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Abstract

Despite recent methodological advances in latent class analysis (LCA) and a rapid increase in its 

application in behavioral research, complex research questions that include latent class variables 

often must be addressed by classifying individuals into latent classes and treating class 

membership as known in a subsequent analysis. Traditional approaches to classifying individuals 

based on posterior probabilities are known to produce attenuated estimates in the analytic model. 

We propose the use of a more inclusive LCA to generate posterior probabilities; this LCA includes 

additional variables present in the analytic model. A motivating empirical demonstration is 

presented, followed by a simulation study to assess the performance of the proposed strategy. 

Results show that with sufficient measurement quality or sample size, the proposed strategy 

reduces or eliminates bias.
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Recent methodological advances in latent class analysis (LCA) have resulted in a rapid 

increase in its application in behavioral and psychological research. The latent class model, 

which posits a mutually exclusive and exhaustive underlying set of latent classes (i.e., 

subgroups) inferred from multiple categorical observed variables, has been described in 

detail in a variety of resources (e.g., Clogg, 1995; Collins & Lanza, 2010). LCA has proven 

to be a useful tool for identifying qualitatively different population subgroups in a variety of 

disciplines (e.g., substance use: Beseler, Taylor, Kraemer, & Leeman, 2012; delinquency: 

Barnes, Boutwell, Morris, & Armstrong, 2012; sexual behavior: Haydon, Herring, & 

Halpern, 2012; physical activity: McDonald et al., 2012).
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As application of LCA spreads, more complex scientific questions are being posed about the 

role latent class membership plays in development. Addressing these questions often 

requires estimating associations between the latent class variable and other observed 

variables such as predictors, outcomes, moderators, and mediators. In some cases, these 

associations can be modeled in the context of the latent class model itself. For example, 

LCA with covariates (e.g., Collins & Lanza, 2010; Dayton & Macready, 1988) allows 

multiple predictors of latent class membership to be incorporated directly into the latent 

class modeling framework; this type of approach is sometimes referred to as a 1-step 

approach (e.g., Vermunt, 2010).

More recent methodological work has focused on predicting a distal outcome from latent 

class membership. A model-based approach using kernel density estimation has been 

proposed (Lanza, Tan, & Bray, 2013), but currently it cannot handle more complex models 

such as those that include additional covariates predicting the distal outcome. Advances like 

these are important because, for example, the significance of latent classes is often conveyed 

by examining the consequences of latent class membership on later developmental outcomes 

(e.g., Hardigan & Sangasubana, 2010; Nylund, Bellmore, Nishina, & Graham, 2007; Petras 

& Masyn, 2010; Reinke, Herman, Petras, & Ialongo, 2008; Roberts & Ward, 2011).

Even more complex questions arise when theory posits latent class membership acting as a 

moderator of important associations, including treatment effects, or as a mediator in a model 

linking an individual’s earlier experiences to later outcomes. Despite the recent 

methodological advances discussed above, many of these more complex research questions 

cannot currently be addressed within the context of the latent class model itself. In many 

studies, researchers have no alternative to taking a classify-analyze approach for LCA.

Classify-analyze (Clogg, 1995) is a common technique used to circumvent the challenge of 

not having an LCA model-based solution. This technique involves first classifying 

individuals into latent classes, and then performing a subsequent analysis treating latent 

class membership as known (i.e., as a manifest categorical variable) in a larger model of 

interest. Fundamentally, LCA is a probability-based approach that does not require 

assignment of individuals to latent classes; this is one of its greatest strengths because it 

provides a way to account for measurement error in responses to manifest indicators and to 

remove this measurement error from other estimates of interest. Using classify-analyze to 

estimate associations between the latent class variable and other manifest variables is 

straightforward, but also problematic because it often leads to attenuation of these estimates 

(Bolck, Croon, & Hagenaars, 2004; Vermunt, 2010). Despite this known limitation, recent 

research has used classify-analyze to relate latent class membership to predictors (e.g., 

Sutfin, Reboussin, McCoy, & Wolfson, 2009) and outcomes (e.g., Lacourse et al., 2010), as 

well as to treat latent class membership as a moderator (e.g., Herman, Ostrander, Walkup, 

Silva, & March, 2007) and a mediator (e.g., Oshri, Rogosch, & Cicchetti, 2012). The 

primary goal of this study is to demonstrate an improved classify-analyze technique that can 

reduce, and even eliminate, bias in estimates of the association between a latent class 

variable and other variables of interest.
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The classification of individuals to latent classes is a form of imputation; because an 

individual’s true class membership cannot be known, the latent class variable is 100% 

missing. Each individual has a probability of membership in each latent class; these 

probabilities, which are derived from the latent class measurement model, are known as 

posterior probabilities. Once the parameters of a latent class model have been estimated, 

posterior probabilities of membership in each latent class can be obtained for each individual 

using Bayes’ theorem (e.g., Gelman, Carlin, Stern, & Rubin, 2003; Lanza, Collins, 

Lemmon, & Schafer, 2007). The posterior probability of membership in a given latent class 

can be expressed

(1)

where C represents the latent class variable with c = 1, …, K latent classes, and Y represents 

an individual’s vector of responses, y, to a set of observed variables. Typically, methods for 

classifying individuals involve imputing latent class membership for each individual based 

on his or her own set of posterior probabilities.

Two classify-analyze approaches for LCA are commonly used in practice. Both approaches 

rely on posterior probabilities to classify individuals. We refer to the first approach as the 

maximum-probability assignment rule (Nagin, 2005, pg. 80), which assigns individuals to 

the class for which they have the highest posterior probability of membership (Goodman, 

1974, 2007). The subsequent analysis is performed once with latent class membership 

treated as known. Although this simple method does not take into account uncertainty in 

class assignment (Clogg, 1995), it minimizes the number of incorrect assignments compared 

to other approaches (Goodman, 2007).

The second approach is multiple pseudo-class draws (Bandeen-Roche, Miglioretti, Zeger, & 

Rathouz, 1997). This approach is similar to maximum-probability assignment but accounts 

for uncertainty in class assignment. Using this method, individuals are randomly classified 

into latent classes multiple times based on their distributions of posterior probabilities. 

Often, 20 pseudo-class draws are used; that is, individuals are classified 20 times (Wang, 

Brown, & Bandeen-Roche, 2005). The subsequent analysis is performed once for each draw 

(i.e., 20 times) and results are combined across draws using rules derived for multiple 

imputation for missing data (Rubin, 1987). Importantly, this technique was originally 

developed as a diagnostic tool to assess model adequacy (Bandeen-Roche et al., 1997; Wang 

et al., 2005). Researchers have since adopted this technique for use in a very different 

context, that of multiply imputing latent class membership for use in a subsequent analysis.

For both maximum-probability assignment and multiple pseudo-class draws, the posterior 

probabilities upon which classification depends are calculated from an LCA with a specified 

number of latent classes. A typical approach to classification, for example in the case of 

predicting a distal outcome from a latent class variable, is to (1) determine the optimal 

number of latent classes by fitting and comparing models that only include the manifest 

indicators of interest, (2) use the parameter estimates from the selected model and observed 

data to calculate posterior probabilities of latent class membership for all individuals (i.e., 
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the classification model; see Equation 1), (3) use the posterior probabilities to classify 

individuals into latent classes using maximum-probability assignment or multiple pseudo-

class draws, (4) conduct an analysis to estimate the relation between latent class membership 

(treated as known) and the distal outcome, for example, by regressing the distal outcome on 

classification (i.e., the analytic model).

One reason for the known estimate attenuation in the analytic model is that classification 

error is introduced when individuals are assigned to latent classes (Bolck et al., 2004). 

Approaches have been proposed to adjust for this classification error; these approaches treat 

latent class membership as known in the analytic model, which is weighted by the 

classification error (Bolck et al., 2004; Vermunt, 2010). The most straightforward version of 

these approaches is referred to as the 3-step approach and has been implemented in Latent 

GOLD (Vermunt & Magidson, 2005) and Mplus (L. K. Muthén & Muthén, 1998–2012).

