, rather than recommending different post-data acquisition infer-

ential techniques, or computing the repeatability of data after collecting, we take a different approach.

Specifically, we advocate for explicitly and specifically designing experiments to ensure that they

provide highly replicable data, rather than hoping that they do and performing post-hoc checks

after collecting the data. Thus, we concretely recommend that new studies leverage existing proto-

cols that have previously been established to generate highly replicable data. If no such protocols are

available for your question, we recommend designing new protocols in such a way that replicability is

explicitly considered (and not compromised) in each step of the design. Experimental design has a rich

history, including in psychology [26] and neuroscience [27, 28]. The vast majority of work in experimen-

tal design, however, focuses on designing an experiment to answer a particular scientific question. In
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this big data age, experiments are often designed to answer many questions, including questions not

even considered at the time of data acquisition. How can one even conceivably design experiments to

obtain data that is particularly useful for those questions?

We propose to design experiments to optimize the inter-item discriminability of individual items (for

example, participants in a study, or samples in an experiment). This idea is closely inspired by and

related to ideas proposed by Cronbach’s “Theory of Generalizability” [29, 30]. To do so, we leverage

our recently introduced Discr statistic [31]. Discr quantifies the degree to which multiple measure-

ments of the same item are more similar to one another than they are to other items [31], essentially

capturing the desiderata of Spearman from over 100 years ago. This statistic has several advantages

over existing statistics that one could potentially use to optimize experimental design. First, it is non-

parametric, meaning that its validity and interpretation do not depend on any parametric assumptions,

such as Gaussianity. Second, it can readily be applied to multivariate Euclidean data, or even non-

Euclidean data (such as images, text, speech, or networks). Third, it can be applied to any stage of

the data science pipeline, from data acquisition to data wrangling to data inferences. Finally, and most

uniquely, one of the main advantages of ICC, is that under certain assumptions, ICC can provide an

upper bound on predictive accuracy for any subsequent inference task. Specifically, we present here

a result generalizing ICC’s bound on predictive accuracy to a multivariate additive noise setting. Thus,

Discr is the only non-parametric multivariate measure of test-retest reliability with formal theoreti-

cal guarantees of convergence and upper bounds on subsequent inference performance. We show

that this property makes Discr desirable through empirical simulations and across multiple scientific

domains. An important clarification is that high test-retest reliability does not provide any information

about the extent to which a measurement coincides with what it is purportedly measuring (construct

validity). Even though replicable data are not enough on their own, replicable data are required for

stable subsequent inferences.

This manuscript provides the following contributions:

1. Demonstrates that Discr is a statistic that adequately quantifies the relative contribution of

certain accidental and systematic deviations, whereas previously proposed statistics have not.

2. Formalizes hypothesis tests to assess discriminability of a dataset, and whether one dataset or

approach is more discriminable than another. This is in contrast to previously proposed non-

parametric approaches to quantify test-retest reliability, that merely provide a test statistic, but

no valid test per se.

3. Provides sufficient conditions for Discr to provide a lower bound on predictive accuracy. Discr

is the only multivariate measure of replicability that has been theoretically related to criterion

validity.

4. Illustrates on 28 neuroimaging datasets from Consortium for Reliability and Reproducibility

(CoRR) [32] and two genomics datasets (i) the preprocessing pipelines which maximize Discr,

and (ii) that maximizing Discr is significantly associated with maximizing the amount of infor-

mation about multiple covariates, in contrast to other related statistics.

5. Provides all source code and data derivatives open access at https://neurodata.io/mgc.

2 Methods

2.1 The inter-item discriminability statistic Testing for inter-item discriminability is closely related

to, but distinct from, k-sample testing. In k-sample testing we observe k groups, and we want to deter-

mine whether they are different at all. In inter-item discriminability, the k groups are in fact k different

items (or individuals), and we care about whether replicates within each of the k groups are close to

each other, which is a specific kind of difference. As a general rule, if one can specify the kind of dif-

ference one is looking for, then tests can have more power for that particular kind of difference. The

canonical example of this would be an t-test, where if only looks at whether the means are different

across the groups, one obtains higher power than if also looking for differences in variances.
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To give a concrete example, assume one item has replicates on a circle with radius one, with random

angles. Consider another item whose replicates live on another circle, concentric with the first, but with

a different radius. The two items differ, and many nonparametric two-sample tests would indicate so

(because one can perfectly identify the item by the radius of the sample). However, the discriminability

in this example is not one, because there are samples of either item that are further from other samples

of that item than samples from the other item.

On this basis, we developed our inter-item discriminability test statistic (Discr), which is inspired

by, and builds upon, nonparametric two-sample and k-sample testing approaches called “Energy statis-

tics” [33] and “Kernel mean embeddings” [34] (which are equivalent [35]). These approaches compute

all pairwise similarities (or distances) and operate on them. Discr differs from these methods in two

key ways. First, rather than operating on the magnitudes of all the pairwise distances directly, Discr op-

erates on the ranks of the distances, rendering it robust to monotonic transformations of the data [36].

Second, Discr only considers comparisons of the ranks of pairwise distances between different items

with the ranks of pairwise distances between the same item. All other information is literally discarded,

as it does not provide insight into the question of interest.

Fig 1 shows three different simulations illustrating the differences between Discr and other replica-

bility statistics, including the fingerprinting index (Fingerprint) [37], intraclass correlation coefficient

(ICC) [38], and Kernel [34] (see Supporting Information S1 for details). All four statistics operate on

the pairwise distance matrices in column (B). However, Discr, unlike the other statistics, only consid-

ers the elements of each row whose magnitudes are smaller than the distances within an item. Thus,

Discr explicitly quantifies the degree to which multiple measurements of the same item are more

similar to one another than they are to other items.

Definition 1 (Inter-Item Discriminability). Assuming we have n items, where each item has si
measurements, we obtain N =

∑n
i=1 si total measurements. For simplicity, assume si = 2 for the

definition below, and that there are no ties. Given that, Discr can be computed as follows (for a more

formal and general definition and pseudocode, please see Supporting Information S2):

1. Compute the distance between all pairs of samples (resulting in an N ×N matrix), Figure 1(B).

While any measure of distance is permissible, for the purposes of this manuscript, we perform

all our experiments using the Euclidean distance.

2. Identify replicated measurements of the same individual (green boxes). The number of green

boxes is g = n× 2.

3. For each measurement, identify measurements that are more similar to it than the other mea-

surement of the same item, i.e., measurements whose magnitude is smaller than that in the

green box (orange boxes). Let f be the number of orange boxes.

4. Discriminability is defined as fraction of times across-item measurements are smaller than

within-item measurements: Discr = 1− f
N(N−1)−g

.

A high Discr indicates that within-item measurements tend to be more similar to one another than

across-item measurements. See [39] for a theoretical analysis of Discr as compared to these and

other data replicability statistics. For brevity, we use the term “discriminability” to refer to inter-item

discriminability hereafter.

2.2 Testing for discriminability Letting R denote the replicability of a dataset with n items and s
measurements per item, and R0 denote the replicability of the same size dataset with zero item specific

information, test for replicability is

(1) H0 : R = R0, HA : R > R0.

One can use any ‘data replicability’ statistic for R and R0 [39]. We devised a permutation test to obtain

a distribution of the test statistic under the null, and a corresponding p-value. To evaluate the different
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procedures, we compute the power of each test, that is, the probability of correctly rejecting the null

when it is false (which is one minus type II error; see Supporting Information S5.1 for details).

2.3 Testing for better discriminability Letting R(1) be the replicability of one dataset or approach,

and R(2) be the replicability of the second, we have the following comparison hypothesis for replicability:

(2) H0 : R
(1) = R(2), HA : R(1) > R(2).

Again, we devised a permutation test to obtain the distribution of the test statistic under the null, and

p-values (see Supporting Information S5.2 for details).

2.4 Simulation settings To develop insight into the performance of Discr, we consider several dif-

ferent simulation settings (see Supporting Information S4 for details). Each setting includes between 2
and 20 items, with 128 total measurements, in two dimensions:

1. Gaussian Sixteen items are each distributed according to a spherically symmetric Gaussian,

therefore respecting the assumptions that motivate intraclass correlations.

2. Cross Two items have Gaussian distributions with the same mean and different diagonal co-

variance matrices.

3. Ball/Circle One item is distributed in the unit ball, the other on the unit circle; Gaussian noise

is added to both.

4. XOR Each of two items is a mixture of two spherically symmetric Gaussians, but means are

organized in an XOR fashion; that is, the means of the first item are (0, 1) and (1, 0), whereas

the means of the second are (0, 0) and (1, 1). The implication is that many measurements from

a given item are further away than any measurement of the other item.

5. No Signal Both items have the same Gaussian distribution.

3 Results

3.1 Theoretical properties of Discriminability Under reasonably general assumptions, if within-

item variability increases, predictive accuracy will decrease. Therefore, a statistic that is sensitive to

within-item variance is desirable for optimal experimental design, regardless of the distribution of the

data. [40] introduces a univariate parametric framework in which predictive accuracy can be lower-

bounded by a decreasing function of ICC; as a direct consequence, a strategy with a higher ICC will,

on average, have higher predictive performance on subsequent inference tasks. Unfortunately, this

valuable theoretical result is limited in its applicability, as it is restricted to univariate data, whereas big

data analysis strategies often produce multivariate data. We therefore prove the following generalization

of this theorem:

Theorem 1. Under the multivariate mixture model with the first two moments bounded above, plus

additive noise setting, or a sufficient generalization thereof, Discr provides a lower bound on the

predictive accuracy of a subsequent classification task. Consequently, a strategy with a higher Discr

provably provides a higher bound on predictive accuracy than a strategy with a lower Discr.

See Supporting Information S3 for proof. Correspondingly, this property motivates optimizing experi-

ments to obtain higher Discr.

3.2 Properties of various replicability statistics In Fig 1, we highlight the properties of different

statistics across a range of basic one-dimensional simulations, all of which display a characteristic

notion of replicability: samples of the same item tend to be more similar to one another than samples

from different items. In three different univariate simulations we observe two samples from ten items

(Figure 1A), and the construct in which replicability statistics will be evaluated:

(i) Discriminable has each item’s samples closer to each other than any other items. The repli-

cability statistic should attain a large value to reflect the high within-item similarity compared to

the between-item similarity.
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Fig 1. Discr provides a valid discriminability statistic. Three simulations with characteristic notions of dis-

criminability are constructed with n = 10 items each with s = 2 measurements. (A) The 20 samples, where

color indicates the individual associated with a single measurement. (B) The distance matrices between pairs

of measurements. Samples are organized by item. For each row (measurement), green boxes indicate mea-

surements of the same item, and an orange box indicates a measurement from a different item that is more

similar to the measurement than the corresponding measurement from the same item. (C) Comparison of four

replicability statistics in each simulation. Row (i): Each item is most similar to a repeated measurement from the

same item. All discriminability statistics are high. Row (ii): Measurements from the same item are more similar

than measurements from different individuals on average, but each item has a measurement from a different item

in between. ICC is essentially unchanged from (i) despite the fact that observations from the same individual

are less similar than they were in (i), and both Fingerprint and Kernel are reduced by about an order of

magnitude relative to simulation (i). Row (iii): Two of the ten individuals have an “outlier” measurement, and the

simulation is otherwise identical to (i). ICC is negative, and Kernel provides a small statistic. Discr is the only

statistic that is robust and valid across all of these simulated examples.

(ii) Offset shifts the second measurement a bit, so that it is further from the first measurement than

another item. Replicability statistic should still be high, but lower than the offset simulation.

(iii) Outlier is the same as discriminable but includes two items with an outlier measurement. This

is another highly reliable setting, so we hope outliers do not significantly reduce the replicability

score.

