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Eliminating Multiple Root Problems
in Estimation
Christopher G. Small, Jinfang Wang and Zejiang Yang

Abstract. Estimating functions, such as the score or quasiscore, can
have more than one root. In many of these cases, theory tells us that
there is a unique consistent root of the estimating function. However,
in practice, there may be considerable doubt as to which root is appro-
priate as a parameter estimate. The problem is of practical importance
to data analysts and theoretically challenging as well. In this paper, we
review the literature on this problem. A variety of examples are pro-
vided to illustrate the diversity of situations in which multiple roots can
arise. Some methods are suggested to investigate the possibility of mul-
tiple roots, search for all roots and compute the distributions of the roots.
Various approaches are discussed for selecting among the roots. These
methods include (1) iterating from consistent estimators, (2) examining
the asymptotics when explicit formulas for roots are available, (3) test-
ing the consistency of each root, (4) selecting by bootstrapping and (5)
using information-theoretic methods for certain parametric models. As
an alternative approach to the problem, we consider how an estimating
function can be modified to reduce the number of roots. Finally, we sur-
vey some techniques of artificial likelihoods for semiparametric models
and discuss their relationship to the multiple root problem.

Key words and phrases: Bootstrapping, consistent root, estimating func-
tions, likelihood, multiple roots, Newton–Raphson iteration, parameter,
quasilikelihood.

1. INTRODUCTION

As it is usually defined, a point estimator is a
function of a random sample which takes values
within a parameter space. In practice, however, it
is typically only in rather simple models, such as
the linear model for regression or the exponential
family model for parametric inference, that the best
point estimators can be constructed explicitly as a
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function of the sample. For many other important
models, the construction of a point estimator is more
computationally intensive and involves an iteration
to search for a solution to one or more estimating
equations of the form g�θ� = 0, where g�θ� is a
function of the data. The construction of maximum
likelihood estimators, where

g�θ� = ∂

∂θ
logL�θ�

and L is the likelihood function, is a case in point.
In most cases, the likelihood equations cannot be
solved explicitly, and the investigator must resort
to some numerical method to construct a point esti-
mate. After the initial enthusiasm for the method
of maximum likelihood proposed by Fisher (1925),
questions arose as to the existence and uniqueness
of a root of the likelihood equation and whether that
root corresponded to a maximum of the likelihood
function.
As Huzurbazar (1948) noted, proofs of the con-

sistency and asymptotic efficiency of the maximum
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likelihood estimator were more properly proofs of
the existence of a consistent and asymptotically
efficient root of the likelihood equations. However,
such a root could also be a local minimum of the
likelihood, unless proven otherwise. It was Huzur-
bazar (1948) who showed that a consistent root of
the likelihood equation is asymptotically unique
and corresponds to a local maximum of the like-
lihood function. More precisely, if θ̂1n and θ̂2n are
two consistent roots of the likelihood equation for a
sample of size n, then P�θ̂1n = θ̂2n� → 1 as n → ∞.
The standard regularity due to Cramér is assumed.
It should be noted that this result of Huzurbazar
has no implications for the existence of extraneous
inconsistent solutions of the likelihood equation.
Simple as this result of Huzurbazar would

appear to be, the statement that consistent roots
are asymptotically unique must be treated with
care. This is because a root θ̂n is not merely a real
number, but is most appropriately understood as a
function θ̂n = θ̂n�y1� 	 	 	 � yn� with the property that(

∂ logL
∂θ

)
θ=θ̂n

= 0	

So if the likelihood equation has multiple roots, then
it has infinitely many roots if these are understood
to be infinitely many distinct functions. In partic-
ular, it will have infinitely many distinct consis-
tent roots, understood in the same sense. Of course,
it was Huzurbazar’s result that all such distinct
consistent roots are asymptotically equivalent. Perl-
man (1983) provided a more precise formulation of
Huzurbazar’s result, by showing that for sufficiently
small δ > 0, with probability 1 there exists exactly
one solution to the likelihood equation in the inter-
val �θ0−δ, θ0+δ
 for all but finitely many n, where
θ0 is the true value of the parameter.
The numerical problem of finding all the roots

of the likelihood equation was considered by Bar-
nett (1966). In view of the advances in computa-
tion that have been made since the 1960’s, some
of the comments in Barnett’s paper are now dated.
However, many of the basic insights about itera-
tive searches for the roots of estimating equations
remain true today. Barnett considered five methods
for iterating toward a root of the likelihood equa-
tion and performed a simulation study of the likeli-
hood equation for the Cauchy location model, which
we will consider in the next section. Barnett (1966)
considered Newton–Raphson iteration

θ̂�i+1� = θ̂�i� − g�θ̂�i��/ġ�θ̂�i���(1)

where ġ represents the derivative of g with respect
to θ and compared it to Fisher’s scoring of parame-
ters and the fixed-derivative Newton method as well

as the method of false positions using the Cauchy
location model as a test case. The method of false
positions is of particular importance for locating a
root in a single-parameter model, or in a model
with several parameters in which all but one of the
parameters can be solved for explicitly. While the
procedure can be generalized into higher dimen-
sions, the advantage of using the method of false
positions is that for a continuous real-valued esti-
mating function, the procedure is guaranteed to con-
verge to a root—a guarantee provided by the inter-
mediate value theorem.
A survey of the modern theory of efficient likeli-

hood estimation for likelihoods with multiple local
maxima can be found in Lehmann (1983, pages 420–
427). In particular, if θ̂�1� is a

√
n-consistent esti-

mator for θ, then the one-step estimator θ̂�2�, found
by applying Newton–Raphson iteration (1) to θ̂�1�,
will be asymptotically efficient. While this seems
to provide a satisfactory theory for root approxima-
tion and selection, it raises the problem of how to
appropriately select a good

√
n-consistent estima-

tor. Asymptotic considerations can only take us so
far: there are infinitely many asymptotically effi-
cient estimators which can be constructed even in
the most regular of models. How to choose among
them remains a problem.
Recently, attention has turned to the problem of

multiple roots which arise with more general esti-
mating equations. An example is the quasiscore,
defined by

g�θ� =
n∑

j=1

µ̇j�θ�
σ2j�θ� �Yj − µj�θ�
�(2)

where µj�θ� = Eθ�Yj�, σ2j�θ� = Varθ�Yj�, and once
again the dot operator denotes differentiation with
respect to θ. This, and many other such estimating
functions, are unbiased, so that

Eθ�g�θ�
 = 0(3)

for all θ ∈ �, and, additionally, information unbi-
ased, so that

− Eθ�ġ�θ�
 = Eθ�gt�θ�g�θ�
(4)

for all θ, where g is a 1 × k row vector and ġ�θ�
is the k × k matrix of partial derivatives of g
with respect to θ. However, while these are stan-
dard properties of estimating functions, neither
property is essential for studying the phenomenon
of multiple roots. Under mild regularity, an esti-
mating function will have a consistent root. See
Crowder (1986). In addition, under reasonable reg-
ularity, any consistent root of g is unique with
probability tending to 1; see Tzavelas (1998) for a
proof of uniqueness for quasiscore functions. Thus
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in these, and many other cases, our central interest
is how the consistent root of the estimating function
can be determined.
While many of the multiple root issues for esti-

mating functions are identical to multiple root
problems for the likelihood equations, the major
difference is that estimating functions cannot typi-
cally be represented as the derivative of an objective
function, such as the log-likelihood. This means that
it is not possible to distinguish between the roots of
a general estimating function as a likelihood does
among its relative maxima (McCullagh, 1991). An
exception to this is the case where we have an esti-
mating function for a real-valued parameter. If θ is
a real-valued parameter, it is possible to artificially
construct an objective function, say λ�θ�, whose
derivative is g�θ� by integrating the estimating
function

λ�θ� =
∫ θ

θ0

g�η�dη	(5)

Here θ0 is arbitrary and may be chosen for computa-
tional convenience. If g is the score function, then,
up to an additive constant, λ is the log-likelihood.
On the other hand, if g is the quasiscore function,
then λ, as defined by (5), is the quasilikelihood. See
McCullagh and Nelder (1989). However, for estimat-
ing functions other than the score function, λ�θ�
is not justified by the usual theoretical considera-
tions which justify likelihoods directly as measures
of agreement between parameters and data. More-
over, when θ is a vector-valued parameter, the esti-
mating function g also becomes vector-valued, and
the line integral

λ�θ� =
∫ θ

θ0

g�η�dηt(6)

is typically path-dependent. Therefore it is not well
defined. If g is the score vector, this ambiguity is
avoided, because the vector field defined by g on �
is conservative, being the gradient vector field of the
log-likelihood. If g�θ� is a conservative vector field,
then (6) is path-independent. However, this is not
the case for general estimating functions such as
quasi-score functions and others.
This paper is organized as follows. In Section 2 we

consider a number of examples of estimating func-
tions with multiple roots. In Section 3, we consider
methods to detect the presence and probability of
multiple roots. In Section 4, we consider methods
for choosing a root of an estimating function when
more than one root is present. In Section 5 we con-
sider an alternative to this: the modification of an
estimating function with multiple roots so that the
number of roots is reduced. Finally, in Section 6, we

consider how to build objective functions, that is,
analogs of likelihoods, so as to compare the plausi-
bility of various roots as is accomplished by likeli-
hood analysis.

2. EXAMPLES

2.1 Estimation of the Correlation Coefficient

Consider a set of independent bivariate observa-
tions �xi� yi�, i = 1� 	 	 	 � n, from a bivariate normal
distribution which is standardized to have means
µx = µy = 0 and variances σ2x = σ2y = 1. We
assume that there is an unknown correlation coeffi-
cient ρ between any xi and yi. The likelihood equa-
tion l̇�ρ� = 0, where l�ρ� = logL�ρ�, reduces to

P�ρ� =ρ�1− ρ2� + �1+ ρ2�
�
xy

n

− ρ

[��x2 + y2�
n

]
= 0�

(7)

which can have as many as three real roots in the
interval �−1� 1�. If three roots are present, then
these will correspond to two relative maxima and
one relative minimum of the likelihood.
We can check to see when this cubic equation is

monotone by investigating the number of distinct
real solutions to the quadratic equation Ṗ�ρ� = 0.
The cubicP�ρ� will be monotone, and therefore have
a unique real root, when Ṗ�ρ� = 0 has at most one
real solution. In turn, this will be true if the dis-
criminant of the quadratic

D = 4
(�

xy

n

)2
+ 12

[
1−

��x2 + y2�
n

]
is zero or strictly negative. From the law of large
numbers, we see that D converges to 4ρ2 − 12 as
n → ∞. So with probability converging to 1, the
likelihood equation will have a unique root for large
sample sizes.
To analyze this cubic equation further, let us

define S1 = �
xy/n and S2 = ��x2 + y2�/n. The

pair �S1� S2� forms a minimal sufficient statistic
for the estimation of ρ. Next, we perform a location
shift z = ρ − S1/3. Equation (7) reduces to

z3 + a�S1� S2� z + b�S1� S2� = 0	(8)

We can study the multiple solutions to this equa-
tion by plotting in �3 all points �a� b� z�, where z is
a root of (8) with given coefficients a and b. Figure 1
shows the surface so obtained. The resulting sur-
face is an example of the well-known cusp catastro-
phe. With this interpretation, the coefficients a and
b represent control parameters for the cusp catas-
trophe. In the control space, the projection of the
folds of the surface defines the separatrix, whose
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Fig. 1. The cusp surface with the roots as functions of the control
parameters.

equations in �a� b� are 4a3 + 27b2 = 0. The sepa-
ratrix divides the control space into two regions. In
the first region, 4a3 + 27b2 > 0, and there is a sin-
gle root. In the other region where 4a3 + 27b2 < 0,
the surface folds back on itself, so that there are
three roots. The point a = b = 0 defines the con-
trol parameters of the cusp catastrophe where the
two fold lines of the separatrix meet. See Figure 2.
The reader is referred to Gilmore (1981, page 61)
for more on the theory of the cusp catastrophe. The

Fig. 2. The separatrix dividing the control space into two
regions.

detailed analysis of the likelihood function and its
extrema can be found in Stuart and Ord (1991).

2.2 Cauchy Location Model

The previous example may suggest that multi-
ple root problems are small sample issues which
will disappear for sufficiently large sample sizes.
This commonly held belief is unfortunately too opti-
mistic, as the following example illustrates. Sup-
pose n variates are drawn independently from a
Cauchy location model with common density func-
tion f�y� θ� = 1/�π�1 + �y − θ�2
�. The likelihood
equation becomes

n∑
i=1

2�yi − θ�
1+ �yi − θ�2 = 0	

Upon taking a common denominator, the solution
set for this equation is equivalent to that of

n∑
i=1

{
�yi − θ� ∏

j �=i

�1+ �yj − θ�2

}

= 0�

which is a polynomial equation of degree 2n−1. For
extreme configurations of highly separated variates,
the polynomial equation admits a full 2n−1 distinct
solutions, corresponding to n relative maxima and
n−1 relative minima of the likelihood. Fortunately,
as Reeds (1985) has shown, this extreme situation is
rare. As n → ∞, the asymptotic distribution of the
number of relative maxima of the Cauchy likelihood
converges to that of 1+ M, where M has a Poisson
distribution with mean 1/π. A consequence of this
is that the number of extraneous local maxima of
the likelihood will be positive with an asymptotic
probability given by 1 − e−1/π ≈ 0	2726, which is
less than one time in three. However, the probability
that extraneous roots occur does not go to zero as
the sample size gets large. See Figure 3.
A postscript to the investigation of the Cauchy

distribution has been provided by Copas (1975),
who showed that if the Cauchy location model
is extended to include a scale parameter τ, then
with probability 1 there is a unique solution to the
simultaneous likelihood equations ∂L/∂θ = 0 and
∂L/∂τ = 0. The solution to these equations fails to
be unique only if exactly 50% of the data values
are coincident at some y1 and the other 50% are
coincident at some y2. The other case worthy of
special consideration occurs when more than 50%
of the values are coincident at a point y. In this
case there is no solution to the likelihood equations,
and the likelihood is maximized on the boundary of
the parameter space with θ̂ = y and τ̂ = 0. Both of
these special cases have probability 0.
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Fig. 3. The score function for the Cauchy location model with
an outlier producing extraneous roots.