However, classification error is not the only reason for estimate attenuation in the analytic 

model. In both traditional practice and the 3-step approach, other variables of interest are not 

included in the classification model. From the multiple imputation literature, if these 

variables are not included in the classification model but are included in the final analytic 

model, it is expected that the estimated relations between latent class membership and the 

other variables will be attenuated (e.g., Collins, Schafer, & Kam, 2001; Schafer, 1997). In 

particular, with a non-inclusive LCA, we expect attenuation to increase as the strength of the 

true relation increases. This attenuation is recognized as an important issue when using 

classify-analyze for LCA (Bolck et al., 2004; Clark & Muthén, 2009; Vermunt, 2010).

We propose inclusive LCA as a straightforward solution to this problem. In this approach, 

all variables to be included in the final analytic model are included as covariates in the 

classification model. In other words, the LCA used to obtain the posterior probabilities is 

generalized to include all variables used in the final analytic model, ensuring that the 

imputation (i.e., classification) model is as general as the analysis model. This parallels 

recommendations made in the multiple imputation literature (Collins et al., 2001). When 

covariates are included in the LCA, calculation of posterior probabilities is additionally 

conditioned on an individual’s vector of responses to the covariates; that is, calculation of 

the posterior probabilities from Equation 1 is modified to

(2)

where X represents an individual’s vector of responses, x, to a set of observed covariates.

The motivating empirical demonstration in the current study considers the relatively simple 

case of using latent class membership, risk exposure, to predict the distal outcome binge 

drinking. In this case, the proposed inclusive LCA would include the distal outcome as a 

covariate in the latent class model from which the posterior probabilities are calculated. 

Because the distal outcome is included in both the classification and analytic models, we 

expect inclusive LCA, regardless of whether classification is based on maximum-probability 
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assignment or multiple pseudo-class draws, to produce a more accurate estimate of the 

relation between latent class membership and the distal outcome.

Purpose of the Current Study

In the current study, we propose a flexible, straightforward strategy to improve the posterior 

probabilities on which classify-analyze approaches for LCA are based, so that attenuation in 

estimated relations can be reduced or eliminated. First, we present a motivating empirical 

demonstration in which the relation between risk exposure latent class membership and later 

binge drinking is examined. Second, a simulation study is conducted in order to examine the 

relative performance of inclusive and non-inclusive LCA.

Empirical Demonstration

We demonstrate the proposed inclusive LCA using the relatively simple case of predicting a 

distal outcome from latent class membership. In general, however, the inclusive strategy can 

be extended to more complex models when it is desirable to treat latent class membership as 

known. Six manifest variables indicating exposure to various risk factors were used to 

identify the latent class variable, risk exposure. Risk exposure latent class membership then 

was treated as known and used to predict the distal outcome, binge drinking in the past year; 

comparisons are drawn from results based on inclusive and non-inclusive LCA. This 

demonstration, including selection of the subsample of participants and the measures, was 

based on a latent class model presented by Lanza and Rhoades (2011).

Participants

Data were from Wave I and Wave II of the public-use data from the National Longitudinal 

Study of Adolescent Health (Add Health; Harris, 2009; Harris et al., 2009). The sample 

consisted of n = 844 adolescents who were in 8th grade at Wave I (53% female; mean age = 

14.5 years, SD = .86; 72% White, 20% Black, 3% Asian, 5% Other; 11% Hispanic). Only 

participants who provided data on exposure to at least one risk factor at Wave I and 

provided data on binge drinking at Wave II (i.e., 9th grade) were included in the sample.

Measures

Indicators of risk exposure—Measures of the latent class variable, risk exposure, 

included two indicators of household risk, two indicators of peer risk, and two indicators of 

neighborhood risk assessed at Wave I, when the participants were in 8th grade. Adolescents 

were considered to be at risk for household poverty if their household income-to-needs ratios 

were below 1.85; they were considered to be at risk for single-parent household if they lived 

with a parent/caregiver who was widowed, divorced, separated, or never married at the time 

of assessment. Adolescents were considered to be at risk for peer cigarette use if one or 

more of their three best friends smoked at least one cigarette per day; similarly, they were 

considered to be at risk for peer alcohol use if one or more of their three best friends drank 

alcohol at least once per month. Adolescents were considered to be at risk for neighborhood 

unemployment if they lived in a census block where the unemployment rate was greater than 

10.9% in 1989 (Billy, Wenzlow, & Grady, 1998); they were considered to be at risk for 
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neighborhood poverty if they lived in a census block where at least 23.9% of the households 

were living below the poverty level in 1989 (Billy et al., 1998).

Binge drinking—The distal outcome, binge drinking, was measured using a single 

indicator at Wave II, when the participants were in 9th grade. Adolescents were considered 

to be past-year binge drinkers if they reported drinking five or more drinks in a row on one 

or more days in the past 12 months; 24.8% of adolescents reported binge drinking.

Analysis

LCA was used to confirm that the 5-class model identified by Lanza and Rhoades (2011) 

was optimal for the public-use sample selected for the current demonstration. Then, 

inclusive and non-inclusive LCA with maximum-probability assignment and multiple (20) 

pseudo-class draws were used to assign individuals to latent classes; the proportion of 

adolescents reporting past-year binge drinking given latent class membership was calculated 

using each approach.

The data were analyzed using SAS V9 software. Inclusive and non-inclusive LCA were 

conducted with PROC LCA (Lanza, Dziak, Huang, Wagner, & Collins, 2013); PROC LCA 

and the corresponding users’ guide are available for free download at methodology.psu.edu/

downloads.

Results

First, to confirm that the 5-class model was optimal, LCAs with 1–6 classes were compared 

based on model fit, parsimony, and stability using the Akaike information criterion (AIC; 

Akaike, 1974), Bayesian information criterion (BIC; Schwartz, 1989), consistent AIC 

(CAIC; Bozdogan, 1987), adjusted BIC (a-BIC; Sclove, 1987), bootstrap likelihood ratio 

test (BLRT; McLachlan & Peel, 2000), and G2 fit statistic. A summary of the fit criteria and 

entropy (Celeux & Soromenho, 1996) are shown in Table 1. Solution stability was based on 

the proportion of times the maximum-likelihood solution was selected out of 1000 random 

sets of starting values (Solution %). As expected, the 5-class model was selected as optimal.

The parameter estimates for the 5-class model are shown in Table 2. The first latent class 

was labeled Low Risk (prevalence = 41%) because members had low probabilities of 

exposure to all six risk factors. In comparison, the second latent class was labeled Peer Risk 

(22%) because members had high probabilities of exposure to peer cigarette use and peer 

alcohol use, but low probabilities of exposure to the other four risk factors. Using a similar 

approach, the third, fourth, and fifth latent classes were labeled Economic Risk (19%), 

Household & Peer Risk (13%), and Multi-Risk (4%), respectively.

Second, posterior probabilities from this 5-class model were retained for the analysis based 

on non-inclusive LCA. Binge drinking was then added to the latent class model as a 

covariate in order to generate posterior probabilities for the analysis based on inclusive 

LCA. Notably, binge drinking was significantly related to latent class membership (2 logL = 

88.4, df = 4, p < .0001, Cohen’s w = .42). The odds of membership in the Peer Risk (OR = 

5.5), Household & Peer Risk (OR = 13.4), and Multi-Risk (OR = 4.8) latent classes relative 
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to the Low Risk latent class were significantly higher for binge drinkers compared to those 

who did not binge drink.

Third, using the posterior probabilities from the non-inclusive LCA, individuals were 

assigned to latent classes (a) once using maximum-probability assignment, and (b) twenty 

times using multiple pseudo-class draws. Then, using the posterior probabilities from the 

inclusive LCA, individuals were again assigned to latent classes (a) once using maximum-

probability assignment, and (b) twenty times using multiple pseudo-class draws.