We compare Discr to intraclass correlation coefficient (ICC), fingerprinting index (Fingerprint) [37],

and k-sample kernel testing (Kernel) [41] (see Supporting Information S1 for details). ICC provides

no ability for differentiating between discriminable and offset simulation, despite the fact that the data

in discriminable is more replicable than offset. While this property may be useful in some contexts, a

lack of sensitivity to the offset renders users unable to discern which strategy has a higher test-retest

reliability. Moreover, ICC is uninterpretable in the case of even a very small number of outliers, where

ICC is negative. On the other hand, Fingerprint suffers from the limitation that if the nearest mea-

surement is anything but a measurement of the same item, it will be at or near zero, as shown in

offset. Kernel also performs poorly in offset and in the presence of outliers. In contrast, across all

simulations, Discr shows reasonable construct validity under the given constructs: the statistic is high

across all simulations, and highest when repeated measurements of the same item are more similar

than measurements from any of the other items.
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3.3 The power of replicability statistics in multivariate experimental design We evaluate Discr,

PICC (which applies ICC to the top principal component of the data), I2C2, Fingerprint, and

Kernel on five two-dimensional simulation settings (see Supporting Information S4 for details). Fig

2A shows a two-dimensional scatterplot of each setting, and Fig 2B shows the Euclidean distance

matrix between samples, ordered by item.

(A) Sample Data

(i
) 

G
a
u
s
s
ia

n
(i
i)
 C

ro
s
s

(i
ii)

 B
a
ll/

C
ir
c
le

(i
v
) 

X
O

R
(v

) 
N

o
 S

ig
n
a
l

0.000.250.500.751.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Dimension 1

D
im

e
n
s
io

n
 2

(B) Distance Matrix

1 128

1

128

Sample 1

S
a
m

p
le

 2

(C) Comparison to Error

0 1

0

1

Normalized Variance

N
o
rm

a
liz

e
d
 S

ta
ti
s
ti
c

(D) One Sample Test (E) Two Sample Test

0 1 0 1

0

1

Normalized Variance

S
ta

ti
s
ti
c
a
l 
P

o
w

e
r

Class 1 2

0 1

Distance
Statistic

Discr. PICC I2C2

Finger. Kernel Bayes Accuracy

Fig 2. Multivariate simulations demonstrate the value of optimizing replicability for experimental design.

All simulations are two-dimensional, with 128 samples, with 500 iterations per setting (see Supporting Information

S4 for details). (A) For each setting, class label is indicated by shape, and color indicates item identity. (B)

Euclidean distance matrix between samples within each simulation setting. Samples are organized by item.

Simulation settings in which items are discriminable tend to have a block structure where samples from the same

item are relatively similar to one another. (C) Replicability statistic versus variance. Here, we can compute the

Bayes accuracy (the best one could perform to predict class label) as a function of variance. Discr and Kernel

are mostly monotonic relative to within-item variance across all settings, suggesting that one can predict improved

performance via improved Discr. (D) Test of whether data are discriminable. Discr typically achieves high

power among the alternative statistics in all cases. (E) Comparison test of which approach is more discriminable.

Discr is the only statistic which achieves high power in all settings in which any statistic was able to achieve

high power.

Discriminability empirically predicts performance on subsequent inference tasks Fig 2C

shows the impact of increasing within-item variance on the different simulation settings. The purpose
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of these simulations is to assess the degree to which Discr or the other replicability statistics corre-

spond to downstream predictive accuracy, both under a multivariate Gaussian assumption, and more

generally. For the top four simulations, increasing variance decreases predictive accuracy (green line).

As desired, Discr also decreases nearly perfectly monotonically with decreasing variances. However,

only in the first setting, where each item has a spherically symmetric Gaussian distribution, do I2C2,

PICC, and Fingerprint drop proportionally. Even in the second (Gaussian) setting, I2C2, PICC,

and Fingerprint are effectively uninformative about the within-item variance. And in the third and

fourth (non-Gaussian) settings, they are similarly useless. In the fifth simulation they are all at chance

levels, as they should be, because there is no information about class in the data. This suggests that of

these statistics, only Discr and Kernel can serve as satisfactory surrogates for predictive accuracy

under these quite simple settings.

A test to determine replicability A prerequisite for making item-specific predictions is that items

are different from one another in predictable ways, that is, are discriminable. If not, the same assay

applied to the same individual on multiple trials could yield unacceptably highly variable results. Thus,

prior to embarking on a machine learning search for predictive accuracy, one can simply test whether

the data are discriminable at all. If not, predictive accuracy will be hopeless.

Fig 2D shows that Discr achieves high power among all competing approaches in all settings

and variances. This result demonstrates that despite the fact that Discr does not rely on Gaussian

assumptions, it still performs nearly as well or better than parametric methods when the data satisfy

these assumptions (row (i)). In row (ii) cross, only Discr and Kernel correctly identify that items

differ from one another, despite the fact that the data are Gaussian, though they are not spherically

symmetric gaussians. In both rows (iii) ball/disc and (iv) XOR, most statistics perform well despite

the non-Gaussianity of the data. And when there is no signal, all tests are valid, achieving power

less than or equal to the critical value. Non-parametric Discr therefore has the power of parametric

approaches for data at which those assumptions are appropriate, and much higher power for other

data. Kernel performs comparably to Discr in these settings.

A test to compare reliabilities Given two experimental designs—which can differ either by acqui-

sition and/or analysis details—are the measurements produced by one method more discriminable than

the other? Fig 2D shows Discr typically achieves the highest power among all statistics considered.

Specifically, only Fingerprint achieves higher power in the Gaussian setting, but it achieves almost

no power in the cross setting. Kernel achieves comparably lower power for most settings and no

power for the Gaussian, as does PICC. I2C2 achieves similar power to Discr only for the Gaussian

and ball/disc setting. All tests are valid in that they achieve a power approximately equal to or below the

critical value when there is no signal. Note that these comparisons are not the typical “k-sample com-

parisons” with many theoretical results, rather, they are comparing across multiple disparate k-sample

settings. Thus, in general, there is a lack of theoretical guarantees for this setting. Nonetheless, the

fact that Discr achieves nearly equal or higher power than the statistics that build upon Gaussian

methods, even under Gaussian assumptions, suggests that Discr will be a superior metric for optimal

experimental design in real data.

3.4 Optimizing experimental design via maximizing replicability in human brain imaging data

Human brain imaging data acquisition and analysis Consortium for Reliability and Repro-

ducibility (CoRR) [42] has generated functional, anatomical, and diffusion magnetic resonance imaging

(dMRI) scans from >1,600 participants, often with multiple measurements, collected through 28 dif-

ferent datasets (22 of which have both age and sex annotation) spanning over 20 sites. Each of the

sites use different scanners, technicians, scanning protocols, and retest follow up procedures, thereby

representing a wide variety of different acquisition settings with which one can test different analysis

pipelines. Supporting Information S6.3 provides protocol metadata associated with each individual
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dataset. Fig 3A shows the six stage sequence of analysis steps for converting the raw fMRI data into

networks or connectomes, that is, estimates of the strength of connections between all pairs of brain

regions. At each stage of the pipeline, we consider several different “standard” approaches, that is,

approaches that have previously been proposed in the literature, typically with hundreds or thousands

of citations [43]. Moreover, they have all been collected into an analysis engine, called Configurable

Pipeline for the Analysis of Connectomes (C-PAC) [44]. In total, for the six stages together, we consider

2× 2× 2× 2× 4× 3 = 192 different analysis pipelines. Because each stage is nonlinear, it is possible

that the best sequence of choices is not equivalent to the best choices on their own. For this reason,

publications that evaluate a given stage using any metric, could result in misleading conclusions if one

is searching for the best sequence of steps [45]. The dMRI connectomes were acquired via 48 analysis

pipelines using the Neurodata MRI Graphs (ndmg) pipeline [46]. Supporting Information S6 provides

specific details for both fMRI and dMRI analysis, as well as the options attempted.

Different analysis strategies yield widely disparate stabilities The analysis strategy has a large

impact on the Discr of the resulting fMRI connectomes (Fig 3B). Each column shows one of 64 dif-

ferent analysis strategies, ordered by how significantly different they are from the pipeline with highest

Discr (averaged over all datasets, tested using the above comparison test). Interestingly, pipelines

with worse average Discr also tend to have higher variance across datasets. The best pipeline,

FNNNCP, uses FSL registration, no frequency filtering, no scrubbing, no global signal regression, CC200

parcellation, and converts edges weights to ranks. While all strategies across all datasets with multiple

participants are significantly discriminable at α = 0.05 (Discr goodness of fit test), the majority of

the strategies (51/64 ≈ 80%) show significantly worse Discr than the optimal strategy at α = 0.05
(Discr comparison test).

Discriminability identifies which acquisition and analysis decisions are most important for

improving performance While the above analysis provides evidence for which sequence of analysis

steps is best, it does not provide information about which choices individually have the largest impact

on overall Discr. To do so, it is inadequate to simply fix a pipeline and only swap out algorithms for a

single stage, as such an analysis will only provide information about that fixed pipeline. Therefore, we

evaluate each choice in the context of all 192 considered pipelines in Fig 4A. The pipeline constructed

by identifying the best option for each analysis stage is FNNGCP (Figure 4A). Although it is not exactly

the same as the pipeline with highest Discr (FNNNCP), it is also not much worse (Discr 2-sample

test, p-value ≈ 0.14). Moreover, except for scrubbing, each stage has a significant impact on Discr

after correction for multiple hypotheses (Wilcoxon signed-rank statistic, p-values all < 0.001).

Another choice is whether to estimate connectomes using functional or diffusion MRI (Figure 4B).

Whereas both data acquisition strategies have known problems [47], the Discr of the two experi-

mental modalities has not been directly compared. Using four datasets from CoRR that acquired both

fMRI and dMRI on the same subjects, and have quite similar demographic profiles, we tested whether

fMRI or dMRI derived connectomes were more discriminable. The pipelines being considered were

the best-performing fMRI pre-processing pipeline (FNNNCP) against the dMRI pipeline with the CC200

parcellation. For three of the four datasets, dMRI connectomes were more discriminable. This is not

particularly surprising, given the susceptibility of fMRI data to changes in state rather than trait (e.g.,

amount of caffeine prior to scan [44]).

The above results motivate investigating which aspects of the dMRI analysis strategy were most

effective. We focus on two criteria: how to scale the weights of connections, and how many regions of

interest (ROIs) to use. For scaling the weights of the connections, we consider three possible criteria:

using the raw edge-weights (“Raw”), taking the log of the edge-weights (“Log”), and ranking the non-

zero edge weights in sequentially increasing order (“Rank”). Fig 4C.i shows that both rank and log

transform significantly exceed raw edge weights (Wilcoxon signed-rank statistic, sample size= 60, p-

values all < 0.001). Fig 4C.ii shows that parcellations with larger numbers of ROIs tend to have higher
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Fig 3. Different analysis strategies yield widely disparate stabilities. (A) Illustration of analysis options for

the 192 fMRI pipelines under consideration (described in Supporting Information S6.1). The sequence of options

corresponding to the best performing pipeline overall are in green. (B) Discr of fMRI Connectomes analyzed

using 64 different pipelines. Functional correlation matrices are estimated from 28 multi-session studies from

the CoRR dataset using each pipeline. The analysis strategy codes are assigned sequentially according to the

abbreviations listed for each step in (A). The mean Discr per pipeline is a weighted sum of its stabilities across

datasets. Each pipeline is compared to the optimal pipeline with the highest mean Discr, FNNNCP, using the

above comparison hypothesis test. The remaining strategies are arranged according to p-value, indicated in the

top row.

Discr. Unfortunately, most parcellations with semantic labels (e.g., visual cortex) have hundreds not

thousands of parcels. This result therefore motivates the development of more refined semantic labels.

Optimizing Discriminability improves downstream inference performance We next examined

the relationship between the Discr of each pipeline, and the amount of information it preserves about

two properties of interest: sex and age. Based on the simulations above, we expect that analy-

sis pipelines with higher Discr will yield connectomes with more information about covariates. In-

deed, Fig 5 shows that, for virtually every single dataset including sex and age annotation (22 in

total), a pipeline with higher Discr tends to preserve more information about both covariates. The
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Fig 4. Parsing the relative impact on Discr of various acquisition and analytic choices. (A) The pipelines

are aggregated for a particular analysis step, with pairwise comparisons with the remaining analysis options held

fixed. The beeswarm plot shows the difference between the overall best performing option and the second best

option for each stage (mean in red) with other options held equal; the x-axis label indicates the best performing

strategy. The best strategies are FNIRT, no frequency filtering, no scrubbing, global signal regression, the CC200

parcellation, and ranks edge transformation. A Wilcoxon signed-rank test is used to determine whether the mean

for the best strategy exceeds the second best strategy: a ∗ indicates that the p-value is at most 0.001 after

Bonferroni correction. Of the best options, only no scrubbing is not significantly better than alternative strategies.

