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Abstract

As panoramic photography becomes increasingly

popular, there is a greater need for high-quality

software to automatically create panoramic images.

Existing algorithms either produce a rough "stitch" that

cannot deal with common artifacts, or require user

input. This paper presents methods for dealing with two

artifacts that often occur in practice. Our first

contribution is a method for dealing with objects that

move between different views of a dynamic scene. If

such moving objects are left in, they will appear blurry

and "ghosted". Treating such regions as nodes in a

graph, we use a vertex cover algorithm to selectively

remove all but one instance of each object. Our second

contribution is a method for continuously adjusting

exposure across multiple images in order to eliminate

visible shifts in brightness or hue. We compute

exposure corrections on a block-by block basis, then

smoothly interpolate the parameters using a spline to

get spatially continuous exposure adjustment. Our

enhancements, combined with previously published

techniques for automatic image stitching, result in a

high-quality automated stitcher that exhibits far fewer

artifacts than existing software.

1. Introduction

As panoramic photography becomes increasingly

popular, there is a greater need for software to create

panoramic images. Ideally, the image stitching process

should be completely automatic, requiring no user

information in calculating the panorama [1,10,11,12].

This not only applies to registering the images, but also

to fixing irregularities typical to amateur photography.

Two such irregularities discussed in this paper are

movement of objects within a scene, and differences in

exposure between images.

One of the problems in automatic image stitching is that

of de-ghosting. When the images are taken, there is no

guarantee that objects in the image stay stationary from

one image to the next. This becomes a problem in the

areas of overlap between images. When the images are

stitched together, we take a composite of the

overlapping images in order to create a smooth transition

between neighbors. However, if regions of the scene are

not stationary, the overlap image will be slightly

different in each image contributing to the overlap.

Thus, those regions of the composited image will

contain combinations of pixel values from entirely

different parts of the scene. For example, if a person

moves his head in an area of overlap, the region

containing his head in the stitched image will be a

combination of head and background from both images.

It will give the head a ghosted look, not to mention that

this ghosted head will appear in two locations.

In order to get around this problem of ghosting, we need

to display the stitched image as if nothing in the scene

moved. Thus, when regions of the scene do have

movement, we would like to use pixel values from only

one of the contributing images for that region. In order

to accomplish this, however, we need to determine a)

where the movement occurred, and b) which image to

use.

Several methods have been proposed to eliminate

ghosts. Shum and Szeliski [10] propose a method for

deghosting small misregistrations based on computing

optic flow and then doing a multi-way morph. Median

filters are often used and are effective when more than

half the images contain consistent pixels [3, 9]. This is

not the case for mosaics created from a relatively small

number of images. Davis [2] proposes cutting images

between regions of movement, finding the best cut with

Dijkstra’s algorithm. However, it is not clear how to

generalize this to mosaics created from many

overlapping images. We need a novel algorithm to

tackle the more complicated problem of multiple

overlapping regions of movement.

Another problem in automatic image stitching is

exposure differences between images. Exposure

differences are a common occurrence, especially with

digital photographs. If the differences are not corrected,

the panorama will appear to have seams, even when the

images are blended in overlapping regions. Additionally

our difference-based de-ghosting algorithm could
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interpret exposure differences as moving objects. Thus,

we must find a way to equalize the exposure of each

image based on the information in neighboring images

while retaining local smoothness.

Previous work in this area uses a large number of images

of the same scene to do a radiometric calibration of the

camera [4,5,6]. In our work we don’t assume a

calibration step. In work by Hasler et al [7], the image

registration and the camera’s parametric Opto-Electronic

Conversion Function are simultaneously computed for

pairs of images. This assumes a known parametric

model for the camera and it is not clear how to

generalize this to multiple overlapping images. Burt

and Adelson [13] use multi-resolution splines to perform

spatial blending between different images. However,

since their method depends on band-pass image

pyramids, it is not clear how to apply it to the irregularly

shaped images present in general image mosaics.

Furthermore, current stitching techniques [1,10] already

use large "feathering" regions, so multi-resolution

splining may not help. In our work we compute

corrections on a block-by-block basis, and then

smoothly interpolate the parameters using a spline to get

spatially continuous exposure adjustment.

2. Ghosting Artifacts

2.1 Where Does Movement Occur?
The first step in our de-ghosting process is to determine

which regions in the input images are not static and thus

differ across images. We limit the search for regions of

difference (ROD) to the areas of overlap between input

images. To identify RODs, a map is computed for each

input image by flagging pixels which differ by more than

a certain threshold from pixels in overlapping images.

To smooth the difference maps, a morphological erode

and dilate step is then applied. Next, a region extraction

algorithm is applied to identify and label contiguous

regions. Figure 1 depicts the construction of difference

maps for a simple mosaic.

