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ABSTRACT
This paper focuses on a simple, yet fundamental question:

“Can a node infer the wireless channels on one frequency
band by observing the channels on a different frequency
band?” This question arises in cellular networks, where the
uplink and the downlink operate on different frequencies.
Addressing this question is critical for the deployment of key
5G solutions such as massive MIMO, multi-user MIMO, and
distributed MIMO, which require channel state information.

We introduce R2-F2, a system that enables LTE base sta-
tions to infer the downlink channels to a client by observing
the uplink channels from that client. By doing so, R2-F2 ex-
tends the concept of reciprocity to LTE cellular networks,
where downlink and uplink transmissions occur on different
frequency bands. It also removes a major hurdle for the de-
ployment of 5G MIMO solutions. We have implemented R2-
F2 in software radios and integrated it within the LTE OFDM
physical layer. Our results show that the channels computed
by R2-F2 deliver accurate MIMO beamforming (to within
0.7 dB of beamforming gains with ground truth channels)
while eliminating channel feedback overhead.

1. INTRODUCTION

The high cost of cellular spectrum has motivated net-
work providers to seek advanced MIMO techniques to im-
prove spectral efficiency [22, 3, 54]. Yet, only point-to-point
MIMO multiplexing can be performed efficiently in current
networks [24]. More advanced MIMO solutions such as mas-
sive MIMO [31], coordinated multi-point [32], distributed
MIMO [39], and multi-user MIMO [5], all require the base
station to know the downlink channels prior to transmission.
In the absence of this information, the base station cannot
beamform its signal to its users. Today, the only way to learn
the downlink channels is to have the user perform the mea-
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Figure 1: R2-F2’s Approach: R2-F2 extracts the paths of
the signal from channels on band-1 to reconstruct the corre-
sponding channels on band-2.

surements and send the channels back to the basestation.
Measuring the channels on the one thousand LTE subcar-
riers for every antenna on the base station, and feeding those
measurements back to the base station generates much over-
head [9, 54, 52, 44]. This feedback overhead is excessive
even in today’s networks which have a limited number of
antennas on the base station – about 4.6 Mb/s of signaling
per user in a 20 MHz 4×2 network [22, 3]. The problem
escalates in future 5G networks which rely on large MIMO
systems with many antennas (massive MIMO, CoMP, etc.).
In fact, the LTE standardization body that is investigating
high-order MIMO systems with up to 64 antennas (Release
13), has declared this problem as a major challenge for future
LTE networks [24]1.

The goal of this paper is to enable cellular base stations to
estimate the downlink channels without any user feedback. A
natural approach that can help us achieve this goal is channel
reciprocity [26]. Reciprocity implies that uplink and down-
link channels are the same,2 so long as both the base station
and the clients transmit on the same frequency band. Indeed,
reciprocity has been proposed to minimize channel feedback
in WiFi networks [33, 15], where both the access point and
its clients transmit on the same frequency. Unfortunately, the
vast majority of today’s cellular connections (including ev-
ery LTE network in the U.S. [41]) employ Frequency Di-
vision Duplexing (FDD) [21], i.e., they transmit data from
the phone and base station at different dedicated frequency
bands. Thus, extending reciprocity to LTE networks requires
answering the following fundamental question: How do we
infer the wireless channels on one frequency band by observ-
ing those channels on a different band?
1For example, with 64-antenna base stations, the need to
learn the downlink channels consumes 48% of the traffic
generated by the base station, simply to send per-antenna ref-
erence signals [24].
2Modulo a constant factor.



0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Angle (in degrees)

Re
l. P

ow
er

Power Profile

Figure 2: Power Profile: The power profile represents the
relative power of the signal coming along different spatial
directions.

We introduce R2-F2, a system that does exactly that – i.e.,
it can infer the RF channels on one band by observing them
on a different band. Before we dive into R2-F2, let’s explain
why wireless channels vary across frequency bands in the
first place. RF signals are waves whose phase changes with
time and frequency. The wireless channels are the result of
those waves traversing multiple paths, reflecting off walls
and obstacles, then combining at the receiver. Due to their
frequency-dependent phases, RF waves that combine to re-
inforce each other on one frequency may cancel each other
on another frequency. As a result, wireless channels could
look quite different at different frequencies.

R2-F2 infers wireless channels across frequencies by
leveraging a simple observation: while the channels change
with frequencies, the underlying physical paths traversed by
the signal stay the same. Hence, R2-F2 operates by identify-
ing a transform that allows it to map the observed channels
to the underlying paths, then map them back to the channels
at a different frequency, as shown in Fig. 1.

But how do we identify a frequency-invariant transform
for mapping channels to paths? It is natural to look into
past work on RF-based localization systems since, like us,
they need to relate RF channels to the underlying paths. Lo-
calization systems [53, 27, 4, 29, 28] exploit the MIMO
antennas on a base station to create a power profile that
shows the spatial directions of the incoming signal, as il-
lustrated in Fig. 2. Each peak in the profile is, then, asso-
ciated with the direction of an underlying path. Unfortu-
nately, these localization power profiles are unsuitable for
our purpose. While they reveal information about the direc-
tion of the signal, they lack information about the exact dis-
tance travelled by the signal and whether the path is direct
or reflected off a wall. Such missing parameters introduce
frequency-dependent phase variations in RF waves travelling
along different spatial paths, and hence, change the channel
values. Furthermore, in §4, we show that, due to window-
ing and superposition effects, the power profiles change with
frequency and deviate from the spatial directions of the un-
derlying paths. Our empirical results in §8 demonstrate that
using the localization power profiles for recovering the un-
derlying channels eliminates 60% of MIMO SNR gains.

R2-F2 builds on the insights learned from RF-localization,
but it is the first to enable LTE base stations to infer the
downlink channels without any feedback, and at an accu-
racy suitable for MIMO techniques. In §5, we explain how

we design a channel-to-path transform that incorporates the
information needed to predict channels across frequencies.
We further embed this transform in a full system that over-
comes additional practical challenges, including accounting
for: (1) frequency offset between the user and the base sta-
tion; (2) hardware differences in transmit and receive chains;
and (3) packet detection delay — all of which affect wireless
channels differently at different frequency bands.

