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Abstract. Information flow control allows untrusted code to access sensitive and
trustworthy information without leaking this information. However, the presence
of covert channels subverts this security mechanism, allowing processes to com-
municate information in violation of IFC policies. In this paper, we show that
concurrent deterministic IFC systems that use time-based scheduling are vulner-
able to a cache-based internal timing channel. We demonstrate this vulnerability
with a concrete attack on Hails, one particular IFC web framework. To eliminate
this internal timing channel, we implement instruction-based scheduling, a new
kind of scheduler that is indifferent to timing perturbations from underlying hard-
ware components, such as the cache, TLB, and CPU buses. We show this sched-
uler is secure against cache-based internal timing attacks for applications using a
single CPU. To show the feasibility of instruction-based scheduling, we have im-
plemented a version of Hails that uses the CPU retired-instruction counters avail-
able on commodity Intel and AMD hardware. We show that instruction-based
scheduling does not impose significant performance penalties. Additionally, we
formally prove that our modifications to Hails’ underlying IFC system preserve
non-interference in the presence of caches.

1 Introduction

The rise of extensible web applications, like the Facebook Platform, is spurring interest
in information flow control (IFC) [27, 35]. Popular platforms like Facebook give ap-
proved apps full access to users’ sensitive data, including the ability to violate security
policies set by users. In contrast, IFC allows websites to run untrusted, third-party apps
that operate on sensitive user data [11, 21], ensuring they abide by security policies in
a mandatory fashion.

Recently, Hails [11], a web-platform framework built atop the LIO IFC system [39,
40], has been used to implement websites that integrate third-party untrusted apps. For
example, the code-hosting website GitStar.com built with Hails uses untrusted apps
to deliver core features, including a code viewer and wiki. GitStar relies on LIO’s IFC
mechanism to enforce robust privacy policies on user data and code.

LIO, like other IFC systems, ensures that untrusted code does not write data that may
have been influenced by sensitive sources to public sinks. For example, an untrusted
address-book app is allowed to compute over Alice’s friends list and display a stylized
version of the list to Alice, but it cannot leak any information about her friends to
arbitrary end-points. The flexibility of IFC makes it particularly suitable for the web,
where access control lists often prove either too permissive or too restrictive.
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However, a key limitation of IFC is the presence of covert channels, i.e., “channels”
not intended for communication that nevertheless allow code to subvert security policies
and share information [22]. A great deal of research has identified and analyzed covert
channels [25]. In this work, we focus on the internal timing covert channel, which
occurs when sensitive data is used to manipulate the timing behavior of threads so that
other threads can observe the order in which shared public resources are used [38, 44].
Though we do not believe our solution to the internal timing covert channel affects
(either positively or negatively) other timing channels, such as the external timing covert
channel, which is derived from measuring external events [1, 5, 12] (e.g., wall-clock),
addressing these channels is beyond our present scope.

LIO eliminates the internal timing covert channel by restricting how programmers
write code. Programmers are required to explicitly decouple computations that manip-
ulate sensitive data from those that can write to public resources, eliminating covert
channels by construction. However, decoupling only works when all shared resources
are modeled. LIO only considers shared resources that are expressible by the program-
ming language, e.g., shared-variables, file descriptors, semaphores, channels, etc. Im-
plicit operating system and hardware state can still be exploited to alter the timing
behavior of threads, and thus leak information. Reexamining LIO, we found that the
underlying CPU cache can be used to introduce an internal timing covert channel that
leaks sensitive data. A trivial attack can leak data at 0.75 bits/s and, despite the low
bandwidth, we were able to leak all the collaborators on a private GitStar.com project
in less than a minute.

Several countermeasures to cache-based attacks have previously been considered,
primarily in the context of cryptosystems following the work of Kocher [18] (see Sec-
tion 8). Unfortunately, many of the techniques are not designed for IFC scenarios. For
example, modifying an algorithm implementation, as in the case of AES [7], does not
naturally generalize to arbitrary untrusted code. Similarly, flushing or disabling the
cache when switching protection domains, as suggested in [6, 49], is prohibitively ex-
pensive in systems like Hails, where context switches occur hundreds of times per sec-
ond. Finally, relying on specialized hardware, such as partitioned caches [29], which
isolate the effects of one partition from code using a different partition, restricts the
deployability and scalability of the solution; partitioned caches are not readily available
and often cannot be partitioned to an arbitrary security lattice.

This paper describes a countermeasure for cache-based attacks when execution is
confined to a single CPU. Our method generalizes to arbitrary code, imposes minimal
performance overhead, scales to an arbitrary security lattice, and leverages hardware
features already present in modern CPUs. Specifically, we present an instruction-based
scheduler that eliminates internal timing channels in concurrent programs that time-
slice a single CPU and contend for the same cache, TLB, bus, and other hardware facil-
ities. We implement the scheduler for the LIO IFC system and demonstrate that, under
realistic restrictions, our scheduler eliminates such attacks in Hails web applications.

Our contributions are as follows.