Note that the options that perform marginally the best are not significantly different than the best performing

strategy overall, as shown in Fig 3. (B) A comparison of the stabilities for the 4 datasets with both fMRI and dMRI

connectomes. dMRI connectomes tend to be more discriminable, in 14 of 20 total comparisons. Color and point

size correspond to the study and number of scans, respectively (see Fig 3B). (C.i) Comparing raw edge weights

(Raw), ranking (Rank), and log-transforming the edge-weights (Log) for the diffusion connectomes, the Log and

Rank transformed edge-weights tend to show higher Discr than Raw. (C.ii) As the number of ROIs increases,

the Discr tends to increase.

amount of information is quantified by the effect size of the distance correlation DCorr (which is ex-

actly equivalent to Kernel [36, 48]), a statistic that quantifies the magnitude of association for both

linear and nonlinear dependence structures. In contrast, if one were to use either Kernelor I2C2

to select the optimal pipeline, for many datasets, subsequent predictive performance would degrade.

Fingerprint performs similarly to Discr, while PICC provides a slight decrease in performance on

this dataset. These results are highly statistically significant: the slopes of effect size versus Discr and

Fingerprint across datasets are significantly positive for both age and sex in 82 and 95 percent of

all studies, respectively (robust Z-test, α = 0.05). Kernel performs poorly, basically always, because

k-sample tests are designed to perform well with many samples from a small number of different popu-

lations, and questions of replicability across repeated measurements have a few samples across many

different populations.
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3.5 Reliability of genomics data The first genomics study aimed to explore variation in gene expres-

sion across human induced pluripotent stem cell (hiPSC) lines with between one and seven replicates

[49]. This data includes RNAseq data from 101 healthy individuals, comprising 38 males and 63 fe-

males. Expression was interrogated across donors by studying up to seven replicated iPSC lines from

each donor, yielding bulk RNAseq data from a total of 317 individual hiPSC lines. While the pipeline

includes many steps, we focus here for simplicity on (1) counting, and (2) normalizing. The two count-

ing approaches we study are the raw hiPSC lines and the count-per-million (CPM). Given counts, we

consider three different normalization options: Raw, Rank, and Log-transformed (as described above).

The task of interest was to identify the sex of the individual.

The second genomics study [50] includes 331 individuals, consisting of 135 patients with non-

metastatic cancer and 196 healthy controls, each with eight DNA samples. The study leverages a

PCR-based assay called Repetitive element aneuploidy sequencing system to analyze ∼750,000 am-

plicons distributed throughout the genome to investigate the presence of aneuploidy (abnormal chro-

mosome counts) in samples from cancer patients (see Supporting Information S6.1 for more details).

The possible processing strategies include using the raw amplicons or the amplicons downsampled by

a factor of 5× 105 bases, 5× 106 bases, 5× 107 bases, or to the individual chromosome level (the res-

olution of the data), followed by normalizing through the previously described approaches (Raw, Rank,

Log-transformed) yielding 5 × 3 = 15 possible strategies in total. The task of interest was to identify

whether the sample was collected from a cancer patient or a healthy control.

Across both tasks, slope for discriminability is positive, and for the first task, the slope is significantly

bigger than zero (robust Z-test, p-value = .001, α = .05). Fingerprint and Kernel are similarly

only informative for one of the two genomics studies. For PICC, in both datasets the slope is positive

and the effect is significant. I2C2 does not provide value for subsequent inference.
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Fig 5. Optimizing Discr improves downstream inference performance. Using the connectomes from the

64 pipelines with raw edge-weights, we examine the relationship between connectomes vs sex and age. The

columns evaluate difference approaches for computing pipeline effectiveness, including (i) Discr, (ii) PICC, (iii)

Average Fingerprint Index Fingerprint, (iv) I2C2, and (v) Kernel. Each panel shows reference pipeline

replicability estimate (x-axis) versus effect size of the association between the data and the sex, age, or cancer

status of the individual as measured by DCorr (y-axis). Both the x and y axes are normalized by the minimum

and maximum statistic. These data are summarized by a single line per study, which is the regression of the

normalized effect size onto the normalized replicability estimate as quantified by the indicated reference statistic.

(I) The results for the neuroimaging data, as described in Section 3.4. Color and line width correspond to the

study and number of scans, respectively (see Fig 3B). The solid black line is the weighted mean over all studies.

Discr is the only statistic in which nearly all slopes are positive. Moreover, the corrected p-value [51, 52] is

significant across most datasets for both covariates ( 39
44

≈ .89 p-values < .001). This indicates that pipelines with

higher Discr correspond to larger effect sizes for the covariate of interest, and that this relationship is stronger

for Discr than other statistics. A similar experiment is performed on two genomics datasets, measuring the

effects due to sex and whether an individual has cancer. (III) indicates the fraction of datasets with positive

slopes and with significantly positive slopes, ranging from 0 (“None”, red) to 1 (“All”, green), at both the task and

aggregate level. Discr is the statistic where the most datasets have positive slopes, and the statistic where the

most datasets have significantly positive slopes, across the neuroimaging and genomics datasets considered.

Supporting Information S6.2 details the methodologies employed.

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2021. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Discussion We propose the use of the Discr statistic as a simple and intuitive measure for ex-

perimental design featuring multiple measurements. Numerous efforts have established the value of

quantifying repeatability and replicability (or discriminability) using parametric measures such as ICC

and I2C2. However, they have not been used to optimize replicability—that is, they are only used

post-hoc to determine replicability, not used as criteria for searching over the design space—nor have

non-parametric multivariate generalizations of these statistics been available. We derive goodness of

fit and comparison (equality) tests for Discr, and demonstrate via theory and simulation that Discr

provides numerous advantages over existing techniques across a range of simulated settings. Our

neuroimaging and genomics use-cases exemplify the utility of these features of the Discr framework

for optimal experimental design.

An important consideration is that quantifying reliability and replicability with multiple measurements

may seem like a limitation for many fields, in which the end derivative typically used for inference may

be just a single sample for each item measured. However, a single measurement may often consist

of many sub-measurements for a single individual, each of which are combined to produce the single

derivative work. For example in brain imaging, a functional Magnetic Resonance Imaging (fMRI) scan

consists of tens to thousands of scans of the brain at numerous time points. In this case, the image

can be broken into identical-width time windows to coerce a dataset in which discriminability can be in-

vestigated. In another example taken directly from the cancer genomics experiment below, a genomics

count table was produced from eight independent experiments, each of which yielded a single count

table. The last step of their pre-processing procedure was to aggregate to produce the single summary

derivative that the experimenters traditionally considered a single measurement. In each case, the typi-

cal “measurement” unit can really be thought of as an aggregate of multiple smaller measurement units,

and a researcher can leverage these smaller measurements as a surrogate for multiple measurements.

In the neuroimaging example, the fMRI scan can be segmented into identical-width sub-scans with

each treated as a single measurement, and in the genomics example, the independent experiments

can each be used as a single measurement.

Discr provides a number of connections with related statistical algorithms worth further consider-

ation. Discr is related to energy statistics [53], in which the statistic is a function of distances between

observations [33]. Energy statistics provide approaches for goodness-of-fit (one-sample) and equality

testing (two-sample), and multi-sample testing [54]. However, we note an important distinction: a good-

ness of fit test for discriminability can be thought of as a K-sample test in the classical literature, and

a comparison of discriminabilities is analogous to a comparison of K-sample tests. Further, similar to

Discr, energy statistics make relatively few assumptions. However, energy statistics requires a large

number of measurements per item, which is often unsuitable for biological data where we frequently

have only a small number of repeated measurements. Discr is most closely related to multiscale gen-

eralized correlation (MGC) [36, 48], which combines energy statistics with nearest neighbors, as does

Discr. Like many energy-based statistics, Discr relies upon the construction of a distance matrix.

As such, Discr generalizes readily to high-dimensional data, and many packages accelerate distance

computation in high-dimensionals [55].

Limitations While Discr provides experimental design guidance for big data, other considerations may

play a role in a final determination of the practical utility of an experimental design. For example, the

connectomes analyzed here are resting-state, as opposed to task-based fMRI connectomes. Recent

literature suggests that the global signal in a rs-fMRI scan may be correlated heavily with signals of

interest for task-based approaches [56, 57], and therefore removal may be inadvisable. Thus, while

Discr is an effective tool for experimental design, knowledge of the techniques in conjunction with the

constructs under which successive inference will be performed remains essential. Further, in this study,

we only consider the Euclidean distance, which may not be appropriate for all datasets of interest. For

example, if the measurements live in a manifold (such as images, text, speech, and networks), one may
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be interested in dissimilarity or similarity functions other than Euclidean distance. To this end, Discr

readily generalizes to alternative comparison functions, and will produce an informative result as long

as the choice of comparison function is appropriate for the measurements.

It is important to emphasize that Discr, as well the related statistics, are neither necessary, nor

sufficient, for a measurement to be practically useful. For example, categorical covariates, such as sex,

are often meaningful in an analysis, but not discriminable. Human fingerprints are discriminable, but

typically not biologically useful. In this sense, while discriminability provides a valuable link between

test-retest reliability and criterion validity for multivariate data, one must be careful to consider other

notions of validity prior to the selection of a measurement. In addition, none of the statistics studied here

are immune to sample characteristics, thus interpreting results across studies deserves careful scrutiny.

For example, having a sample with variable ages will increase the inter-subject dissimilarity of any metric

dependent on age (such as the connectome). Additionally, discriminability can be decomposed into

within and between-class discriminabilities, so that class-specific effects may be examined in isolation,

as described in Supporting Information S7. Future work could explore how these two quantities may be

incorporated into the experimental design procedure.

Moreover, if multiple strategies are saturated at a perfect discriminability (Discr = 1), it does not

provide an informative way to differentiate between these strategies. One could trivially augment the

discriminability procedure to compare within-item distances to a scaled and/or shifted transformation

of between-item distances, thereby rendering perfect discriminability arbitrarily difficult. With these

caveats in mind, Discr remains a key experimental design consideration across a wide variety of

settings.

Conclusion The use-cases provided herein serve to illustrate how Discr can be used to facilitate

experimental design, and mitigate replicability issues. We envision that Discr will find substantial

applicability across disciplines and sectors beyond brain imaging and genomics, such pharmaceutical

research. To this end, we provide open-source implementations of Discr for both Python and R

[58, 59]. Code for reproducing all the figures in this manuscript is available at https://neurodata.io/mgc.

Acknowledgements The authors would like to thank Iris Van Rooij and the Neurodata team for their

valuable feedback on this manuscript.

References

1. Spearman C. The Proof and Measurement of Association between Two Things. Am J Psychol.

1904 Jan;15(1):72.

2. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the

widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010

Oct;11(10):733-9.

3. Leek JT, Peng RD. Statistics: P values are just the tip of the iceberg. Nature. 2015

Apr;520(7549):612.

4. National Academies of Sciences E. Reproducibility and Replicability in Science; 2019.

5. Goodman SN, Fanelli D, Ioannidis JPA. What does research reproducibility mean? Sci Transl Med.

2016 Jun;8(341):341ps12.

6. Devezer B, Nardin LG, Baumgaertner B, Buzbas EO. Scientific discovery in a model-centric frame-

work: Reproducibility, innovation, and epistemic diversity. PLoS One. 2019 May;14(5):e0216125.

7. Yu B, et al. Stability. Bernoulli. 2013;19(4):1484-500.

8. Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005 Aug;2(8):e124.

9. Baker M. Over half of psychology studies fail reproducibility test. Nature Online. 2015 Aug.

10. Patil P, Peng RD, Leek JT. What Should Researchers Expect When They Replicate Studies? A

Statistical View of Replicability in Psychological Science. Perspect Psychol Sci. 2016 Jul;11(4):539-

44.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2021. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

https://neurodata.io/mgc
https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


11. Trafimow D, Marks M. Editorial. Basic Appl Soc Psych. 2015 Jan;37(1):1-2.

12. Fricker RD, Burke K, Han X, Woodall WH. Assessing the Statistical Analyses Used in Basic and

Applied Social Psychology After Their p-Value Ban. Am Stat. 2019 Mar;73(sup1):374-84.

13. Wasserstein RL, Schirm AL, Lazar NA. Moving to a World Beyond “p < 0.05”. Am Stat. 2019

Mar;73(sup1):1-19.