2.3 An Inconsistent Global Maximum of
the Likelihood

In the previous example, the problem of multiple
solutions for the likelihood equation did not disap-
pear asymptotically. Nevertheless, we could reason-
ably expect to order the roots of the score function
as estimators by calculating the likelihood at each
root. The most appropriate root under this criterion
would be that which globally maximizes the likeli-
hood.
However, the usual Cramér conditions that are

imposed for the asymptotic efficiency of the maxi-
mum likelihood estimate only ensure that the con-
sistent root of the likelihood equations is efficient;
there is no guarantee that the global maximum of
the likelihood corresponds to a consistent root. So,
in the absence of any regularity on the model, it is
possible for this strategy to come undone for some
parametric models. Examples due to Kraft and Le
Cam (1956), Le Cam (1979), Bahadur (1958) and
Ferguson (1982) illustrate that the global maximum
of the likelihood can correspond to an inconsistent
root of the score function; at the same time, some
other root of the score function is a consistent esti-
mator for the parameter. See also Le Cam (1990)
and Example 3.1 in Lehmann (1983), Chapter 6.
While inconsistent maximum likelihood estimates
are well known from the examples of Neyman and
Scott (1948), the examples due to Kraft and Le
Cam and others are more problematic for likelihood
methodology. This is because they do not involve
the use of nuisance parameters, and satisfy the reg-
ularity conditions of Cramér (1946); at the same

time, the global maximum likelihood estimator
(MLE) is inconsistent. While it is possible to invoke
regularity conditions such as those of Wald (1949)
to ensure that the global maximum likelihood esti-
mate is consistent, the conditions are difficult to
check for models involving multiple roots. As the
examples above show, the Wald conditions can fail
for models which are, in other respects, regular.

2.4 Estimating the Normal Mean in
Stratified Sampling

Suppose that random variables yij are indepen-
dentN�ξ� σ2i � and are divided intom strata, the ith
stratum consisting of the variables yi1, yi2� 	 	 	 � yini

.
Let ȳi = �

j yij/ni and s2i = �
j�yij − ȳi�2/ni denote

the sample mean and variance, respectively, in
stratum i. Suppose we are interested in estimat-
ing the common mean ξ based on yi1� 	 	 	 � yini

for
i = 1� 	 	 	 �m. The maximum likelihood estimator
for ξ is consistent but not efficient. For instance, it
is less efficient than the estimator derived from the
estimating equation

m∑
i=1

wi

ȳi − ξ

s2i + �ȳi − ξ�2 = 0(9)

with wi = ni−2 as advocated by Bartlett (1936) and
Neyman and Scott (1948). A profile likelihood theory
(Barndorff-Nielsen, 1983) leads to the same estimat-
ing equation (9) with wi = ni. Sufficiency and ancil-
larity arguments (Kalbfleisch and Sprott, 1970) also
leads to the same equation (9) but with wi = ni − 1.
Chaubey and Gabor (1981) noted that the profile

likelihood may well be multimodal. Moreover, the
class of estimating functions defined in (9) generally
admits multiple roots (Barndorff-Nielsen, 1983).
The geometric structure of roots to this class of
estimating functions is essentially the same as
the problem in the Cauchy location model. While
the estimating equations are formally similar, the
Cauchy and stratified normal models are quite dif-
ferent; hence the probabilities of multiple roots
arising in the two models are different.

2.5 Regression with Measurement Error

Stefanski and Carroll (1987) have considered gen-
eralized linear models in which the covariates can-
not be observed directly, but can only be measured
with a certain amount of measurement error. Sup-
pose that Y has density

fY�y� α� β� φ� u�

= exp
[
y �α + βu� − b�α + βu�

a�φ� + c�y� φ�
]
�

(10)
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where α and φ are unknown parameters, β is a
row vector of parameters, u is a column vector of
covariates, and a�·�, b�·� and c�·� ·� are known real-
valued functions. Suppose that we cannot observe
u, but can observe X = u+ ε, etc. where ε has zero
as its mean vector and covariance matrix a�φ�3,
where 3 is known. A sample �xi� yi�, i = 1� 	 	 	 � n of
independent observations is given. For convenience
we represent the full vector of parameters �α�β�φ�
by θ.
In this model, the covariates u1� 	 	 	 � un act as

nuisance parameters for the problem of estimating
θ. Stefanski and Carroll (1987) eliminated the nui-
sance parameters from the model by conditioning
the joint density

n∏
i=1

fX�Y�xi� yi� θ�ui�

on a complete sufficient statistic for �u1� 	 	 	 � un�,
namely δ = x + y3βt. So an estimating equation
for θ has the form

g�θ� =
n∑

i=1
r�xi� yi� θ� = 0�

where

r�x�y� θ� = ∂

∂θ
log fY�δ�y�δ� θ�

is the score function for the conditional model of Y
given δ, which does not depend upon u.
Stefanski and Carroll considered the special case

whereY has a normal distribution with mean α+βu
and variance σ2, and found that in general the esti-
mating equation g�θ� = 0 has multiple solutions.
Stefanski and Carroll also reported that a similar
problem of multiple roots arises in logistic regres-
sion with errors in covariates. In this case, Y is
assumed to be a binary random variable with mean
p, which relates to �α�β� through the canonical link

log
(

p

1− p

)
= α + βu	

We also assume the additive error modelX = u+ε.
Further analysis of this model can be found in Han-
felt and Liang (1995, 1997), where an objective func-
tion is constructed by a path-dependent integration
approach.

2.6 Weighted Likelihood Equations

Markatou, Basu and Lindsay (1998) have pro-
posed a modification of the likelihood method for
data in which there is some suspicion that some
observations may not be correctly modeled. They
have introduced a weighting function to the likeli-
hood equation which adaptively downweights those

observations which appear to be inconsistent with
the model. The weighted likelihood equations pro-
posed take the form

n∑
j=1

wj�yj�β� F̂�g�θ� yj�	(11)

Here y1� 	 	 	 � yn are assumed to be a random sam-
ple from the distribution F = Fθ, and F̂ denotes
the empirical distribution function. The function g
could be an appropriately chosen estimating func-
tion for a single observation from Fθ. However, the
authors specialize to the case where g is the (vector-
valued) score function for θ based upon a single
observation from F.
The weight function w is assumed to take val-

ues in the interval �0� 1
. In particular, w�yj�β� F̂�
will be close to 1 provided that in a neighborhood
of the variable yj the empirical distribution F̂ is
concordant with the model distribution associated
with the given value β of the parameter. The value
of w is close to 0 when there is a large discordance
between F̂ and the model in a neighborhood of yj.
In the case where the data are discrete, Markatou,
Basu and Lindsay define the “neighborhood about
yj” to be the point yj itself. A degree of concordance
between the model and the data can be constructed
by from a Pearson residual, defined for a random
sample of size n as δ�yj�, where

δ�t� = n−1 #�yk� yk = t�
Pβ�yk = t� − 1	(12)

The weight function w is then defined as

w = 1− δ2

�δ + 2�2 	

In the continuous case, definition (12) is replaced by

δ�t� =
∫
k�y� t�dF̂�y�∫
k�y� t�dFβ�y� − 1�

where k is some smooth kernel appropriate for ker-
nel density estimation.
Markatou, Basu and Lindsay noted that such

weighted equations can admit multiple roots. For
example, they considered data of Lubischew (1962)
describing bivariate measurements of two species of
beetles. There were 21 bivariate observations for the
species Chaetocnema concinna and 22 such obser-
vations for the species Chaetocnema heptapotamica.
To test the method, the two species were artificially
pooled, and a weighted likelihood estimate for the
location of a bivariate normal distribution was con-
ducted. The results were in agreement with the
data: the weighting successfully separated the data
by providing two roots as location estimates, one
for each species.
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3. DIAGNOSING MULTIPLE ROOT PROBLEMS

How can the researcher detect the possibility that
an estimating equation can have multiple roots?
When an equation can have multiple roots, do mul-
tiple root problems arise with a reasonably large
probability? Having found one or more roots of an
estimating equation, how can we be sure that there
are no additional roots that remain undetected?
Finally, without actually solving an equation, can
we compute the distribution of multiple roots? In
this section, we shall answer these questions in
turn.

3.1 Detecting the Presence of Multiple Roots

First, we consider when an estimating function
can have multiple roots. Perhaps the most common
way of proving that the likelihood equations have a
unique root is to show that the Hessian matrix

l̈�θ� =
(
∂2l�θ�
∂θj ∂θk

)
(13)

of the log-likelihood l�θ� is negative definite for all
values of θ. However, this is more than needs to be
proved. In fact, we need only show that the Hessian
matrix is negative definite at the stationary points
of the log-likelihood. In particular, suppose that the
parameter space � is an open, connected subset of
�k. Let l� � → � be a twice continuously differ-
entiable log-likelihood function on � such that the
global maximum of l�θ� is achieved at some point in
�. Next, we assume that l�θ� → −∞ as θ goes to the
boundary of �. (Note that the boundary may include
the points at infinity if � is unbounded.) Finally,
suppose that for all θ̂ ∈ � satisfying l̇�θ̂� = 0, the
Hessian matrix l̈�θ̂� is negative definite. Then the
equation l̇�θ̂� = 0 will have a unique solution in �.
An illustration of this idea can be found in Fig-

ure 4. If two local maxima were to exist, then
there would also be a saddle point of the like-
lihood surface where the likelihood equations

Fig. 4. A likelihood with two or more maxima must have a sad-
dle point where the Hessian matrix is not negative definite.

would be satisfied, but the Hessian matrix would
not be negative definite. Note that the concav-
ity of the log-likelihood is not invariant under a
reparametrization of the parameter space. Thus
the Hessian matrix of a model may not be negative
definite while the Hessian matrix of the likelihood
under reparametrization may be negative definite.
However, if the Hessian matrix is negative defi-
nite at any solution to the likelihood equations,
it will also be negative definite at a solution in a
reparametrized model.
An argument based upon l̈�θ̂� was used by

Copas (1975) to show that the Cauchy location–
scale model has a unique MLE. In another example,
Huzurbazar (1948) showed that linear exponential
families have unique solutions to their likelihood
equations under mild regularity. This follows from
a special identity for exponential families, namely
l̈�θ̂� = −I�θ̂�, where I�θ� is the expected infor-
mation matrix. Under standard conditions, the
expected information matrix is positive definite. So
it follows that the root of the likelihood equation
for an exponential family is unique. Note that if θ
is the natural parameter of the exponential family,
then the identity l̈�θ� = −I�θ� holds for all θ. How-
ever, the equation l̈�θ̂� = −I�θ̂� holds even when
θ is not the natural parameter, because the condi-
tion is invariant under smooth reparametrizations
of the parameter space.
In models where the Hessian matrix fails to

be negative definite, multiple root problems need
investigation. However, the researcher should avoid
the trap of presuming that the negative definite-
ness of the Hessian matrix is necessary for the
uniqueness of the root. An interesting case in point
is provided by the Tobit model, where

y∗
i = βxt

i + εi�

yi = max�0� y∗
i�

for i = 1� 	 	 	 � n. In this model, xi is a vector of
covariates, β is a coefficient vector and ε1� 	 	 	 εn
are independent N�0� σ2� error terms. The ran-
dom variable y∗

i is not observed directly. Rather,
we observe yi. That is, y

∗
i is observed only if it is

nonnegative. Amemiya (1973) noticed that the Hes-
sian matrix for the parameter vector θ = �β�σ2�
is not negative definite. Thus the question of mul-
tiple roots arose. However, Olsen (1978) showed
that by letting ζ = β/σ and ξ = 1/σ the Hessian
is negative definite in the new parametrization
with θ = �ζ� ξ�. So multiple roots cannot occur.
See Amemiya (1973), Greene (1990), Olsen (1978),
Orme (1990) and Iwata (1993) for discussion of this
model. Burridge (1981) discusses the concavity of



320 C. G. SMALL, J. WANG AND Z. YANG

the log-likelihood function in the case of regression
with grouped data. See also Pratt (1981).
The task of detecting multiple roots for estimat-

ing functions in general is more problematic than
that for the likelihood equations, as there may not
exist a statistically meaningful objective function
whose stationary points correspond to roots of the
estimating equation. Some geometrical insight into
the nature of an estimating function can be obtained
by interpreting a vector-valued estimating function
g�θ� as a vector field on the parameter space �.
There are two possibilities:

1. The matrix ġ�θ� is symmetric for all θ and all
samples y1� 	 	 	 � yn. In this case the vector field
is conservative so that there exists a real-valued
function λ�θ� such that g�θ� = ∇λ�θ�. The func-
tion λ could be a log-likelihood or, in the case
where the estimating function g is both unbi-
ased as in (3) and information unbiased as in (4),
may share some of the properties that are typi-
cally associated with log-likelihoods. In the case
where � is one-dimensional, the symmetry con-
dition is trivially satisfied.
As ġ is symmetric, its eigenvalues will all be real.
Those points θ̂ ∈ � at which λ has a local maxi-
mum will correspond to points where the vector
field g vanishes and the eigenvalues of ġ are all
negative. Similarly, points at which λ is locally
minimized will correspond to θ̂ ∈ � where g van-
ishes and the eigenvalues will all be positive.
Saddle points of λ will occur where g vanishes
and the eigenvalues are mixtures of positive and
negative quantities.