We built R2-F2 in USRP radios and integrated it with LTE
OFDM. Our testbed emulates a small cell setting with a 5-
antenna LTE base station. We deploy our base station within
a few meters from one of the LTE base stations on our cam-
pus. Since we cannot transmit in the cellular spectrum, we
operate our testbed on the 640-690 MHz white space fre-
quency band, which is in the vicinity of the Verizon LTE
band (only 30 MHz away). Our results reveal the following:

• For an uplink-downlink frequency separation equal to that
in AT&T and Verizon networks, the channels computed
by R2-F2 deliver accurate MIMO beamforming within
0.7 dB of the beamforming obtained with the ground-
truth channels. The resulting SNR increase has improved
the average data rates in our testbed by 1.7×. This result
shows that R2-F2 can be used by MIMO solutions to de-
liver LTE throughput gain while eliminating channel feed-
back overhead.
• R2-F2 can also be used to eliminate interference at cell

edges and improve spatial reuse. In our testbed, R2-F2 re-
duced the SNR of the interfering signal from 9 dB to only
0.9 dB.
• The quality of R2-F2’s inferred channels remains high

across frequencies separated by up to 40 MHz, which is
larger than the LTE uplink-downlink separation in most
US LTE deployments. Further, the degradation of SNR
with uplink-downlink separation is less than 0.2 dB per
10MHz.

To our knowledge, R2-F2 is the first system that demon-
strates the practicality of inferring LTE downlink channels
from uplink channels using reciprocity and without channel
feedback. This result contributes a better understanding of
reciprocity in FDD systems, and a solution to one of the im-
portant challenges facing future 5G MIMO networks.

2. RELATED WORK

Related work falls under two broad categories.
(a) Channel Estimation in Cellular Networks: Much
prior work has reported the excessive overhead associ-
ated with channel estimation and feedback in cellular net-
works [9, 54, 22, 52, 44]. Even in today’s networks, which
have a relatively small number of antennas, the feedback
overhead can be prohibitive – as much as 4.6 Mb/s of sig-
nalling traffic per user in a 4×2 system [22, 3]. All recent
LTE releases recognize this challenge [3, 2, 1]. To miti-
gate the problem, the standard allows for either sending full
channel information, or compressing the information using
a codebook of limited values. Unfortunately, neither option
is satisfactory since the former causes excessive overhead,



whereas the latter leads to poor channel resolution that im-
pedes the gains of MIMO techniques [34, 14, 25]. As a re-
sult, only point-to-point MIMO is common in today’s LTE
networks (in the US), and more advanced techniques, such
as MU-MIMO have yet to gain deployment traction [13].
This problem is increasingly critical with the advent of 5G
networks which rely on large MIMO systems (e.g., massive
MIMO) to increase spectral efficiency [30, 45].

Past work on addressing this problem has focused on vari-
ous techniques for compressing channel feedback [9, 54, 40,
45]. R2-F2 is motivated by the same desire of learning down-
link channels with minimal overhead, but it aims to eliminate
channel feedback altogether, and replace it with passive in-
ference of channel values.

A few papers study reciprocity in the context of FDD sys-
tems. In particular, Hugl et. al [19] observe that the chan-
nels at two cellular FDD bands are correlated and hence
postulate that one can infer downlink channels from uplink
channels. Some papers [18, 20, 36, 37] propose theoretical
models that use large antenna arrays to infer channels on the
downlink from those on the uplink. Their models are either
based on long-term channel statistics and do not account for
fast variations, or are based on the angle of arrival power
profile (used in RF localization), which we show in §8 to
yield poor performance in practice. Further, they do not ac-
count for practical challenges in system design such as the
limited LTE bandwidth (typically 10MHz), carrier frequency
offset (CFO) and detection delay. In contrast, R2-F2 does not
need long-term statistics and is empirically demonstrated in
a testbed deployment. R2-F2 achieves this through a new de-
sign that relates the channels to frequency-invariant param-
eters (e.g., path lengths), compensates for frequency depen-
dent parameters (e.g., path phases), and accounts for distor-
tion factors (e.g., window effect).
(b) Related Work Outside Cellular Networks: R2-F2 is
related to the problem of channel quality estimation. Some
applications aim to infer channel quality on a particular fre-
quency band, but do not need the exact channel values. For
example, two WiFi nodes may want to select the best quality
WiFi channel for their connection without actively running
measurements on all WiFi channels [10, 42]. The same ap-
plies to cognitive radios in the White Spaces [38]. These sys-
tems observe the channel on one or more bands and use that
information to infer the SNR of the channel on a different
band –i.e., the channel quality. In contrast, R2-F2 needs to
infer the full channel values–i.e., it needs both the phase and
the magnitude of the channel for every OFDM sub-carrier
and every antenna.

R2-F2 is also related to past work that focuses on esti-
mating the channels across a large band of spectrum by sub-
sampling the frequencies in that band. For example, the work
in [6] subsamples the spectrum and uses compressive sens-
ing to recover the channel values at the missed bands. This
approach does not apply to LTE networks since the observed
uplink channels do not satisfy the sampling requirements of
compressive sensing (i.e. the uplink channel is only available
on one contiguous band).

There is also a large body of work that aims to predict

wireless channels in the future based on their values in the
past [51, 8, 12]. This work does not predict channels across
frequency bands. R2-F2 is complementary to this work in
that it estimates wireless channels at different values of fre-
quency as opposed to different points in time.

Finally, we note that R2-F2 is related to a wide range
of systems for the TV whitespaces that aim to predict oc-
cupancy [7, 43] or interference [55] by hopping between a
minimal number of frequency bands. R2-F2 complements
these systems by estimating the wireless channel at any tar-
get frequency band based on sampling the channel at one
other band.

3. BACKGROUND

In this section, we list a few known results in modeling
wireless channels, which are important for the rest of the
exposition. Note that the mathematical expressions refer to
the transmission frequency by the corresponding wavelength
λ.

Wireless channels describe how the signal changes as it
propagates from transmitter to receiver. They are a direct
function of the paths along which the signal propagates as
well as the transmission frequency. In particular, the chan-
nel of a narrowband signal traversing a single path is given
by [47]:

h = ae−j2π d
λ+jφ (1)

where λ is the wavelength, a is the path attenuation, d is the
distance the path traverses, and φ is a frequency-independent
phase that captures whether the path is direct or reflected.

Since the signal travels along multiple paths, say N, the
channel at a receive antenna can be written as:

h =

N∑
n

ane−j2π dn
λ +jφn , (2)

which is the sum of the channel components over all paths
that the signal takes between transmitter and receiver.

Finally, we note that base-stations have multiple antennas,
so they obtain one channel per antenna. For a K antenna base
station, the set of channels, hi on antenna i is:

hi =

N∑
n

(
ane−j2π dn

λ +jφn

)
e−j2π ilcosθn

λ , (3)

where θn is the angle-of-arrival of the signal along path n, dn
is the distance travelled by the signal along path n to the first
antenna and l is the pairwise separation between antennas on
the base station. Note that the above equation depends both
on frequency and all underlying signal propagation paths.