� We implement a cache-based internal timing attack for LIO.

� We close the cache-based covert channel by scheduling user-level threads on a sin-
gle CPU core based on the number of instructions they execute (as opposed to the
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amount of time they execute). Our scheduler can be used to implement other concur-
rent IFC systems which implicitly assume instruction-level scheduling (e.g., [13, 14,
32, 38, 46]).

� We implement our instruction-based scheduler as part of the Glasgow Haskell Com-
piler (GHC) runtime system, atop which LIO and Hails are built. We use CPU per-
formance counters, prevalent on most modern CPUs, to pre-empt threads according
to the number of retired instructions. The measured impact on performance, when
compared to time-based scheduling, is negligible.

We believe these techniques to be applicable to operating systems that enforce
IFC, including [20, 26, 47], though at a higher cost in performance for application
code that is highly optimized for locality (see Section 5).

� We augment the LIO [40] semantics to model the cache and formally prove that
instruction-based scheduling removes leaks due to caches.

The paper is organized as follows. Section 2 discusses cache-based attacks and exist-
ing countermeasures. In Section 3 presents our instruction-based scheduling solution.
Section 4 describes our modifications to GHC’s runtime, while Section 5 analyses their
performance impact. Formal guarantees and discussions of our approach are detailed in
Sections 6 and 7. We describe related work in Section 8 and conclude in Section 9.

2 Cache Attacks and Countermeasures

The severity of information leakage attacks through the CPU hardware cache has been
widely considered by the cryptographic community (e.g. [28, 31]). Unlike crypto work,
where attackers extract sensitive information through the execution of a fixed crypto
algorithm, we consider a scenario in which the attacker provides arbitrary code in a
concurrent IFC system. In our scenario, the adversary is a developer that implements a
Hails app that interfaces with user-sensitive data using LIO libraries.

We found that, knowing only the cache size of the underlying CPU, we can eas-
ily build an app that exploits the shared cache to carry out an internal timing attack
that leaks sensitive data at 0.75 bits/s. Several IFC systems, including [13, 14, 32, 38,
40, 46], model internal timing attacks and address them by ensuring that the outcome
of a race to a public resource does not depend on secret data. Unfortunately, these
systems only account for resources explicitly modeled at the programming language
level and not underlying OS or hardware state, such as the CPU cache or TLB. Hence,
even though the semantics of these systems rely on instruction-based scheduling (usu-
ally to simplify expressing reduction rules), real-world implementations use time-based
scheduling for which the formal guarantees do not hold. The instruction-based sched-
uler proposed in this work can be used to make the assumptions of such concurrent
IFC systems match the situation in practice. In the remainder of this section, we show
the internal timing attack that leverages the hardware cache. We also discuss several
existing countermeasures that could be employed by Hails.

2.1 Example Cache Attack

We mount an internal timing attack by influencing the scheduling behavior of threads
through the cache. Consider the code shown in Figure 1. The attack leaks the secret
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1. lowArray := new Array[M];
2. fillArray(lowArray)

1. if secret 1. for i in [1..n] 1. for i in [1..n+m]
2. then highArray := new Array[M] 2. skip 2. skip
3. fillArray(highArray) 3. readArray(lowArray) 3. outputLow(0)
4. else skip 4. outputLow(1)

thread 1 thread 2 thread 3

Fig. 1. A simple cache attack

boolean value secret in thread 1 by affecting when thread 2 writes to the public
channel relative to thread 3.

fillArraythread 1
thread 2
thread 3

thread 1
thread 2
thread 3

cache
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Fig. 2. Execution of the cache attack with
secret true (top) and false (bottom)

The program starts (lines 1–2) by creat-
ing and initializing a public array lowArray
whose size M corresponds to the cache size;
fillArray simply sets every element of
the array to 0 (this will place the array in
the cache). The program then spawns three
threads that run concurrently. Assuming a
round-robin time-based scheduler, the execu-
tion of the attack proceeds as illustrated in
Figure 2, where secret is set to true (top) and
false (bottom), respectively.

� Depending on the secret value secret, thread 1 either performs a no-operation
(skip on line 4), leaving the cache intact, or evicts lowArray from the cache (lines
2–3) by creating and initializing a new (non-public) array highArray.

� We assume that thread 1 takes less than n steps to complete its execution—a number
that can be determined experimentally; in Figure 2, n is four. Hence, to allow all the
effects on the cache due to thread 1 to settle, thread 2 delays its computation by n
steps (lines 1–2). Subsequently, the thread reads every element of the public array
lowArray (line 3), and finally writes 1 to a public output channel (line 4). Crucial
to carrying out the attack, the duration of thread 2’s reads (line 3) depends on the
state of the cache: if the cache was modified by thread 1, i.e., secret is true, thread
2 needs to wait for all the public data to be retrieved from memory (as opposed to
the cache) before producing an output. This requires evicting highArray from the
cache and fetching lowArray, a process that takes a non-negligible amount of time.
However, if the cache was not touched by thread 1, i.e., secret is false, thread 2
will get few cache misses and thus produce its output with no delay.