Our overall goal is to use information from only one

image for each ROD. Thus, we must group

corresponding regions across images, keep information

from one of the images, and ignore corresponding

information in the other images. But how do we group

corresponding regions? Not all corresponding regions

are the same size. Because more than one image may

overlap with a given image, and each area of overlap is

not the same size or location, an image may have

different sized RODs than its overlapping neighbors’

Figure 1. We define RODs in different images to be

corresponding if they have any overlap at all.

Note that corresponding RODs are not defined to be the

same object in different images. In figure 1a the moving

face has slight motion. This motion induces the RODs

shown in figure 1b. In figure 1c the face has more

motion and does not happen to overlap in overlapping

images. In this case the algorithm presented will map

the face into separate RODs as shown in figure 1d and

these corresponding RODs will be handled separately.
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(a) – A 3 image mosaic with a moving face
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(b) – Corresponding RODs caused by motion in (a)
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(c) – Another 3 image mosaic with a moving face
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(d) – Corresponding RODs caused by motion in (c)

Figure 1

2.2 Which Image to Use?
Assume, for a moment, that RODs are vertices in a

graph and that corresponding RODs are linked by an

edge. We know by definition that non-corresponding

RODs will not overlap, and vice versa. Thus, each chain

of corresponding regions will be its own graph. The

graph formed by the RODs in Figure 1 is shown in the

figure below.
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Figure 2 – Graph of corresponding ROD in figure 1b

Now, consider the vertex cover of such a graph. The

vertex cover of an undirected graph G = (V, E) is a

subset V' ⊆ V such that each edge in E is incident on at

least one of the vertices in V'. In other words, each pair

of overlapping regions has at least one of the regions in

the vertex cover. If we were to identify the vertex cover

and remove these vertices from the graph, we would be

left with a set of vertices that have no edges in common,

i.e. do not overlap. Thus, if we were to remove the

cover, we would be left with a set of non-corresponding

regions. Next if we eliminate the contribution of pixel

data corresponding to the vertices in the cover, we

would have no conflicting regions, and no ghosting.

A problem with this is that regions are removed

relatively randomly. AB, BC and AC are all minimum

solutions to the vertex cover in the graph of Figure 2. To

fix this we use the following idea to help select regions.

To avoid having object discontinuities arising from

selecting a ROD (vertex) at an image boundary, we give

RODs (vertices) a weight proportional to its size and

proximity to the center of its image. Larger and more

central RODs receive a higher weight. The weight is

computed by summing the feather weights, described in

[10], within the ROD.

Figure 3 depicts the advantages of using this heuristic.

In this figure, an oval object is moving during the

acquisition of 3 images that form a mosaic. Two simple

graphs arise from this configuration. If we were to solve

the basic vertex cover problem, either vertex in either

graph would be a reasonable solution. However by

weighting vertices that correspond to more central

regions higher and eliminating the minimum weight

vertex from the graph, we choose the region in the center

image. In this case B1 is weighted higher than A and B2

higher than C, so A and C are the minimum weight

vertices to be removed. This avoids the object

discontinuities that would have arisen from selecting

either of the side images.

Thus, we must compute the minimum weight vertex

cover of the graph. The weighted vertex cover problem

is summarized as follows. Given an undirected graph G

= (V, E) and a positive integer weight function w: V →

Z
+

on the vertices, find the cover V' ⊆ V that

minimizes the weight w (V'). The solution of this is

known to be NP complete. In our implementation we

run an exhaustive solver for graphs with 8 or less

vertices and run a randomized approximation algorithm

[8] for larger graphs.

A
B

C

A

B1

C

B2

Figure 3 – simple mosaic containing a moving oval

shape and its associated ROD graphs.

In mosaics that contain many mutually overlapping

images, these graphs may become arbitrarily complex as

shown in Figure 4. There are several points worth

noting in these graphs. There may be a group of images

that do not all overlap with each other, but all overlap

with a ROD of at least one of the images (Figure 4).

Similarly, it is possible to have two RODs from the same

image in the same graph. However, by definition, they

do not overlap, and thus do not share an edge.

Therefore, edges connect only regions of different

images.

A B
C D

A B

C D

Figure 4 – Mosaic containing moving star shape plus

associated ROD graph.

The method of minimum weight vertex cover is not

failsafe, however. The solutions to the weighted vertex

cover for the graph in Figure 4 might be CB, ABD or

ACD. If CB were chosen as the solution, this would

eliminate pixel data for images C and B in their RODs,

thus causing a hole in the mosaic wherever the RODs for

A or D overlap C and D. In practice however we find
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that this situation is rare. Due to the high weight placed

on large and central RODs the chosen solution is usually

one of ABD or ACD. To eliminate this artifact we

detect when it occurs and in those regions we fall back

to the fully composited mosaic.

3. Exposure Artifacts

When capturing images to create mosaics, automatic

cameras often change their exposure settings. Even if

the images are blended in the areas of overlap, if the

exposure difference between images is too high, it will

give the panorama a creased look around the edges of

the overlap. Feathering [10] the effect of the blend into

the rest of the image will help remove creases, but the

exposure change will still be too abrupt to appear natural

(Figure 7).