2. The matrix ġ�θ� is not symmetric in general.
In this case, there will be no objective function
whose gradient is g�θ�. The points in � where
the vector field vanishes will correspond to the
roots of g�θ�.
Despite the absence of an objective function,
we can nevertheless determine roots of g�θ�
which are analogs of local maxima and other
roots which are analogs of local minima. To
do this we investigate the eigenvalues of ġ�θ�.
Let κ1�θ�� κ2�θ�� 	 	 	 � κk�θ� be the eigenvalues of
ġ�θ�, in arbitrary order, where k = dim���. As ġ
is not symmetric, these eigenvalues will gener-
ally be complex-valued. Therefore, we can write
each eigenvalue in terms of its real and imagi-
nary parts as ��κj�θ�
 + √−1��κj�θ�
. A point
θ̂ ∈ � where g�θ̂� = 0 and where

��κ1�θ̂�
� ��κ2�θ̂�
� 	 	 	 � ��κk�θ̂�
(14)

are all negative is a sink for the flow of the vector
field determined by g�θ�. Figure 5 shows a non-

Fig. 5. A nonconservative vector field which vanishes at exactly
two distinct points, both of which are sinks.

conservative vector field with two sinks. Simi-
larly, if the k eigenvalues have real parts that
are all positive, the point θ̂ is a source of the flow
determined by the vector field.
Although an objective function does not exist,
there may exist analogs of maxima and minima
among the roots of the estimating function. A
sink of a vector field corresponds to a local max-
imum whereas a source corresponds to a local
minimum. So it is natural to consider whether
there is an immediate generalization of the
uniqueness result illustrated in Figure 4 to the
case where the vector field defined by g�θ� is
not conservative. In other words, if a vector field
is such that all points at which it vanishes are
sinks, is it true that there can be at most one
such point? Unfortunately, this generalization is
false as Figure 5 demonstrates. Because there is
a rotational component to the vector field, there
does not exist an analog of a saddle point at
which the vector field vanishes in the parameter
space.

3.2 Finding All the Roots

Next, we turn our attention to the problem of
detecting all roots for estimating functions which
admit the possibility of multiple roots. In princi-
ple, a careful search in the parameter space should
uncover all the roots of any given estimating func-
tion. However, in practice, this may be far too time-
consuming, especially if the parameter space is of
high dimension.
Markatou, Basu and Lindsay (1998) have incor-

porated a bootstrap root search into their analysis
of the roots of weighted likelihood equations. As this
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method seems applicable to a wide variety of esti-
mating functions, we now give a brief description
of the method. We begin by noting that the roots
of an estimating function can often be divided into
reasonable roots, which, upon examination, can be
considered as candidates for estimation, and unrea-
sonable roots, which arise in the estimating function
for incidental reasons that have little to do with
estimation. For example, the local maxima of the
likelihood for the Cauchy location model can all be
regarded as reasonable in this sense. However, the
local minima are unreasonable and only arise from
the fact that two local maxima must have a local
minimum between them. We note also that, in many
cases, all reasonable roots of an estimating function
are those which are supported by some subset of the
data. For example, in the case of the Cauchy location
model, each relative maximum either is “caused” by
a visual outlier (i.e., supported by an outlying obser-
vation) or is the consistent root that is supported
by the majority of the observations which lie in the
center of the Cauchy distribution. The unreasonable
local minima are not supported by observations or
subsets of observations in this sense.
Suppose that y1� 	 	 	 � yn are n independent obser-

vations from some distribution with parameter θ.
Let m ≤ n be the minimum number needed for the
equation

g�θ̂� yi1
� yi2

� 	 	 	 � yim
� = 0

to have a solution for all subsets yi1
� yi2

� 	 	 	 � yim
of

size m with probability 1. Typically, m will be the
dimension of the parameter space, although coun-
terexamples to this can be found.
Markatou, Basu and Lindsay proposed that boot-

strap samples y∗
1� 	 	 	 � y

∗
m of size m be constructed

by sampling m distinct elements of the data set
y1� 	 	 	 � yn. For each such bootstrap sample, the root
θ∗ found by solving

g�θ�y∗
1� 	 	 	 � y

∗
m� = 0

is to be used as a starting point for an appropriate
algorithm which iterates to a root of the equation
g�θ�y1� 	 	 	 � yn� = 0.
So for estimating the location parameter θ of the

Cauchy location model using the likelihood equa-
tions, we will havem = 1. As the MLE for θ based on
a sample of size 1 is the observation θ∗ = yj, itself,
the set of roots obtained would be those found by
using iteration from the n original sample observa-
tions. In those estimation problems where

(
n
m

) ≤ 100
it is possible to do an exhaustive systematic search
of all such starting points by using all subsets. For(
n
m

)
> 100, Markatou, Basu and Lindsay reported

that randomization with 100 bootstrap samples is

sufficient, in the cases they considered, to ensure
that all reasonable roots are detected.
An approach to root detection by placing a proba-

bility distribution on the parameter space has been
proposed by Finch, Mendell and Thode (1989). Their
method provides a way to estimate the probabil-
ity that an iterative search from a random starting
point (RSP) will find a root not observed in previous
searches from RSP’s. Suppose that some probability
distribution π is placed upon the parameter space.
We begin by generating a random sample of size
r from the distribution π, and useing each of these
RSP’s as the r initial values of an algorithm, such as
Newton–Raphson, which searches for roots. In gen-
eral, these r iterative trials will converge to a num-
ber of roots of the estimating function which we can
write as θ̂1� 	 	 	 � θ̂K, where K ≤ r is a random vari-
able. For each j = 1� 	 	 	 �K, let Dj be the domain
of convergence of the algorithm to θ̂j. The num-
ber of undetected roots cannot be estimated from
θ̂1� 	 	 	 � θ̂K. However, it is possible to estimate

Ur = 1−
K∑
j=1

π�Dj�	(15)

As Dj is a random set, Ur is itself a random vari-
able. Based upon a suggestion of Good (1953), Finch,
Mendell and Thode (1989) suggested thatUr be esti-
mated by V1 = S/r, where S is the number of
observed θ̂j to which only one of the r RSP’s con-
verged. This estimate can be generalized to

Vt =
t∑

i=1


(
t − 1
i − 1

)
(
r
i

)
Qi�(16)

where Qi is the number of roots among the k dis-
covered to which exactly i RSP’s converged. It can
be shown that E�Vt� = E�Ur−t�.
Through the use of statistics such as Vt, we

can estimate the probability of detecting new roots
with such a random search. So we can use such a
measure to determine whether to continue search-
ing further from additional RSP’s. However, this
does not tell us whether there are roots which are
extremely unlikely to be detected because the choice
of distribution π puts low probability on the domain
of convergence of some root. The major hope for
solving this problem may lie in bootstrap searches
such as that of Markatou, Basu and Lindsay (1998)
mentioned above.

3.3 Distributions of Roots

In some cases, it is possible to determine the num-
ber of roots that an estimating function has without
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Fig. 6. Histogram of the root intensity for the Cauchy location model.

directly finding the roots themselves. This is well
known for polynomial estimating equations, where
Sturm’s theorem can be used to determine the num-
ber of roots in an interval.
Suppose that θ is a real-valued parameter and

that g�θ� is a polynomial in θ. We construct a
Sturm chain for g by defining g0 = g� g1 = ġ and,
for n ≥ 0,

gn�θ� = gn+1�θ�qn+1�θ� − gn+2�θ��(17)

where deggn+2 < deggn+1. That is, −gn+2 is the
remainder term obtained when we divide gn by
gn+1. Eventually, a remainder of zero is reached
as the degree of the polynomials decreases in n.
Next, we define a random variable N�θ� for every
θ ∈ �, where g�θ� �= 0, by letting N�θ� be the
number of sign changes of the sequence g0�θ�,
g1�θ�, g2�θ�� 	 	 	 . Then Sturm’s theorem says that
the number of roots in the interval from a to b is
exactly N�a� − N�b�, where g�a� �= 0, g�b� �= 0. In
counting the number of roots, the theorem requires
that a root with multiplicity greater than 1 be
counted only once.
Sturm’s theorem can be used in simulation stud-

ies of the distributions of roots. If a simulation is
to be performed for more than 10,000 trials, it is
usually too slow to investigate the exact locations of
all roots in each trial. An alternative is to count the
number of roots in successive intervals by construct-
ing the Sturm chain and tabulating the results in a

histogram. Software designed for symbolic compu-
tation with polynomials is particularly convenient
for such simulations because the symbolic algebra
required to construct the Sturm chain can be called
as a subroutine.
Figure 6 shows the results of a simulation study

using MAPLE V for 5,000 trials of sample size n = 5
for the Cauchy location model. Here the true value
of θ was chosen to be zero. The area of each his-
togram bar represents the average number of roots
found in each interval among the trials. Certain fea-
tures are evident from the histogram. First of all,
the presence of the consistent root close to zero is
clear from the large mode at zero. The curious sec-
ondary modes on each side of the primary mode
can be explained by the fact that, when the like-
lihood equation has multiple solutions, it will have
local minima between the maxima. A more detailed
investigation of the roots shows that the upcross-
ings of the score function are the principal cause of
the secondary modes.
If we let the bin widths of the histogram go to

zero, then the limiting form of the histogram will be
a root intensity function ψ� � → �. The character-
izing property of ψ is that, for each measurable set
A ⊂ �,

E
(
NA

) =
∫
A
ψ�θ�dθ�(18)

whereNA is the number of roots that g has inA. In
those cases where g has a unique root with probabil-
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ity 1, NA will be an indicator random variable, and
the left-hand side of (18) will reduce to P�θ̂ ∈ A�. So
for such estimating functions, ψ will be the density
function of θ̂. Like a density function, ψ is defined
except for a set of measure 0 by its integral over all
measurable sets.
The root intensity function is similar to the inten-

sity function of the point process of local maxima
examined by Skovgaard (1990). The only difference
here is that we do not restrict ourselves to roots
that are associated with local maxima. The idea of
applying the root intensity as a diagnostic tool for
the multiple root problem was suggested by Small
and Yang (1999). For many estimating functions, it
is not necessary to find the roots explicitly in order
to compute the root intensity function. Under cer-
tain regularity conditions, the root intensity ψ can
be computed using the random vector Z = gġ−1.
Suppose the vector Z has density function fZ�z�,
where z ∈ �k. Then it can be shown that ψ = fZ�0�.
Note that dependence of ψ and Z upon the param-
eter θ is suppressed in this notation. The regular-
ity conditions necessary to validate this formula are
quite technical. See Skovgaard (1990) for a rigor-
ous formulation of the regularity, and Small and
Yang (1999) for more discussion in connection with
the multiple root problem. The regularity conditions
required for Skovgaard’s formula were generalized
by Jensen and Wood (1999).

4. METHODOLOGIES FOR ROOT SELECTION

We shall now turn to the problem of selecting a
root for estimation when an estimating equation has
multiple solutions. The first method we shall con-
sider has its roots in Fisher’s scoring of parameters
and has been developed by C. R. Rao (1973) and
Lehmann (1983).

4.1 Iterating from Consistent Estimators

For estimating functions with standard regu-
larity, there is a unique consistent root which is
isolated with high probability. More precisely, a
neighborhood of the true value of θ can be found
which contains exactly one root of g with a prob-
ability converging to 1 as n → ∞. So an obvious
strategy for selecting a root of g is to construct
a consistent, albeit inefficient, estimator θ̃ and to
choose that root of g which is closest to the con-
sistent estimator. The concept of the closest root
could be measured by Euclidean distance in �.
However, such a strategy does not pick a root in
a parametrization-equivariant way. An alternative
definition of the closest root to θ̃ is that obtained
by Newton–Raphson iteration with θ̃ as a starting
point.

An estimator θ̃ is said to be
√
n-consistent for θ

provided that
√
n�θ̃ − θ� is bounded in probability

for every θ ∈ �. We define the one-step estimator for
θ to be

θ̃∗ = θ̃ − g�θ̃�ġ−1�θ̃�	(19)

For many estimating functions we can write
√
n�θ̃∗−θ�=−√

ng�θ�ġ−1�θ̃�+�√n�θ̃−θ�
op�1�	(20)

The regularity conditions required for (20) to
hold are similar to those for likelihood estima-
tion found in Lehmann (1983, page 422), suitably
modified for a general estimating function. As√
n�θ̃ − θ� = Op�1�, by definition, the asymptotic

distribution of the standardized statistic
√
n�θ̃∗ −θ�

is the same as that of the first term in (20). For
appropriately regular estimating functions, this
will converge in distribution to N�0� nI−1

g �, where
Ig = Ig�θ� is the Godambe information of the
estimating function g defined by

Ig = Eġ�Egtg�−1Eġt	(21)

When g is the score function, the Godambe infor-
mation reduces to the Fisher information.
This method of one-step estimation essentially

replaces the problem of root selection with the
problem of selecting an appropriate

√
n-consistent

estimator. Unfortunately, the class of
√
n-consistent

estimators is large. So the choice of θ̃ within this
class is critically important to the success of one-
step iteration, as asymptotic considerations may
not hold until n is very large. For example, if θ̃
is

√
n-consistent, then so is θ̃ + n−1a, no matter

how large the constant a is. Clearly, in practice, if
a = 108, we would could not consider θ̃ and θ̃+n−1a
both appropriate.