� We assume that thread 2 takes less than m, where m<n, steps to complete reading
lowArray (line 3) when the reads hit the cache, i.e., lowArray was not replaced by
highArray. Like n, this metric can be determined experimentally; in Figure 2, m is
three. Using this, thread 3 simply delays its computation by n+m steps (lines 1–2)
and then writes 0 to a public output channel (line 3). The role of thread 3 is solely to
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serve as a baseline for thread 2’s output: producing its output before thread 2 when
the latter is filling the cache, i.e., secret is true; conversely, it produces an output
after thread 2 if thread 1 did not touch the cache, i.e., secret is false.

We remark that the race between thread 2 and thread 3 to write to a shared public chan-
nel, influenced by the cache state, is precisely what facilitates the attack. We described
how to leak a single bit, but the attack can easily be magnified by wrapping it in a loop.
Note also that we have assumed the attacker has complete control of the cache—i.e.,
the cache is not affected by other code running in parallel. However, the attack is still
plausible under weaker assumptions so long as the attacker deals with the additional
noise, as exemplified by the timing attacks on AES [28].

2.2 Existing Countermeasures

The internal timing attack arises as a result of cache effects influencing thread-scheduling
behavior. Hence, one series of countermeasures addresses the problem through low-
level CPU features that provide better control of the cache.
Flushing the cache. Naively, we can flush the cache on every context switch. In the
context of Figure 1, this guarantees that, when thread 2 executes the readArray in-
struction, its duration is not affected by thread 1 evicting lowArray from the cache—the
cache will always be flushed on a context switch, hence thread 3 will always write to
the output channel first.
No-fill cache mode. Several architectures, including Intel’s Xeon and Pentium 4, sup-
port a cache no-fill mode [15]. In this mode, read/write hits access the cache; misses,
however, read from and write to memory directly, leaving the cache unchanged. As
considered by Zhang et al. [49], we can execute all threads that operate on non-public
data in this mode. This approach guarantees that sensitive data cannot affect the cache.
Unfortunately, threads operating on non-public data and relying on the cache will suffer
from performance degradation.
Partitioned cache. Another approach is to partition the cache according to the num-
ber of security levels, as suggested in [49]. Using this architecture, a thread computing
on secret data only accesses the secret partition, while a thread computing on public
data only access the public one. This approach effectively corresponds to giving each
differently-labeled thread access to its own cache and, as a result, the scheduling behav-
ior of public threads cannot be affected by evicting data from the cache.

Unfortunately, none of the aforementioned solutions can be used in systems built
with Hails (e.g., GitStar). Flushing the cache is prohibitively expensive for preemptive
systems that perform a context switch hundreds of times per second—the impact on
performance would gravely reduce usability. The no-fill mode solution is well suited
for systems wherein the majority of the threads operate on public data. In such cases,
only threads operating on sensitive data will incur a performance penalty. However,
in the context of Hails, the solution is only slightly less expensive than flushing the
cache. Hails threads handle HTTP requests that operate on individual (non-public) user
data, hence most threads will not be using the cache. Another consequence of threads
handling differently-labeled data is that partitioned caches can only be used in a limited
way (see Section 8). Specifically, to address internal timing attacks, it is required that we
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Fig. 3. Execution of cache attack program of Figure 1 with secret set to true (top) and false
(bottom). In both executions, we highlight that the threads execute one “instruction” at a time in a
round-robin fashion. The concurrent threads take the same amount of time to complete execution
as in Figure 2. However, since we use instructions to context switch threads, the interleaving
between thread 2 or 3 is not influenced by the actions in thread 1, and thus the internal timing
attack does not arise—the threads’ output order cannot encode sensitive data.

partition the cache according to the number of security levels in the lattice. Given that
most existing approaches can only partition caches up to 16-ways at the OS level [24],
and fewer at the hardware level, an alternative scalable approach is necessary. Moreover,
neither flushing nor partitioning the cache can handle timing perturbations arising from
other pieces of hardware such as the TLB, buses, etc.

3 Instruction-Based Scheduling

As the example in Figure 2 shows, races to acquire public resources are affected by
the cache state, which in turn might be affected by secret values. It is important to
highlight that the number of instructions executed in a given quantum of time might
vary depending on the state of the cache. It is precisely this variability that reintroduces
dangerous races into systems. However, the actual set of instructions executed is not
affected by the cache. Hence, we propose scheduling threads according to the number
of instructions they execute, rather than the amount of time they consume. The point
at which a thread produces an output (or any other visible operation) is determined
according to the number of instructions it has executed, a measurement unaffected by
the amount of time it takes to perform a read/write from memory.