4. INTUITION UNDERLYING R2-F2
R2-F2’s primary objective is to infer wireless channels on

a target frequency band, given the wireless channels on a
different frequency band. In order to achieve this objective,
R2-F2 relies on the observation that the channels are the di-
rect result of the signal paths. While the channels change
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Figure 3: Transforming Signal Paths to Channels on Two Frequency Bands: (a) Consider two signal paths emerging
from 80◦ and 105◦ as shown. Their corresponding attenuations are: a1, a2, distances traversed are d1, d2, and phase offsets
due to reflectors (or lack there-of) φ1,φ2. (b)-(b’) Depicts the signal components of individual paths across angle-of-arrival.
We observe two spikes at 80◦ and 105◦ as expected scaled by the respective path amplitudes. The peaks differ only in phase.
(c)-(c’) Incorporates the windowing effect that causes the peaks to be convolved with sinc functions. The red and blue sinc
correspond to the red and blue path. Further, the width of the sincs changes with frequency. (d)-(d’) Depicts the superposition
of the sinc functions in both frequency bands. The two plots look very different – both due to the difference in shape of the sincs
as well as the difference in their phases. (e)-(e’) Denotes the wireless channels obtained after applying the Fourier Transform
on the two bands – two different sets of values.

across frequencies, the underlying paths stay the same. Thus,
if one could obtain a frequency-invariant representation of
signal paths from wireless channels on any given frequency,
one can recreate an estimate of the channels at any other fre-
quency of interest.

But what is a frequency-independent representation of sig-
nal paths that can be mapped to (and from) wireless chan-
nels? The answer to this question lies in Eqn. 3, which
defines wireless channels based on underlying propagation
paths. Specifically, wireless channels hi depend on four dis-
tinct attributes of signal paths: (1) Their attenuation an; (2)
Their frequency-independent phase φn, that distinguishes the
direct path from reflected paths; (3) Their angle of arrival θn;
(4) The distance they traverse dn. These four quantities, when
listed for each path, fully define the wireless channels on any
given frequency. More importantly, none of these parameters
depend on the frequency at which the channel is obtained.
In other words set of four-tuples of the form (an,φn, θn, dn)
is a natural representation of signal paths that is frequency-
invariant.

Now that we have a representation of signal paths, we
need to understand how to extract it given wireless chan-
nels on any frequency. To do so, observe that wireless chan-
nels in Eqn. 3 take the form of the familiar discrete Fourier
transform (parameterized by spatial angle-of-arrival cos θ).
In particular, this Fourier transform takes as input quantities
that depend directly on our signal path four-tuples. Since the
discrete Fourier transform is invertible, one might wonder if

we can simply apply the inverse Fourier transform to retrieve
the signal paths given wireless channels. Unfortunately, our
task is not this simple. This is because, upon inverting the
Fourier transform, we get quantities that depend not just on
our signal path four-tuples, but also the frequency. As a re-
sult, teasing apart signal four-tuples from wireless channels
requires removing this dependency on frequency.

To understand how to achieve this, it is instructive to study
how the same signal 4-tuples manifest as different wire-
less channels on two different frequencies, say 600MHz and
650MHz. We do so in the context of a specific example. Con-
sider Fig. 3(a) which depicts signals from the phone to the
base station traversing two paths. Let the corresponding sig-
nal path 4-tuples be: (a1,φ1, θ1 = 80o, d1 = 19.5m) and
(a2,φ2, θ2 = 105o, d2 = 23m). These undergo four distinct
transformations, inclusive of the Fourier transform, before
they become the overall wireless channels on the two fre-
quencies (from Fig. 3(a) to (e)-(e’)) as described below:

• Phase Variation (Fig. 3(a) to (b)-(b’)): We first be-
gin by mapping the signal path 4-tuples to inputs of the
Fourier tranform. Recall from Eqn. 3 that these inputs are
simply the wireless channel components along individual
paths at the two frequencies. Fig. 3(b)-(b’) visualizes the
amplitude and phase of the signal components from the
two paths across angle-of-arrival. As expected, both these
plots have two spikes that correspond to the two paths,
scaled by their respective attenuations. In fact, the two



plots differ only in the phase of the spikes, which scales
inversely with the wavelength of the two bands.
• Windowing Effect (Fig. 3(b)-(b’) to (c)-(c’)): Before we

can apply the Fourier transform, we need to account for
an effect that occurs since the cellular base station has a
limited number of antennas (5 in our example). Specifi-
cally, this means that the base station samples the signal
from the two paths within a window of space (the space
between the first and last antenna). Since the channels are
observed only within a window of space, the signal’s an-
gles of arrival are convolved with a sinc function. This is
a standard property of the Fourier transform: multiplying
by a window in one domain translates into a convolution
with a sinc in the other domain. Thus each impulse from
the corresponding angle as in Fig. 3(b) and (b’) is trans-
formed as a sinc function as shown in Fig. 3(c) and (c’).
The convolution with a sinc makes the signal look differ-
ent across frequencies. Specifically, the precise shape of
the sinc changes with the transmission frequency. This is
because the distances between antennas are measured rel-
evant to the wavelength of the transmission signal. Hence,
at higher frequency the distance between antennas seem
larger and the sinc narrower.
• Superposition (Fig. 3(c)-(c’) to (d)-(d’)): At this point,

the signals components from different paths super-impose
at the receiver. Thus, the base station gets a super-position
of the blue and red sincs in Fig. 3(b) and (b’), scaled by
their respective phases that (as described earlier) are dif-
ferent. This results in Fig. 3(d) and (d’) that now look sig-
nificantly different.
• Fourier Transform (Fig. 3(d)-(d’) to (e)-(e’)): Finally,

we apply the Fourier transform to take our super-imposed
sincs in Fig. 3(d) and (d’) to the wireless channels sampled
at the five antenna locations, and shown in Fig. 3(e) and
(e’).

Thus, if we want to move from wireless channels to their
underlying signal paths, we must invert this whole process.
We need to: (1) Invert the Fourier transform; (2) Separate the
super-imposed sincs; and (3) Undo the windowing effect; (4)
Correct for the difference in phase between the two frequen-
cies. In the next section, we describe this process mathemat-
ically and formulate it as an L-2 minimization problem.

5. ALGORITHM

In this section, we formalize the discussion in §4. We be-
gin by formalizing mathematically the transform between
wireless channels and signal paths. We then invert the effects
of this transform by formulating the problem as an L-2 op-
timization whose solution results in the frequency-invariant
signal path characteristics. These paths are then used to infer
the channels on a desired band.

5.1 Transforming Physical Paths to Wireless Channels

Let us assume that the signal from the user to the K-
antenna base station arrives along N distinct paths. The an-
tennas are indexed by 0, 1, . . . , K − 1 and l is the inter-

l

d

θ

01K-1

Base	Station

User	Equipment

Figure 4: Antenna Setup The base station is equipped with
multiple antennas and receives signals on a fixed bandwidth.

antenna separation.3 Further, let us denote the signal path
4-tuple of the nth path to be (an,φn, θn, dn). The setup (with
just one path) is illustrated in Fig. 4.