4.2 Selecting Roots with Explicit Formulas

Heyde (1997) and Heyde and Morton (1998) have
suggested that we can select among several roots in
certain cases by finding explicit formulas for each
root and examining the asymptotics for each for-
mula. Such a method will be particularly useful if
the estimating function is a polynomial of degree
less than five, for all sample sizes. This straightfor-
ward approach to root selection is generally excel-
lent and leads to sensible estimators. However, even
when analytic formulas are available for all roots, it
is not automatically true that the formula with the
right asymptotic properties must be used.
A case in point is the estimation of the correla-

tion coefficient using the cubic estimating function
of (7). As the estimating equation is of degree 3, we
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Fig. 7. Plots of � �ρ̂1�S1� S2� + ρ̂1�−S1� S2�
 for two values of S2.

can find explicit formulas for the three roots using
Cardano’s formula:

ρ̂1 = 1
6
A1 − 6A2 + 1

3
S1�(22)

ρ̂2 = −1+ √−3
12

A1 + 3�1+
√

−3�A2 + 1
3
S1�(23)

ρ̂3 = −1− √−3
12

A1 + 3�1−
√

−3�A2 + 1
3
S1�(24)

where S1 = ��xy�/n, S2 = ��x2 + y2�/n,
A3
1 = 12 �−12+ 36S2 + 132S21 − 36S22

− 48S2S21 + 12S41 + 12S32 − 3S22S21�−1/2

+ 144S1 − 36S1S2 + 8S31
and A2 = �−3+ 3S2 − S21�/�9A1�.
To investigate the asymptotics of the root asso-

ciated with each formula we can apply the limits
S1 → ρ, S2 → 2, as n → ∞. After some tedious alge-
bra, we find that ρ̂1 → ρ. The roots ρ̂2 and ρ̂3 con-
verge to +√−1 and −√−1, respectively, as n → ∞.
This suggests that ρ̂1 is the root we want. As every
cubic has at least one real root, it is tempting to
suppose that ρ̂1 is real. However, the situation is
not that simple. For example, when S1 = −0	1 and
S2 = 1	0 then we have ρ̂1 ≈ 0	2− 0	4√−1.
An additional problem with ρ̂1 is that, unlike the

maximum likelihood estimate, ρ̂1 is not equivariant
with respect to reflections of the data through the
x- and y-axes. To be equivariant, an estimator ρ̂ =
ρ̂�S1� S2� should satisfy the equation ρ̂�−S1� S2� =
−ρ̂�S1� S2�. However, this is not the case for ρ̂1.
This problem arises because Cardano’s method is
not itself equivariant under these reflections. See
Figure 7.
So even when it is possible to find an analytic for-

mula for a consistent root of an estimating equation
it is naive to assume that this formula is the obvious
estimator. As we noted in Section 1, the uniqueness

of the consistent root is an asymptotic result. There-
fore two consistent root selection mechanisms may
have radically different properties for a given sam-
ple size.
This example points out a difficulty with the use

of explicit formulas for roots. However, in most con-
texts, the use of such root is recommended. If a
root can be determined by an analytic formula and
shown to be asymptotically consistent, then it is
usually an excellent choice for estimation. Heyde
and Morton (1998) have shown the efficacy of this
method for a variety of multiple root problems.

4.3 Testing the Consistency of Roots

Suppose that there are roots θ̂1� 	 	 	 � θ̂m to esti-
mating equation g�θ� = 0. The problem of choosing
a correct root may be formally studied as one of test-
ing consistency for each root θ̂i. Namely, we wish to
consider testing the null hypotheses

H
�i�
0 � θ̂i is

√
n-consistent

for i = 1� 	 	 	 �m. The alternative toH�i�
0 is that θ̂i is

not
√
n-consistent. To make this hypothesis mean-

ingful, we assume that the root θ̂i is defined simul-
taneously for all sample sizes, so that its asymp-
totic properties can be examined. To select a root
we would find that root θ̂i at which a test statistic
is least significant.
Heyde (1997) and Heyde and Morton (1998) have

proposed two additional methods for testing roots:

1. picking the root θ̂i for which ġ�θ� behaves asymp-
totically like Eθġ�θ� when evaluated at θ = θ̂i;

2. using a least squares or goodness-of-fit criterion
to select the best root.

Both of these methods can be interpreted as select-
ing a root using a test statistic at each root. In the
first case, the hypothesis

H′�θ�� ġ�θ��Eθġ�θ�
−1 → 1k×k�
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where 1k×k is the k × k identity matrix, is exam-
ined at θ = θ̂1� 	 	 	 � θ̂m to determine at which root
the hypothesis seems to be the most satisfactory. A
test statistic for H′�θ� is based upon a comparison
of ġ�θ� and Eθ ġ�θ�. The root which minimizes the
value of the test statistic is chosen as the desired
root of the estimating function.
In the second case, the test is constructed more

directly from the data by examining the hypotheses

H′′�θ�� Y ∼ Pθ

at θ = θ̂1� 	 	 	 θ̂m. Here Y represents the observed
data set and Pθ its distribution under the assump-
tion that θ is the true value of the parameter. The
test statistic for H′′�θ� can be constructed by parti-
tioning the sample space into cells and constructing
a chi-square goodness-of-fit test or using a weighted
least-squares criterion such as

n∑
i=1

wi�θ��Yi − Eθ�Yi�
2(25)

with some appropriate weighting function w�θ�.
Naturally, we should not expect that a single test-

ing procedure will work for all models. So the test
statistic should be tailored to the particular fea-
tures of the problem. For example, Singh and Man-
tel (1998) have noted that the choice of the least
squares criterion can be critical to the success of the
test. They have proposed modification of the least
squares test statistic in (25) to a test statistic of the
form {

n∑
i=1

wi�θ��Yi − Eθ�Yi�

}2

	(26)

4.4 A Bootstrap Method

It makes sense to focus attention on test statis-
tics which are computationally convenient and fast
to implement, at the same time applicable to a wide
variety of problems. For this reason tests based
upon resampling or cross-validation become partic-
ularly appealing. Suppose that y = �y1� 	 	 	 � yn� is a
vector of observations. Let Y∗ = �Y∗

1� 	 	 	 �Y
∗
n� be a

bootstrap sample drawn with replacement and with
probability 1/n from the n observations y1� 	 	 	 � yn.
(The Y∗

i ’s are iid even though the yi’s may not
be.) Suppose g is an estimating function that is
both unbiased and information-unbiased. A natural
approach to testing is to use the bootstrap statistic

γ∗�θ̂�i = g�θ̂i� Y∗�J−1�θ̂i� Y∗�gt�θ̂i�Y∗��(27)

where

− 2Ĵi = −2J�θ̂i� y� = ġ�θ̂i� y� + ġt�θ̂i� y�	(28)

The motivation for this statistic is that if g is the
score function, then J�θ̂i� y� = −ġ�θ̂i� y� is the
observed information. When g is the score func-
tion, then ġ will be symmetric, and g will define a
conservative vector field on �. In general g is not
conservative and it is desirable to symmetrize ġ.
One immediate consequence of such symmetriza-
tion is that J�θ̂i� y� will have positive eigenvalues
if θ̂i is consistent and n is large.
Next, let us suppose that g is an additive estimat-

ing function in the sense that we can write g�θ� y� =�
j hj�θ� yj�. Now for any root θ̂i, the bootstrap dis-

tribution of g�θ̂i� Y∗� has expectation 0 and vari-
ance

Ĥi = H�θ̂i� =
n∑

j=1
hj�θ̂i� yj�ht

j�θ̂i� yj�	

When the sample size gets large, it may be rea-
sonable to assume that the bootstrap distribution
of g�θ̂i� Y∗� is approximately normal. If so, then
g�θ̂i� Y∗� ∼ N�0� Ĥi�, approximately as n → ∞.
Therefore (27) would have a bootstrap distribution
that is approximately

γ∗�θ̂i� ∼
k∑

j=1
λjZ

2
j�(29)

where the Zj’s are independent unit normal vari-
ates, and the λj’s are the eigenvalues of ĤiĴ

−1
i .

Suppose, in addition, that θ̂i is
√
n-consistent. Then

ĤiĴ
−1
i = 1k×k+Op�n−1/2�, because g is information-

unbiased. It follows that λj = 1 + Op�n−1/2�. So
the bootstrap distribution of γ∗�θ̂i� is asymptotically
χ2�k�. This result suggests a method for root selec-
tion. That root θ̂i whose bootstrap distribution is
closest to χ2�k� is a natural choice for H�i�

0 .
Note that the information-unbiasedness of g is

a stronger property than is necessary. It suffices
to assume that g�θ� is information-unbiased up
to order O�n1/2�. That is, E�ġ�θ� + g�θ�gt�θ�
 =
O�n1/2�.
In summary, we choose the root such that the

bootstrap distribution of (27), or its asymptotic
approximation (29), is closest to that of a chi-square
variate with degrees of freedom k = dim�.
A simulation study was conducted to check the

asymptotic approximation for γ∗ and to deter-
mine its utility in selecting roots. The unbiased
conditional score function derived for the logistic
regression with measurement error discussed in
Section 2.5 was used for the simulation study. We
chose k = 2 with parameters α and β, and a sam-
ple of size n = 100. The standard deviation for
the measurement error was chosen to be 0	8. For
a sample generated using α = −1	4 and β = +1	4,
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Fig. 8. The bootstrap distribution of semiparametric score statistics in logistic regression with measurement error model.

we found two roots �α̂1� β̂1� = �−1	05�2	33� and
�α̂2� β̂2� = �−0	96�8	83�. Figure 8 shows the boot-
strap distribution of γ∗�α̂1� β̂1� and γ∗�α̂2� β̂2� based
on 2,000 resamples at each of the two roots. On
the left side are the simulated cdf ’s at �α̂1� β̂1�
and on the right side are the corresponding cdf ’s
at �α̂2� β̂2�. The solid line shows the bootstrap dis-
tribution in each case. At �α̂2� β̂2� the bootstrap
distribution has support on negative values. This
follows from the fact that the matrix Ĵ is not pos-
itive definite in a resampling neighborhood of the
data. So the bootstrap distribution can be used to
check the stability of the signs of the eigenvalues
of Ĵ. In each diagram the line with alternating
short and long dashes is the cdf for χ2�2�. As can
be seen, the bootstrap distribution better approxi-
mates χ2�2� at �α̂1� β̂1� than at �α̂2� β̂2�. The plain
dashed line in each plot shows the cdf of

�
i λiZ

2
i ,

which is provided for the purposes of comparison.
Thus we choose �α̂1� β̂1� = �−1	05�2	33� as

our estimate for the true parameter �α� β� =
�−1	4�1	4�.
4.5 Root Selection Based on Information

It is reasonable to expect that for certain statis-
tical problems the consistent root of the estimat-
ing function will be more informative than other
extraneous roots. In this section, we shall consider
an information-based criterion for root selection in
location models.
Let Y1�Y2� 	 	 	 �Yn be iid random variables from

the location model f�y−θ�. So the score estimating
function has the form g�θ� = �

h�yi − θ�, where
h�y� = −f′�y�/f�y�.
We define the shifted information function to be

I�θ0� θ� = �Eθ0
h′�Y − θ�
2

Eθ0
h2�Y − θ� 	(30)

In particular, I�θ� θ� is the Godambe information at
θ. See Godambe (1960). Now let us assume that, for

all t ∈ R,

lim
�y�→∞

f�y + t�f′�y�
f�y� = 0	(31)

Note that this condition is satisfied for a number
of distributions including the Cauchy and normal.
Using condition (31) and integrating by parts, we
get

Eθ0
h′�Y − θ� =

∫ ∞

−∞
f′�y�f′�y + t�

f�y� dy

and

Eθ0
h2�Y − θ� =

∫ +∞

−∞

[
f′�y�
f�y�

]2
f�y + t�dy�

where t = θ−θ0. By the Cauchy–Schwarz inequality,[∫ ∞

−∞
f′�y�f′�y + t�

f�y� dy

]2
=

[∫ ∞

−∞
f′�y�f′�y + t�
f�y�f�y + t� f�y + t�dy

]2
≤

∫ +∞

−∞

[
f′�y�
f�y�

]2
f�y + t�dy

∫ ∞

−∞
�f′�y�
2
f�y� dy�

which is equivalent to

I�θ0� θ0� ≥ I�θ0� θ�	(32)

To use this inequality as a method for root selec-
tion, we need to estimate the function Iθ0�θ� =
I�θ0� θ�, where θ0 is the true value of the parame-
ter. We may use the sample mean as an estimate of
the corresponding expectation. So

În�θ� = ��n
j=1 h

′�yj − θ�
2
n
�n

j=1 h2�yj − θ�(33)

can be regarded as an estimate of Iθ0�θ�. As we shall
see in greater detail in Section 5.3, some distribu-
tions are prone to visual outliers. For these cases,
it may be more appropriate to replace the means
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in 33 by trimmed means, along the lines suggested
in Section 5.3.
The inequality (32) is similar in some respects to

the inequality for the Kullback–Leibler information,

K�θ0� θ� = Eθ0
log�L�θ�/L�θ0�
 ≤ 0�

where equality holds if θ = θ0. This suggests that,
for certain models, an empirical estimate of the
information in an estimating function can replace
the likelihood as an objective function to be max-
imized. Therefore, we could choose the root θ̂ at
which În or a trimmed analog of În is maximum.
For example, a simulation of 2,000 trials for samples
of size n = 10 found that the root which maximized
the trimmed version of În was the global maximum
of the likelihood approximately 97% of the time.
Maximizing an information function may be most

helpful when the estimating function is not the
score function. For the method to be practicable,
it is necessary that the inequality (32) hold for
an additive estimating function, where we would
define more generally

I�θ0� θ� =
[
Eθ0

ḣ�θ�]2
Eθ0

h2�θ� 	

Location parameters can also be estimated
robustly by M-estimators. In those cases where
the estimating function is redescending, multiple
roots can arise. Clarke (1991) has given a method
for selecting a robust root in such cases. Markatou,
Basu and Lindsay (1998) have proposed the use of
parallel disparity as a method of root selection.