Exposure differences can also confuse the previously

described de-ghosting algorithm, causing it to interpret

differences across images as moving objects. Thus, it is

important to have an exposure compensation step prior

to de-ghosting. Ideally we would do a full radiometric

calibration of the camera; however given limited input

data this is infeasible for many mosaics.

To eliminate exposure adjustment artifacts in mosaics,

we need to apply a transfer function to an input image to

make it look more like its neighbors. This becomes

complex as the number of overlapping neighbors

increases. To alleviate this complexity, we have

developed a block-based exposure adjustment technique.

This allows us to vary the image’s transfer function as it

overlaps with differently exposed neighbors.

Each image is divided into blocks. The block size is

variable in our implementation, but we have found that

32x32 usually gives good results. Within each block, we

compute a quadratic transfer function that in a least-

squares sense best maps, in luminance, this image block

to the composite of images overlapping this block. We

may then iterate and use the adjusted composite as the

reference for the next step. In our implementation we

find the 3 iterations yields good results.

As with many block-based algorithms the results of

simply applying the transfer function in isolation within

the block are too “blocky” (Figure 7-B). To smooth the

variation in the transfer function distributions, we use a

combination of two techniques. First, we average the

functions in each patch with those of their neighbors. In

our implementation, we use an iterated separable kernel

of (¼, ½, ¼), and typically use 2 iterations.

Second, for each pixel, we blend the results of applying

the transfer function from neighboring patches. This can

be done using bilinear or biquadratic interpolators as

shown in Equation 1. The resulting pixel values are the

same as if we had interpolated a separate function for

each pixel, but since we implement the transfer function

using a look-up table, the computational cost is much

smaller.
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Equation 1 – interpolated transfer function

Of course, exposure is not the only reason images might

be different. Other effects such as vignetting may also

cause image differences. An advantage of our method is

that rather than attempting to solve a parametric model

for such complex camera characteristics, the mapping of

pixel values varies smoothly across the image and will

locally compensate for the previously mentioned effects.

4. Results

Figures 5 and 6 show the results of our de-ghosting

algorithm. In both cases, the algorithm was set with the

same parameters and ran completely automatically. In

figure 5 a four image mosaic is shown. Notice how the

individual images that comprise the mosaic contained

moving objects. When a basic image registration and

blending algorithm [1] is applied (figure 5-A) the

moving objects appear as “ghosts”. Since they did not

remain in the same position between images they are

blended with the background. Figure 5-B is the result of

applying our de-ghosting algorithm. Notice that the

image of the person in the far right was ghosted in the

original while our algorithm removes this ghost in the

result.

In figure 6, the algorithm is applied to a much more

difficult sequence. Notice that many moving objects are

contained in this scene in which many images have

significant overlap. Figure 6-A shows the results of a
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(A) (B)

Figure 5 – (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.

(A)

(B)

Figure 6 – (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.
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simple registration and blend. Applying our algorithm

to this mosaic yields the result in Figure 6-B. Again

notice the significant reduction in ghosting.

In Figure 7, we demonstrate the results of the exposure

compensation algorithm. We used a block size of 32x32

for all exposure compensation results presented here.

Two images with significant exposure differences are

registered and feathered as shown in Figure 7-A. Notice

the sharp transition between images in the center of the

mosaic. If we simply do block based exposure

adjustment we get the result in 7-B. After applying the

smoothing of the transfer functions we get the result in

Figure 7-C.

Our final example, shown in Figure 8, contains both

exposure differences and moving objects. In the mosaic

in Figure 8-A notice the sharp transition in the sky

caused by exposure differences, as well as the people

moving in the scene. Figure 8-B shows the result of

applying exposure compensation followed by the de-

ghosting algorithm. Notice that both types of artifacts

are removed, resulting in a much better looking mosaic.

(A) (B)

(C)

Figure 7 – (A) 2 image mosaic with exposure differences. (B) Blocky result before smooth interpolation of transfer

functions (C) Result of the exposure compensation algorithm.
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(A)

(B)

Figure 8 (A) Mosaic which contains both ghost and exposure artifacts. (B) Result of applying exposure

compensation followed by ghost removal.

5. Conclusion

Panoramic photography presents several problems in

creating a seamless mosaic. In this paper we have

presented novel algorithms for fixing two such common

problems. In order to remove ghost effects caused by

moving objects, we use a weighted vertex cover

algorithm. Although there are still cases of duplicate

images and holes, using the minimum cost directly

minimizes these effects.

In order to obtain a good difference metric for use in de-

ghosting, and for creating a smooth, natural looking

image, exposure adjustment was also needed. We

presented an algorithm of block-based adjustment,

which alters the pixel values using a weighted average of

lookup tables from nearby parts of the image. By

altering the image in blocks, it is possible to adjust

scenes where a single change in exposure would result in

an under or overexposed image. In addition, taking into

account local and overlap information for every pixel

allows for smooth transitions not only between

overlapping images, but within an image containing

multiple regions of overlap.
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