We now present the mathematical formulations of the in-
dividual transforms described in §4, between our signal path
representation and wireless channels (see Fig. 3).

• Phase Variation: Since the Fourier transform described
in equation 3 operates on the cos θ domain, we discuss
the algorithm in terms of cos θ. Let us denote ψ = cos θ.
Then, the contribution of the nth path to the directional
representation of the signal at wavelength, λ1 can be given
by:

Pn
1(ψ) = ane−j 2πdn

λ1
+jφnδ(ψ − ψn), (4)

where Pn
1(ψ) represents the signal component along di-

rection ψ and δ(.) is the impulse function. φn denotes the
phase accumulated by the nth path by virtue of undergo-
ing reflections, an is the amplitude of the path as received
on antenna 0 and ψn = cos θn. This representation corre-
sponds to the representation in Figs. 3(b) and (b’).
• Windowing Effect: As described before, the signal

sensed by the antenna array along different spatial di-
rections is the inverse Fourier transform of the channel
measurements on the different antennas of the antenna ar-
ray. Since the antennas on the base station sample a finite
space, it is equivalent to applying a window on the an-
tenna domain of width L

λ1
, where L (= Kl) is the width

of the antenna array. This creates a sinc in the spatial di-
rection domain, i.e. the path directions get convolved with
L
λ1

sinc
(

Lψ
λ1

)
. Thus, if we represent the spatial profile after

3In typical antenna arrays, the inter-antenna spacing is set to
λ
2 , where λ is the signal wavelength.



convolution of the sincs with Pn
1 as Pn

2, then Pn
2 is given by

Pn
2(ψ) = {ane−j 2πdn

λ1
+jφnδ(ψ − ψn)} ∗

L
λ1

sinc
(

Lψ
λ1

)
(5)

where ∗ denotes convolution operation. Thus, Pn
2(ψ)

refers to the graphs in Figs. 3(c) and (c’).
• Superposition: In case of multiple paths, the perceived

path profile is simply the sum of individual path profiles.
Thus, the overall profile P3(ψ), can be computed as:

P3(ψ) =

N−1∑
n=0

Pn
2(ψ). (6)

This equation mathematically represents Fig. 3(d)-(d’).
• Discrete Fourier Transform: Finally, the channel mea-

surements at the antennas are just the Fourier transform
of the signal arriving along spatial directions. In order to
represent this mathematically, observe that equation 6 can
be simplified as follows:

P3(ψ) =

N−1∑
n=0

{ane−j 2πdn
λ1

+jφnδ(ψ − ψn)} ∗
L
λ1

sinc
(

Lψ
λ1

)
(7)

=

N−1∑
n=0

ane−j 2πdn
λ1

+jφn × L
λ1

sinc
(

L(ψ − ψn)

λ1

)
(8)

Equation 7 follows from equation 8 by using the convolu-
tion property of the delta function.

The above four transformations can be summarized suc-
cinctly as a sequence of matrix operations. Specifically,
given that the antennas are positioned at K discrete loca-
tions in space, we can now represent the Fourier transform
by a matrix multiplication. Let us define F to be the K × K

Fourier matrix, such that Fij′ = e−j 2πilj′ψ′
λ1 , where ψ′ defines

the discretization on the variable ψ (ψ′ = 2
K ).4 Further, de-

fine S to be the K × N matrix where Sij denote the value of
the sinc function corresponding to the jth path at ψ = iψ′.
Specifically, Sij =

L
λ1

sinc
(

L(iψ′−ψj)
λ1

)
. Finally, define ~a′1 to

be the N dimensional vector such that the ith component is

aie
−j 2πdi

λ1
+jφi . Then, the channel measurements at the anten-

nas, represented by ~h1 can be given by:

~h1 = FS~a′1 (9)

Note that, ~h1 is the K dimensional vector such that the kth

element represents the channel measurement at antenna k.
Observe that, in the vector notation, the ith component of S~a′1
is nothing but P3(iψ′). In summary, we now have a transform
that maps signal paths to channels.
4When the antenna separation, l, is not equal to λ1

2 , the
Fourier matrix is replaced by the non-uniform Fourier ma-
trix and ψ′ = λ

L , where L = Kl is the total antenna array
aperture.

5.2 From Wireless Channels to Paths
Now that we understand, how the channels are derived

from the underlying physical paths, the goal is to find a way
to invert this mechanism. In other words, given channel mea-
surements, ~h1 on wavelength λ1, we need to identify the un-
derlying physical paths. We do so by inverting the individual
components of the transform – the Fourier Transform, win-
dowing and super-position and phase variations.
Inverting the Fourier Transform: The first step is to in-
vert the effect of the Fourier transform, which is simply the
inverse Fourier transform on the channel measurements, ~h1.
This can be achieved by multiplying ~h1 by F−1.
Inverting Windowing and Superposition: Next, we need
to invert the superposition effect, stated in equation 6 and
the windowing effect from equation 5. These two effects are
jointly represented by the matrix multiplication, S~a′1 in equa-
tion 9. The goal is to infer S and ~a′1, given the perceived
signal paths, F−1 ~h1. Observe that, S depends solely on the
directions of the underlying paths (ψn). Thus, in order to
compute S, we need to find {ψn}N−1

n=0 for each of the N sinc
functions that sum up to yield this profile. We pose this prob-
lem as an L-2 norm minimization problem. We optimize for
{a′1,n}N−1

n=0 and {ψn}N−1
n=0 such that ||F−1 ~h1 − S~a′1||2 is mini-

mized. Let us write this objective function as:

O({a′1,n,ψn}N−1
n=0 ) = ||F−1 ~h1 − S~a′1||2 (10)

where a′1,n denotes the nth element of ~a′1
In order to simplify the problem, observe that, if we know

S, the optimization problem becomes a linear optimization
problem and can be solved for ~a′1 in the closed form. In
particular, the minimum value can be attained by setting
~a′1 = S†F−1 ~h1, where S† denotes the pseudo-inverse of S.

Thus, the objective function in equation 10 can be re-
framed as:

O({ψn}N−1
n=0 ) = ||F−1 ~h1 − SS†F−1 ~h1||2 (11)

We have, now, reduced the problem to identifying the di-
rections of the signal paths that contribute to the directional
signal profile. This objective function, however, is non-linear
and non-convex. We discuss in §5.3 how we find a solution
to this optimization problem.
Accounting for Phase Variation: Finally, in order to in-
fer channels at a different wavelength, λ′, we need to fit in
another missing piece. Recall that the phase of a′1,n inferred
at wavelength, λ1 for each of the paths, is dependent on the

wavelength (since a′1,n = ane−j 2πdn
λ1

+jφn ). In order to infer the
frequency-dependent component of a′1,n, we leverage the fact
that for cellular systems, the wireless signal is transmitted
at multiple frequencies, called the OFDM subcarriers. This
gives us access to channel measurements on multiple fre-
quencies. Thus, we add the distance dn for each of the paths
as a parameter of the optimization problem given in equation
10. This allows us to solve the optimization problem jointly
for multiple subcarriers and adds constraints to the solutions
returned by the optimization at different frequencies.