5. MODIFYING ESTIMATING FUNCTIONS

5.1 A Warning about Modification

In this section, we shall consider how to modify
an estimating function to eliminate or reduce the
number of roots. However, before discussing such
methods, a warning is in order. There are cases
where the existence of multiple roots is informative
in itself. For example, the presence of multiple roots
in mixture models can serve as a diagnostic tool for
the presence of different interpretations of the data.
For an illustration of multiple roots in a mixture
model, see Basford and McLachlan (1985). Marka-
tou (1999a) has considered a problem in which the
presence of multiple roots indicates more than one
multiple mixture model fit. Formal test procedures
for mixture model selection can be found in Marka-
tou (1999b). Before eliminating multiple roots, the
researcher should consider what information these
roots provide about the fit of different models to the
data.

5.2 Smoothing the Likelihood Function

Multiple root problems can be regarded as exam-
ples of excess variation in estimating functions. In
several areas of statistics, a standard tool used to
reduce variation is smoothing through the use of a
moving average for a function, be it discrete or con-
tinuous. Daniels (1960) proposed the use of such a
moving average to “reduce the chance of selecting
one of the erratic cusps of the likelihood function”
(Daniels, 1960, page 162). Daniels’ smoothed likeli-
hood was applied to the Cauchy location model by
Barnett (1966, page 164).
Suppose θ is a real-valued parameter. Let un� � →

� be a nonnegative function such that∫ +∞

−∞
un�y�dy = 0

and

lim
n→∞

∫ +∞

−∞
y2un�y�dy = 1	

The smoothed likelihood, with kernel un for sample
size n, is defined to be

l̄n�θ� =
∫ +∞

−∞
ln�θ − y�un�y�dy�(34)

where ln�θ� = log Ln�θ�. There exist obvious
extensions of (34) for multiparameter models. The
parameter value θ̄n which maximizes l̄n�θ� is called
a smoothed maximum likelihood estimator. We can
also write θ̄n as the root of the smoothed score pro-
vided we can interchange derivatives and integrals:

ḡn�θ� =
∫ +∞

−∞
l̇n�θ − y�un�y�dy	(35)

A particularly simple choice of un is un�y� =
1/�2εn� for �y� ≤ εn and un�y� = 0 for �y� > ε. Then
θ̄n will be a solution to the equation L�θ − εn� =
L�θ + εn�. A simulation study by Barnett (1966)
found that for the Cauchy location model it is pos-
sible to obtain efficiencies for θ̄n which exceed the
efficiency of the MLE. In particular, a best improve-
ment on the MLE was obtained by choosing ε = 2	0
for a sample of size n = 5. In this case the improve-
ment in efficiency was found to be approximately
10%.
The value of εn needs to be chosen sufficiently

large so that the equation L�θ + εn� = L�θ − εn�
has only one solution. However, we must also have
εn → 0 so that θ̄n is asymptotically efficient. Mak-
ing εn large for a continuous likelihood function
with finitely many relative extrema will ensure at
most one solution, as Figure 9 illustrates. Ensur-
ing that the equation has only one solution in this
manner will require that ε be data-dependent. On
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Fig. 9. The equation L�θ + ε� = L�θ − ε� for two values of ε.

the other hand, to ensure efficiency we must exam-
ine the asymptotics. We can write

ln�θ ± ε� = ln�θ� ± εl̇n�θ�

+ ε2

2
l̈n�θ� ± ε3

6

			

ln �θ + ξ�±ε�

under smoothness conditions, where 0 < ξ�ε� < ε
and −ε < ξ�−ε� < 0. So we have

ln�θ + ε� − ln�θ − ε�
2ε

= l̇n�θ� + ε2

12

{ 			

ln �θ + ξ�ε�

+ 			

ln �θ + ξ�−ε�

}
	

(36)

The left-hand side of (36) can be regarded as an
estimating function with θ̄n as a root. As such, it
is generally a biased estimating function. However,
if we focus our primary attention on those mod-
els for which Eθln�θ − ε� = Eθln�θ + ε�, then the
essstimating function is unbiased. A location model
with a symmetric density (such as the Cauchy) will
satisfy this property. On the right-hand side, the
first term is the score function, which is also unbi-
ased under standard regularity conditions. Under
the unbiasedness assumption, the term in brack-
ets in (36) will be unbiased, and therefore will be of
orderOp�√n�. However, the asymptotic efficiency of
a consistent root of (36) will be the asymptotic cor-
relation between the left-hand side of (36) and the
score function. So, if this is to be one, then the sec-
ond term on the right-hand side of (36) must be of
smaller order than the first term. As the first term
is Op�√n�, we must have ε = op�1�.
Choosing εn = op�1� runs counter to the require-

ment that εn is large enough to guarantee a unique
root. A possible compromise is to use θ̄n as a start-
ing point for Newton–Raphson iteration to a root of
the score function or to define a one-step estimator.
For this to work, the estimator θ̄n need only lie in a√
n-neighborhood of the true parameter value and

need not be efficient.
If a smoothed likelihood is used in a k-parameter

model, then the score function becomes vector-

valued, and the weight function un is a real-valued
function of k variables. Once again, a uniform
weight function can be used. However, in k dimen-
sions, there are many types of regions available for
smoothing.

5.3 Trimming the Estimating Function
Let us reconsider the Cauchy score function

g�θ� = �n
j=1 h�yj − θ�, where h�x� = 2x/�1 + x2�.

An example with four observations and multiple
roots was given in Figure 3. This plot was gener-
ated by y1 = 1	1, y2 = 0	5, y3 = 9	0 and y4 = −0	3.
The extraneous roots are produced by the observa-
tion y3 = 9	0, a visual outlier to which the Cauchy
distribution is prone. Figure 10 shows the empirical
distribution of h�y1 − θ�� 	 	 	 � h�y4 − θ�.
We see that the outlying observation y3 produces

extraneous roots because h�y3−θ� has a large influ-
ence on the sum of h�y1 − θ�� 	 	 	 � h�y4 − θ�. So we
can sometimes determine that a root is extraneous
by examining the empirical distribution of the esti-
mating function at the root. Figure 10 also suggests
that robust estimators of location could be adapted
to estimating functions to reduce the possibility of
multiple roots. For example, we could replace the
estimating function

�
j h�yj − θ� by the trimmed

sum

gtr�θ� = ∑
j �=i�θ�

h�yj − θ��(37)

where, for each θ, the value of i�θ� is such that
h�yi�θ� − θ
 is the most outlying observation among
the values h�y1−θ�� 	 	 	 � h�yn−θ�. One way to define
this value is to choose i = i�θ� so that∣∣∣∣∣h�yi − θ� − 1

n

n∑
j=1

h�yj − θ�
∣∣∣∣∣

Fig. 10. The empirical distribution of the Cauchy score function
from Figure 3.
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Fig. 11. The median score of the Cauchy example from Figure 3.

is maximum. This procedure was found to be partic-
ularly effective when used with the empirical meth-
ods discussed in Section 4.5, to which we refer the
reader.
We can trim more than one value. If we trim to

the middle of the empirical distribution, we obtain
the median score, defined by

gmed�θ� = med�h�y1 − θ�� 	 	 	 � h�yn − θ�
	(38)

As shown in Figure 11, the median score has a
unique root for our particular example. However,
this estimating function is not differentiable. So the
search for a root will require a slower but more
reliable algorithm such as a binary search or the
method of secants.

6. BUILDING AN OBJECTIVE FUNCTION

6.1 Motivation

We have seen that root selection provides a con-
siderable challenge even for likelihood inference. It
becomes even more involved when there does not
exist an objective scalar function λ = λ�θ� such that
∇λ�θ� = g�θ�. This case arises when the vector field
on � defined by g is not conservative. In this sec-
tion, we consider how to build an objective function
and we discuss the connection with root selection.
There are several advantages to constructing

an objective function. For example, an objective
function allows us to weight roots of an estimat-
ing function and thereby to provide an objective
ordering on the roots to assist root selection. Addi-
tionally, an objective function may allow us to
pool information from the data with prior infor-
mation, be it subjective or empirical. For example,
if expert opinion were elicited to obtain prob-
ability weights π1� 	 	 	 � πm for each of m roots

θ̂1� 	 	 	 � θ̂m, then an objective function λ which
behaves like a log-likelihood could be combined with
the expert weights to produce posterior weights of
the form π1K�θ̂1�� 	 	 	 � πmK�θ̂m�, where K = exp�λ�.
Hanfelt and Liang (1995) have suggested using

path-dependent integrals of the form (6) as objective
functions and argue that for an optimal estimating
function (McCullagh and Nelder, 1989, page 341)
locally the dependence on the path should be small.
Detailed simulation results are given for the logistic
regression with measurement error model in which
the root maximizing (6) is chosen. See Hanfelt and
Liang (1995, 1997). In practice one has to compute
many carefully chosen paths to compare the results.
For the dependence on path to be practically negli-
gible the estimating function under consideration
must be very close to be conservative.
In this section we review two methods: projection

in Section 6.2 and vector field decomposition in Sec-
tion 6.4.

6.2 Projection

The quasiscore, given in (2), is the projection of
the score function onto the space of linear and unbi-
ased estimating functions spanned by the functions
y1 − µ1�θ�� 	 	 	 � yn − µn�θ�, where µi = Eθ�Yi�.
See McLeish and Small (1988), among others. As
such, the quasiscore has a number of properties
in common with a genuine score function. For
instance, it inherits the first two Bartlett identi-
ties from the score function: it is unbiased and
information-unbiased. For more on the quasi-score,
see Wedderburn (1974) and McCullagh and Nelder
(1989, Chapter 9).
So it is natural to seek a projection of the likeli-

hood function or the likelihood ratio into a properly
chosen space of functions. The elements of this
space are functions of data and the parameter of
interest. For such a method to be useful, we should
be able to define the projection in terms of the
low-order moments of the underlying variables.
Suppose y1� 	 	 	 � yn are independent observations
from unknown distributions having means µi�θ�,
i = 1� 	 	 	 � n, and variances σ2i �θ�, i = 1� 	 	 	 � n,
respectively. For semiparametric models such as
this, McLeish and Small (1992) have proposed an
analog of the likelihood ratio L�η�/L�θ�, namely,

K�θ�η� =
n∏

i=1

{
1+ �µi�η� − µi�θ�


σ2i �θ� �yi−µi�θ�

}
	(39)

See also Small and McLeish (1994). The function
K�θ�η� can be obtained by projecting the likelihood
ratio into a subspace which is the tensor product of
the spaces generated by the n basis functions yi −
µi�θ�. This space enjoys certain kind of maximality
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property, as outlined in McLeish and Small (1992).
It is tangent to the quasiscore in the sense that

∂

∂η
K�θ�η�

∣∣∣∣
η=θ

=
n∑

i=1

µ̇i�θ�
σ2i �θ� �yi − µi�θ�
	

Since EθK�θ�η� = 1, the function log K�θ�η� is an
exact local log-density (Severini, 1998). Moreover,
Eη K�θ�η� ≥ 1, with equality if and only if µi�η� =
µi�θ� for all i = 1� 	 	 	 � n.
In one important respect, however, K�θ�η� does

not resemble a likelihood ratio. It is not antisym-
metric: K�θ�η� �= K−1�η� θ� in general. This is due
to the asymmetric roles that η and θ have in the
projection. For the purposes of computing the pro-
jection, the parameter θ is assumed to be the true
value of the parameter, and η is assumed to lie in
a neighborhood of θ. An additional problem with K
is that it is limited to independent observations, as
can be seen from its multiplicative form.
The failure of K to be antisymmetric prompted

Li (1993) to consider another type of projected
likelihood that restores this property. He assumed
a semiparametric model with first and second
moment conditions as well. However, in this
model, the independence assumptions on the
variates is relaxed. Instead, we suppose that
Y is vector-valued, with mean µ�θ� and covari-
ance matrix H�θ�. Based on the approximation of
l�η� − l�θ� = log L�η�/L�θ� by

l�η� − l�θ� ≈ L�η� − L�θ�
2L�θ� + L�η� − L�θ�

2L�η� �(40)

Li (1993) used a different projection argument to
obtain the objective function

λ�θ�η� = 1
2 �µ�η� − µ�θ�
H−1�θ��y − µ�θ�
t

+ 1
2 �µ�η� − µ�θ�
H−1�η��y − µ�η�
t	

(41)

It is straightforward to show that λ�θ�η� is tangent
to quasi-score. Li (1993) also shows that under cer-
tain conditions

Pθ�λ�θ� ξ� > λ�η� ξ�
 → 1 as n → ∞�

where η �= θ and ξ = θ or η. We also refer the reader
to Li and McCullagh (1994).