Fourth, the effect of risk exposure latent class membership on binge drinking was estimated 

by calculating the proportion of adolescents reporting past-year binge drinking given 

(assigned) latent class membership. These estimates, for both inclusive and non-inclusive 

LCA, are shown in Table 2. As a point of comparison, recall that the overall proportion of 

adolescents reporting binge drinking was .25. Based on the traditional approach of non-

inclusive LCA, results did not differ appreciably between the maximum-probability and 

multiple pseudo-class draws assignment procedures. This was also the case for the proposed 

inclusive LCA.

As shown in Table 2, adolescents in the Low Risk and Economic Risk latent classes were 

less likely to report binge drinking compared to adolescents in the Peer Risk, Household & 

Peer Risk, and Multi-Risk latent classes. The estimates of the proportions, however, differed 

substantially depending on whether an inclusive or non-inclusive strategy was used. 

Estimates based on the traditional non-inclusive LCA tended to be closer to the marginal 

proportion of .25, as compared to the proposed inclusive strategy. For example, the non-

inclusive multiple pseudo-class draws approach estimated that 39% of Household & Peer 

Risk adolescents reported binge drinking; the corresponding estimate based on inclusive 

LCA was 62%. This is consistent with our expectation that associations between latent class 

membership and other variables of interest may be attenuated with a non-inclusive strategy. 

To assess the performance of inclusive LCA more rigorously, a simulation study was 

conducted using the empirical demonstration as a basis for its design.

A Monte Carlo Study Comparing Inclusive and Non-Inclusive LCA for 

Classify-Analyze Approaches

The primary objective of this simulation study was to compare the performance of inclusive 

and non-inclusive strategies for classify-analyze. Secondary objectives were to compare, for 

both inclusive and non-inclusive LCA, relative performance of maximum-probability 

assignment and multiple pseudo-class draws, and to compare the performance of the 

different approaches under varying conditions of measurement quality, effect size, and 

sample size.

Experimental Design

Five latent classes, corresponding to Low Risk, Peer Risk, Economic Risk, Household & 

Peer Risk, and Multi-Risk, were indicated by six binary variables. Latent class membership 

probabilities were held constant across all conditions: .40 for Low Risk, .20 for Peer Risk, .

20 for Economic Risk, .10 for Household & Peer Risk, and .10 for Multi-Risk. Three factors 
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were considered in this study because they were expected to have a substantial impact on the 

performance of inclusive and non-inclusive LCA: measurement quality, the size of the effect 

of latent class membership on the distal outcome, and sample size. We conducted a fully-

crossed factorial design; a single cell of the simulation represents one combination of 

measurement quality, effect size, and sample size conditions.

Measurement Quality—Measurement quality was examined because it is directly linked 

to posterior probability estimates: as measurement quality increases, measurement error 

decreases and posterior probabilities move closer to 0 and 1, indicating greater confidence in 

class assignment. By measurement quality we mean the degree of association between the 

latent class variable and its manifest indicators. Three sets of item-response probabilities 

were specified to represent different levels of measurement quality: high quality 

(probabilities of .9 and .1), medium quality (.8 and .2), and low quality (.7 and .3).

Effect Size—Strength of the association between the latent class variable and distal 

outcome (i.e., effect size) was manipulated. If, as hypothesized, effects estimated using a 

non-inclusive strategy are attenuated, this attenuation should be more pronounced for 

stronger relations between latent class membership and the distal outcome. Four Cohen’s w 

effect sizes were specified to correspond to different strengths of the relation between the 

latent classes and distal outcome: large effect (.50), medium effect (.30), small effect (.10), 

and no effect (.00). The true overall proportion of binge drinking differed somewhat across 

different effect sizes (ranging from .19 to .30) due to the requirements specified in data 

generation (i.e., latent class prevalences and effect size).

Sample Size—Sample size was examined because it affects the precision of estimates of 

both the latent class model and the effect of latent class membership on the distal outcome. 

Two sample sizes were considered: large (n = 800), which approximated that of the 

empirical demonstration, and small (n = 400).

Analytic Procedure for the Monte Carlo Study

The following procedure was used for each cell of the simulation.

Data Generation—Given (a) the latent class model specified by the latent class 

membership probabilities and item-response probabilities, (b) the strength of the association 

between latent classes and distal outcome, and (c) the sample size, random observations 

were generated by (1) generating a latent class variable from a multinomial distribution 

specified by the true latent class membership probabilities, (2) generating item responses 

based on the true item-response probabilities, and (3) generating outcomes based on the 

multinomial logistic regression model linking latent class membership and the distal 

outcome. For each set of conditions (i.e., cell), 1000 replicate datasets were generated.

Classification Step—Two latent class models were fit to each replicate dataset: an 

inclusive LCA that included the distal outcome as a covariate and a non-inclusive LCA (i.e., 

traditional LCA with no covariates). To ensure model identification in the non-inclusive 

LCAs, 100 random sets of starting values were used; parameter estimates from the 
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maximum-likelihood solution were used as starting values for the inclusive LCAs. Then, the 

maximum-probability assignment rule was used to infer class membership based on 

posterior probabilities from the non-inclusive LCAs, and again based on posterior 

probabilities from the inclusive LCAs. Finally, 20 pseudo-class draws were used to 

repeatedly assign class membership based on posterior probabilities from the non-inclusive 

LCAs, and again based on posterior probabilities from the inclusive LCAs1.

Analysis Step—For every replicate dataset, the effect of latent class membership on the 

distal outcome was estimated by calculating the proportion of observations with the distal 

outcome, conditional on (assigned) latent class membership. This was estimated for each 

combination of inclusive or non-inclusive LCA and maximum-probability assignment or 

multiple pseudo-class draws. The average estimated relation between latent class 

membership and the distal outcome across replicates was compared to the true values. 

Adequacy of the estimated effect was examined in terms of bias (i.e., mean estimated value 

minus true value; smaller is better) and root mean square error (RMSE; i.e., 

where SE is the standard error of the 1000 estimated values; smaller is better), which 

balances bias and variability across replicates.

Results

Inclusive Versus Non-Inclusive LCA

In order to summarize the results concisely, results for only the Household & Peer Risk 

latent class are presented and discussed2. This latent class was small and had the highest 

prevalence of binge drinking; thus, this set of results is ideal for studying the relative 

performance of inclusive and non-inclusive LCA. Simulation results for this latent class are 

shown in Table 3; each cell contains the bias and RMSE for the estimated proportion of 

adolescents in this class reporting binge drinking. For example, Table 3 shows that for high 

measurement quality, large effect size, and large sample size, bias in the estimated 

proportion of adolescents in this class reporting binge drinking was −.115 and −.012 for 

non-inclusive and inclusive LCA using maximum-probability assignment, respectively. In 

other words, the proportion of adolescents binge drinking was substantially underestimated 

using the trraditional classification approach.

For both classification approaches (i.e., maximum-probability assignment and multiple 

pseudo-class draws), bias was substantially smaller using the proposed inclusive LCA 

compared to non-inclusive LCA. For example, Table 3 shows that with high measurement 

quality, large sample size, and maximum-probability assignment, an inclusive strategy 

resulted in biases of −.012, −.009, and .000 for large, medium, and small effects, 

respectively, compared to non-inclusive biases of −.115, −.059, and −.019 for large, 

medium, and small effects, respectively. As expected, relying on a traditional classification 

approach (i.e., use of a non-inclusive strategy) produced substantially attenuated estimates. 

1Using 20 pseudo-class draws is standard practice; 1 and 40 pseudo-class draws were also considered. The results from these 
conditions are not presented here for simplicity, but are available upon request. There was no significant improvement in performance 
when the number of draws was increased from 20 to 40 using either the inclusive or non-inclusive strategy.
2Additional results for the other four latent classes are not shown, but are available upon request.