Consider the code in Figure 1 executing atop an instruction-based scheduler. An
illustration of this is shown in Figure 3. For simplicity of exposition, the instruction
granularity is at the level of commands (skip, readArray, etc.) and therefore context
switches are triggered after one command gets executed. (In Section 4, we describe a
more practical and realistic instruction-based scheduler.) Observe that the amount of
time it takes to execute an instruction has not changed from the time-based scheduler
of Figure 2. For example, readArray still takes 6 units of time when secret is true,
and 2 when it is false. Unlike Figure 2, however, the interleaving between thread 2
and thread 3 did not change depending on the state of the cache (which did change
according to secret). Therefore, a race to write to the public channel between thread
2 and thread 3 cannot be caused by the secret, through the cache. The second thread



724 D. Stefan et al.

always executes n+1 = 5 instructions before writing 1 to the public channel, while the
third thread always executes n+m+1 = 8 instructions before writing 0.

Our proposed countermeasure, the implementation of which is detailed in Section 4,
eliminates the cache-based internal timing attacks without sacrificing scalability and
with a minor performance impact. With instruction-based scheduling, we do not re-
quire flushing of the cache. In this manner, applications can safely utilize the cache to
retain most of their performance without giving up system security, and unlike current
partitioned caches, we can scale up to consider arbitrarily complex lattices.

4 Implementation

We implemented an instruction-based scheduler for LIO. In this section, we describe
this implementation and detail some key design features we believe to be useful when
modifying concurrent IFC systems to address cache-based timing attacks.

4.1 LIO and Haskell

LIO is a Haskell library that exposes concurrency to programmers in the form of “green,”
lightweight threads. Each LIO thread is a native Haskell thread that has an associated
security level (label) which is used to track and control the flow of information to/from
the thread. LIO relies on Haskell libraries for creating new threads and the runtime
system for managing them.

In general, M lightweight Haskell threads may concurrently execute on N OS threads.
(It is common, however, for multiple Haskell threads to execute on a single OS thread,
i.e., M : 1 mapping.) The Haskell runtime, as implemented by the GHC system, uses a
round-robin scheduler to context switch between concurrently executing threads. Specif-
ically, the scheduler is invoked whenever a thread blocks/terminates or a timer signal
alarm is received. The timer is used to guarantee that the scheduler is periodically exe-
cuted, allowing the runtime to implement preemptive scheduling.

4.2 Instruction-Based Scheduler

As previously mentioned, timing-based schedulers render systems, such as LIO, vul-
nerable to cache-based internal timing attacks. We implement our instruction-based
scheduler as a drop-in replacement for the existing GHC scheduler, using the number
of retired instructions to trigger a context switch.

Specifically, we use performance monitoring units (PMUs) present in almost all recent
Intel [15] and AMD [3] CPUs. PMUs expose hardware performance counters that are
typically used by developers to optimize code—they provide metrics such as the number
of cache misses, instructions executed per cycle, branch mispredictions, etc. Importantly,
PMUs also provide a means for counting the number of retired instructions.

Using the perfmon2 [9] Linux monitoring interface and helper user-level library
libpfm4, we modified the GHC runtime to configure the underlying PMU to count
the number of retired instructions the Haskell process is executing. Specifically, with
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perfmon2 we set a data performance counter register to 264 − n, which the CPU in-
crements upon retiring an instruction.1 Once the counter overflows, i.e., n instructions
have been retired, perfmon2 is sent a hardware interrupt. In our implementation, we
configured perfmon2 to handle the interrupt by delivering a signal to the GHC runtime.

If threads share no resources, upon receiving a signal, the executing Haskell thread
can immediately save its state and jump to the scheduler. However, preempting a thread
which is operating on a shared memory space can be dangerous, as the thread may
have left memory in an inconsistent state. (This is the case for many language runtimes,
not solely GHC’s.) To avoid this, GHC produces code that contains safe points where
threads may yield. Hence, a signal does not cause an immediate preemption. Instead,
the signal handler simply sets a flag indicating the arrival of a signal; at the next safe
point, the thread “cooperatively” yields to the scheduler.

To ensure liveness, we must guarantee that given any point in execution, a safe point
is reached in n instructions. Though GHC already inserts many safe points as a means
of invoking the garbage collector (via the scheduler), tight loops that do not perform
any allocation are known to hang execution [10]. Addressing this eight-year old bug,
which would otherwise be a security concern in LIO, we modified the compiler to insert
safe points on function entry points. This modification, integrated in the mainline GHC,
has almost no effect on performance and only a 7% bloat in average binary size.

4.3 Handling IO

Threads yield at safe points in their execution paths as a result of a retired instruction
signal. However, there are circumstances in which threads would like to explicitly yield
prior to the reception of a retired instruction signal. In particular, when a thread per-
forms a blocking operation, it immediately yields to the scheduler, registering itself to
wake up when the operation completes. Thus, any IO action is a yield which allows the
thread to give up the rest of its scheduling quantum.

While yields are not intrinsically unsafe, it is not safe to allow the leftover scheduling
quantum to be passed on to the next thread. Thus, after running any asynchronous IO
action, the runtime must reset the retired instruction counter. Hence, whenever a thread
enters the scheduler loop due to being blocked, we reset the retired instruction counter.