14. Vogelstein JT. P-Values in a Post-Truth World. arXiv. 2020 Jul.

15. Heise DR. Separating Reliability and Stability in Test-Retest Correlation. Am Sociol Rev.

1969;34(1):93-101.

16. Zuo XN, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, et al. An open science resource for

establishing reliability and reproducibility in functional connectomics. Sci Data. 2014 Dec;1:140049.

17. O’Connor D, Potler NV, Kovacs M, Xu T, Ai L, Pellman J, et al. The Healthy Brain Network Serial

Scanning Initiative: a resource for evaluating inter-individual differences and their reliabilities across

scan conditions and sessions. Gigascience. 2017 Feb;6(2):1-14.

18. Zuo XN, Xu T, Milham MP. Harnessing reliability for neuroscience research. Nat Hum Behav. 2019

Aug;3(8):768-71.

19. Nikolaidis A, Heinsfeld AS, Xu T, Bellec P, Vogelstein J, Milham M. Bagging Improves Reproducibil-

ity of Functional Parcellation of the Human Brain; 2019.

20. Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Sidtis J, et al. The quantitative evaluation

of functional neuroimaging experiments: the NPAIRS data analysis framework. Neuroimage. 2002

Apr;15(4):747-71.

21. Churchill NW, Spring R, Afshin-Pour B, Dong F, Strother SC. An Automated, Adaptive Frame-

work for Optimizing Preprocessing Pipelines in Task-Based Functional MRI. PLoS One. 2015

Jul;10(7):e0131520.

22. Sigurdsson S, Philipsen PA, Hansen LK, Larsen J, Gniadecka M, Wulf HC. Detection of skin cancer

by classification of Raman spectra. IEEE Trans Biomed Eng. 2004 Oct;51(10):1784-93.

23. Kjems U, Hansen LK, Anderson J, Frutiger S, Muley S, Sidtis J, et al. The quantitative evaluation

of functional neuroimaging experiments: mutual information learning curves. Neuroimage. 2002

Apr;15(4):772-86.

24. Hand DJ. Measurement: A Very Short Introduction. 1st ed. Oxford University Press; 2016.

25. Fisher RA. The Design of Experiments. Macmillan Pub Co; 1935.

26. Kirk RE. Experimental Design. In: Weiner I, editor. Handbook of Psychology, Second Edition.

vol. 12. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012. p. 115.

27. Dale AM. Optimal experimental design for event-related fMRI. Human brain mapping. 1999;8(2-

3):109-14.

28. Paninski L. Asymptotic theory of information-theoretic experimental design. Neural Comput. 2005

Jul;17(7):1480-507.

29. Cronbach LJ, Rajaratnam N, Gleser GC. Theory of Generalizability: a Liberalization of Reliability

Theory. British Journal of Statistical Psychology. 1963 Nov;16(2):137-63.

30. Noble S, Spann MN, Tokoglu F, Shen X, Constable RT, Scheinost D. Influences on the Test-Retest

Reliability of Functional Connectivity MRI and its Relationship with Behavioral Utility. Cereb Cortex.

2017 Nov;27(11):5415-29.

31. Wang Z, Bridgeford E, Wang S, Vogelstein JT, Caffo B. Statistical Analysis of Data Repeatability

Measures. arXiv. 2020 May. Available from: https://arxiv.org/abs/2005.11911v3.

32. Zuo XN, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, et al. An open science re-

source for establishing reliability and reproducibility in functional connectomics. Scientific data.

2014;1:140049.

33. Rizzo ML, Székely GJ. Energy distance. WIREs Comput Stat. 2016 Jan;8(1):27-38.

34. Muandet K, Fukumizu K, Sriperumbudur B, Schölkopf B. Kernel Mean Embedding of Distributions:

A Review and Beyond. Foundations and Trends R© in Machine Learning. 2017 Jun;10(1-2):1-141.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2021. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

https://arxiv.org/abs/2005.11911v3
https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


35. Shen C, Priebe CE, Vogelstein JT. The Exact Equivalence of Independence Testing and Two-

Sample Testing. arXiv. 2019 Oct. Available from: https://arxiv.org/abs/1910.08883.

36. Vogelstein JT, Bridgeford EW, Wang Q, Priebe CE, Maggioni M, Shen C. Discovering and de-

ciphering relationships across disparate data modalities. Elife. 2019 Jan;8. Available from:

http://dx.doi.org/10.7554/eLife.41690.

37. Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, et al. Functional connec-

tome fingerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci. 2015

Nov;18(11):1664-71.

38. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979

Mar;86(2):420-8.

39. Wang Z, Sair HI, Crainiceanu C, Lindquist M, Landman BA, Resnick S, et al. On statistical tests of

functional connectome fingerprinting. Can J Stat. 2021 Mar;49(1):63-88.

40. Carmines EG, Zeller RA. Reliability and Validity Assessment. SAGE Publications; 1979.

41. Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A. A Kernel Two-Sample Test. Journal of

Machine Learning Research. 2012;13(Mar):723-73. Available from: http://jmlr.csail.mit.edu/papers/

v13/gretton12a.html.

42. Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connec-

tivity networks: test–retest evaluation using ICA and dual regression approach. Neuroimage.

2010;49(3):2163-77.

43. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of

human brain function. Proceedings of the National Academy of Sciences. 2010;107(10):4734-9.

44. Sikka S, Cheung B, Khanuja R, Ghosh S, Yan C, Li Q, et al. Towards automated analysis of

connectomes: The configurable pipeline for the analysis of connectomes (c-pac). In: 5th INCF

Congress of Neuroinformatics, Munich, Germany. vol. 10; 2014. .

45. Strother SC. Evaluating fMRI preprocessing pipelines. IEEE Engineering in Medicine and Biology

Magazine. 2006;25(2):27-41.

46. Kiar G, Bridgeford E, Roncal WG, (CoRR) CfR, Reproducibliity, Chandrashekhar V, et al. A High-

Throughput Pipeline Identifies Robust Connectomes But Troublesome Variability. bioRxiv. 2018

Apr:188706. Available from: https://www.biorxiv.org/content/early/2018/04/24/188706.

47. Craddock C, Sikka S, Cheung B, Khanuja R, Ghosh SS, Yan C, et al. Towards Automated Analysis

of Connectomes: The Configurable Pipeline for the Analysis of Connectomes (C-PAC). Frontiers

in Neuroimformatics. 2013 Jul.

48. Shen C, Priebe CE, Vogelstein JT. From Distance Correlation to Multiscale Generalized Correlation.

Journal of American Statistical Association. 2017 Oct. Available from: http://arxiv.org/abs/1710.

09768.

49. Carcamo-Orive I, Hoffman GE, Cundiff P, Beckmann ND, D’Souza SL, Knowles JW, et al. Analysis

of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic

Determinants of Heterogeneity. Cell Stem Cell. 2017 Apr;20(4):518-5329.

50. Douville C, Cohen JD, Ptak J, Popoli M, Schaefer J, Silliman N, et al. Assessing aneuploidy with

repetitive element sequencing. Proc Natl Acad Sci USA. 2020 Mar;117(9):4858-63.

51. Fisher RA. Statistical methods for research workers. Genesis Publishing Pvt Ltd; 1925.

52. Zeileis A. Object-oriented Computation of Sandwich Estimators. Journal of Statistical Software,

Articles. 2006;16(9):1-16.

53. Székely GJ, Rizzo ML. Energy statistics: A class of statistics based on distances. J Stat Plan

Inference. 2013 Aug;143(8):1249-72.

54. Rizzo ML, Székely GJ, et al. Disco analysis: A nonparametric extension of analysis of variance.

The Annals of Applied Statistics. 2010;4(2):1034-55.

55. Zheng D, Mhembere D, Vogelstein JT, Priebe CE, Burns R. FlashR: parallelize and scale R for

machine learning using SSDs. Proceedings of the 23rd. 2018 Feb;53(1):183-94. Available from:

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2021. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

https://arxiv.org/abs/1910.08883
http://dx.doi.org/10.7554/eLife.41690
http://jmlr.csail.mit.edu/papers/v13/gretton12a.html
http://jmlr.csail.mit.edu/papers/v13/gretton12a.html
https://www.biorxiv.org/content/early/2018/04/24/188706
http://arxiv.org/abs/1710.09768
http://arxiv.org/abs/1710.09768
https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://dl.acm.org/citation.cfm?id=3178501.

56. Murphy K, Fox MD. Towards a consensus regarding global signal regression for resting state

functional connectivity MRI. Neuroimage. 2017 Jul;154:169-73.

57. Liu TT, Nalci A, Falahpour M. The global signal in fMRI: Nuisance or Information? Neuroimage.

2017 Apr;150:213-29.

58. Panda S, Palaniappan S, Xiong J, Bridgeford EW, Mehta R, Shen C, et al.. hyppo: A Comprehen-

sive Multivariate Hypothesis Testing Python Package; 2020.

59. Bridgeford E, Shen C, Wang S, Vogelstein JT. Multiscale Generalized Correlation; 2018. Available

from: https://doi.org/10.5281/zenodo.1246967.

Supporting Information Legend

Section Description

S1 Background information on repeatability statistics.

S2 Population and sample discriminability.

S3 Theoretical bound for downstream inference.

S4 Simulation settings.

S5 Hypothesis testing.

S6 Data descriptions and details for real data analysis.

S7 Extensions of discriminability.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2021. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

https://dl.acm.org/citation.cfm?id=3178501
https://doi.org/10.5281/zenodo.1246967
https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supporting Information 1: Eliminating accidental deviations to minimize generalization
error and maximize replicability: applications in connectomics and genomics

Eric W. Bridgeford1, Shangsi Wang1, Zhi Yang2, Zeyi Wang1, Ting Xu3, Cameron Craddock3,

Jayanta Dey1, Gregory Kiar1, William Gray-Roncal1, Carlo Colantuoni1, Christopher Douville1,

Stephanie Noble4, Carey E. Priebe1, Brian Caffo1, Michael Milham3, Xi-Nian Zuo2,5, Consortium

for Reliability and Reproducibility, Joshua T. Vogelstein1,6∗

S1 Data Repeatability Statistics

Intraclass Correlation Coefficient The intraclass correlation coefficient (ICC) is a commonly used

data replicability statistic [1]. The absolute agreement ICC, or ICC(1,1), is the fraction of the total

variability that is across-item variability, that is, ICC is defined as the across-item variability divided by

the within-item plus across-item variability. ICC has several limitations. First, it is univariate, meaning if

the data are multidimensional, they must first be represented by univariate statistics, thereby discarding

multivariate information. This potentially makes ICC unsuitable when an informative univariate sum-

mary measure is unavailable or unknown, which is frequently the case in the high dimensional data

that is the focus of this manuscript. Second, ICC is based on a Gaussian assumption characterizing

the data. Thus, any deviations from this assumption may render the interpretation of the magnitude

of ICC questionable, because non-Gaussian measurements that are highly replicable could potentially

yield quite low ICC [2–4]. Third, the Intraclass correlation coefficient is highly sensitive to the design

of the study [4, 5]; care must be taken to ensure that the form of ICC chosen accurately reflects the

design of the study of interest. Further, ICC is substantially impacted by the presence of outliers in

measurements [6]. Finally, there are numerous definitions of estimates of ICC[1] designed for different

experimental setups, and researchers regularly use (and misuse) the different estimators in generic

contexts [4, 7]. In practice, it is unclear the extent to which the use of inappropriate estimators of ICC is

impactful [8].

Numerous multivariate generalizations of the ICC attempt to overcome the requirement of ICC to

operate on univariate data. The Image Intra-Class Correlation (I2C2) was introduced to mitigate ICC’s

univariate limitation [9]. Specifically, I2C2 operates on covariances matrices, rather than variances. To

obtain a univariate summary of replicability, I2C2 operates on the trace of the covariance matrices,

one of several possible strategies, similar to most multivariate analysis of variance procedures [10].

Thus, while overcoming one limitation of ICC, I2C2 still heavily leverages Gaussian assumptions of

the data to justify its validity. [11] highlight a number of limitations with using estimates of covariance in

the context of assessing multivariate replicability. Chiefly, sampling variance of covariance components

in the high dimensionality; low-sample-size (HDLSS) regime is problematic, which is an characteristic

of increasing prevalence in biological data.