Bray et al. Page 9

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The results across all five latent classes were consistent in that, across all simulated 

conditions, the traditional (non-inclusive) LCA produced estimated proportions of binge 

drinking biased toward the overall population proportion.

Maximum-Probability Assignment Versus Multiple Pseudo-Class Draws

An important finding is that under all conditions, maximum-probability assignment 

outperformed multiple pseudo-class draws in terms of bias. This was true for both inclusive 

LCA and the standard, non-inclusive LCA. For example, Table 3 shows that with high 

measurement quality, large effect size, and large sample size, bias based on non-inclusive 

LCA was −.115 for maximum-probability assignment versus −.132 for multiple pseudo-

class draws. Similarly, bias based on inclusive LCA was −.012 for maximum-probability 

assignment versus −.032 for inclusive multiple pseudo-class draws.

The RMSE results are somewhat more complicated, as the RMSE accounts for both bias and 

random noise in the approaches. Overall, for both inclusive and non-inclusive LCA, the 

RMSEs for maximum-probability assignment and multiple pseudo-class draws were 

comparable. However, it is important to note that for both inclusive and non-inclusive 

strategies, the maximum-probability assignment approach introduced slightly more random 

noise compared to the multiple pseudo-class draws approach. This was expected given that 

multiple pseudo-class draws reduce random noise by averaging across multiple imputations 

of the latent class variable.

Factors Affecting Performance

As measurement quality increased, all approaches were less biased, but inclusive LCA still 

performed substantially better than non-inclusive LCA. For example, under the condition of 

a large effect size and large sample size, using inclusive multiple pseudo-class draws, bias 

decreased from −.199 to −.061 to −.032 when measurement quality increased from low to 

medium to high (see Table 3). A similar pattern was seen for non-inclusive multiple pseudo-

class draws bias (with corresponding biases of −.421 to −.287 to −.132).

As effect size increased (i.e., strength of the relation between latent class membership and 

distal outcome increased), attenuation of the estimated effect increased, and was particularly 

pronounced with non-inclusive LCA. For example, using multiple pseudo-class draws under 

the condition of high measurement quality and a large sample size, bias increased from −.

023 to −.069 to −.132 as the effect size increased from small to medium to large for non-

inclusive LCA (see Table 3), compared to corresponding biases of −.005 to −.021 to −.032 

for inclusive LCA.

As sample size increased, all approaches were slightly less biased, yet even with a large 

sample size inclusive LCA still performed substantially better than non-inclusive LCA. For 

example, using inclusive multiple pseudo-class draws, increasing the sample size from small 

to large decreased bias from −.045 to −.032 for high measurement quality and large effect 

size (see Table 3). The benefit of a larger sample size was less pronounced for non-inclusive 

LCA, with a corresponding decrease in bias from −.134 to −.132.
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Importantly, increasing measurement quality appeared to decrease the bias more than 

doubling the sample size. Overall, even with inclusive LCA, results were biased when 

sample size was small, effect size was large, and measurement quality was low. In contrast, 

with an inclusive strategy, bias was nearly eliminated with medium or high measurement 

quality and a large sample size, or high measurement quality and a small sample size.

Discussion

Motivated by an empirical examination of the effect of risk exposure latent class 

membership on later binge drinking, our Monte Carlo study demonstrated the importance of 

using an inclusive strategy when implementing classify-analyze approaches for LCA. Based 

on these results, we recommend the use of an inclusive LCA for obtaining the posterior 

probabilities when a classify-analyze approach is to be used regardless of the measurement 

quality, size of the effect of latent class membership, or sample size. Although this Monte 

Carlo study demonstrated the benefit of using inclusive LCA for the relatively simple case 

of estimating the effect of latent class membership on a distal outcome, we believe the 

approach can be extended to a variety of cases where a latent class variable is embedded in a 

more complex theoretical model.

Addressing the primary objective of the current study, we showed that an inclusive classify-

analyze approach for relating latent class membership to other variables of interest can be 

used to obtain unbiased estimates. This is consistent with the literature on multiple 

imputation for missing data (e.g., Collins et al., 2001; Schafer, 1997) that emphasizes the 

importance of imputing data under a model that is at least as general as the analytic model. 

We reiterate that an inclusive strategy is recommended only when a classify-analyze 

approach for LCA is necessary. For example, the model for LCA with covariates is well-

understood, so addressing questions about predictors of latent class membership need not be 

addressed using classify-analyze approaches. Addressing the secondary objective, we 

showed that maximum-probability assignment is less biased than multiple pseudo-class 

draws regardless of whether inclusive or non-inclusive LCA is used. Importantly, in terms of 

bias, there was a clear rank-ordering in the performance of the approaches. Traditional non-

inclusive multiple-pseudo-class draws performed the worst, followed by non-inclusive 

maximum-probability assignment. Then, inclusive multiple pseudo-class draws performed 

better, and inclusive maximum-probability assignment performed the best.

Consideration of the RMSE shows a more complicated pattern of results in terms of 

tradeoffs between bias and variability. There is no clear winner in terms of RMSE; rather, 

the relative benefit of using one approach over another depends on the effect size. In 

particular, as the effect size gets large, both bias and variability increase, but bias increases 

more rapidly. So, with large effects it is critical to use an inclusive LCA to combat bias 

despite the increase in variability. For small effects, bias and variability are smaller, and the 

RMSE is driven more by variability than bias; thus, the less variable non-inclusive multiple 

pseudo-class draws approach has better RMSEs. Overall, though, we still prefer the 

inclusive approaches when considering the RMSE because they are relatively less impacted 

in situations with large effect sizes (a desirable situation in substantive applications).
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In sum, two general conclusions can be drawn from the Monte Carlo study. First, inclusive 

LCA was substantially less biased compared to non-inclusive LCA. As expected, when non-

inclusive LCA was used, the effect of latent class membership on the distal outcome was 

attenuated. Inclusive LCA resulted in unbiased estimates in cases with sufficiently strong 

measurement quality or sufficiently large sample size. Second, given that an inclusive 

strategy is used, one can expect comparable performance from multiple pseudo-class draws 

and the simpler maximum-probability assignment rule.

Classify-analyze approaches are based on posterior probabilities derived from a latent class 

measurement model. Bias in estimates of the relation between latent class membership and 

other variables of interest is substantially reduced or, in many cases, eliminated using an 

inclusive LCA because the posterior probabilities generated from this model take into 

account information about associations between the latent class variable and other variables, 

whereas those from a traditional non-inclusive LCA do not. In other words, the imputation 

model based on inclusive LCA is sufficiently general so that it is compatible with the 

analytic model.

In the context of latent classes of developmental trajectories (i.e., group-based models of 

development; Nagin, 2005, or growth mixture models; B. O. Muthén & Sheddon, 1999), it 

has been suggested that when the mean posterior probability of class membership for 

individuals assigned to each class exceeds .70, hypothesis tests of differences across classes 

may be unchanged (Nagin, 2005; Roeder, Lynch, & Nagin, 1999; White, Nagin, Replogle, 

& Stouthamer-Loeber, 2004). Other methods for quantifying the extent of classification 

error (i.e., classification uncertainty) have been proposed in the context of assessing the 

overall quality of a latent class model (Celeux & Soromenho, 1996; Goodman, 2007; 

Vermunt & Magidson, 2002). In our empirical demonstration, the mean posterior 

probabilities of membership for individuals assigned to each class ranged from .84 

(Household & Peer Risk) to .93 (Economic Risk) for the non-inclusive maximum-

probability assignment approach, which showed considerable bias in the simulation study. In 

comparison, the mean posterior probabilities ranged from .82 (Household & Peer Risk) to .