5 Performance Evaluation

We evaluated the performance of instruction-based scheduling against existing time-
based approaches using the nofib benchmark suite [30]. nofib is the standard bench-
marking suite used for measuring the performance of Haskell implementations.

In our experimental setup, we used the latest development version of GHC (the Git
master branch as of November 6, 2012). The measurements were taken on the same
hardware as Hails [11]: a machine with two dual-core Intel Xeon E5620 (2.4GHz) pro-
cessors, and 48GB of RAM.

1 Though the bit-width of the hardware counters vary (they are typically 40-bits wide) perfmon2
internally manages a 64-bit counter.
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Fig. 4. Mean time between timer signal and retired-instruction signal. Each point represents a
program from nofib, which have been sorted on the x-axis by their mean time.
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Fig. 5. Change to run time from instruction-based scheduling

We first needed to find an instruction budget—number of instructions to retire before
triggering the scheduler. We found a poorly chosen instruction budget could increase
runtime by 100%. To determine a good parameter, we measured the mean time be-
tween retired-instruction signals with an initially guessed instruction budget parameter.
We then adjusted the parameter so the median test program had a 10 millisecond mean
time-slice (the default quantum size in vanilla GHC with time-based scheduling) and
verified our final choice by re-running the measurements. For our specific setup, an
instruction budget of approximately 37,100,000 retired-instructions corresponded to a
10 millisecond time quantum. We plot the mean and standard deviation across all nofib
applications with the final tuning parameter in Figure 4. We found that most programs
receive a signal within 2 milliseconds of when they would have normally received the
signal using the standard time-based scheduler. While the instruction budget parameter
will vary across machines, it is relatively simple to bootstrap this parameter by perform-
ing these measurements at startup and tuning the budget accordingly.

Next, we compared the performance of Haskell’s timer-based scheduler with our
instruction-based scheduler. We used a subset of the nofib benchmark suite called the
real benchmark, which consists of “real world programs”, as opposed to synthetic
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benchmarks (however, results for the whole nofib suite are comparable). Figure 5 shows
the run time of these programs with both scheduling approaches. With an optimized in-
struction budget parameter, instruction-based scheduling has no impact to the runtime
of the majority of nofib applications and results in only a very slight increase in runtime
for others (about 1%).

This result may seem surprising: instruction-based scheduling purposely punishes
threads with good data locality, so one might expect a more substantial performance
impact. We hypothesize that this is the case due to two reasons. First, with preemptive
scheduling, we are already inducing cache misses when we switch from running one
thread to another—instruction-based scheduling only perturbs when these preempts oc-
cur, and as seen in Figure 4, these perturbations are very minor. Second, modern L2
caches are quite large, meaning that hardware is more forgiving of poor data locality—
an effect that has been measured in the behavior of stock lazy functional programs [2].

6 Cache-Aware Semantics

In this section we recall relevant design aspects of LIO [40] and extend the original for-
malization to consider how caches affect the timing behavior of programs. Importantly,
we formalize instruction-based scheduling and show how it removes cache-based inter-
nal timing covert channels.

6.1 LIO Overview

At a high level, LIO provides the LIO monad, which is used in place of IO. Wrapping
standard Haskell libraries, LIO exports a collection of functions that untrusted code may
use to access the filesystem, network, shared variables, etc. Unlike the standard libraries,
which usually return IO actions, these functions return actions in the LIO monad, thus
allowing LIO to perform label checks before executing a potentially unsafe action.

Internally, the LIO monad keeps track of a current label, Lcur. The current label is
effectively a ceiling over the labels of all data that the current computation may depend
on. This label eliminates the need to label individual definitions and bindings: symbols
in scope are (conceptually) labeled with Lcur.2 Hence, when a computation C, with
current label LC, observes an object labeled LO, C’s label is raised to the least upper
bound or join of the two labels, written LC �LO. Importantly the current label governs
where the current computation can write, what labels may be used when creating new
channels or threads, etc. For example, after reading O, the computation should not be
able to write to a channel K if LC is more restricting than LK—this would potentially
leak sensitive information (about O) into a less sensitive channel.

Note that an LIO computation can only execute a sub-computation on sensitive data
by either raising its current label or forking a new thread in which to execute this sub-
computation. In the former case, raising the current label prevents writing to less
sensitive endpoints. In the latter case, to observe the result (or timing and termination be-
havior) of the sub-computation the thread must wait for the forked thread to finish, which

2 As described in [39], LIO does, however, allow programmers to heterogeneously label data
they consider sensitive.
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(STEP)
|〈Σ ,〈σ ,e〉〉|ζ −→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′ q > 0

|〈Σ ,ζ ,q,〈σ ,e〉� ts〉| ↪→ |〈Σ ′,ζ ′,q−k,〈σ ′,e′〉� ts〉|

(PREEMPT)
q ≤ 0

|〈Σ ,ζ ,q, t � ts〉| ↪→ |〈Σ ′,ζ ,qi, ts � t〉|
Fig. 6. Semantics for threadpools under round-robin time-based scheduling

first raises the current label. A consequence of this design is that differently-labeled com-
putations are decoupled, which, as mentioned in Section 1, is key to eliminating the
internal timing covert channel.