6.3 Projected Likelihoods and Root Selection

Projected likelihoods have been motivated by
a need to construct confidence regions from esti-
mating equations with multiple roots. See McCul-
lagh (1991) and Li (1993). In this section, we shall
discuss their connection with root selection. To be
useful in this task, a projected likelihood must pro-
vide a consistent partial ordering of the parameter
space. The following conditions are sufficient and
would appear to be natural:

1. The ordering should be antisymmetric: λ�θ�η�
= −λ�η� θ� and K�θ�η� = K−1�η� θ�.

2. The ordering should be transitive: if λ�θ�η� ≥ 0
and λ�η� ξ� ≥ 0, then λ�θ� ξ� ≥ 0. Similar
remarks hold for K.

The projected likelihood of Small and McLeish
fails the antisymmetry condition. By contrast, Li’s
projected likelihood is constructed to be antisym-
metric. However, it is easy to find examples where
Li’s likelihood is not transitive. For example, sup-
pose Y is real-valued, and µ�θ� = 0, µ�η� = 1 and
µ�ξ� = 3. Set σ�θ� = 1 and σ�η� = σ�ξ� = 0	1. If
Y = 2	1, say, then λ�θ�η�, λ�η� ξ� and λ�ξ� θ� are all
positive. So neither type of projected likelihood can
guarantee a consistent ordering of the parameter
space.
Nevertheless, we do not need to compare all

points in the parameter space to select roots. For
example, if an estimating function has only two
roots, then the issue of the transitivity of the pro-
jected likelihood is irrelevant to the problem of
choosing one of these two values. In addition, the
projected likelihood may well be transitive on the
roots while not being transitive on the parameter
space as a whole. Finally, even if it is not tran-
sitive or antisymmetric on the full set of roots, a
projected likelihood may help us eliminate certain
roots from consideration. This topic should provide
a promising future research direction.
In the next section we consider a type of artificial

likelihood which avoids these problems.

6.4 Artificial Likelihoods from Vector
Field Decompositions

The question still remains: What is a proper
objective function for an arbitrary estimating
function g�θ�? The function g�θ� may use semi-
parametric information about more than the first
two moments and in general need not be conser-
vative. Since g�θ� may be viewed as a vector field
defined in the parameter space, the nonexistence of
an objective function implies that the vector field
curls or rotates. Wang (1999) shows that, for any
k = dim � = dim g ≥ 2, one can write g = gc + gr,
where gc is conservative (or irrotational) and gr is
divergence-free (or solenoidal). This is a generaliza-
tion of the well-known Helmholtz decomposition for
k = 3.
Having found such a decomposition, we can

construct an objective function by discarding the
divergence-free component and integrating the
conservative part:

λ�θ�η� =
∫ η

θ
gc�ξ�dξt	(42)
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A problem with this definition of λ�θ�η� is that the
decomposition is not unique. For example, suppose
g is conservative to begin with. Then we would nor-
mally expect that the divergence-free part would be
zero. However, with no additional guidance as to
how to perform the decomposition, there is no rea-
son for this to be true. Since we intend to discard the
divergence-free part, it should contain as little sta-
tistical information as possible. This suggests two
principles for the construction of the decomposition:

1. If ġ is symmetric, then gr = 0.
2. If Eθġ�θ� is symmetric, then Eθgr�θ� = 0.
The solution to this problem involves the use of the
geometry of differential forms—a topic that we shall
not discuss here. See Darling (1994). A form of the
decomposition which would satisfy these two prin-
ciples is

g = dλ + ∗d �α ∗ dg
�
where α = α�θ� is an appropriate scalar function of
θ only, ∗ is the Hodges star operator and d is the
exterior derivative. The vector field go

r = ∗d �α ∗
dg
 vanishes if g is conservative. Similarly, Eθ g

o
r =

0 if Eθġ�θ� = 0 for all θ. In general, there is no
guarantee that such a scalar function α�θ� exists.
However, Wang (1999) shows that if g is linear in θ,
then there exists such a scalar function α�θ� so that
the decomposition g = dλ + go

r holds. He also gave
an explicit formula for α�θ�, namely,

α�θ� = �−1�k 14θθt	(43)

See Wang (1999) for further justification for the
choice of (43). The above arguments suggest that we
use a linear approximation to g locally around the
parameter values of interest. Such points of inter-
est include, but are not restricted to, the set of roots
of g. Using (43), we obtain the objective (potential)
function

λ�θ�η� = 1
2�η−θ�J�θ��η−θ�t +g�θ��η−θ�t�(44)

where 2J�θ� = ġ�η�+ġt�η� is the symmetrized Hes-
sian.
That the objective function (44) is a semiparamet-

ric likelihood function can be argued along the lines
of Severini (1998). For the quasiscore (44) becomes

λ�θ�η� = − 1
2 �µ�η� − µ�θ�
H−1�θ��µ�η� − µ�θ�
t

+ �µ�η� − µ�θ�
H−1�θ��Y − µ�θ�
t�
a form closely resembling (39) and (41). From (44),
we can formally define an artificial likelihood ratio
statistic and study its properties. Indeed, root selec-
tion based on (27) is a bootstrap version of the arti-
ficial likelihood ratio.
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Comment
John J. Hanfelt

I suspect that most statisticians doubt the propo-
sition that multiple roots pose a serious problem
in data analyses. Certainly, very few published data
analyses in scientific journals mention the existence
of multiple roots or describe what methods were
used to select among them. This state of affairs is
perhaps not so surprising, given two unfortunate
facts:

1. The presence of multiple roots is likely to
go undetected in a data analysis unless the
researcher specifically examines the issue;

2. the theory for dealing with multiple roots is
underdeveloped, and the few existing statistical
methods are not widely known.

Small, Wang and Yang (SWY) are to be com-
mended for raising awareness of the problem of
multiple roots; SWY provide an interesting theoret-
ical discussion of multiple roots. Especially valuable
is their comprehensive review of methods to locate
and select among multiple roots of an estimat-
ing function. One reservation is that the majority
of examples in SWY do not have much practical
importance.
For applied statisticians to better appreciate the

significance of the problem, it would be interesting
to hear more from SWY about which statistical mod-
els in common use today are prone to generating
multiple roots.
My encounters with multiple roots have been

limited to applications involving regression with
measurement error (such as discussed in Sec-
tions 2.5 and 4.4 of SWY) and mixture models
(Lindsay, 1983; Everitt and Hand, 1981). To illus-
trate, consider a latent class analysis of the rela-
tionships among nine criteria (each coded as 1 =
present, 0 = absent) used in the diagnosis of schizo-
typal personality disorder (Nestadt et al., 1994).
For simplicity, here we confine our attention to a
model with only two latent classes and n = 479
individuals with a family history of schizophre-
nia. The EM algorithm, as described by Everitt
and Hand, was used to identify local maxima
of the likelihood, of which two, θ̂1 and θ̂2, are
shown in Table 1. Neither solution can be elimi-

John J. Hanfelt is Assistant Professor, Depart-
ment of Biostatistics, Emory University, Atlanta,
Georgia 30322.

nated as scientifically implausible. Fortunately, here
we are working within a fully parametric frame-
work and have available the log-likelihood ratio,
log�L�θ̂1�/L�θ̂2�� = 9	68, indicating that θ̂1 is bet-
ter supported than θ̂2. A more detailed analysis by
Nestadt et al. (1994), based on a larger sample,
revealed that the best solution actually has four
latent classes.
An important, unresolved issue is how to con-

struct an appropriate objective function λ�θ� η� for
distinguishing among multiple roots of a general
estimating function g�θ�. The projected likelihoods
discussed in Section 6.2 and 6.3 of SWY have some
attractive properties, but are limited to estimating
functions of the form g�θ� = �

wi�θ��yi − Eθ�Yi��.
Hanfelt and Liang (1995) proposed a generalized
version of SWY’s (41), namely,

λ�θ� η� = 1
2Eη�g�θ��Aη� var−1θ �g�θ��Aθ�g�θ�t

− 1
2Eθ�g�η��Aθ� var−1η �g�η��Aη�g�η�t�

where Aθ is an optional conditioning argument, but
noted that this projection approach does not exist for
certain applications. Another limitation is that all
versions of projected likelihood require the correct
modelling of varθ �g�θ��Aθ�, which often is unreal-
istic in applications. Small, Wang and Yang suggest
a different objective function based on a vector field
decomposition approach. Their method is interest-
ing, but seems to require that g�θ� be linear in θ,
which limits its versatility. Clearly, more research
is needed on artificial likelihoods to accompany esti-
mating functions.
A connection between goodness-of-fit criteria and

artificial log-likelihoods is provided by the concept
of artificial deviance. Suppose we can write the esti-
mating function as

g�θ� =
n∑

i=1
ψ̇i�θ�tgi�ψi�θ�� yi��

where gi and natural parameter ψi = ψi�θ� are
column vectors of length qi ≥ 1, say, θ is a vector
of length p < n and ψ̇i�θ� is a qi × p matrix of
first partial derivatives. Suppose also that we have
available an artificial log-likelihood λ�ψ�θ�� ψ�η��,
where ψ�θ� = �ψ1�θ�t� 	 	 	 � ψn�θ�t�t, to accompany
g�θ�. The idea is to measure the discrepancy of fit
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Table 1
Two local maxima of a latent class model for the relationships
among criteria used to diagnose schizotypal personality disorder.
Entries denote the conditional probability of a criterion being

present given membership in latent class I or II

�̂1 �̂2

Latent classes Latent classes

I II I II

Prevalence 0.065 0.935 0.124 0.876
Criteria
Ideas of reference 0.340 0.003 0.192 0.002
Social anxiety 0.537 0.077 0.483 0.053
Odd beliefs 0.429 0.033 0.246 0.032
Unusual perceptions 0.554 0.020 0.314 0.018
Odd behavior 0.097 0.000 0.051 0.000
No confidants 0.710 0.219 0.686 0.189
Odd speech 0.032 0.000 0.017 0.000
Inappr. affect 0.165 0.022 0.253 0.000
Suspiciousness 0.640 0.018 0.414 0.008

between the parsimonius model g�θ� and a satu-
rated model via the artificial deviance

D�θ� = 2λ�ψ�θ�� ψ̃��
where ψ̃ = �ψ̃t

1� 	 	 	 � ψ̃
t
n�t is a function of the data

such that gi�ψ̃� yi� = 0, i = 1� 	 	 	 � n. For example,
in the special case where the estimating function is
the quasiscore

g�θ� =
n∑

i=1
µ̇i�θ�t var−1�yi�µi�θ���yi −µi�θ���(1)

and the choice of objective function λ�µ�θ�� µ�η�� is
given by SWY’s (41), the artificial deviance reduces
to the weighted least squares criterion

D�θ� =
n∑

i=1
�yi − µi�θ��t var−1�yi�µi�θ���yi − µi�θ��	

The concept of artificial deviance might be useful
in constructing appropriate goodnes-of-fit criteria
for estimating functions g�θ� more general than
quasiscore (1). See related work by Qian, Gabor
and Gupta (1996) and Baggerly (1998). Note that
if objective function λ�ψ�θ�� ψ�η�� does not satisfy
the transitive property (Section 6.3 of SWY), then
inferences based on D�θ� might not be consistent
with those based on direct comparisons of multiple
roots; that is, we might not have the relation

D�θ� > D�η� ⇒ λ�θ� η� > 0	
A final comment on SWY: the discussion after (29)

is rather puzzling. The authors seem to claim that
if root θ̂i is

√
n-consistent, then g�θ� is necessar-

ily information-unbiased and χ2�k� is always the
appropriate reference distribution for test statis-
tic γ∗�θ̂i�. However, clearly this claim is wrong:
g�θ� does not have to be information-unbiased,
even approximately, to generate a

√
n-consistent

root, and so the reference distribution for γ∗�θ̂i�
generally is given by (29). A case in point is the
measurement error problem examined at the end
of Section 4.4 of SWY, where the conditional score
function is not information-unbiased. Perhaps the
authors, in advocating reference to a χ2�k� dis-
tribution, have in mind testing whether root θ̂i
satisfies certain asymptotic efficiency properties?
Some clarification would be helpful here.
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Comment
C. C. Heyde

Multiple roots of estimating equations is a topic
which is interesting, important and often perceived
as a source of serious complication (e.g., McCul-
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ACT 0200, Australia, and Department of Statis-
tics, Columbia University, 2990 Broadway, Mail
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lagh 1991; Stefanski and Carroll, 1987, Section 2.3).
It is of considerable value to have the overview of
methods for treating this problem which is provided
in this paper. However, it seems to me that the
Small, Wang and Yang (SWY) have rather overem-
phasized the likelihood case and have not sought to
demystify the topic as constructively as they might
have done.
From the outset a tone is adopted which makes

the subject seem more complicated than it really
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is in practice. The discussion about infinitely many
roots early in the Introduction of SWY’s paper is a
case in point. Another example occurs later in the
Introduction in the context of multiple roots for esti-
mating equations, where the possible problems with
a likelihood analog approach are outlined, but the
existence of simple and reasonable alternative ways
to treat the problem are not explicitly mentioned,
despite their treatment later in the paper.
It is my contention that multiple root problems in

which a satisfactory and unambiguous choice can-
not readily be found are rare. In illustration of this
view I shall briefly discuss just two of the major
examples of the paper.
First, take the case of the Cauchy location model

discussed in Section 2.2. It has been noted that the
likelihood estimating equation in the case of a sam-
ple of size n is a polynomial of degree 2n − 1 and
the number of relative maxima among the solutions
converges as n → ∞ to 1+M, whereM has a Pois-
son distribution with mean 1/π. However, the sam-
ple median is a convenient consistent estimator of
the location parameter and a reasonable practical
approach could be to use the root of the estimating
equation which is closest to the median.
The next example concerns the estimation of the

correlation coefficient from a bivariate normal sam-
ple �xi� yi�, i = 1�2� 	 	 	 � n which is treated in Sec-
tions 2.1 and 4.2. In this setting, with variables hav-
ing means 0 and variances 1, the likelihood equation
reduces to the cubic

ρ�1− ρ2� + �1+ ρ2�S1 − ρS2 = 0�(1)

where S1 = �
xy/n, S2 = ��x2 + y2�/n.