Fingerprinting Index The fingerprinting index [12, 13] provides a metric for quantifying individual con-

nectivity profiles in resting-state MRI (fMRI). Specifically, the fingerprinting index operates on the pair-

wise correlation of the vectorized connectivity matrices. A high fingerprinting index corresponds to the

connectivity matrices being most strongly correlated within-subject versus between-subject. An impor-

tant clarification for fingerprinting is that the connectivity matrices must be more strongly correlated

than any other measurement within a particular scanning session, otherwise the fingerprinting index
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will be 0, as the fingerprinting index uses only the nearest-neighbor associated with a given item. Unlike

the other strategies employed in this manuscript, the fingerprinting index produces a statistic for each

possible ordering of 2 measurement sessions, that is, if each item is measured s times, fingerprinting

produces s(s−1) statistics. To enable fingerprinting for assessing the effectiveness of a strategy, we in-

stead averaged across all s(s−1) statistics, which will henceforth be referred to as Fingerprinting.

Kendall’s Coefficient of Concordance Kendall’s Coefficient of Concordance, or Kendall’s W , is a uni-

variate non-parametric statistic for assessing the extent to which multiple measurements of the same

item agree. Like inter-item discriminability and the fingerprinting index, estimates of Kendall’s W op-

erate on the ranks of data. Specifically, Kendall’s W computes the total rank of all measurements

associated with a single item, and compares an item’s total rank to the average value of the total rank.

An important consideration is that Kendall’s W operates directly on the measurements themselves,

rather than on scalar summary measures of the relationships amongst the measurements. As such,

Kendall’s W cannot be applied directly to data that is inherently multivariate using traditional methods of

ranking. For this reason, we do not formally evaluate Kendall’s W within the context of this manuscript.

Kernel Methods Maximum mean discrepancy (MMD) [14] provides a non-parametric framework for

comparing whether two samples are drawn from the same distribution. MMD subverts Gaussian as-

sumptions by embedding the points in a reproducing kernel Hilbert Space (RKHS), and looking for

functions over the unit ball in the RKHS which maximize the difference in the means of the embedded

points. In the two-item regime, MMD can be shown to be equivalent to the Hilbert-Schmidt Independence

Criterion (HSIC) [15–17], which provides a natural generalization of MMD when the number of classes

exceeds two. To date, to our knowledge, there does not exist a k-sample variant of MMD.

Distance Components (DISCO) [18] extends the classical Analysis of Variance (ANOVA) framework

to cases where the distributions are not necessarily Gaussian. In contrast to ANOVA which makes

simplifying assumptions of normality, DISCO operates on the dispersion of the samples based on the

Euclidean Distance, comparing the within-class dispersion to the between-class dispersion. DISCO
produces a consistent test against general alternatives as the number of observations s per item goes to

infinity. [19] shows a closed form relationship between Kernel and other Energy statistics approaches,

such as Distance correlation. The result is that using Distance correlation for k-sample testing results

in a test statistic that has bias relative to the Kernel statistic, but will yield the same p-value. Further,

[19] shows the equivalence between Distance correlation and HSIC/MMD. Thus, in this manuscript, we

use Kernel to refer to either DISCO or MMD as appropriate. In all cases, we use the default kernel,

which is the Gaussian kernel with the typical bandwidth specification, as implemented in the kernlab
package [20] (MMD) and energy (DISCO) package [21]. Note that in many real data scenarios, s is small

(particularly, most “repeat measurements” datasets have s = 2), and the finite-sample performance of

Kernel on such a small number of repeat trials is not known.
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S2 Population and Sample Discr Suppose that θi ∈ Θ represents a physical property of interest

for a particular item i. In a biological context, for instance, an item could be a participant in a study,

and the property of interest could be the individual’s true brain network, or connectome. We cannot

directly observe the physical property, but rather, we must first measure θi and then “wrangle” it. Call

the measurement function, f ∈ F for a family of possible measurement functions F That is, f :
Θ → WWW . So, measurements of θi are observed as f(θi) = wi. However, wi may be a noisy,

with measurement artefacts. Alternately, wi might not be the property of interest, for example, if the

property is a network, perhaps wi is a multivariate time-series, from which we can estimate a network.

We therefore have another function, g ∈ G : WWW → XXX , which represents the data wrangling procedure

to take the measurement and produce an informative derivative (for instance, confound removal). The

family of possible data wrangling procedures to produce the informative derivative is G. In this fashion,

the output of interest is xi = g(f(θi)).
The goal of experimental design is to choose an f and g that yield high-quality and useful infer-

ences, that is, that yield x’s that we can use for various inferential purposes. When we have repeated

measurements of the same items, we can use those samples to our advantage. Given xxx
j
i , which is the

jth measurement of sample i, we would expect xxx
j
i to be more similar to xxx

j′

i (another measurement of

the same item), than to any measurement of a different item xxx
j′′

i′ . Formally, let δ : XXX ×XXX → [0,∞) be

a distance metric, we define the population Discr:

Dδ,f,g = P

(

δ(xxxji ,xxx
j′

i ) < δ(xxxji ,xxx
j′′

i′ )
)

That is, “population Discr” D represents the average probability that the within-item distance δ(xxxji ,xxx
j′

i )

is less than the between-item distance δ(xxxji ,xxx
j′′

i′ ). Discr depends on the choice of distance δ, as well

as the measurement protocal f and the analysis choices g.

The population Discr represents a property of the distribution of θi. In real data since we do not

observe the true distribution, we instead rely on the sample Discr. Suppose a dataset consists of

i ∈ {1, . . . , n} items, where each item i has Ji repeat measurements. The sample Discr is defined:

Discr

{

xxx
j
i

}

j∈[Ji],i∈[n]
=

∑

i∈[n]

∑

j∈[Ji]

∑

j′ 6=j

∑

i′ 6=i

∑

j′′∈[Ji′ ]

(

✶{
δ(xxxj

i
,xxx

j′

i
)<δ(xxxj

i
,xxx

j′′

i′
)
}

)

∑

i∈[n]

∑

j∈[Ji]

∑

j′ 6=j

∑

i′ 6=i

∑

j′′∈[Ji′ ]
1

.

It can be shown [1] that the under the multivariate additive noise model in Assumption 1, that the sample

Discr is both a consistent and unbiased estimator for population Discr.
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S3 Discr Provides an Informative Bound for Inference During experimental design, the extent of

subsequent inference tasks may be unknown. A natural question may be, what are the implications of

the selection of a discriminable experimental design? Formally, assume the task of interest is binary

classification: that is, Y = {0, 1}, and we seek a classifier h : X → Y . The goal of experimental design

in this context is to choose the options (f∗, g∗) that will minimize the classification loss:

(f∗, g∗) = argmin
(f,g)∈F×G

P(h(xxx) 6= y|xxx = f(g(θ))).

For a fixed (f, g), the minimal prediction error is achieved by the Bayes optimal classifier [1]:

h∗x(xxx) , argmax
y∈{0,1}

P
(

yi = y
∣

∣xxx
)

πy(1)

= argmax
y∈{0,1}

logP
(

yi = y
∣

∣xxx
)

+ log πy,(2)

where πy = P(yi = y), and let L∗
x denote the error of the Bayes optimal classifier; that is, the error

achieved by h∗x.

Assumption 1 (Multivariate Additive Noise Setting).

The multivariate additive noise setting can be described as follows. For items i = 1, . . . , n and

sessions j = 1, . . . , s:

yi
iid∼ Bern(π1),

θθθi
ind∼ F(µµµyi ,ΣΣΣθ),

ǫǫǫ
j
i
iid∼ F(ccc,ΣΣΣǫ) independent of θθθi,

xxx
j
i = θi + ǫǫǫ

j
i = f(g(θθθi)).

where F(µµµ,ΣΣΣ) denotes a distribution with a finite mean vector µµµ and a finite, non-singular covariance

ΣΣΣ.

To connect the above model more directly with Eq. (1), we can let look at a special case

f(θθθi) = θθθi + ηηη
j
i , g(f(θθθi)) = θθθi + ηηη

j
i + τττ

j
i , ǫǫǫ

j
i = ηηη

j
i + τττ

j
i ,

where we assume that ηηη
j
i ⊥⊥ τττ

j
i , and both ηηη

j
i and τττ

j
i are multivariate Gaussian. Using Bayes rule

and Assumption 1, note that the probability that an observation xxx
j
i is from class y is given by:

P
(

yi = y
∣

∣xxx
)

=
P
(

xxx
∣

∣yi = y
)

P(yi = y)

P(xxx)
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⇒ logP
(

yi = y
∣

∣xxx
)

∝ −1

2
(xxx−µµµy)

⊤ΣΣΣx(xxx−µµµy) + log(πy)

where ΣΣΣx = ΣΣΣθ +ΣΣΣǫ is constant between the two classes (that is, the variance is homoscedastic), and

y is a generic value in {0, 1} that a realization yi can take. This follows directly by taking the log of the

density function of the multivariate normal distribution, and removing terms not proportional in y. The

Bayes optimal classifier is:

h∗x(xxx) = argmax
y∈{0,1}

[

−1

2
(xxx−µµµy)ΣΣΣx(xxx−µµµy) + log πy

]

.

In the general case, the Bayes optimal error can be computed explicitly using that:

L∗
x , E

[

✶h∗
x(xxx) 6=y

]

=
∑

y∈{0,1}

∫

X
P(h∗x(xxx) 6= y|xxx)P(xxx) dxxx,

using standard rules of integration. Even when the true class distributions are known, however, com-

putation of this integral explicitly tends to be rather tedious. For this reason, much work is dedicated to

identifying cases in which the Bayes error can be bounded.

Importantly, the Bayes error can, in fact, be upper bounded by a decreasing function of Discr,

as shown in the theorem below. In words, this theorem specifies the desirability of high Discr: a

higher discriminability results in a lower bound on the error of future inferential tasks. Correspondingly,

a strategy with a higher discriminability will have a lower bound on the error than another strategy with

a lower discriminability.

Theorem 2. Let
{

(xxxji , yi) : j ∈ [s]
}

i∈[n]
follow the multivariate additive noise setting, given in As-

sumption 1. Then there exists a decreasing function γ(·) of the discriminability D where:

L∗
f,g ≤ γ(Df,g)

where L∗ is the Bayes error, or the error achieved by the Bayes optimal classifier h∗f,g(θθθi).

Proof of Theorem (2).

Consider the additive noise setting, that is xxx
j
i = θi + ǫǫǫ

j
i ,

D = P
(

δi,j,j′ < δi,i′,j,j′′
)

= P(‖xxxji − xxx
j′

i ‖ < ‖xxxji − xxx
j′′

i′ ‖)
= P(‖ǫǫǫji − ǫǫǫ

j′

i ‖ < ‖θi + ǫǫǫ
j
i − θi′ − ǫǫǫ

j′′

i′ ‖)
≤ P(‖ǫǫǫji − ǫǫǫ

j′

i ‖ < ‖θi − θi′‖+ ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖)
= P(‖ǫǫǫji − ǫǫǫ

j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖ < ‖θi − θi′‖)

=
1

2
P(‖ǫǫǫji − ǫǫǫ

j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖ < ‖θi − θi′‖|‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖ < 0) +

1

2
P(‖ǫǫǫji − ǫǫǫ

j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖ < ‖θi − θi′‖|‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖ > 0)

=
1

2
+

1

2
P(‖ǫǫǫji − ǫǫǫ

j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖ < ‖θi − θi′‖|‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖ > 0)

=
1

2
+

1

2
P(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣ < ‖θi − θi′‖)

= 1− 1

2
P(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣ > ‖θi − θi′‖).
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To bound the probability above, we bound the ‖θi − θi′‖ and
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣ separately. We

start with the first term

E(‖θi − θi′‖2) = E(θT
i θi + θ

T
i′θi′ − 2θT

i θi′) = 2σ2
2.

Here, σ2
2 = tr(ΣΣΣθ) is the trace of covariance matrix of θi. We can apply Markov’s Inequality for any

t > 0:

P(‖θi − θi′‖ < t) ≥ 1− 2σ2
2

t2
.(3)

Let a and b be two constants satisfying:

E(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣

2
) ≥ a2σ2

ǫ ,

E
2(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣

2
)

E(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣)4
≥ b

Furthermore, let t2 =
√
2aσǫσθ, and define:

θ =
t2

E(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣

2
)
≤

√
2aσǫσθ
a2σ2

ǫ

=

√
2σθ
aσǫ

.