In the next subsection, we will outline the semantics for a cache-aware, time-based
scheduler where the cache attack described in Section 2 is possible. Moreover, we show
that we can easily adapt this semantics to model the new LIO instruction-based sched-
uler. Interested readers may refer to the extended version of the paper, which can be
found online at [41].

6.2 Cache-Aware Semantics

We model the underlying CPU cache as an abstract memory shared among all running
threads, which we will denote with the symbol ζ . Every step of the sequential execution
relation will affect ζ according to the current instruction being executed, the runtime
environment, and the existing state of the cache. As in [40], each LIO thread has a
thread-local runtime environment σ , which contains the current label σ .lbl. The global
environment Σ , common to all threads, holds references to shared resources.

In addition, we explicitly model the number of machine cycles taken by a single

execution step as a result of the cache. Specifically, the transition ζ ⇁
(Σ ,σ ,e)
k ζ ′ captures

the parameters that influence the cache (Σ , σ , and e) as well as the number of cycles k
it takes for the cache to be updated.

A cache-aware evaluation step is obtained by merging the reduction rule of LIO with
our formalization of CPU cache as given below:

|〈Σ ,〈σ ,e〉〉| γ
⇀ |〈Σ ′,〈σ ′,e′〉〉| ζ ⇁

(Σ ,σ ,e)
k ζ ′ k ≥ 1

|〈Σ ,〈σ ,e〉〉|ζ γ−→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′

We read |〈Σ ,〈σ ,e〉〉|ζ γ−→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′ as “the configuration |〈Σ ,〈σ ,e〉〉| reduces to
|〈Σ ′,〈σ ′,e′〉〉| in one step, but k machine cycles, producing event γ and modifying the

cache from ζ to ζ ′.” As in LIO [40], the relation |〈Σ ,〈σ ,e〉〉| γ
⇀ |〈Σ ′,〈σ ′,e′〉〉| represents

a single execution step from thread expression e, under the run-time environments Σ
and σ , to thread expression e′ and run-time environments Σ ′ and σ ′. Events are used to
communicate information between the threads and the scheduler, e.g., when spawning
new threads.

Figure 6 shows the most important rules of our time-based scheduler in the presence
of cache effects. We elide the rest of the rules for brevity. The relation ↪→ represents a
single evaluation step for the program threadpool, in contrast with −→ which is only
for a single thread. Configurations are of the form |〈Σ ,ζ ,q, ts〉|, where q is the number of
cycles available in the current time slice and ts is a queue of thread configurations of the
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form 〈σ ,e〉. We use a standard deque-like interface with operations � and � for front
and back insertion, respectively, i.e., 〈σ ,e〉 � ts denotes a threadpool in which the first
thread is 〈σ ,e〉 while ts � 〈σ ,e〉 indicates that 〈σ ,e〉 is the last one.

As in LIO, threads are scheduled in a round-robin fashion. Our scheduler relies on
the number of cycles that each step takes; we respectively write qi and q as the initial
and remaining number of cycles assigned to a thread in each quantum. In rule (STEP),
the number of cycles k that the current instruction takes is reflected in the scheduling
quantum. Consequently, threads that compute on data that is not present in the cache
will take more cycles, i.e., have a higher k, so they will run “slower” because they are
allowed to perform fewer reduction steps in the remaining time slice. In practice, this
permits attacks, such as that in Figure 1, where the interleaving of the threads can be
affected by sensitive data. Rule (PREEMPT) is used when the thread has exhausted its
cycle budget, triggering a context switch by moving the current thread to the end of the
queue.

We can adapt this semantics to reflect the behavior of the new instruction-based
scheduler. To this end, we replace the number of cycles q with an instruction budget;
we write bi for the initial instruction budget and b for the current budget. Crucially, we
change rule (STEP) into rule (STEP-CA), given by

(STEP-CA)
|〈Σ ,〈σ ,e〉〉|ζ −→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′ b > 0

|〈Σ ,ζ ,b,〈σ ,e〉 � ts〉| ↪→ |〈Σ ′,ζ ′,b− 1,〈σ ′,e′〉� ts〉|
.

Rule (STEP-CA) executes a sequential instruction in the current thread, provided the
instruction budget is not empty (b > 0), and updates the cache accordingly
(|〈Σ ,〈σ ,e〉〉|ζ −→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′ ). It is important to remark that the effects of the under-
lying cache ζ , as indicated by k, are intentionally ignored by the scheduler. This subtle
detail captures the essence of removing the cache-based internal timing channel. (Our
formalization of a time-based scheduler does not ignore k and thus is vulnerable.) Sim-
ilarly, rule (PREEMPT) turns into rule (PREEMPT-CA), where q and qi are respectively
replaced with b and bi to reflect the fact that there is an instruction budget instead of a
cycle count. The rest of the rules can be adapted in a straightforward manner. Our rules
have the invariant that the instruction budget gets decremented by one when a thread
executes one instruction.