In particular, let us denote the channel measurements at
wavelength, λi, by ~hi, i = 0, 1, . . . , I − 1. We define ~Pi =

F−1~hi, and Si to be the matrix S corresponding to wave-
length λi. Let, Di be the N × N diagonal matrix such that

Di(k, k) = e−j 2πdk
λi and ~a be the N dimensional vector such

that ith element is aiejφi . Let ~P denote the IK dimensional
vector formed by the concatenation of the vectors ~Pi and S
be the IK × N matrix formed by the concatenation of the
matrices SiDi. Specifically:

~P =


~P1
~P2
.
.
~PK

 S =


S1D1
S2D2

.

.
SKDK

 (12)

Thus, the modified objective function can be written as:

O({ψn, dn, an}N−1
n=0 ) = ||~P − S~a||2 (13)

This objective function is similar to equation 10. Like be-
fore, we can replace ~a = S† ~P . Thus, the objective function
reduces to:

O({ψn, dn}N−1
n=0 ) = ||~P − SS† ~P||2 (14)

5.3 Solving the Optimization
In this section, we describe how we solve the optimization

problem that transforms channels to paths. Our goal is to find
the values of {ψn, dn}N−1

n=0 , such that:

{ψn, dn}N−1
n=0 = arg min

ψn,dn

O({ψn, dn}N−1
n=0 )

s.t. − 1 ≤ψn ≤ 1 ∀n ∈ {0, 1, . . . , N − 1}
(15)

This optimization problem is non-convex and constrained.
In order to solve this optimization problem, we use the well-
known interior-point method. However, since the function
is non-convex, the optimization is prone to convergence to
a local minimum, which is not the global minimum. Thus,
a good initialization is important to ensure that the correct
solution is determined.

• Initialization: R2-F2 computes an approximate solution
in order to initialize the minimization of the objective
function described in equation 14. We compute an approx-
imate probability distribution, P such that P(d,ψ) indi-
cates the probability of the existence of a path from direc-
tion ψ and distance d. A natural candidate to do so is the
power of the inverse Fourier transform of the channel it-
self (akin to Fig. 3(c)-(c’)), which while prone to the win-
dowing and superposition effects provides an approximate
understanding of where signal paths emerge from. Gen-
eralizing the inverse Fourier transform to operate across
both distance and angle-of-arrival, we define P to be:

P(d,ψ) = ||
∑

i=1,...,I;k=1,...,K

hi,kej 2π(d+klψ)
λi ||2

where hi,k denotes the channel measured at antenna k and
wavelength λi and l is the inter-antenna separation on the

antenna array. Once, P has been computed for different
values of d and θ, we pick the N largest peaks to initialize
the optimization problem with N paths.
• Stopping Criterion: So far, we have assumed that we

know the number of paths, N, a priori. However, that is
not the case in practice. Notice that, as we increase the
number of paths, N, in our objective function, the mini-
mum value attained on the objective function decreases.
In other words, the algorithm keeps finding a better fit.
However, after certain number of paths, we start to over-
fit, i.e., the additional paths being found do not correspond
to physical paths, but to signal noise. This could lead to
decrease in the accuracy of our channel estimation algo-
rithm. In order to avoid overfitting and yet achieve a good
fit, we incrementally add paths to the solution till one of
the two conditions is met. Either, the value of the objec-
tive function drops below a threshold,ε5 or decrease in the
value of the objective function is small. When that hap-
pens, we select that value of N as the number of paths.
• Conditioning: When the number of paths, N, is greater

than 1, the optimization can find solutions, such that
(ψi, di) is very close to (ψj, dj) for i 6= j, i.e. two paths
come from nearly the same angle and distance. In that
case, the matrix S becomes ill-conditioned and can lead to
poor solutions. In such cases, R2-F2 rejects one of these
paths and reduces the number of paths by 1. This improves
the condition number of the matrix and avoids overfitting.

6. INTEGRATING R2-F2 WITH THE LTE ARCHI-
TECTURE

This section describes R2-F2’s end-to-end system design,
and how it interacts with the LTE protocol. R2-F2 takes as
inputs wireless channels measured on the uplink at the base
station for a particular user. It outputs the estimated wire-
less channels at the downlink frequency band for that user.
These channels can then be used to perform beam-steering
for advanced MIMO techniques (coherent beamforming, in-
terference nulling, etc.).

The following steps summarize R2-F2’s approach: (1) R2-
F2 runs an iterative algorithm to find a representation of sig-
nal paths that fit the observed uplink channels. This is done
by solving the optimization in Eqn. 14 as described in §5.3.
(2) R2-F2 use the recovered 4-tuple signal paths to map the
uplink channels to the frequency used on the downlink chan-
nel (Eqn. 9). (3) Now that it has the values of the uplink chan-
nels for the downlink frequency, R2-F2 applies standard reci-
procity [16] to infer the downlink channels.6 Fig. 5 presents
an overview of R2-F2’s architecture.

We next discuss a couple of issues that arise when inte-
grating the above steps with LTE cellular systems.

6.1 Measuring the Uplink Channels
5We set ε to 0.01× IK, where IK is the number of elements
in h.
6Standard reciprocity infers the forward channels from the
reverse channels by multiplying by calibrated reciprocity
constants, which are computed once for the lifetime of the
device as described in [16].
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Figure 5: R2-F2’s System Design: The above diagram sum-
marizes the steps in R2-F2’s system design in translating
channels at the base station measured on the uplink to chan-
nels at the user on the downlink frequency bands.

In R2-F2, the base station measures the uplink channels
in order to infer the downlink channels. However, since LTE
uses SC-FDMA on the uplink, the client transmits its data
only on a subset of all OFDM subcarriers. Thus, while LTE
uses one thousand subcarriers, only a subset of those sub-
carriers can be used to measure the uplink channels for a par-
ticular client at any point in time. However, in LTE, a client
does not only send data. It also sends signaling information.
In particular, the LTE standard uses Sounding Reference Sig-
nals (SRS) [3] which the client sends periodically across
OFDM subcarriers. The period of the SRS signal is config-
urable and takes values between 2ms and 320ms. Thus, R2-
F2 measures the uplink channels using the SRS transmis-
sions. It further refines these channels with measurements
from uplink data and acknowledgments, which can provide
new measurements every 1 ms, but span only a subset of
the OFDM sub-carriers. Combining all these measurements
allows R2-F2 to obtain a better estimate of the uplink chan-
nels, which naturally improves its inference of the downlink
channels.