If a2σ2
ǫ ≥ 2σ2

θ , then θ ≤ 1. According to the Paley-Zygmund Inequality [2], that is:

P(Z > θE[Z]) ≥ (1− θ)2
E[Z]2

E[Z2]

for all 0 ≤ θ ≤ 1 and Z ≥ 0, we can plug in the θ above to achieve

P(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣

2
> t2) ≥ b

(

1− t2

a2σ2
ǫ

)2

= b

(

1−
√
2σθ
aσǫ

)2

.

Plugging t2 into the inequality in Equation (3), we have:

P(‖θi − θi′‖2 < t2) ≥ 1− 2σ2
θ

t2
= 1−

√
2σθ
aσǫ

.

Given that θi’s and ǫǫǫ
j
i ’s are independent by supposition, we can combine the two inequalities:

D = P(δi,t,t′ < δi,i′,t,t′′)

= P(‖xxxji − xxx
j′

i ‖ < ‖xxxji − xxx
j′′

i′ ‖)

≤ 1− 1

2
P(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣ > ‖θi − θi′‖)

≤ 1− 1

2
P(
∣

∣‖ǫǫǫji − ǫǫǫ
j′

i ‖ − ‖ǫǫǫji − ǫǫǫ
j′′

i′ ‖
∣

∣

2
> t2)P (‖θi − θi′‖2 < t2)

≤ 1− 1

2
b

(

1−
√
2σθ
aσǫ

)3

Note that the resulted bound holds true even if a2σ2
ǫ < 2σ2

θ , as the right hand side becomes greater

than 1. This produces a bound for σθ

σǫ
:

(4)
σθ

σǫ
≥ a√

2

(

1−
(

2− 2D

b

)1/3
)

.

To obtain a bound on Bayes error, we use the following two observations:
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1. The weighted covariance matrix of the measurements is non-singular: Define ΣΣΣx as the weighted

covariance matrix of xxx:

ΣΣΣx = π0Var(xxxji |yyyi = 0) + π1Var(xxxji |yyyi = 1)

= π0Var(θi|yyyi = 0) + π1Var(θi|yyyi = 1) + Var(ǫǫǫji )

= ΣΣΣθ +ΣΣΣǫ.

which follows since π0+π1 = 1. Further, note that since bothΣΣΣθ andΣΣΣǫ are finite and non-singular,

their sum ΣΣΣx is also finite and non-singular.

2. The between-class difference is finite: Denote ∆µµµ to be the difference between the means of the

two classes. Since ǫǫǫ
j
i is assumed to be independent of yyyi:

∆µµµ = E(xxxji |yyyi = 0)− E(xxxji |yyyi = 1) = E(θi|yyyi = 0)− E(θi|yyyi = 1).

We apply Devijver and Kittler’s result [3], from equation (2.93), which gives that:

L∗ ≤ 2π0π1

1 + π0π1∆µµµ⊤ΣΣΣ−1
x ∆µµµ

.

Denote ΣΣΣ′ = 1
σ2
ǫ

ΣΣΣǫ. By inequality (4), note that σ2
ǫ ≤ σ2

ǫ∗(D), where:

σǫ∗(D) =

√
2σθ

a(1− (2−2D
b )1/3)

.

Hence, ΣΣΣx � ΣΣΣ∗(D) where:

ΣΣΣ∗(D) = ΣΣΣθ + σ2
ǫ∗ΣΣΣ

′.

Therefore, ΣΣΣ−1
x � ΣΣΣ−1

∗ (D), and we obtain:

L∗ ≤ 2π0π1

1 + π0π1∆µµµ⊤ΣΣΣ−1
x ∆µµµ

≤ 2π0π1

1 + π0π1∆µµµ⊤ΣΣΣ−1
∗ (D)∆µµµ

= γ(D).

where γ(D) = 2π0π1

1+π0π1∆µµµ⊤ΣΣΣ−1
∗ (D)∆µµµ

is decreasing in D.

Next, we will generalize this theorem to a broader class of stochastic measurements. A local ordinal

embedding [4] ϕ : X → W with respect to a pair of distance metrics δx, δw for a set of measurements

X = {xxxi}i∈[n] is defined as a function where if xxxi,xxxi′ ,xxxj ,xxxj′ ∈ X, then:

δx(xxxi,xxxi′) < δx(xxxj ,xxxj′) ⇒ δw(ϕ(xxxi), ϕ(xxxi′)) < δw(ϕ(xxxj), ϕ(xxxj′))

Effectively, the statement asserts that if a pair of points are closer than another pair of points, than

the pair of embedded points are closer than the other pair of embedded points. In other words, the

ordering of distances is preserved after embedding with ϕ. While this fairly broad class of embeddings

preserves discriminability rather trivially, in fact, an even broader class embeddings will further preserve

discriminability. In particular, an embedding need only preserve within-item distance orderings, rather

than all pairs of distances. We define this class of embeddings as a within-item ordinal embedding.

Suppose that X =
{

xxx
j
i : j ∈ [s]

}

i∈[n]
denotes a set of measurements of n individuals, measured s

times each. If xxx
j
i ,xxx

j′

i ,xxx
j′′

i′ ∈ X, then:

δx(xxx
j
i ,xxx

j′

i ) < δx(xxx
j
i ,xxx

j′′

i′ ) ⇒ δw

(

ϕ(xxxji ), ϕ(xxx
j′

i )
)

< δw

(

ϕ(xxxji ), ϕ(xxx
j′′

i′ )
)

4
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This class of embeddings instead need only preserve within-item distance relationships. Note that xxx
j
i

and xxx
j′

i are two different measurements of the same item, and xxx
j′′

i′ is an arbitrary measurement from a

different item. If ϕ(X) ,
{

ϕ(xxxji ) : j ∈ [s]
}

i∈[n]
is the set of points embedded by the within-item ordinal

embedding ϕ, then the discriminability of ϕ(X) is clearly the same as the discriminability of X. This

is because the statement of a within-item ordinal embedding asserts that the relationship specified by

discriminability holds absolutely (and therefore, it certainly also holds in probability). Note further that

the class of embeddings which are local ordinal embeddings are a subset of the class of embeddings

which are within-item ordinal embeddings.

Further, note that if ϕ were one-to-one, that the Bayes error is the same, which can be seen through

a change of variables argument. These observations motivate the following corollary:

Corollary 3. Suppose that
{

(xxxji , yi) : j ∈ [s]
}

i∈[n]
are stochastic measurements and class labels

following the additive gaussian noise setting, described in Assumption 1.

Let ϕ : X → W be a within-item ordinal embedding which is also one-to-one, and denote www
j
i =

ϕ(xxxji ). There exists a decreasing function γ(·) of the discriminability Dw = D
{

www
j
i

}

where:

L∗
ϕ ≤ γ(Dw)

Proof. Denote γx(·) to be the decreasing function of Dx = D
{

xxx
j
i

}

, which exists by Theorem (2),

where:

L∗
x ≤ γx(Dx)

Let L∗
x be the Bayes’ error of

{

xxx
j
i , yi

}

. We note the following two facts:

1. The Bayes error L∗
x = L∗

w: Follows since ϕ is one-to-one.

2. Dx = Dw: Follows since ϕ is a local ordinal embedding.

Finally, using these two facts, note that:

L∗
w = L∗

x ≤ γx(Dx) = γx(Dw)

So selecting the same function γ = γx gives a function of the discriminability of
{

www
j
i

}

which upper

bounds the Bayes’ error of
{

(wwwj
i , yi) : j ∈ [s]

}

i∈[n]
, L∗

w, as desired.

Corollary 4. Assume (f1, g1) and (f2, g2) are two analysis strategies, and suppose that Df1,g1 >

Df2,g2 . Then the bound on the Bayes error for (f1, g1) is lower than the bound on the Bayes error on

(f2, g2).

Proof. Direct application of Theorem 2, noting that Df1,g1 > Df2,g2 implies that γ(Df1,g1) ≤
γ(Df2,g2) since γ is decreasing in D.

Consequently, under the described setting, the pipeline that achieves a higher Discr has a lower

bound on the Bayes error than competing strategies, despite the fact that the task is unknown during

data acquisition and analysis. Complementarily, note that if we were to instead consider the predictive

accuracy 1−L∗
f,g, we can obtain a similar result to obtain a lower bound on the predictive accuracy via

an increasing function of Discr. That is, in the context of the corollary, a more discriminable pipeline

will tend to have a higher bound on the accuracy for an arbitrary predictive task.
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Supporting Information 4: Eliminating accidental deviations to minimize generalization
error and maximize replicability: applications in connectomics and genomics
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Jayanta Dey1, Gregory Kiar1, William Gray-Roncal1, Carlo Colantuoni1, Christopher Douville1,

Stephanie Noble4, Carey E. Priebe1, Brian Caffo1, Michael Milham3, Xi-Nian Zuo2,5, Consortium

for Reliability and Reproducibility, Joshua T. Vogelstein1,6∗

S4 Simulations The following simulations were constructed, where σmin, σmax are the variance ranges,

and settings were run at 15 intervals in [σmin, σmax] for 500 repetitions per setting. For a simulation

setting with variance σ, the variance is reported as the normalized variance, σ = σ−σmin

σmax−σmin
. Dimen-

sionality is 2, the number of items is K, and the total number of measurements across all items is 128.

Typically, i indicates the individual identifier, and j the measurement index. Notationally, in the below

descriptions, we adopt the convention that zzz
j
i obeys the true distribution for a single observation j of

item i, and xxx
j
i incorporates the controlled error term ǫǫǫ

j
i , which is the term which is varied the simulation.

Further, each item features n
K

measurements.

Goodness of Fit Testing and Bayes Error

1. No Signal: K = 2 items, where the true distributions for class 1 and class 2 are the same.

• zzz
j
i

iid
∼ N (000, III), i = 1, . . . , 2, t = 1, . . . , 64. Note: 000 ∈ R

2 is 000, and likewise for III

• ǫǫǫ
j
i

iid
∼ N

(

000, σ2III
)

, σ ∈ [0, 20]

• xxx
j
i = zzz

j
i + ǫǫǫ

j
i

iid
∼ N

(

000, (((1 + σ2)III
)

2. Cross: K = 2 items, where the true distributions for class 1 and class 2 are orthogonal.

• Σ1 =

[

2 0
0 0.1

]

, Σ2 =

[

0.1 0
0 2

]

• zzz
j
i

iid
∼ N (000,ΣΣΣi), i = 1, 2

• ǫǫǫ
j
i

iid
∼ N

(

000, σ2III
)

, σ ∈ [0, 20]

• xxx
j
i = zzz

j
i + ǫǫǫ

j
i

3. Gaussian: K = 16 items, where the true distributions are each gaussian.

• µµµi
iid
∼ π1N (000, 4III), i = 1, . . . , 16

• ΣΣΣ =

[

1 0.1
0.1 1

]

• zzz
j
i

iid
∼ N (µµµi,ΣΣΣ)

• ǫǫǫ
j
i

iid
∼ N

(

000, σ2III
)

, σ ∈ [0, 20]

• xxx
j
i = zzz

j
i + ǫǫǫ

j
i

4. Ball/Circle: K = 2 items, where 1 item is uniformly distributed on the unit ball with gaussian

error, and the second item is uniformly distributed on the unit sphere with gaussian error.