By changing the cache-aware semantics in this way, we obtain a generalized seman-
tics for LIO. In fact, the previous semantics for LIO [40], is a special case, with bi = 1,
i.e., the threads perform only one reduction step before a context-switch happens. In
addition, it is easy to extend our previous termination-sensitive non-interference result
to the instruction-based semantics. The security guarantees of our approach are stated
below.

Theorem 1 (Termination-sensitive non-interference). Given a program function f ,
an attacker that observes data at level L, and a pair of inputs e1 and e2 indistinguish-
able to the attacker, then for every reduction sequence starting from f (e1) there is a
corresponding reduction sequence starting from f (e2) such that both sequences reach
indistinguishable configurations.
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Proof Sketch: Our proof relies on the term erasure technique as used in [23, 34, 39],
and follows in a similar fashion to that of [40]. We refer the interested reader to the
extended version of the paper for details [41].

7 Limitations

This section discusses some limitations of our current implementation, the significance
of these limitations, and how the limitations can be addressed.

Nondeterminism in the hardware counters. While the retired-instruction counter
should be deterministic, in most hardware implementations there is some degree of
nondeterminism. For example, on most x86 processors the instruction counter adds an
extra instruction every time a hardware interrupt occurs [45]. This anomaly could be
exploited to affect the behavior of an instruction-based scheduler, causing it to trigger
a signal early. However, this is only a problem if a high thread is able to cause a large
number of hardware interrupts in the underlying operating system. In the Hails frame-
work, attackers can trigger interrupts by forcing a server to frequently receive HTTP
responses, i.e., trigger a hardware interrupt from the network interface card. Hails,
however, provides mechanisms to mitigate the effects of external events, using the tech-
niques of [4, 48], that can reduce the frequency of such operations. Nevertheless, the
feasibility of such attacks is not directly clear and left as future work.

Scheduler and garbage collector instruction counts. For performance reasons, we do
not reset the retired-instruction counter prior to re-entering user code. This means that
instruction counts include the instructions executed from when the previous thread re-
ceived the signal, to when the previous thread yields, to when the next thread is sched-
uled. While this suggests that thread are not completely isolated, we think that this
interaction is extremely difficult to exploit. This is because the number of instructions
it takes for the scheduler to schedule a new thread is essentially fixed, and the “time to
yield” for any code is highly dependent on the compiler, which we assume is not under
the control of an adversary.

Parallelism. Unfortunately, we cannot simply run instruction-based scheduling on
multiple cores. Threads running in parallel will be able to race to public resources. Un-
der normal conditions, such races can be still influenced by the state of the (L3) cache.
Some parallelism is, however, possible. For instance, we can extend the instruction-
based scheduler to parallelize regions of code that do not share state or have side effects
(e.g., synchronization operations or writes to channels). To this end, when a thread
wishes to perform a side effect, it is required that all the other threads lagging behind (as
per retired-instruction count) first complete the execution of their side effects. Hence,
an implementation would rely on a synchronization barrier whenever a side-effecting
computation is executed; at the barrier, the execution of all the side effects is done in a
pre-determined order. Although we believe that this “optimization” is viable, we have
not implemented it, since it requires major modifications to the GHC runtime system
and the performance gains due to parallelism requiring such strict synchronization bar-
riers are not clear. We leave this investigation to future work.
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Even without built-in parallelism, we believe that instruction-based scheduling rep-
resents a viable and deployable solution when considering modern web applications and
data-centers. In particular, when an application is distributed over multiple machines,
these machines do not share a processor cache and thus can safely run the application
concurrently. Attacks which involve making these two machines access shared external
resources can be mitigated in the same fashion as external timing attacks [4, 40, 48, 49].
Load-balancing an application in this manner is already a well-established technique for
deploying applications.

8 Related Work

Impact of cache on cryptosystems. Kocher [18] was one of the first to consider the se-
curity implications of memory access-time in implementations of cryptographic prim-
itives and systems. Since then, several attacks (e.g., [28, 31]) against popular systems
have successfully extracted secret keys by using the cache as a covert channel. As a
countermeasure, several authors propose partitioning the cache (e.g., [29]). Until re-
cently, partitioned caches have been of limited application in dynamic information flow
control systems due to the small number of partitions available. The recent Vantage
cache partition scheme of Sanchez and Kozyrakis [37], however, offers tens to hun-
dreds of configurable partitions and high performance. As hardware is not yet available
with Vantage, it is hard to evaluate its effectiveness for our problem domain. However,
we expect it to be mostly complimentary to our instruction-based scheduler. Specifi-
cally, a partitioned cache can be used to safely run threads in parallel, each group of
threads using instruction-based schedulers. Other countermeasures (e.g., [28]) are pri-
marily implementation-specific, and, while applicable to cryptographic primitives, they
do not easily generalize to arbitrary code.