92 (Economic Risk) for the inclusive maximum-probability assignment approach, which 

performed very well in the simulation study. In sum, regardless of how small classification 

error is, we have demonstrated that relations between latent class membership and other 

variables can be attenuated if information about associations between the latent class 

variable and other variables is not accounted for in the model used to generate the posterior 

probabilities upon which the classifications are based.

Practical Recommendations

Results of the Monte Carlo study provide overwhelming evidence of superior performance 

of inclusive LCA over the traditional practice of non-inclusive LCA. Combined with 

previous work on LCA (e.g., Lanza et al., 2007), the results of the current study suggest a 

series of steps when using classify-analyze approaches for LCA: (1) determine the optimal 

number of latent classes by fitting and comparing models without covariates included in the 

model (i.e., use non-inclusive LCA for model selection); (2) re-fit the latent class model 

with the other variables of interest included as covariates to produce posterior probabilities; 
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(3) use either maximum-probability assignment or multiple pseudo-class draws, as the 

analyst prefers, to classify individuals; (4) treat class membership as known to perform the 

desired analysis. If multiple pseudo-class draws is used, results must be combined across 

datasets for the final results.

All modern statistical software packages for LCA, including PROC LCA (Lanza et al., 

2013), Mplus (L. K. Muthén & Muthén, 1998–2012), and Latent GOLD (Vermunt & 

Magidson, 2005), provide posterior probabilities of latent class membership using non-

inclusive LCA. Thus, simply by including other variables of interest as covariates, inclusive 

LCA can be conducted with any of these packages.

Limitations and Future Directions

Several limitations of the empirical demonstration and simulation study merit mentioning. 

First, the sample for the empirical demonstration did not include participants missing data 

on binge drinking (i.e., the distal outcome), and the final analytic model in the empirical 

demonstration did not incorporate Add Health’s sampling weights. In turn, the simulation 

study did not investigate the impact of different missing data mechanisms or rates of missing 

data on the performance of inclusive and non-inclusive LCA, nor did it investigate the 

impact of weighting the final analytic model. These are common features of data analyzed in 

substantive research; thus, careful consideration should be given to addressing these features 

in future empirical work.

Second, as with any simulation study, conclusions about the results cannot be generalized 

beyond the set of conditions that were examined. For example, the current study did not 

investigate the effect of varying the latent class membership probabilities. Perhaps most 

importantly, this study only examined the relatively simple case of using classify-analyze to 

predict a single distal outcome from latent class membership. Research questions posing 

more complex relations, such as a latent class variable as a moderator or mediator, would 

require that multiple variables be included as covariates in the classification step. 

Extrapolating from the results here, and considering the known impact of imputing data 

under a classification model that is more restrictive than the analytic model (e.g., Collins et 

al., 2001; Schafer, 1997), we believe that failure to include all additional variables of 

interest, along with relevant interactions, in the estimation of the posterior probabilities 

could result in significant attenuation of the effects in the subsequent analysis step.

As discussed, inclusive LCA is analogous to multiple imputation, a model-based procedure 

that requires assumptions about the missing data mechanism, specifically that data are 

missing at random (MAR; Little & Rubin, 1987; Rubin, 1976). Multiple imputation also 

typically requires the additional assumption that data are from a multivariate normal 

distribution. Similarly, the inclusive strategy for imputing latent class membership, a 

variable that is 100% missing, relies on certain assumptions. In the scenarios examined here, 

we have assumed (1) independence of the indicators conditional on latent class, (2) a linear 

relation (on the logit scale) between the latent class variable and any other variables of 

interest (here, distal outcome), and (3) independence of the indicators and any other 

variables of interest conditional on latent class.
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As research questions regarding the role of latent class membership in developmental 

processes become more complex, it is increasingly difficult to address all questions within 

the context of the latent class model. Despite the fact that standard non-inclusive LCA is 

common practice for conducting classify-analyze in LCA, the approach is known to 

attenuate estimated relations between the latent class variable and other variables in the final 

analytic model. The current study confirmed that this attenuation can be substantial, and an 

effective and straightforward solution was demonstrated: fitting an inclusive LCA to derive 

posterior probabilities. This strategy does not require special software, and can be readily 

adopted by scientists to reduce or eliminate bias in the associations between a latent class 

variable and other variables of interest, opening the door to broader modeling options when 

a latent class variable is embedded in a complex theoretical model. A careful study of the 

performance of inclusive LCA in the context of more complex analytic models remains an 

important topic for future research.

Acknowledgments

The project described was supported by Award Number P50-DA010075-17 from the National Institute on Drug 
Abuse. The content is solely the responsibility of the authors and does not necessarily represent the official views of 
the National Institute on Drug Abuse or the National Institutes of Health. The authors wish to thank John J. Dziak 
for advice regarding the discussion of the simulation study results.

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. 
Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, 
and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human 
Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment 
is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain 
the Add Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct 
support was received from grant P01-HD31921 for this analysis.

References

Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 
1974; 19:716–723.

Bandeen-Roche K, Miglioretti DL, Zeger SL, Rathouz PJ. Latent variable regression for multiple 
discrete outcomes. Journal of the American Statistical Association. 1997; 92:1375–1386.

Barnes JC, Boutwell BB, Morris RG, Armstrong TA. Explaining differential patterns of self-reported 
delinquency evidence from a latent class analysis of sibling pairs. Journal of Contemporary 
Criminal Justice. 2012; 28:254–272.

Beseler CL, Taylor LA, Kraemer DT, Leeman RF. A latent class analysis of DSM-IV alcohol use 
disorder criteria and binge drinking in undergraduates. Alcoholism: Clinical and Experimental 
Research. 2012; 36:153–161.

Billy, JOG.; Wenzlow, AT.; Grady, WR. The National Longitudinal Study of Adolescent Health 
public use contextual database. Chapel Hill, NC: Carolina Population Center, University of North 
Carolina at Chapel Hill; 1998. machine-readable data file and documentation

Bolck A, Croon M, Hagenaars J. Estimating latent structure models with categorical variables: One-
step versus three-step estimators. Political Analysis. 2004; 12:3–27.

Bozdogan H. Model selection and Akaike information criterion (AIC): The general theory and its 
analytical extension. Psychometrika. 1987; 52:345–370.

Celeux G, Soromenho G. An entropy criterion for assessing the number of clusters in a mixture model. 
Journal of Classification. 1996; 13:195–212.

Clark, SL.; Muthén, BO. Relating latent class anlaysis results to variables not included in the analysis. 
Unpublished manuscript. 2009. Available for download at http://www.statmodel.com/papers.shtml

Bray et al. Page 14

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.cpc.unc.edu/addhealth
http://www.statmodel.com/papers.shtml


Clogg, CC. Latent class models: Recent developments and prospects for the future. In: Arminger, G.; 
Clogg, CC.; Sobel, ME., editors. Handbook of statistical modeling for the social and behavioral 
sciences. New York, NY: Plenum Press; 1995. p. 311-359.

Collins, LM.; Lanza, ST. Latent class and latent transition analysis: With applications in the social, 
behavioral and health sciences. Hoboken, NJ: John Wiley & Sons, Inc; 2010. 

Collins LM, Schafer JL, Kam CM. A comparison of inclusive and restrictive strategies in modern 
missing data procedures. Psychological Methods. 2001; 6:330–351. [PubMed: 11778676] 

Dayton CM, Macready GB. Concomitant-variable latent-class models. Journal of the American 
Statistical Association. 1988; 83(401):173–178.

Gelman, A.; Carlin, JB.; Stern, HS.; Rubin, DB. Bayesian data analysis. New York, NY: Taylor & 
Francis; 2003. 

Goodman LA. The analysis of systems of qualitative variables when some of the variables are 
unobservable: Part I – A modified latent structure approach. American Journal of Sociology. 1974; 
79:1179–1259.

Goodman LA. On the assignment of individuals to latent classes. Sociological Methodology. 2007; 
37:1–22.