• zzzt1
iid
∼ B(r = 1) + N (000, 0.1III) samples uniformly on unit ball of radius 2 with Gaussian

error

• zzzt2
iid
∼ S(r = 1.5)+N (000, 0.1III) samples uniformly on unit sphere of radius 2 with Gauss-

ian error

1 Johns Hopkins University, Baltimore, Maryland, USA, 2 Shanghai Jiaotong University, Shanghai, China 3 Child Mind

Institute, New York, New York, USA 4 Yale University, New Haven, Connecticut, USA 5 Beijing Normal University, Beijing,

China, Nanning Normal University, Nanning, China, University of Chinese Academy of Sciences, Beijing, China, 6 Progressive

Learning, Baltimore, Maryland, USA. ∗ jovo@jhu.edu.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2021. ; https://doi.org/10.1101/802629doi: bioRxiv preprint 

mailto:jovo@jhu.edu
https://doi.org/10.1101/802629
http://creativecommons.org/licenses/by-nc-nd/4.0/


• ǫǫǫ
j
i

iid
∼ N

(

000, σ2III
)

, σ ∈ [0, 10]

• xxx
j
i = zzz

j
i + ǫǫǫ

j
i

5. XOR: K = 2 items, where:

• zzzt1 =

{

000 t ∈ 1, . . . , 32

111 t ∈ 33, . . . , 64

• zzzt2 =

{

[0, 1]′ t ∈ 1, . . . , 32

[1, 0]′ t ∈ 33, . . . , 64

• ǫǫǫ
j
i

iid
∼N

(

000, σ2III
)

, σ ∈ [0, 0.8]

• xxx
j
i = zzz

j
i + ǫǫǫ

j
i

Bayes error was estimated by simulating n = 10,000 points according to the above simulation

settings, and approximating the Bayes error through numerical integration. The classification labels for

K = 2 simulations were consistent with the individual labels, and for the K = 16, the first class consists

of the 8 distributions whose means were leftmost, and the rest of the distributions were the other class.

Comparison Testing Items are sampled with the same true distributions zzz
j
i as before, with the follow-

ing augmentation:

xxx
j
i,k =

{

zzz
j
i k = 1

zzz
j
i + ǫǫǫ

j
i k = 2

That is, the observed data xxx
j
i,k for item i, observation j, and sample k ∈ [2] is such that the first sample

is distributed according to the true item distribution, and the second sample is distributed according to

the true item distribution with an added noise term, where ǫǫǫ
j
i

iid
∼ N

(

000, σ2III
)

:

1. No Signal: K = 2
σ ∈ [0, 10]

2. Cross: K = 2
σ ∈ [0, 1]

3. Gaussian: K = 16
σ ∈ [0, 1]

4. Ball/Circle: K = 2
σ ∈ [0, 1]

5. XOR: K = 2

xxx
j
i,k =

{

zzz
j
i + τττ

j
i k = 1

zzz
j
i + τττ

j
i + ǫǫǫ

j
i k = 1

where τ
j
i

iid
∼N (000, 0.1III)

σ ∈ [0, 0.2]
By construction, one would anticipate Discr of the first sample to exceed that of the second sam-

ple, as the second sample has additional error. Therefore, the natural hypothesis is:

H0 : D
(1) = D(2), HA : D(1) > D(2)

2
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S5 Hypothesis Testing

Goodness of Fit Test Recall the goodness of fit test, shown in Equation (1). We approximate the

distribution of Ŝ under the null through a permutation approach. The item labels of our N samples

are first permutated randomly, and Ŝ0,N is computed each time given the observed data XXX and the

permuted labels. For a level α significance test, we compare Ŝ to the (1 − α) quantile Q1−α of the

empirical null distribution D̂0,N , and reject the null hypothesis if D̂N < Q1−α. This approach provides

a consistent and valid test under general assumptions.

Note that the permutation-based approach requires r computations of the sample Discr. The

total computational complexity is then O
(

N2max(p, rs)
)

. This approach is only linear in the number of

desired repetitions, and therefore is sensible for most settings in which the sample Discr can itself be

computed. Moreover, we can greatly speed this computation up through parallelization. With T cores,

the computational complexity is instead O
(

N2max
(

p, r
T
s)
))

, as shown in Algorithm 1. We extend this

goodness of fit test to both PICC and I2C2 to provide a robust p-value associated with both statistics of

interest. Note that the permutation approach can be generalized to any statistic quantifying replicability

based on repeated measurements.
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Algorithm 1 Discr Goodness of Fit Test. Our implementation of the permutation test for the good-

ness of fit test of the hypothesis given in Equation (1) requires O
(

N2max
(

p, r
T
s
))

time, where r is the

number of permutations and T is the number of cores available for the permutation test. The Shuffle

function is the function which rearranges all of the data within the dataset, without regard to item nor

measurement index. The output provides a new measurement index for each item i and measurement

j.

Require: (1)
{

xxx
j
i

}

j∈[Ji],i∈[n]
n items of data, each featuring Ji measurements.

(2) r an integer for the number of permutations.

Ensure: p ∈ [0, 1] the p-value associated with the test.

1: function p = GOODNESSOFFITTEST({xxxji}j∈[Ji],i∈[n], r)

2: da = Discr

{

xxx
j
i

}

j∈[Ji],i∈[n]
⊲ compute observed sample Discr

⊲ Note that this for-loop can be parallelized over T cores, as the loops are independent

3: for i in 1, . . . , r do

4: π = Shuffle(n, {Ji}
n
i=1) ⊲ a random shuffling of the measurements

5: di = Discr
{

xxxπ(i,j)
}

j∈[Ji],i∈[n]
⊲ Compute Discr with random order of sample ids

6: end for

7: p = 1
r+1

(
∑r

i=1 I{da≥di} + 1
)

⊲ p-value is fraction of times observed is more extreme than under

null

8: return p

9: end function

2
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Comparison Test We implement Comparison testing using a permutation approach, similar to the

goodness of fit test. First, compute the observed difference in Discr between two design choices. The

null distribution of the difference in Discr is constructed by first taking random convex combinations of

the observed data from each of the two methods choices (the "randomly combined datasets"). Discr

is computed for each of the two randomly combined datasets for each permutation. Finally, for each

permutation, the all pairs of observed differences in Discr is computed. Finally, the observed statistic

is compared with the differences under the null of the randomly combined datasets. The p-value is

the fraction of times that the observed statistic is more extreme than the null. Note that we can use

this approach for both one and two-tailed hypotheses for an experimental design having higher Discr,

lower Discr, and equal Discr relative a second approach; we implement all three in the software

implementation of the comparison test. The Algorithm for the comparison test is shown in Algorithm

2, with the alternative hypothesis as specified in Equation (2). The computational complexity is then

O
(

r
T
N2max(p,maxi(si))

)

. Note that for each permutation, the limiting step is the computation of the

Discr in O
(

N2max(p, s)
)

. This is then offset through parallelization over T cores in the implementa-

tion. We extend this comparison test to all competing approaches to provide a robust p-value associated

with both statistics of interest, for similar reasons to the above. Again, this permutation approach can

be generalized to any statistic quantifying replicability based on repeated measurements.

3
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Algorithm 2 Discr Discriminability Comparison Test.Our implementation of the permutation test

for the hypothesis given in Equation (2) requires O
(

r
T
N2max(p, s)

)

time, where r is the number of

permutations and T is the number of cores available for the permutation test. Above, the only alternative

considered is that HA : D(1) > D(2); our code-based implementation provides strategies for HA :
D(1) < D(2) and HA : D(1) = D(2) as well.

Require: (1)
{

xxx
j
i

}

j∈[Ji],i∈[n]
n items of data, each featuring Ji measurements, from the first sample.

(2)
{

zzz
j
i

}

j∈[Ji],i∈[n]
n the observed data, from the second sample.

(3) r an integer for the number of permutations.

Ensure: p ∈ [0, 1] the p-value associated with the test.

1: function p =COMPARISONTEST({xxxji}j∈[Ji],i∈[n], {zzz
j
i}j∈[Ji],i∈[n], r)

2: D̂(1) = Discr

{

xxx
j
i

}

j∈[Ji],i∈[n]
⊲ The Discr of the first sample.

3: D̂(2) = Discr

{

zzz
j
i

}

j∈[Ji],i∈[n]
⊲ The Discr of the second sample.

4: da = D̂(1) − D̂(2) ⊲ The observed difference in Discr between samples 1 and 2.

5: ⊲ The for-loop below can be parallelized over T cores, as each loop is an independent

6: for i in 1 : r do

7: ⊲ Generate a synthetic null dataset for each of the 2 samples, using a convex combination

of the elements of each sample

8: for k in 1 : 2 do

9: π = Shuffle(n, {Ji}
n
i=1) ⊲ a random shuffle of the measurements

10: ψ = Shuffle(n, {Ji}
n
i=1)

11: λ
j
i

iid
∼ Unif(0, 1) ⊲ for j = 1, . . . , n, where ΛΛΛ = (λj)

n
j=1

12: uuu
j
i = λ

j
ixxxπ(i,j) + (1− λji )zzzψ(i,j) ⊲ Convex combination of random elements from each

sample

13: d
(k)
i = Discr

{

uuu
j
i

}

j∈[Ji],i∈[n]
⊲ Compute Discr of the convexly combined elements

14: end for

15: end for

16: ⊲ Compute all pairs differences in Discr using the convexly-combined samples

17: for i in 1, . . . , r − 1 do

18: for j in i+ 1, . . . , r do

19: dn ← c
(

dn, d
(1)
n,i − d

(2)
n,j , d

(2)
n,j − d

(1)
n,i

)

⊲ Null distribution of the difference

20: end for

21: end for

22: ⊲ p-value is fraction of times that observed Discr is more extreme than synthetic datasets

23: p = 2
r(r−1)+1

(

∑|dn|
i=1 I{da≤dn,i} + 1

)

24: return p

25: end function
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S6 Connectomics Application

Data Acquisition and Analysis

fMRI Analysis Pipelines The fMRI connectomes were acquired as follows. Motion correction is per-
formed via mcflirt to estimate the 6 motion parameters (x, y, z translation and rotations). Registra-
tion is performed by first performing a cross-modality registration from the functional to the anatomical
MRI using flirt-bbr, followed by registration to the anatomical template using either (1) FSL-fnirt

or (2) ANTs-SyN, two techniques for non-linear registration. Frequency filtering was performed by either
(1) not frequency filtering, or (2) bandpass filtering signal outside of the [.01, .1] Hz range. Volumes were
either (1) not scrubbed, or (2) scrubbed if motion exceeded 0.5 mm, in which case the preceding volume
and succeeding two volumes were removed. Global signal regression was either (1) not performed, or
(2) performed by removing the global mean signal across all voxels in the functional timeseries. More-
over, across all analysis pipelines, the top 5 principal components (compcor), Friston 24 parameters,
and a quadratic polynomial were fit and regressed from the functional timeseries. Finally, the voxelwise
timeseries were spatially downsampled using (1) the CC200 parcellation, (2) the AAL parcellation, (3)
the Harvard-Oxford parcellation, or (4) the Desikan-Killany parcellation. Graphs were estimated by (1)
computing the rank of the non-zero raw absolute correlations (zero-weight edges given a value of 0),
(2) log-transforming the raw absolute correlations (the minimum value of the graph is down-scaled by
a factor of 100 and then added to each edge to eliminate taking log of zero-weight edges), or (3) com-
puting the raw absolute correlation between pairs of regions of interest in each parcellation. No mean
centering was performed for functional connectivity estimates. Specific data analysis instructions for
deployment in AWS can be found in the https://neurodata.io/m2g. All data analysis was performed in the
AWS cloud using CPAC version 3.9.2 [1]. All parcellations are available in neuroparc human brain
atlases [2].

dMRI Analysis Pipelines The dMRI connectomes were acquired as follows. The dMRI scans were
corrected for eddy currents using FSL’s eddy-correct [3]. FSL’s "standard" linear registration pipeline
was used to register the sMRI and dMRI images to the MNI152 atlas [3–6]. A tensor model is fit using
DiPy [7] to obtain an estimated tensor at each voxel. A deterministic tractography algorithm is applied
using DiPy’s EuDX [7, 8] to obtain streamlines, which indicate the voxels connected by an axonal fiber
tract. Graphs are formed by contracting voxels into graph vertices depending on spatial [9], anatomical
[10–13], or functional [14–17] similarity. Given a parcellation with vertices V and a corresponding
mapping P (vi) indicating the voxels within a region i, we contract our fiber streamlines as follows.
w(vi, vj) =

∑
u∈P (vi)

∑
w∈P (vj)

I {Fu,w} where Fu,w is true if a fiber tract exists between voxels u and
w, and false if there is no fiber tract between voxels u and w. The specific parcellations leveraged
are detailed in (author?) [18], consisting of parcellations defined in the MNI152 space [10–17]. The
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graphs are then re-weighted using the afforementioned weighting schemes described in fMRI Analysis

Pipelines Supplementary Information ; namely, the raw, ranked, and log edge-weights. All parcellations
are available in neuroparc human brain atlases [2].