One however has to be careful when combining channel
measurements that did not occur at exactly the same time.
Measurements taken at different times can be affected by the
carrier frequency offset (CFO) between the transmitter and
receiver, frame detection delay as well as inherent delays in
hardware. We discuss these effects and how we compensate
for them before combining the channel measurements.

• Frequency Offset: Between any client and the base sta-
tion, there always exists an offset in frequency (CFO), δf .
The CFO causes a phase rotation over time. Thus, two
measurements of the same channel that are taken τ sec-
onds apart, exhibit a phase difference of 2πτδf . This phase
difference is a measurement artifact; the channels over the
air have not changed. To overcome this issue, we lever-
age the fact that for all MIMO techniques (beamforming,
nulling, interference alignment, etc.) the parameter of im-

portance is not the exact value of the wireless channels,
but the relative change in the channels across the antennas.
As a result, a constant multiplied to the channel measure-
ments on all antennas does not affect our ability to perform
all MIMO techniques. Thus, since all antennas on the base
station experience the same CFO, we can eliminate the
phase rotation caused by CFO by dividing the channel of
each base station antenna by the channel of the first an-
tenna, measured at the same point in time. This division
scales all channels by the same value and hence does not
affect MIMO techniques.
• Frame Detection Delay: There is a time delay between

the moment the signal reaches the radio and the moment
when it actually gets detected. This delay causes an addi-
tional phase rotation in the measured channels. If we de-
note this detection delay by td, the additional phase ro-
tation is given by 2πftd. The channel measurements on
all the antennas get effected by this quantity. This detec-
tion delay varies per measurement and thus, makes it in-
feasible to combine information across different measure-
ments without eliminating the phase rotation due to the
detection delay. To overcome this challenge, observe that
across OFDM subcarriers any delay in time manifests it-
self as rotation in phase across subcarrier frequency whose
slope is exactly 2πtd. As a result, R2-F2 can enforce con-
sistency between measurements of the wireless channel at
any given frequency by ensuring they have zero relative
slope in phase.
• Hardware Delay: The hardware across different anten-

nas introduces a fixed delay to the different receive chains.
Thus, the wireless channel measured at each antenna suf-
fers a phase rotation. In particular, the channel measured
at an antenna with hardware delay t experiences an ad-
ditional offset e−j 2πct

λ , where λ is the wavelength of the
signal and c is the speed of light. Further, this offset is dif-
ferent for different receive chains. Fortunately, hardware-
induced phase offset is fixed for the lifetime of the base
station and can be calibrated once, apriori and applied to
all future channel measurements.

6.2 Inter-cell Interference
R2-F2’s channel estimates can be used to improve overall

throughput by reducing inter-cell interference at edge clients
– devices that are close to cell boundaries and hence, receive
signal from multiple base stations. R2-F2 adopts two strate-
gies to limit the interference caused at edge clients by neigh-
boring base stations: (1) It encourages sharing of information
between adjacent base stations to predict uplink channels to
users across base stations. This allows the base station to es-
timate the client channels and learn any potential interfer-
ence from the channel estimates of its neighboring base sta-
tions. (2) Base stations can use the channel estimates they
infer from R2-F2 to transmit to their clients while nulling
interference to clients of other base stations that happen to
be at cell edges. Indeed, the same wireless channels used
for beamforming can be employed for interference nulling
as well. Our results in §8 show that interference nulling at
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Figure 6: Experiment Testbed: (a) plots the indoor testbed
for our experiments. Thick black lines indicate building
boundaries. The floor map of individual buildings is marked
inside each building. Experiments were conducted in the
publicly accessible spaces across four buildings. (b) is the
outdoor testbed with roads and pathways shown; buildings
have been removed for anonymity. In (a) and (b), the red
square marks the presence of the base station and the blue
dots represent the clients.

edge clients using R2-F2 leads to improved throughput in
LTE networks.

7. IMPLEMENTATION

We implemented R2-F2 on a five-antenna Ettus USRP
N210 software radio platform emulating a five-antenna LTE
base station. The USRPs are synchronized using an external
clock and act as a five-antenna MIMO node. They transmit
using an OFDMA architecture that transmits 1024 subcar-
riers over 10 MHz, which are parameters identical to com-
mon LTE deployments of major US operators [3]. We imple-
ment LTE’s OFDMA by modifying the Ettus UHD driver for
USRP software radios. Our software radios operate over the
whitespace spectrum in frequency bands up to 10 MHz wide
at center frequencies between 640-690 MHz. We note that
these bands are just 20-30 MHz away from the frequency
bands of commercial LTE deployments of the two major US
cellular operators: AT&T and Verizon [11].

We use a single-antenna USRP software radio to emu-
late an LTE cellular phone. The USRP transmits using SC-
FDMA on bandwidth up to 10 MHz on up to 1024 subcarri-
ers, as per the LTE PHY standard [3]. Unless specified oth-
erwise, the uplink and downlink bands are at center frequen-
cies of 650 MHz and 680 MHz, separated by 30 MHz. We
note that major US carriers separate uplink and downlink fre-

quency bands by 30 MHz in commercial deployments.
We ensure that the characteristics of our software-radio

based LTE testbed in the whitespaces closely mirror those
of commercial LTE deployments. The clients transmit data
only on 8% of the OFDM subcarriers, and transmit sounding
reference signals once every two subframes (at most once
every 2 ms, as in Verizon’s LTE network configuration). In
all tests we co-locate our base station with one of the LTE
base stations deployed on our campus. This ensures that the
multipath effects experienced by R2F2 base station closely
match the multipath observed by an actual LTE deployment.
Evaluation: We perform our experiments in both indoor
and outdoor settings. We co-locate our base station next to
an operational LTE base stations in both settings. The client
is moved to various locations across multiple buildings in-
doors as well as in outdoor locations along the streets and
between buildings. Fig. 6 plots our testbed with the location
of the base station marked in red and client locations marked
as blue dots. Our experiments are performed across multiple
randomly chosen client locations and the average and stan-
dard deviation of results are presented. The experiments are
evenly split between outdoor and indoor locations. The ex-
periments were conducted over three days and the weather
was mostly clear, with a snow cover present throughout. Our
results report both the measured signal-to-noise ratio (SNR)
measured at the client as well as throughput (in Mb/s). We
note that we measure throughput from SNR across LTE sub-
carriers using the effective SNR (ESNR) metric [17] with
bit-rates adjusted based on the LTE standard [3, 50].

Note that, the delay introduced by USRP software radios
(about 10 seconds) in switching frequencies limits our evalu-
ation to static clients. While we leave an evaluation of R2-F2
for mobile clients to future work, we note that FPGA imple-
mentations of interior-point methods (like the one discussed
in section 5) are fairly standard and converge in hundreds
of microseconds [23]. This time is much lower than the few
mili-seconds of channel coherence time for typical scenarios
[48]. Finally, since R2-F2’s estimates rely on uplink chan-
nels from the client to the base station, rather than the last
downlink channel from the base station to the client, R2-F2’s
channel estimates are more recent than explicit channel feed-
back, thus aiding mobility.