Hardigan PC, Sangasubana N. A latent class analysis of job satisfaction and turnover among practicing 
pharmacists. Research in Social and Administrative Pharmacy. 2010; 6:32–38. [PubMed: 
20188326] 

Harris, KM. The National Longitudinal Study of Adolescent Health (Add Health), Waves I & II, 
1994–1996; Wave III, 2001–2002; Wave IV, 2007–2009. Chapel Hill, NC: Carolina Population 
Center, University of North Carolina at Chapel Hill; 2009. machine-readable data file and 
documentation

Harris, KM.; Halpern, CT.; Whitsel, E.; Hussey, J.; Tabor, J.; Entzel, P.; Udry, JR. The National 
Longitudinal Study of Adolescent Health: Research design. Chapel Hill, NC: Carolina Population 
Center, University of North Carolina at Chapel Hill; 2009. WWW document. URL: http://
www.cpc.unc.edu/projects/addhealth/design

Haydon AA, Herring AH, Halpern CT. Associations between patterns of emerging sexual behavior 
and young adult reproductive health. Perspectives on Sexual and Reproductive Health. 2012; 
44:218–227. [PubMed: 23231329] 

Herman KC, Ostrander R, Walkup JT, Silva SG, March JS. Empirically derived subtypes of adolescent 
depression: Latent profile analysis of co-occurring symptoms in the Treatment for Adolescents 
with Depression Study (TADS). Journal of Consulting and Clinical Psychology. 2007; 75:716–
728. [PubMed: 17907854] 

Lacourse E, Baillargeon R, Dupéré V, Vitaro F, Romano E, Tremblay R. Two-year predictive validity 
of conduct disorder subtypes in early adolescence: A latent class analysis of a Canadian 
longitudinal sample. Journal of Child Psychology and Psychiatry. 2010; 51:1386–1394. [PubMed: 
20695929] 

Lanza ST, Collins LM, Lemmon DR, Schafer JL. PROC LCA: A SAS procedure for latent class 
analysis. Structural Equation Modeling: A Multidisciplinary Journal. 2007; 14:671–694. [PubMed: 
19953201] 

Lanza, ST.; Dziak, JJ.; Huang, L.; Wagner, A.; Collins, LM. Proc LCA & Proc LTA users’ guide 
(Version 1.3.0). University Park, PA: The Methodology Center, Penn State; 2013. Retrieved from 
http://methodology.psu.edu

Lanza ST, Rhoades BL. Latent class analysis: An alternative perspective on subgroup analysis in 
prevention and treatment. Prevention Science. 2011 Advance online publication. 10.1007/
s11121-011-0201-1

Lanza ST, Tan X, Bray BC. Latent class analysis with distal outcomes: A flexible model-based 
approach. Structural Equation Modeling: A Multidisciplinary Journal. 2013; 20:1–20. [PubMed: 
25419096] 

Little, RJA.; Rubin, DB. Statistical analysis with missing data. New York, NY: Wiley; 1987. 

McDonald K, Hearst M, Farbakhsh K, Patnode C, Forsyth A, Sirard J, Lytle L. Adolescent physical 
activity and the built environment: A latent class analysis approach. Health and Place. 2012; 
18:191–198. [PubMed: 21975286] 

Bray et al. Page 15

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.cpc.unc.edu/projects/addhealth/design
http://www.cpc.unc.edu/projects/addhealth/design
http://methodology.psu.edu


McLachlan, GJ.; Peel, D. Finite mixture models. New York, NY: John Wiley and Sons, Inc; 2000. 

Muthén BO, Sheddon K. Finite mixture modeling with mitxure outcomes using the EM algorith. 
Biometrics. 1999; 55:463–469. [PubMed: 11318201] 

Muthén, LK.; Muthén, BO. Mplus user’s guide. 7. Los Angeles, CA: Muthén & Muthén; 1998–2012. 

Nagin, DS. Group-based modeling of development. Cambridge, MA: Harvard University Press; 2005. 

Nylund K, Bellmore A, Nishina A, Graham S. Subtypes, severity, and structural stability of peer 
victimization: What does latent class analysis say? Child Development. 2007; 78:1706–1722. 
[PubMed: 17988316] 

Oshri A, Rogosch A, Cicchetti D. Child maltreatment and mediating influences of childhood 
personality types in the development of adolescent psychopathology. Journal of Clinical Child and 
Adolescent Psychology. 2012 Advance online publication. 10.1080/15374416.2012.715366

Petras, H.; Masyn, K. General growth mixture analysis with antecedents and consequences of change. 
In: Piquero, AR.; Weisburd, D., editors. Handbook of quantitative criminology. New York, NY: 
Springer; 2010. p. 69-100.

Reinke WM, Herman KC, Petras H, Ialongo NS. Empirically derived subtypes of child academic and 
behavior problems: Co-occurrence and distal outcomes. Journal of Abnormal Child Psychology. 
2008; 36:759–770. [PubMed: 18205038] 

Roberts TJ, Ward SE. Using latent transition analysis in nursing research to explore change over time. 
Nursing Research. 2011; 60:73–79. [PubMed: 21127448] 

Roeder K, Lynch K, Nagin DS. Modeling uncertainty in latent class membership: A case study in 
criminology. Journal of the American Statistical Association. 1999; 94:766–776.

Rubin DB. Inference and missing data. Biometrika. 1976; 63:581–592.

Rubin, DB. Multiple imputation for nonresponse in survey research. New York, NY: Wiley; 1987. 

Schafer, JL. Analysis of incomplete multivariate data. London: Chapman & Hall; 1997. 

Schwartz G. Estimating the dimension of a model. The Annals of Statistics. 1978; 6:461–464.

Sclove SL. Application of model-selection criteria to some problems in multivariate analysis. 
Psychometrika. 1987; 52:333–343.

Sutfin EL, Reboussin BA, McCoy TP, Wolfson M. Are college student smokers really a homogeneous 
group? A latent class analysis of college student smokers. Nicotine and Tobacco Research. 2009; 
11:444–454. [PubMed: 19264866] 

Vermunt JK. Latent class modeling with covariates: Two improved three-step approaches. Political 
Analysis. 2010; 18:450–469.

Vermunt, JK.; Magidson, J. Latent class cluster analysis. In: Hagenaars, JA.; McCutcheon, AL., 
editors. Applied latent class analysis. New York, NY: Cambridge University Press; 2002. p. 
89-106.

Vermunt, JK.; Magidson, J. Latent GOLD 4.0 users’ guide. Belmont, MA: Statistical Innovations; 
2005. 

Wang C, Brown CH, Bandeen-Roche K. Residual diagnostics for growth mixture models: Examining 
the impact of a preventive intervention on multiple trajectories of aggressive behavior. Journal of 
the American Statistical Association. 2005; 100:1054–1076.

White HR, Nagin DS, Replogle E, Stouthamer-Loeber M. Racial differences in trajectories of cigarette 
use. Drug and Alcohol Dependence. 2004; 76:219–227. [PubMed: 15561473] 

Bray et al. Page 16

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bray et al. Page 17

T
ab

le
 1

M
od

el
 F

it 
In

fo
rm

at
io

n 
fo

r 
L

C
A

s 
w

ith
 1

–6
 L

at
en

t C
la

ss
es

 B
as

ed
 o

n 
th

e 
E

m
pi

ri
ca

l S
tu

dy

C
la

ss
es

df
A

IC
B

IC
C

A
IC

a-
B

IC
B

L
R

T
a

E
nt

ro
py

G
2

So
lu

ti
on

 %

1
57

69
9.

20
72

7.
63

73
3.

63
70

8.
58

—
1.

00
68

7.
20

10
0

2
50

36
5.

40
42

6.
99

43
9.

99
38

5.
71

<
 .0

01
.7

1
33

9.
40

69
.5

3
43

17
9.

78
27

4.
54

29
4.