Language-based information-flow security. Several works (e.g., [13]) consider sys-
tems that satisfy possibilistic non-interference [38], which states that a concurrent pro-
gram is secure iff the possible observable events do not depend on sensitive data. An
alternative notion, probabilistic non-interference, considers a concurrent program se-
cure iff the probability distribution over observable events is not affected by sensitive
data [44]. Zdancewic and Myers introduce observational low-determinism [46], which
intuitively states that the observable behavior of concurrent systems must be determin-
istic. After this seminal work, several authors improve on each other’s definitions on
low-determinism (e.g., [14]). Other IFC systems rely on deterministic semantics and a
determined class of runtime schedulers (e.g., [32]).

The lines of work mentioned above assume that the execution of a single step is
performed in a single unit of time, corresponding to an instruction, and show that races
to publicly-observable events cannot be influenced by secret data. Unfortunately, the
presence of the cache breaks the correspondence between an instruction and a single
unit of time, making cache attacks viable. Instruction-based scheduling could be seen
as a necessary component in making the previous concurrent IFC approaches practical.

Agat [1] presents a code transformation for sequential programs such that both code
paths of a branch have the same memory access pattern. This eliminates timing covert
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channels, even those relying on the cache. This transformation has been adapted by
several authors (e.g., [36]). This approach, however, focuses on avoiding attacks relying
on the data cache, while leaving the instruction cache unattended.

Russo and Sabelfeld [33] consider non-interference for concurrent systems under co-
operative and deterministic scheduling. An implementation of such a system was pre-
sented by Tsai et al. in [42]. This approach eliminates internal timing leaks, including
those relying on the cache, by restricting the use of yields. Cooperative schedulers are
intrinsically vulnerable to attacks that use termination as a covert channel. In contrast,
our solution is able to safely preempt non-terminating computations while guaranteeing
termination-sensitive non-interference.

Secure multi-execution [8] preserves confidentiality of data by executing the same
sequential program several times, one for each security level. In this scenario, the cache-
based covert channel can only be removed in specific configurations [16]. Zhang et
al. [49] provide a method to mitigate external events when their timing behavior could
be affected by the underlying hardware. This solution is directly applicable to our sys-
tem when considering external events. Similar to our work, they consider an abstract
model of the hardware machine state which includes a description of time. However,
their semantics focus on sequential programs, wherein attacks due to the cache arise in
the form of externally visible events.

Hedin and Sands [12] present a type-system for preventing external timing attacks
for bytecode. Their semantics is augmented to incorporate history, which enables the
modeling of cache effects. We proceed in a similar manner when extending the original
LIO semantics [40] to consider caches.

System security. In order to achieve strong isolation, Barthe et al. [6] present a model
of virtualization which flushes the cache upon switching between guest operating sys-
tems. Different from our scenario, flushing the cache in such scenarios is common and
does not impact the already-costly context-switch.

Allowing some information leakage, Köpft et al. [19] combines abstract interpreta-
tion and quantitative information-flow to analyze leakage bounds for cache attacks. Kim
et al. [17] propose StealthMem, a system level protection against cache attacks. Stealth-
Mem allows programs to allocate memory which does not get evicted from the cache. In
fact, this approach could be seen as a software-level partition of the cache. StealthMem
is capable of enforcing confidentiality for a stronger attacker model than ours, i.e., they
consider programs with access to wall-clock and perhaps running on multi-cores. As
other works on partition caches, StealthMem does not scale to scenarios with arbitrarily
complex security lattices.

Performance monitoring counters. The use of PMUs for tasks other than performance
monitoring is a relatively recent one. Vogl and Ekert [43] also use PMUs, but for mon-
itoring applications running within a virtual machine, allowing instruction level mon-
itoring of all or specific instructions. While the mechanism is the same, our goals are
different: we merely seek to replace interrupts generated by a clock-based timer with
interrupts generated by hardware counters; their work introduces new interrupts that
trigger vmexits. This causes a considerable slowdown, while we achieve no major per-
formance impact.
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9 Conclusion

Cache-based internal timing attacks constitute a practical set of attacks. We present
instruction-based scheduling as a solution to remove such attacks. Different from sim-
ply flushing the cache on a context switch or partitioning the cache, this new class of
schedulers also removes timing perturbations introduced by other components of the
underlying hardware (e.g., the TLB, CPU buses, etc.). To demonstrate the applicability
of our solution, we implemented a scheduler using the CPU retired-instruction coun-
ters available on commodity Intel and AMD hardware. We integrated the scheduler into
the Hails IFC web framework, replacing the timing-based scheduler. This integration
was, in part, possible because of the scheduler’s negligible performance impact and, in
part, due to our formal guarantees. Specifically, by generalizing previous results, we
proved that instruction-based scheduling for LIO preserves confidentiality and integrity
of data, i.e., termination-sensitive non-interference. Finally, we remark that our design,
implementation, and proof are not limited to LIO; we believe that instruction-based
scheduling is applicable to other concurrent deterministic IFC systems where cache-
based timing attacks could be a concern.
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