8. RESULTS

In this section, we present the results of an experimental
evaluation of R2-F2.

8.1 Micro Benchmarks
We aim to check whether the model in §4 matches the

empirical measurements. We conduct our experiments in the
testbed described in §7. In each run, the base station trans-
mits to the client, and the client computes the ground truth
channels on the downlink. The client then transmits to the
base station, and the base station computes the uplink chan-
nels. We run R2-F2 on the uplink channels to infer the down-
link channels.

Fig. 7 plots the results from a representative run. Fig. 7(a)
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Figure 7: Microbenchmark: R2-F2 measures wireless channels on the uplink at 650 MHz and predicts the downlink channels
on 680 MHz. The directional power profile for the uplink channel in a particular measurement is shown in (a). We also plot
the downlink profile, obtained using ground truth measurements for reference. As explained in §4, these profiles appear very
different. The paths inferred by R2-F2 are plotted in (b). A ‘+’ sign next to a path indicates presence of two paths being plotted
as one due to the plotting resolution. R2-F2 uses these paths to predict channels on 680 MHz. The absolute value of the ratio
of the estimated channels to the ground truth channels is plotted in (c), while (d) plots the phase of this ratio.

plots the Fourier transform of the channel measurements on
uplink and downlink channels. The Fourier transform is plot-
ted with a super resolution factor of 20, (i.e., the Fourier ma-
trix has 5 columns that correspond to the 5 channels and 100
rows). The figure shows that the Fourier Transforms, and
hence, the corresponding channels differ significantly from
the downlink channels and their Fourier Transform, despite
that the uplink and downlink are separated by only 30MHz.
Note that, the figure shows the uplink and downlinks for the
same OFDM subcarrier on each frequency band.

R2-F2 uses the measured channels on the uplink to infer
the underlying physical paths. The inferred paths are shown
in Fig. 7(b). The R2-F2 algorithm infers 6 different paths
(two sets of two paths are clustered together due to the plot-
ting resolution and are marked by a ‘+’ sign in the figure).
The downlink channels inferred from these paths strongly
match the ground truth channels measured at the client. The
ratio of the downlink channels estimated by R2-F2 and the
channels measured by the client is shown in Fig. 7(c) and
Fig. 7(c). Notice that the absolute value of the ratio (Fig. 7(c)
is very close to 1. Moreover, the phase error in the channel
ratio (Fig. 7(d) is close to zero. Thus, this example shows that
the model in §4 captures the RF propagation in the testbed.

8.2 Effectiveness of Beamforming

Beamforming is the key function underlying all MIMO
solutions such as MU-MIMO, massive MIMO, etc. Thus, we
would like to examine whether R2-F2 can deliver the same
beamforming gain as ground truth channels.

As before, we run our experiments in the testbed in Fig. 6.
We repeat the experiment for different client locations, and
for each client location, we collect 10 measurements. The
clients were placed at distances of up to 75 meters from the
base station. We measure the ground truth channels as be-
fore. We also measure the signal-to-noise ratio at the client
for signals received from the base station across these exper-
iments.

We compare the results for three different schemes: (1)
Beamforming using the channels inferred by R2-F2; (2)
Beamforming using the ground truth channels; and (3)
Transmission in the absence of beamforming.

Fig. 8(a) depicts the CDF of the signal-to-noise ratio of

these three schemes across experiments. This figure shows
multiple interesting results. First, beamforming using R2-F2
provides almost the same SNR gains as beamforming using
the ground truth channels. In fact, the average difference in
the SNR of these two schemes is only 0.7dB. This demon-
strates that R2-F2 can deliver accurate beamforming without
any channel feedback, and using a completely passive chan-
nel estimation process.

Second, transmitting without beamforming reduces the
SNR by an average of 6.5 dB. This result matches expec-
tation since the theoretical gain of 5-antenna MIMO beam-
forming is 10 log10 5 = 6.98dB. The gains are lower at low
SNR –i.e., SNR less than 3 dB. This is because channel es-
timation at such low SNR does not work well. This is true
for both the ground truth measurement at the client and the
uplink measurements at the base station.

In order to evaluate the throughput improvement, we plot
the data rates associated with the SNRs for all three schemes
in Fig. 8(b). The figure shows that R2-F2 can double or trip-
ple throughput in our testbed. The average throughput in-
crease is 1.7x. The throughput gains are large at low to mod-
erate SNRs but are less at higher SNR. This is expected since
the rate is the log of the SNR. Also, at SNR more than 20dB,
the highest data rate is achieved and beamforming doesn’t
help in increasing the rate. Similar to Fig. 8(a), the beam-
forming gains are low at SNR less than 3 dB. This is because
at such low SNR, channel measurements become noisy, giv-
ing R2-F2 a noisy input.

8.3 Performance as a Function of Channel Separation

We study R2-F2’s performance as a function of the sep-
aration between the uplink and downlink channels. We re-
peat our experiments by changing the separation between
uplink and downlink frequency bands between 10 MHz and
40 MHz within the whitespace band of frequencies. Lim-
itations of our white space license do not let us go be-
yond the 40 MHz separation. We measure R2-F2’s SNR
gain due to beamforming, for users at different randomly
chosen locations in the testbed. Fig. 8(c) plots the mean
and standard deviation of gain in SNR using R2-F2’s beam-
forming, across different separations of uplink and down-
link frequency bands. As expected, R2-F2’s gain improves
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Figure 8: Beamforming: We use the channels estimated by R2-F2 to achieve beamforming towards the client. Figure (a)
depicts the CDF of the SNR at the client without beamforming, using beamforming with the channels predicted by R2-F2 and
using beamforming with the true channels measured at the client. R2-F2 achieves ~6 dB SNR gain over no beamforming, which
is just 0.7 dB less than beamforming with ideal channels. Figure (b) depicts the datarates achieved by the different schemes.
R2-F2 enables a median gain of 1.7x in datarate for clients in our testbed. Figure (c) depicts the median gain in SNR due to
beamforming using channels estimated by R2-F2 as a function of frequency separation.
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Figure 9: Nulling interference at Edge Clients: R2-F2 can
reduce inter-cell interference by enabling the base station to
null it’s signal to the clients at the cell edge. R2-F2 reduces
the interference at the edge from a median of 5.5 dB to 0.2
dB and the 90th percentile from 9 dB to 0.9 dB.

with a lower separation, with the highest gain achieved for a
10 MHz separation (6.55 dB). However, we observe that the
SNR reduced very slowly with increase in downlink-uplink
separation. Since the separation between the LTE downlink
and uplink for most of the Verizon and AT&T deployments
are 20MHz and 30MHz respectively, we believe that R2-F2
can be used to eliminate channel feedback in these networks.
A potential cause of the degradation of the performance of
R2-F2 with larger frequency separations is the variation in
reflection properties of materials across frequencies, as ob-
served in [35] in the context of GPS signals.