54
21

1.
03

<
 .0

01
.7

8
13

9.
78

10
0

4
36

14
0.

50
26

8.
43

29
5.

43
18

2.
68

<
 .0

01
.8

6
86

.5
0

19
.1

5
29

11
2.

83
27

3.
93

30
7.

93
16

5.
95

<
 .0

01
.8

0
44

.8
3

25
.8

6
22

11
3.

90
30

8.
16

34
9.

16
17

7.
96

.1
85

.8
1

31
.9

0
19

.7

N
ot

es
. A

IC
 =

 A
ka

ik
e 

in
fo

rm
at

io
n 

cr
ite

ri
on

; B
IC

 =
 B

ay
es

ia
n 

in
fo

rm
at

io
n 

cr
ite

ri
on

; C
A

IC
 =

 c
on

si
st

en
t A

IC
; a

-B
IC

 =
 a

dj
us

te
d 

B
IC

; B
L

R
T

 =
 b

oo
ts

tr
ap

 li
ke

lih
oo

d 
ra

tio
 te

st
; S

ol
ut

io
n 

%
 =

 p
ro

po
rt

io
n 

of
 ti

m
es

 
m

ax
im

um
-l

ik
el

ih
oo

d 
so

lu
tio

n 
w

as
 s

el
ec

te
d 

ou
t o

f 
10

00
 r

an
do

m
 s

et
s 

of
 s

ta
rt

in
g 

va
lu

es
. D

as
h 

in
di

ca
te

s 
cr

ite
ri

on
 w

as
 n

ot
 a

pp
lic

ab
le

 to
 th

e 
m

od
el

. B
ol

d 
fo

nt
 in

di
ca

te
s 

se
le

ct
ed

 m
od

el
.

a T
he

 B
L

R
T

 p
-v

al
ue

 in
di

ca
te

s 
w

he
th

er
 a

 m
od

el
 w

ith
 k

–1
 la

te
nt

 c
la

ss
es

 (
i.e

., 
nu

ll 
m

od
el

) 
fi

ts
 a

s 
w

el
l a

s 
a 

m
od

el
 w

ith
 k

 la
te

nt
 c

la
ss

es
 (

i.e
., 

al
te

rn
at

iv
e 

m
od

el
).

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 20.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bray et al. Page 18

T
ab

le
 2

Pa
ra

m
et

er
 E

st
im

at
es

 f
or

 M
od

el
 o

f 
Fi

ve
 R

is
k 

E
xp

os
ur

e 
L

at
en

t C
la

ss
es

 a
nd

 E
ff

ec
t o

f 
L

at
en

t C
la

ss
 M

em
be

rs
hi

p 
on

 B
in

ge
 D

ri
nk

in
g 

B
as

ed
 o

n 
th

e 
E

m
pi

ri
ca

l 

St
ud

y

L
ow

 R
is

k
P

ee
r 

R
is

k
E

co
n 

R
is

k
H

&
P

 R
is

k
M

ul
ti

-R
is

k

L
at

en
t C

la
ss

 M
em

be
rs

hi
p 

Pr
ob

ab
ili

tie
s

.4
1

.2
2

.1
9

.1
3

.0
4

In
di

ca
to

r
O

ve
ra

ll 
Pr

op
or

tio
n

It
em

-R
es

po
ns

e 
Pr

ob
ab

ili
tie

s

H
H

 B
el

ow
 P

ov
er

ty
.3

7
.2

4
.0

0
.6

8
1.

0
.4

7

H
H

 S
in

gl
e-

Pa
re

nt
.2

9
.1

5
.1

4
.4

9
.5

8
.5

2

Pe
er

 C
ig

ar
et

te
 U

se
.3

8
.0

0
.8

8
.1

5
.8

9
1.

0

Pe
er

 A
lc

oh
ol

 U
se

.4
2

.1
6

.7
7

.2
1

.7
7

1.
0

N
H

 U
ne

m
pl

oy
m

en
t

.2
3

.0
6

.0
6

.6
8

.1
9

1.
0

N
H

 B
el

ow
 P

ov
er

ty
.2

4
.0

1
.0

3
.8

1
.2

2
.9

7

E
ff

ec
t o

f 
L

at
en

t C
la

ss
 M

em
be

rs
hi

p 
on

 B
in

ge
 D

ri
nk

in
g

N
on

-I
nc

lu
si

ve
 L

C
A

 
M

ax
im

um
-P

ro
ba

bi
lit

y 
A

ss
ig

nm
en

t
.1

6
.3

9
.1

8
.3

8
.4

4

 
 

M
ul

tip
le

 P
se

ud
o-

C
la

ss
 D

ra
w

s
.1

6
.3

7
.1

7
.3

9
.4

1

In
cl

us
iv

e 
L

C
A

 
M

ax
im

um
-P

ro
ba

bi
lit

y 
A

ss
ig

nm
en

t
.1

1
.4

2
.1

2
.6

0
.3

6

 
 

M
ul

tip
le

 P
se

ud
o-

C
la

ss
 D

ra
w

s
.1

1
.4

1
.1

2
.6

2
.3

6

N
ot

es
. E

co
n 

=
 E

co
no

m
ic

; H
&

P 
=

 H
ou

se
ho

ld
 &

 P
ee

r;
 H

H
 =

 H
ou

se
ho

ld
; N

H
 =

 N
ei

gh
bo

rh
oo

d;
 N

on
-I

nc
lu

si
ve

 =
 O

ut
co

m
e 

no
t i

nc
lu

de
d 

in
 L

C
A

 to
 g

en
er

at
e 

po
st

er
io

r 
pr

ob
ab

ili
tie

s;
 I

nc
lu

si
ve

 =
 O

ut
co

m
e 

in
cl

ud
ed

 in
 L

C
A

 to
 g

en
er

at
e 

po
st

er
io

r 
pr

ob
ab

ili
tie

s;
 M

ax
im

um
-P

ro
ba

bi
lit

y 
A

ss
ig

nm
en

t =
 A

ss
ig

nm
en

t t
o 

la
te

nt
 c

la
ss

es
 b

as
ed

 o
n 

m
ax

im
um

 p
os

te
ri

or
 p

ro
ba

bi
lit

y;
 M

ul
tip

le
 P

se
ud

o-
C

la
ss

 D
ra

w
s 

=
 2

0 
as

si
gn

m
en

ts
 to

 la
te

nt
 c

la
ss

es
 b

as
ed

 o
n 

ea
ch

 in
di

vi
du

al
’s

 d
is

tr
ib

ut
io

n 
of

 p
os

te
ri

or
 p

ro
ba

bi
lit

ie
s.

 T
ab

le
 e

nt
ri

es
 f

or
 th

e 
ite

m
-r

es
po

ns
e 

pr
ob

ab
ili

tie
s 

re
pr

es
en

t p
ro

ba
bi

lit
ie

s 
of

 e
nd

or
si

ng
 th

e 
in

di
ca

to
rs

 o
f 

ri
sk

 
ex

po
su

re
 c

on
di

tio
na

l o
n 

la
te

nt
 c

la
ss

 m
em

be
rs

hi
p.

 T
ab

le
 e

nt
ri

es
 f

or
 th

e 
ef

fe
ct

s 
of

 la
te

nt
 c

la
ss

 m
em

be
rs

hi
p 

on
 b

in
ge

 d
ri

nk
in

g 
re

pr
es

en
t t

he
 p

ro
po

rt
io

ns
 o

f 
pa

st
-y

ea
r 

bi
ng

e 
dr

in
ki

ng
 c

on
di

tio
na

l o
n 

la
te

nt
 c

la
ss

 
m

em
be

rs
hi

p.
 T

he
 o

ve
ra

ll 
pr

op
or

tio
n 

of
 p

ar
tic

ip
an

ts
 r

ep
or

tin
g 

bi
ng

e 
dr

in
ki

ng
 w

as
 .2

5.