PCR RealSeqS Cancer Genomics Pipeline The RealSeqS samples were acquired as follows. PCR
was performed in 25 µL reactions containing 7.25 µL of water, 0.125 µL of each primer, 12.5 µL of
NEBNext Ultra II Q5 Master Mix (New England Biolabs cat # M0544S), and 5 µL of DNA. The cycling
conditions were: one cycle of 98oC for 120 s, then 15 cycles of 98oC for 10 s, 57oC for 120 s, and 72oC
for 120 s. Each plasma DNA sample was assessed in eight independent reactions, and the amount
of DNA per reaction varied from 0.1 µg to 0.25 µg. A second round of PCR was then performed to
add dual indexes (barcodes) to each PCR product prior to sequencing. The second round of PCR
was performed in 25 µL reactions containing 7.25 µL of water, 0.125 µL of each primer, 12.5 µL of
NEBNext Ultra II Q5 Master Mix (New England Biolabs cat # M0544S), and 5 uL of DNA containing
5% of the PCR product from the first round. The cycling conditions were: one cycle of 98ÂřC for
120 s, then 15 cycles of 98oC for 10 s, 65oC for 15 s, and 72oC for 120 s. Amplification products
from the second round were purified with AMPure XP beads (Beckman cat # a63880), as per the
manufacturer’s instructions, prior to sequencing. As noted above, each sample was amplified in eight
independent PCRs in the first round. Each of the eight independent PCRs was then re-amplified using
index primers in the second PCR round. Bowite2 was then used to align reads to the human reference
genome assembly GRC37 [19] for each well. After alignment to ∼ 750, 000 amplicons, the wells were
downsampled into non-overlapping windows of 5× 104 bases, 5× 105 bases, 5× 106 bases, or to the
individual chromosome level (the resolution of the data).

Effect Size Investigation In this investigation, we are interested in learning how maximization based
on the observed notion of replicability correlates with real performance on a downstream inference
task. Recalling Corollary 4 from S3, we explore the implications of this corollary in a large neuroimag-
ing dataset provided by the Consortium for Reliability and Reproducibility [20], and demonstrate that
selection of the experimental design via Discr, in fact, facilitates improved downstream inference on
both a regression and classification task. We further extend this to two separate genomics datasets in-
vestigating classification tasks, and again demonstrate that selection of experimental design via Discr

improves downstream inference. This provides strong motivation for leveraging the Discr for experi-
mental design.

Ideally, for a particular summary reference statistic, a high value will generally correlate with a posi-
tive effect size. For datasets i = 1, . . . ,M where M is the total number of datasets, an analysis strategy
j = 1, . . . , 192 for 192 total analysis strategies, and k = 1, . . . , 3 are our summary reference statistics
of interest (Discr, PICC, Fingerprint, I2C2, Kernel), we fit the standard linear regression model
Y = βX + ǫ, where we model the effect size Y estimated by DCorr [21] via a linear relationship with
X, the observed reference statistic for approach k, with coefficient β. Note that the interpretation of β is
the expected change in the effect size Y due to a single unit change in the observed reference statistic
X. Both Y and X are uniformly normalized across all strategies within a single dataset to facilitate
intuitive comparison across methods. For each reference statistic k, we pose the following hypothesis:

H0 : β = 0; HA : β > 0

Acceptance of the alternative hypothesis would have the interpretation that an increase in the observed
reference statistic X would tend to correspond to an increase in the observed effect size Y , and the
relevant test is the one-way Z-test. To robustify against model assumptions, we use robust standard
errors [22]. Acceptance of the alternative hypothesis against the null provides evidence that an increase
in the sample statistic corresponds to an increase in the observed effect size, where the responses (age,
sex, cancer status) were not considered at the time the data were analyzed nor when the reference
statistics computed. This provides evidence that the statistic is informative for experimental design
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Dataset Manuf. Model TE (ms) TR (ms) STC #Timepts #Sub #Ses #Scans TRT (days) Discr

KKI2009 Philips Achieva 30 2000 seq. 210 21 2 42 <1 0.93
NKI24 Siemens TrioTim 30 645 inter. 900 24 2 47 <14 0.98
BNU1 Siemens TrioTim 30 2000 inter. 200 50 2 100 42 0.97
BNU2 Siemens TrioTim 30 variable inter. variable 50 2 100 103 0.92
DC1 Philips NA 35 2500 inter. 120 114 4 244 ? 0.95
HNU1 GE MR750 30 2000 inter. 300 30 10 300 3 0.98
IACAS GE Signa 30 2000 inter. 240 28 3 59 42 0.83
IBATRT Siemens TrioTim 30 1750 seq. 220 36 2 50 None 0.95
IPCAS NA NA NA NA NA NA 78 2 156 – 0.99
IPCAS1 Siemens TrioTim 30 2000 inter. 205 30 2 60 7 1.00
IPCAS2 Siemens TrioTim 30 2500 inter. 212 35 2 70 30 0.98
IPCAS5 Siemens TrioTim 30 2000 inter. 170 22 2 44 >10 (min) 0.96
IPCAS6 Siemens TrioTim 30 2500 inter. 242 2 15 30 3 (hrs) 1.00
IPCAS8 Siemens TrioTim 30 2000 inter. 240 13 2 26 >1 (years) 0.96
JHNU Siemens TrioTim 30 2000 inter. 250 30 2 60 NA 0.96
LMU3 Siemens TrioTim 30 3000 inter. 120 25 2 50 NA 0.93
MRN1 NA NA NA NA NA NA 53 2 88 120 0.94
NYU1 Siemens Allegra 25 2000 NaN 197 25 3 75 5-11 (mo)∗ 0.98
NYU2 Siemens Allegra 15 2000 inter. 180 187 3 252 <1 (hrs) 0.96
SWU1 Siemens TrioTim 30 2000 inter. 240 20 3 59 NA 0.97
SWU2 Siemens TrioTim 30 2000 inter. 300 27 2 54 NA 0.96
SWU3 Siemens TrioTim 30 2000 inter. 242 24 2 48 NA 0.98
SWU4 Siemens TrioTim 30 2000 inter. 242 235 2 467 1 (yrs) 0.97
UM Siemens TrioTim 30 2000 seq. 150 80 2 160 NA 0.99
UPSM1 Siemens TrioTim 29 1500 seq. 200 100 3 230 473 - 1434 0.89
Utah1 Siemens TrioTim 28 2000 inter. 240 26 2 52 >2 (yrs) 0.92
UWM GE MR750 25 2600 inter. 231 25 2 50 NA 0.96
XHCUMS Siemens TrioTim 30 3000 inter. 124 24 5 120 180 0.91

S6 Table 1. fMRI Dataset Descriptions. In the above table, STC corresponds to slice timing correction. Rows
with NA entries do not have available metadata associated with the scanning protocol. The column TRT indicates
the follow up time for retest. A value of None indicates that the scans were back to back. The sample Discr

corresponds to the Discr of the best performing pipeline overall, FNNNCP. ∗The test-retest structure for NYU1
was 5 - 11 months between sessions 1 and 2, and 30− 45 minutes between sessions 2 and 3.

within the context of this investigation. Model fitting for this investigation is conducted using the lm

package in the R programming language [23].

Human Brain Imaging Dataset Descriptions

Dataset Manuf. Model TE (ms) TR (ms) #Dir bval s

mm2 #Sub #Ses #Scans TRT (days) Discr
BNU1 Siemens TrioTim 89 8000 30 1000 57 2 113 42 1.00
HNU1 GE MR750 Min 8600 33 1000 30 10 300 3 0.99
KKI2009 Philips NA 32 6281 65 700 21 2 42 <1 1.00
NKI24 Siemens TrioTim 95 2400 137 1500 20 2 40 <14 1.00
SWU4 Siemens TrioTim NaN NaN 93 1000 227 2 454 1 (yrs) 0.88

S6 Table 2. dMRI Dataset Descriptions. In the above table, #Dir corresponds to the number of diffusion
directions. Rows with NA entries do not have available metadata associated with the scanning protocol. The
sample Discr corresponds to the Discr of the pipeline with the CPAC200 parcellation and the log-transformed
edges.

Useful Data Links All relevant analysis scripts and data for figure reproduction in this manuscript made
publicly available, and can be found at https://neurodata.io/mgc.
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Supporting Information 7: Eliminating accidental deviations to minimize generalization
error and maximize replicability: applications in connectomics and genomics

Eric W. Bridgeford1, Shangsi Wang1, Zhi Yang2, Zeyi Wang1, Ting Xu3, Cameron Craddock3,

Jayanta Dey1, Gregory Kiar1, William Gray-Roncal1, Carlo Colantuoni1, Christopher Douville1,

Stephanie Noble4, Carey E. Priebe1, Brian Caffo1, Michael Milham3, Xi-Nian Zuo2,5, Consortium

for Reliability and Reproducibility, Joshua T. Vogelstein1,6∗

S7 Discriminability Decomposition Consider data which is observed as the pairs (xki , yi), where

i = 1, . . . , n indexes subjects, and k = 1, . . . , s indexes sessions. We suppose that xki represents a

measurement of interest, and yi represents a subject-specific categorical class of interest (such as a

natively categorical covariate such as sex, or a natively numeric covariate such as age which can be

coerced to categorical; e.g., using age quintiles or deciles). Interestingly, the discriminability can be

separated into the within-class and between-class contributions on the basis of yi.

Within-Class Discriminability Let D(y) , P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′)|yi, yj = y

)

be the discriminability

for class y. Note that:

D(y) , P

(

δ(xi, x
k′

i ) < δ(xki , x
k′′

j )|yi, yj = y
)

=
P

(

δ(xi, x
k′

i ) < δ(xki , x
k′′

j ), yi = yj = y
)

P(yi, yj = y)
, Defn. conditional probability

=
P

(

δ(xi, x
k′

i ) < δ(xki , x
k′′

j ), yi = yj = y
)

w(y)
(1)

where we define w(y) , P(yi = yj = y).

Consider the within-class discriminability W , P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′)|yi = yj

)

. This quantity

can be interpreted as the discriminability, conditional on two items being from the same class. Note

that:

W , P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′)|yi = yj

)

=
P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′), yi = yj

)

ω
, ω , P(yi = yj)

By the law of total probability, note that:

ω , P(yi = yj) =
∑

y

P(yi = yj = y) =
∑

y

wy

P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′), yi = yj

)

=
∑

y

P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′), yi = yj = y

)

=
∑

y

w(y)D(y), Equation (1)
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Which shows that:

W =
1

ω

∑

y

w(y)D(y)

or that the within-class discriminability is a weighted sum of the per-class discriminabilities D(y),
weighted by the probability of a pair of items being in class y.

Between-Class Discriminability Let D(y, y′) , P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′)|yi = y, yj = y′

)

be the dis-

criminability of items in class y to items in class y′. Note that:

D(y, y′) , P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′)|yi = y, yj = y′

)

=
P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′), yi = y, yj = y′

)

P(yi = y, yj = y′)
, Defn. conditional probability

=
P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′), yi = y, yj = y′

)

b(y, y′)
(2)

Where we define b(y, y′) , P(yi = y, yj = y′).

Consider the between-class discriminability B , P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′)|yi 6= yj

)

. This quan-

tity can be interpreted as the discriminability, conditional on two items being from a different class. Note

that:

B , P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′)|yi 6= yj

)

=
P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′), yi 6= yj

)

β
, β , P(yi 6= yj)

Again, using the law of total probability:

β , P(yi 6= yj) =
∑

y 6=y′

P
(

yi = y, yj = y′
)

=
∑

y 6=y′

b(y, y′)

P

(
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′′), yi 6= yj

)

=
∑

y 6=y′

P

(

δ(xi, x
k′

i ) < δ(xki , xjk
′′), yi = y, yj = y′

)

=
∑

y 6=y′

b(y, y′)D(y, y′), Equation (2)

Which shows that:

B =
1

β

∑

y 6=y′

b(y, y′)D(y, y′)

Discriminability Decomposition Finally, note that:
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∑

y 6=y′

P

(

δ(xi, x
k′

i ) < δ(xki , x
k′′

j )|yi = y, yj = y′
)

P
(

yiy, yj = y′
)

=
∑

y

w(y)D(y) +
∑

y 6=y′

b(y, y′)D(y, y′)

= ωW + βB

Showing that discriminability can be decomposed as a weighted sum of the within and between-class

discriminabilities.
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