8.4 Interference Nulling at Edge Clients
Clients at cell edge can suffer a significant amount of in-

terference from neighboring cells which could amount to
10 to 12dB [46]. R2-F2 can be used to reduce interference
at edge-clients located at cell boundaries using interference
nulling. To evaluate this function, we set up our base station
as in Fig. 6, but we move the client to the edge of the cell
to emulate a client from a neighboring cell. We repeat the
experiment from the previous section. However instead of
using the inferred downlink channels to beamform, the base

station uses the channels to perform interference nulling.
Fig. 9 plots a CDF of the interference power before and

after nulling. The figure shows that R2-F2 dramatically re-
duces the interference at edge clients. In particular, the aver-
age INR (interference to noise ratio) is reduced from 5.5 dB
to 0.2 dB, and the 90th percentile from 9 dB to 0.9 dB. This
shows that R2-F2 can be used beyond coherent beamform-
ing, to counter inter-cell interference.

8.5 Comparison with Angle-of-Arrival Power Profile
At this stage, one might wonder if it is possible to achieve

gains similar to R2-F2 by using the angle-of-arrival (AoA)
power profiles similar to the ones shown in Fig. 2 and
Fig. 3(d). In principle, one could use the measured wire-
less channels on one frequency to compute the AoA power
profile using standard AoA equations. Then, this angle-of-
arrival profile can be treated as a signature of the underlying
physical propagation and can be used to compute the chan-
nels at the target frequency band. We conduct experiments on
our testbed to evaluate this approach and compare the gains
achieved by R2-F2 with the gains achieved by the AoA pro-
file.

Beamforming: We compare the beamforming gain achieved
by R2-F2 with the gains achieved with the AoA-based ap-
proach. The CDF of the signal to noise ratios achieved with
the two approaches is compared in Fig. 10(a). While the
AoA approach increases the median SNR of the testbed by
2.8 dB, the gain is much lower than R2-F2 which increases
the SNR of the testbed by 6.3 dB. This is understandable,
given the intuition developed in section 4 and 5. While the
AoA power profiles of the signal have the same underlying
paths, they are inherently dependent on frequency. Thus, us-
ing these profiles directly to estimate channels across fre-
quencies leads to errors in the estimation.

Nulling at Edge Clients: Similar to §8.4, we aim to null the
interference caused by the base station at the edge clients. We
use the channels estimated using the AoA approach to null
the interfering signal at the client. The CDF of the INR (in-
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Figure 10: Comparison with AoA Power Profile: (a) AoA profile based channel estimation increases the median SNR of the
testbed by 2.8 dB (as opposed to 6.3 dB for R2-F2). (b) Interference at the edge clients can be brought down from a median of
5.5 dB to 3.5 dB. However, R2-F2 outperforms this approach by nulling to 0.2 dB (median). (c) Simulation results show that
with increase in number of antennas, the gain achieved by R2-F2 closely follows the ideal beamforming gain.

terference to noise ratio) after nulling is shown in Fig. 10(b).
The median interference SNR is reduced from 5.5 dB to 3.5
dB. However, as expected, the errors in channel estimates
prevent it from going down to the median SNR achieved by
R2-F2 (0.2 dB).

Variation with Number of Antennas: Finally, it is natural
to ask if, with the increase in the number of antennas, the sinc
functions plotted in Fig. 3 (c), start to become narrower and
thus, two sincs for different paths do not impact each other.
This would lead to the AoA power profiles in Fig. 3 (d) to
look identical at different frequencies and hence, improve
the performance of this approach.

Since we have a 5 antenna base station, we are unable to
test this hypothesis empirically. However, we test this hy-
pothesis using a simulation. We simulate a wireless testbed
of size 200 m × 200 m. Channels are modeled using equa-
tion the standard wireless propagation model (Eqn. 2 [47]).
The signals from the base station to the client and vice-versa
travel through the direct line of sight path and also after re-
flecting off up to 10 different obstacles along the way. The
positions of the reflectors are randomly selected and so is
the attenuation faced by each path. The number of antennas
on the base station is varied from 4 to 16 in steps of 4. The
frequency of operation is 650 MHz (uplink) and 680 MHz
(downlink), as used in the rest of the results. Random addi-
tive white Gaussian noise is added in order to vary the SNR.

We plot the variation of the SNR gains achieved by dif-
ferent systems in Fig. 10(c). As the number of antennas in-
creases, the ideal beamforming gain with the true channels
increases as 20log(N) on average, where N is the number
of antennas. R2-F2 keeps up with this increase in gain, as
the number of antennas increases and stays within 1 dB of
the ideal gain. With more antennas, R2-F2 has more infor-
mation to estimate the path parameters underlying the wire-
less channels and hence, improves its estimates. On the other
hand, the AoA profile based approach can only achieve half
of the gain achieved by the beamforming with the true chan-
nel information, even as the number of antennas is increased
to 16. This is because of two main reasons: a) as the num-
ber of antennas increases, the directionality of the antenna

array increases and hence, a better estimation of channels is
required to maintain the ideal gain and b) even if the sincs
become narrower, as is expected, with increasing number of
antennas, the phase of each of the sincs is still frequency
dependent. When these sincs combine to give the channels,
these phase add errors in the channel estimates.

To conclude, this simulation provides two interesting in-
sights. First, R2-F2 maintains its performance even as the
number of antennas is increased. Second, it does not suffice
to use AoA power profiles to infer wireless channels at the
target frequency. One needs to go further and separate the in-
dividual paths and their phases to achieve accurate channel
inference, as done by R2-F2.

9. CONCLUDING REMARKS

In this paper, we present, R2-F2 a system that uses wire-
less channel measurements on one frequency band to infer
channels on a different frequency band. By doing so, R2-F2
enables multi-antenna techniques to be used in LTE systems
with zero feedback from the client. R2-F2’s performance was
demonstrated empiricaly with uplink and downlink channels
separated by 20-30 MHz, as in the majority of LTE deploy-
ments in United States [49]. Beyond LTE, our work has im-
plications on the general concept of reciprocity across fre-
quency bands, for other wireless technologies such as wire-
less LANs and whitespace networks. However, we note that
the relatively small separation of uplink and downlink fre-
quencies in LTE ensures that reflection properties of ob-
jects in the environment and the divergence between physical
propagation characteristics is limited. We believe extending
the results presented by us to technologies that require sig-
nificantly larger frequency separations is non-trivial and falls
in the realm of future work.
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