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 20.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bray et al. Page 19

T
ab

le
 3

B
ia

s 
(R

oo
t M

ea
n 

Sq
ua

re
 E

rr
or

) 
fo

r 
E

st
im

at
e 

of
 th

e 
E

ff
ec

t o
f 

L
at

en
t C

la
ss

 M
em

be
rs

hi
p 

on
 th

e 
D

is
ta

l O
ut

co
m

e 
fo

r 
th

e 
H

ou
se

ho
ld

 &
 P

ee
r 

R
is

k 
L

at
en

t C
la

ss
 

B
as

ed
 o

n 
th

e 
M

on
te

 C
ar

lo
 S

tu
dy

B
ia

s 
(R

M
SE

)

N
on

-I
nc

lu
si

ve
 L

C
A

In
cl

us
iv

e 
L

C
A

M
ea

su
re

m
en

t 
Q

ua
lit

y
E

ff
ec

t 
Si

ze
M

ax
 P

ro
b

P
se

ud
o-

C
la

ss
M

ax
 P

ro
b

P
se

ud
o-

C
la

ss

L
ar

ge
 S

am
pl

e 
Si

ze
 (

n 
=

 8
00

)

H
ig

h
L

ar
ge

−
.1

15
 (

.1
32

)
−

.1
32

 (
.1

46
)

−
.0

12
 (

.0
87

)
−

.0
32

 (
.0

86
)

M
ed

iu
m

−
.0

59
 (

.0
81

)
−

.0
69

 (
.0

87
)

−
.0

09
 (

.0
75

)
−

.0
21

 (
.0

72
)

Sm
al

l
−

.0
19

 (
.0

55
)

−
.0

23
 (

.0
53

)
.0

00
 (

.0
68

)
−

.0
05

 (
.0

63
)

N
o 

E
ff

ec
t

.0
00

 (
.0

47
)

.0
00

 (
.0

43
)

−
.0

01
 (

.0
61

)
.0

00
 (

.0
56

)

M
ed

L
ar

ge
−

.2
53

 (
.2

78
)

−
.2

87
 (

.3
04

)
−

.0
07

 (
.2

04
)

−
.0

61
 (

.1
90

)

M
ed

iu
m

−
.1

36
 (

.1
56

)
−

.1
56

 (
.1

69
)

−
.0

21
 (

.1
63

)
−

.0
47

 (
.1

47
)

Sm
al

l
−

.0
52

 (
.0

75
)

−
.0

60
 (

.0
75

)
−

.0
10

 (
.1

15
)

−
.0

21
 (

.1
00

)

N
o 

E
ff

ec
t

−
.0

02
 (

.0
50

)
−

.0
02

 (
.0

42
)

−
.0

01
 (

.0
99

)
−

.0
02

 (
.0

86
)

L
ow

L
ar

ge
−

.4
04

 (
.4

18
)

−
.4

21
 (

.4
30

)
−

.1
13

 (
.3

25
)

−
.1

99
 (

.3
16

)

M
ed

iu
m

−
.2

28
 (

.2
42

)
−

.2
36

 (
.2

45
)

−
.0

90
 (

.2
75

)
−

.1
36

 (
.2

43
)

Sm
al

l
−

.0
85

 (
.1

06
)

−
.0

90
 (

.1
02

)
−

.0
34

 (
.2

03
)

−
.0

58
 (

.1
54

)

N
o 

E
ff

ec
t

−
.0

00
 (

.0
60

)
−

.0
01

 (
.0

44
)

.0
16

 (
.1

88
)

.0
05

 (
.1

31
)

Sm
al

l S
am

pl
e 

Si
ze

 (
n 

=
 4

00
)

H
ig

h
L

ar
ge

−
.1

19
 (

.1
45

)
−

.1
34

 (
.1

57
)

−
.0

34
 (

.1
10

)
−

.0
45

 (
.1

13
)

M
ed

iu
m

−
.0

54
 (

.0
93

)
−

.0
63

 (
.0

96
)

−
.0

10
 (

.1
01

)
−

.0
18

 (
.0

97
)

Sm
al

l
−

.0
20

 (
.0

75
)

−
.0

24
 (

.0
73

)
−

.0
04

 (
.0

87
)

−
.0

08
 (

.0
84

)

N
o 

E
ff

ec
t

−
.0

02
 (

.0
72

)
−

.0
03

 (
.0

68
)

−
.0

01
 (

.0
90

)
−

.0
02

 (
.0

87
)

M
ed

L
ar

ge
−

.2
94

 (
.3

30
)

−
.3

17
 (

.3
45

)
−

.0
99

 (
.2

73
)

−
.1

36
 (

.2
70

)

M
ed

iu
m

−
.1

57
 (

.1
88

)
−

.1
71

 (
.1

94
)

−
.0

62
 (

.2
02

)
−

.0
82

 (
.1

89
)

Sm
al

l
−

.0
64

 (
.0

98
)

−
.0

69
 (

.0
95

)
−

.0
34

 (
.1

46
)

−
.0

42
 (

.1
33

)

N
o 

E
ff

ec
t

.0
00

 (
.0

69
)

−
.0

00
 (

.0
60

)
.0

01
 (

.1
33

)
−

.0
01

 (
.1

17
)

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 20.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bray et al. Page 20

B
ia

s 
(R

M
SE

)

N
on

-I
nc

lu
si

ve
 L

C
A

In
cl

us
iv

e 
L

C
A

M
ea

su
re

m
en

t 
Q

ua
lit

y
E

ff
ec

t 
Si

ze
M

ax
 P

ro
b

P
se

ud
o-

C
la

ss
M

ax
 P

ro
b

P
se

ud
o-

C
la

ss

L
ow

L
ar

ge
−

.4
15

 (
.4

32
)

−
.4

26
 (

.4
38

)
−

.2
01

 (
.3

58
)

−
.2

54
 (

.3
59

)

M
ed

iu
m

−
.2

26
 (

.2
42

)
−

.2
33

 (
.2

44
)

−
.1

16
 (

.2
72

)
−

.1
48

 (
.2

50
)

Sm
al

l
−

.0
85

 (
.1

15
)

−
.0

89
 (

.1
09

)
−

.0
35

 (
.2

06
)

−
.0

52
 (

.1
73

)

N
o 

E
ff

ec
t

−
.0

04
 (

.0
77

)
−

.0
04

 (
.0

65
)

.0
06

 (
.1

84
)

.0
02

 (
.1

54
)

N
ot

es
. H

ig
h 

=
 H

ig
h 

M
ea

su
re

m
en

t Q
ua

lit
y;

 M
ed

 =
 M

ed
iu

m
 M

ea
su

re
m

en
t Q

ua
lit

y;
 L

ow
 =

 L
ow

 M
ea

su
re

m
en

t Q
ua

lit
y;

 M
ax

 P
ro

b 
=

 M
ax

im
um

-P
ro

ba
bi

lit
y 

A
ss

ig
nm

en
t; 

Ps
eu

do
-C

la
ss

 =
 2

0 
Ps

eu
do

-C
la

ss
 

D
ra

w
s.

 T
he

 tr
ue

 p
ro

po
rt

io
ns

 o
f 

pa
st

-y
ea

r 
bi

ng
e 

dr
in

ki
ng

 c
on

di
tio

na
l o

n 
m

em
be

rs
hi

p 
in

 th
e 

H
ou

se
ho

ld
 &

 P
ee

r 
R

is
k 

la
te

nt
 c

la
ss

 w
er

e 
.6

7 
fo

r 
th

e 
la

rg
e 

ef
fe

ct
, .

48
 f

or
 th

e 
m

ed
iu

m
 e

ff
ec

t, 
.3

7 
fo

r 
th

e 
sm

al
l 

ef
fe

ct
, a

nd
 .3

0 
fo

r 
th

e 
no

 e
ff

ec
t c

on
di

tio
ns

.

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 20.