The roots of (1) can be written down explicitly
using Cardano’s formula, but this is not very help-
ful. To discuss the solution we replace ρ by z =
ρ − S1/3 in (1) to obtain the equation

z3 + az + b = 0�(2)

where a = �S2 − 1 − S21/3� and b = −S1�4 − S2 +
2S21/3

2�/3. Equation (2) has one real and two com-
plex roots if L = a3/27+b2/4 > 0� a condition which
is easy to check in practice. Note that this condition
applies more generally than the condition

D = 4S21 + 12�1− S2� ≤ 0

(i.e., a ≥ 0) which is discussed by SWY in their Sec-
tion 2.1 as a sufficient condition for a single real
root.
Using the strong law of large numbers, we

have almost surely that a → 1 − ρ2/3 and b →
−�2ρ/3��1+ρ2/9� as n → ∞. It is then evident that
L can be expected to be positive in most cases where
it realistic to use this methodology. There should be
no need in practice to deal with the case L < 0 in
which there are three real roots of (2), but if there
were, a not unreasonable choice for the estimator
of ρ would be the root of (1) which is closest to S1,
since S1 is a consistent estimator of ρ.
For L > 0, the real root can be written down using

Cardano’s formula. It is

S1/3+ �−b/2+ L1/2�1/3 + �−b/2− L1/2�1/3�

and it is easily checked that this tends to ρ as
n → ∞.
Small, Wang and Yang quote, in their Section 4.2,

the example where S1 = −0	1 and S2 = 1 as a prob-
lem case, but it is straightforward to treat. We have
L > 0, but note that D > 0, and the roots of the
likelihood equation (1), which is now

ρ3 + �1+ ρ2�/10 = 0�

are easily checked to be −0	5�0	2 ± 0	4√−1. The
example is, however, not very realistic since the
value of S2 = 1 is well removed from its limit of 2,
and there is a substantial disparity between the
sample correlation S1 = −0	1 and the estimated ρ
of −0	5.
It should be remarked that the principle of

investigating the asymptotics as sketched in
Heyde (1997) and Heyde and Morton (1998), and
referred to by the authors in their Section 4.2, is
intended to advocate the use of the asymptotics in a
flexible exploratory way, as in the discussion above,
and not just for checking on explicit formulae for the
roots, when these are available. Multiple root prob-
lems cover a very diverse spectrum and it seems to
me that they should be approached quite pragmati-
cally.
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Comment
Bing Li

Multiple roots problems have wide practical
implications and are theoretically subtle and chal-
lenging. The paper of Small, Wang and Yang (SWY)
surveys the various situations in which multi-
ple roots can arise, the issues they bring about
and the methods to deal with them. Much progress
has recently been made toward solving this prob-
lem and I find this paper timely and helpful. Rather
than discuss generally, I will focus on two points:
(1) how to generalize the Wald approach to find con-
sistent solutions of estimating equations; (2) how to
construct a likelihood ratio that is antisymmetric
and additive.
What makes the problem challenging is that, for

estimating equations, the estimators are defined as
the solutions of equations rather than the maxi-
mizers of objective functions, or “log-likelihoods.” So
when there are multiple solutions we cannot iden-
tify a consistent one as we do with a likelihood,
whose maximizer is consistent under conditions
such as assumed in Wald (1949). However, if we
view the maximizer of the likelihood as the min-
imax point of the log-likelihood ratio, then we
can generalize the Wald approach to nonconserva-
tive estimating equations. I will call this general
approach the minimax principle and describe it in
Section 1.
As surveyed by SWY, much has been done to

develop a likelihood theory for nonconservative
estimating equations, either to distinguish between
solutions or to test hypotheses. One type of con-
struction, such as in McLeish and Small (1992),
Li (1993) and Wang (1999), is to make the objec-
tive function tangent to the quasiscore locally at a
hypothesized parameter value. However, objective
functions thus defined must depend on two points
in the parameter space, one being the hypothesized
value, the other an alternative value. Consequently
they are not additive (the “log-likelihood ratio”
between A and C is not the sum of those between
A and B and B and C) and may not even be tran-
sitive. In Section 2, I describe how to apply the
minimax principle to construct a log-likelihood
that only depends on one parameter value, which

Bing Li is Associate Professor, Department of Statis-
tics, Pennsylvania State University, 410 Thomas
Building, University Park, Pennsylvania 16802.

implies that the corresponding log-likelihood ratio
is antisymmetric and additive.
The minimax principle in Section 1 and the min-

imax likelihood in Section 2 were both introduced
in Li (1996), but were not spelt out very explicitly
there. The asymptotic distribution in Section 2 is
a new result. In Section 3 I list some properties of
the minimax likelihood as evidence that it may be
a natural and competent candidate as a likelihood
for nonconservative estimating equations.

1. MINIMAX PRINCIPLE AS A GENERALIZED
WALD APPROACH

The logic of Wald’s approach is this: since the log-
likelihood converges to the expected log-likelihood,
the maximum point of the log-likelihood should con-
verge to the maximum point of the expected log-
likelihood, which, by Jensen’s inequality, is the true
parameter value. However, an estimating equation
is in general not the derivative of any function, and
hence nothing plays the role of the log-likelihood.
However, what drives the Wald argument is that
the uniform convergence of a sequence of functions
implies the convergence of some features of those
functions. This basic idea can be generalized.
We can redefine the maximum likelihood estima-

tor as the minimax point, or saddle point, of the
log-likelihood ratio, and the true parameter value
as the minimax of the expected log-likelihood ratio.
Specifically, let X = �X1� 	 	 	 �Xn�T be the observa-
tions, and let θ ∈ � ⊂ Rp be the parameter. Let
L�θ�X� ≡ L�θ� be the log-likelihood. Let θ̂ be the
maximum likelihood estimator. Then

0 = inf
θ∈�

�0� ≤ inf
θ∈�
sup
η∈�

�L�η� − L�θ��

≤ sup
η∈�

�L�η� − L�θ̂��

= L�θ̂� − L�θ̂� = 0	
Hence �θ�η� = �θ̂� θ̂� is the minimax point of the
function L�η� − L�θ�. Now let R�θ� = EL�θ�, and
let θ0 be the true parameter value under which we
take the expectation E. Then, by Jensen’s inequal-
ity, R�θ0� > R�θ� for all θ �= θ0, and hence, by the
same argument as above, �θ0� θ0� is the minimax
point of the function R�η�−R�θ�. Under conditions
similar to those of the Wald theorem,

n−1�L�η� − L�θ�� − n−1�R�η� − R�θ�� p→0�
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uniformly over �θ�η� ∈ � × �. From here it is easy
to deduce that �θ̂� θ̂� →p �θ0� θ0�, or θ̂ →p θ0.
The function L�η� − L�θ� can be generalized to

quasilikelihood equations by a projection argument,
and the generalization sufficiently resembles it to
make the minimax argument work (Li, 1996). Let
µθ and Vθ be the mean vector and the covariance
matrix of X. Define

L�θ�η� = �1/2�{�µη − µθ�TV−1
θ �X − µθ�

+ �µη − µθ�TV−1
η �X − µη�}

and R�θ�η� = EL�θ�η�. Note that both L�θ�η� and
R�θ�η� are antisymmetric, even though they can-
not be detached as the difference between a func-
tion of η and a function of θ, as is the log-likelihood
ratio. Antisymmetry plays a key role in generaliz-
ing the minimax argument. Under regularity con-
ditions not unlike those used by in Wald (1949), Li
(1996) demonstrates that (1) the minimax of L�θ�η�
is asymptotically equivalent to any consistent solu-
tion of the quasilikelihood equation (in fact, under
some conditions it is a consistent solution to that
equation), (2) the minimax point of R�θ�η� is the
true parameter value and (3) the difference between
n−1L�θ�η� and n−1R�θ�η� converges to 0 uniformly
over � × �. Hence �θ̂� θ̂� →p �θ0� θ0�, or θ̂ →p θ0.
This result leaves no ambiguity when the quasi-

likelihood equation has multiple roots, because
whichever root is the minimax of L�θ�η� is con-
sistent. The result is simplified in Li (1997) as
follows: if a root of the quasilikelihood equation is
the minimax among the collection of roots, then
it is consistent. Thus we only need to identify the
minimax point among roots.
As SWY point out, when L�θ�η� is used as “log-

likelihood ratio” for hypothesis testing, as was done
in Li (1993), it has the drawback of being intran-
sitive. However, the minimax argument itself sug-
gests a way to avoid this problem, as we will see in
the next section.

2. MINIMAX QUASILIKELIHOOD

According to the minimax principle we estimate
θ0 by minimizing supη∈� L�θ�η�, or maximizing
− supη∈� L�θ�η�. Therefore it is reasonable to
define

N�θ� = − sup
η∈�

L�θ�η�(1)

as the “log-likelihood.” Since N is a function of θ
alone, the “log-likelihood ratio” defined as its differ-
ence is antisymmetric, additive and transitive. Also
note that N�θ� is not a potential function of the qua-
siscore, and yet it is tangent to the quasiscore at

the minimax point. I will now outline the derivation
of the asymptotic distribution of the “log-likelihood
ratio” derived from this definition.
Suppose that the p-dimensional parameter θ is

composed of an r-dimensional parameter of interest
ψ and an s-dimensional nuisance parameter λ and
that we are to test H0: ψ = ψ0 against H1: ψ �= ψ0.
Let θ̂ be the maximizer of N�θ�, and let θ̃ = �ψ0� λ̃�
be the maximizer of N�θ� subject to the constraint
ψ = ψ0. I will argue that, under H0,

2�N�θ̂� − N�θ̃�� p→χ2r	

To avoid writing too many subscripts I will drop
the index 0 and denote the true parameter value
θ0 by θ = �ψ�λ�. As usual, assume that the quasi-
Fisher information µ̇T

θ V
−1
θ µ̇θ/n converges to a con-

stant matrix I�θ� as n → ∞. Denote the standard-
ized quasiscore n−1/2µ̇T

θ V
−1
θ �X−µθ� by S�θ�X�. By

Taylor expansion,

N�θ̂� = N�θ� + Ṅ�θ��θ̂ − θ�
+ �θ̂ − θ�TN̈�θ��θ̂ − θ�/2+ Op�n−1/2��

where Ṅ�θ� and N̈�θ� are the first and second partial
derivatives of N with respect to θ.
We now approximate Ṅ�θ� and N̈�θ�. Let ηθ be

the maximizer of −L�θ�η� over η ∈ �. Then,
N�θ� = −L�θ�ηθ�. Let the partial derivatives
of L�θ�η� with respect to θ or η be denoted
by L indexed by 1 or 2; for example, L1�θ�η�
stands for ∂L�θ�η�/∂θ and L12�θ�η� stands for
∂2L�θ�η�/∂θ ∂η. By the chain rule,

Ṅ�θ� = −L1�θ�ηθ� − L2�θ�ηθ�η̇θ = −L1�θ�ηθ�
+ L2�θ�ηθ��L22�θ�ηθ��−1L21�η�ηθ��

(2)

where, for the last equality, we have used the fact
η̇θ = −�L22�θ�ηθ��−1L21 �θ�ηθ�, which is derived
from the equation Ṅ�ηθ� = 0. By Li (1996); see the
discussion below Theorem (3b), ηθ differs from θ by
Op�1/√n�. Therefore the following approximations
hold: mathtight

L1�θ�ηθ� =L1�θ�θ� + L12�θ�θ��ηθ−θ� + Op�1��
L2�θ�ηθ� =L2�θ�θ� + L22�θ�θ��ηθ−θ� + Op�1��
L21�θ�ηθ� =L21�θ�θ� + Op�√n��
L22�θ�ηθ� =L22�θ�θ� + Op�√n�	

(3)

By taking derivatives and expectations, it is easy to
verify that

L1�θ� θ� = −L2�θ� θ� = −√
nS�θ�X��

L12�θ� θ� =0�
E�L11�θ� θ�� = −E�L22�θ� θ�� = µ̇θV

−1
θ µ̇θ

=nI�θ� + o�n� = O�n�	

(4)
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Hence, in (3), L2�θ�ηθ� and L21�θ�ηθ� are of the
order Op�√n�, L22�θ�ηθ� is of the order Op�n�
and L1�θ�ηθ� = −√

nS�θ�X� + Op�1�. Substituting
these approximations into expansion (2), we find

Ṅ�θ� = √
nS�θ�X� + Op�1�	(5)

The approximation of N̈�θ� involves η̈θ and taking
higher derivatives of L�θ�η�, but follows the same
spirit. The result is

N̈�θ� = −µ̇T
θ V

−1
θ µ̇θ + Op�√n�

=nI�θ� + op�n�	
(6)

Now substituting the approximations of Ṅ�θ� and
N̈�θ� into the expansion of N�θ̂�, we have

N�θ̂� = N�θ� + S�θ�X�T√
n�θ̂ − θ�

− √
n�θ̂ − θ�TI�θ�√n�θ̂ − θ�/2+ op�1�	

By Theorem 2 of Li (1996), θ̂ is asymptotically equiv-
alent (indeed identical in most cases) to a consis-
tent solution of the quasilikelihood equation. Hence
S�θ�X� = I

√
n�θ̂ − θ� + op�1�. Consequently the

above expansion reduces to

2�N�θ̂� − N�θ��
= √

n�θ̂ − θ�TI�θ�√n�θ̂ − θ� + op�1�	
(7)

Next, we deal with the restricted maximum N�θ̃�.
Denote the derivatives of N�·� with respect to λ
by Ṅλ�θ� and N̈λ�θ�, the λ-component of S�θ�X� by
Sλ�θ�X�, and the four blocks of I by Iψψ, Iψλ, Iλψ,
Iλλ. Expand N�ψ� λ̃� about θ:
N�ψ�λ̃�=N�θ�+ Ṅλ�θ��λ̃−λ�

+�λ̃−λ�TN̈λ�θ��λ̃−λ�/2+Op�n−1/2�
=N�θ�+Sλ�θ�X�T√

n�λ̃−λ�
−√

n�λ̃−λ�TIλλ�θ�√n�λ̃−λ�/2+op�1��

(8)

where the second equality follows from the approx-
imations (5) and (6). Since λ̃ maximizes N�ψ� ·� over
λ, it satisfies the equation

L1�θ̃� ηθ̃��∂θ̃/∂λ̃� + L2�θ̃� ηθ̃��∂ηθ̃/∂λ̃� = 0	
By the argument above expression (5) it can be
shown that ∂ηθ̃/∂λ̃ = Op�1/√n�, L2�θ̃� ηθ̃� =
Op�√n� and L1�θ̃� ηθ̃� = L1�θ̃� θ̃� + Op�1�. Hence
the above equation is asymptotically equivalent to

L1�θ̃� θ̃��∂θ̃/∂λ̃� = −Sλ�θ̃�X� = 0(9a)

and, consequently,

Sλ�θ�X� = Iλλ
√
n�λ̃ − λ� + op�1�	(9b)

Combining (8) and (9b), we see that

2�N�θ̃� − N�θ�� = √
n�λ̃ − λ�TIλλ�θ�√n�λ̃ − λ�

+op�1�	
We now express

√
n�λ̃−λ� as an approximate lin-

ear combination of
√
n�θ̂−θ�. Recall that S�θ�X� is

asymptotically equivalent to I
√
n�θ̂ − θ�. There-

fore Sλ�θ�X� is asymptotically equivalent to
�Iλψ� Iλλ�

√
n�θ̂ − θ�. Hence, by (9b),

√
n�λ̃ − λ� = I−1

λλSλ�θ�X� + op�1�
= �I−1

λλ Iλψ�U�√n�θ̂ − θ� + op�1��
where U denotes the s × s unit matrix. Therefore,

2�N�θ̃� − N�θ��
= √

n�θ̂ − θ�T�I−1
λλ Iλψ�U�T

· Iλλ�I−1
λλ Iλψ�U�√n�θ̂ − θ� + op�1�	

(10)

Subtracting (10) from (7) gives

2�N�θ̂� − N�θ̃�� = √
n�ψ̂ − ψ�T�Iψψ − IψλI

−1
λλ Iλψ�

· √
n�ψ̂ − ψ� + op�1�	

However, we know that
√
n�θ̂ − θ� →� N�0� I−1�,

and so
√
n�ψ̂ − ψ� is asymptotically normal with

mean 0 and variance �Iψψ−IψλI
−1
λλ Iλψ�−1. Therefore

the leading term on the right-hand side converges
in distribution to χ2r.

3. CONCLUSION

I now list the properties of N�θ� that resemble a
log-likelihood:

(i) Wald consistency—The maximizer θ̂ of N�θ� is a
consistent estimator of θ0 (Li, 1996).

(ii) Invariance—Let h: � &→ O be a one-to-one
transformation that maps θ ∈ � to φ ∈ O, let Ñ
be the likelihood for φ (i.e., Ñ = N ◦ h−1) and let
φ̂ be the maximizer of Ñ. Then φ̂ = h�θ̂�.

(iii) Efficiency—Since θ̂ is asymptotically equivalent
to a consistent solution to the quasilikelihood
equation, θ̂ is efficient in the same sense that
the quasilikelihood estimator is efficient. See,
for example, Heyde (1997, Chapter 2) and
Small and McLeish (1994, Chapter 4).

(iv) Relation to quasiscore—Under mild conditions
[Li, 1996, condition (17)], it can be shown that

Ṅ�θ̂� = √
nS�θ̂�X� = 0

and

N̈�θ̂� = √
n∂S�θ̂�X�/∂θ	
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(v) Covariant tensor—Again, suppose that condi-
tion (17) of Li (1996) holds. Then, under the
transformation defined in (ii), the observed
information N̈�θ̂� is a covariant tensor (McCul-
lagh, 1987, page 6). That is,

∂2Ñ�φ̂�
∂φ2

=
{
∂h−1�φ̂�

∂φ

}T{∂2N�θ̂�
∂θ2

}{
∂h−1�φ̂�

∂φ

}
	

(vi) χ2-distribution—As argued in the last section,
the likelihood ratio derived from N has a χ2

asymptotic distribution for testing composite
hypotheses.

This list provides some evidence that N�θ� may be
a natural and competent candidate for the defini-
tion of quasilikelihood when the quasiscore is not
conservative. At least for establishing consistency,
it gives as strong a result as does the Wald theorem
under assumptions no more stringent than the lat-
ter. This seems to be unique among other candidates
for quasilikelihood. Although I have restricted my

discussion to the classical type of quasiscores, the
minimax principle should be more generally appli-
cable. For example, Li (1997) used the same princi-
ple to prove the consistency of Generalized Estimat-
ing Equations. We have also seen that Nmay be used
for testing composite hypothesis. In this respect,
other methods such as the projected likelihood of
McLeish and Small (1992), the path-dependent inte-
gral of quasiscore of Hanfelt and Liang (1995, 1997),
the dual likelihood of Mykland (1995), the artificial
likelihoods of Wang (1999), as well as the potential
function of Li and McCullagh (1994), can also serve
the purpose to varying degrees. In particular, the
projected likelihood and the dual likelihood satis-
fies the Bartlett identities of all orders, whereas the
information identity is satisfied for N only approx-
imately. This may give the former an advantage
in χ2-approximation (see Mykland, 1995). Never-
theless, N disentangles, θ and η and thereby gives
rise to an antisymmetric and additive log likelihood
ratio.

Rejoinder
Christopher G. Small, Jinfang Wang and Zejiang Yang

We are grateful to Professors Hanfelt, Heyde and
Li for their thoughtful comments on our paper.

WHY MULTIPLE ROOT PROBLEMS NOW?

It is difficult to overestimate the influence of
modern computing technology upon statistical data
analysis. The easy availability of computational
resources permits the data analysts to study com-
plex inferential issues, such as those arising in
mixture modeling, as discussed by Professor Han-
felt. Nowadays, Fisher’s likelihood methodology, and
its generalization to the methods of optimal esti-
mating functions, can be implemented for a large
variety of models by accessing this computational
technology. However, multiple roots can arise in the
use of such methods for which estimates cannot be
written in closed form. The roots of estimating func-
tions should not be expected to be local extrema
of any scalar objective function when the estimat-
ing function is nonconservative. To appreciate the
relevance of the issue of nonconservativeness it suf-
fices to note that, in the space of regular smooth
estimating functions, conservative ones are “atypi-
cal” (Poston and Stewart, 1976, page 33). Therefore
methods for root selection in the context of estimat-
ing functions are important and more difficult in

nature than the cases based on parametric models.
The construction of objective functions (Section 6)
represents a major effort toward solving this prob-
lem. Section 4.4 provides an application. This view
is also emphasized by Professors Hanfelt and Li.

AD HOC SOLUTIONS VERSUS
OBJECTIVE METHODS

Intuitions often suggest reasonable answers in
specific decision-making. In this aspect we agree
with Professor Heyde, who points out that in a real
situation a data analyst often can overcome the dif-
ficulty of multiple roots by problem-specific meth-
ods. It is the scientific justification and the general
guidance that are required to be developed. Profes-
sor Heyde suggests comparing the roots of an esti-
mating function with a consistent estimator such as
the median when he discusses the Cauchy location
model. However, in choosing the root that is clos-
est to the median in some metric, we may lose the
parametrization equivariance of the final estimator.
One-step iteration from Fisher’s scoring of course
provides an alternative answer (Section 4.1), But
now it leaves the essential problem of choosing an
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appropriate consistent estimator unanswered. See
Barendregt and van Pul (1995) for an interesting
discussion of this problem. We agree with Profes-
sor Heyde that simple explorative methods such as
the examination of the asymptotics are important
when explicit formulae can be obtained. Unfortu-
nately this only occurs in relatively simple situa-
tions. Even then care is still necessary (Section 4.2).
In the rest of our reply we shall focus on specific

issues raised by the discussants.
Professor Hanfelt opens his discussion by exam-

ining why the subject has been overlooked or dis-
missed in the literature. We agree that multiple
roots may well be overlooked in many data anal-
yses. It is also true that the theory for treating mul-
tiple roots is undeveloped. So it may be that some
researchers regard the problem as a can of worms
that is better left unopened. Others, such as Profes-
sor Heyde, regard the problem as less serious than
we have made it out to be. We shall examine his
comments in greater detail below.
Professors Hanfelt and Li both emphasize the

construction of artificial likelihoods to select among
multiple roots. Both authors make some excellent
arguments in favor of their methodologies. Since
the subject suffers from too many ad hoc solu-
tions, a great advantage of the artificial likelihood
approach is that it avoids this problem in the same
way that Fisher’s likelihood methodology provided
a unifying treatment of point estimation. However,
artificial likelihoods are not without difficulties.
For example, much of the justification for artificial
likelihoods is asymptotic in nature. While multiple
roots can exist asymptotically, a multiple root selec-
tion problem is only to be found for a fixed sample
size. Asymptotically, all reasonable methods should
select the same root. However, for a fixed sample
size, the various methodologies for root selection
can disagree with each other. Nevertheless, artifi-
cial likelihoods offer the most general tools we have
for root selection in semiparametric cases. So if the
problems can be overcome, the methodology should
be quite powerful.
With this in mind, Professor Li’s excellent anal-

ysis of intransitivity and antisymmetry within his
minimax approach deserves careful consideration.
By taking a supremum over η in the antisymmetric
function L�θ�η�, he reduces to the artificial likeli-
hood N�θ� which provides a transitive partial order-
ing of the parameter space, much as an ordinary
likelihood does. Building artificial likelihoods helps
to bridge the gap between the multiple root prob-
lems of semiparametric analysis and those of para-
metric analysis. However, such artificial likelihoods
cannot be a universal panacea for the problems of

multiple roots any more than the parametric likeli-
hood is.
Professor Hanfelt’s confusion about our claims

immediately after equation (29) is most likely due
to our clumsy wording of the text. Of course, we
are not saying that the

√
n-consistency of θ̂i implies

that g�θ� is information-unbiased. Rather, our con-
clusions follow in cases where both conditions hold.
The goal of the bootstrap methodology is similar
to other goodness-of-fit methods. We construct a
statistic which is asymptotically distribution free at
a

√
n-consistent root. By examining the bootstrap

distribution of the statistic, we hope to determine
which root is the most reasonable. Once again,
it is unfortunate that the justification is asymp-
totic in nature. However, this would seem to be
unavoidable.
Professor Hanfelt also raised some concerns

about the artificial likelihood discussed in Sec-
tion 6.4. Linearity of g�θ� in θ is not required for
the method to work, as may be appreciated by
the example discussed in Section 4.4. The approx-
imate (log) likelihood (44) has been derived from
an optimal vector-field decomposition based on a
locally linearized version of the estimating function
g at a reference point. A nonlinear nonconservative
estimating function is locally equivalent to a gradi-
ent system at a critical point if the quasi-Hessian
matrix has unequal real eigenvalues. To further
appreciate why the quadratic form is essential one
may recall that a scalar function at a nondegen-
erate point can be put into a quadratic form by
changing coordinates, a fact known as the Morse
lemma (Poston and Stewart, 1978, page 54).
Unlike Professors Hanfelt and Li, Professor

Heyde takes us to task for making more of mul-
tiple root problems than we should. Thus he falls
into the category of statisticians described by Pro-
fessor Hanfelt, who doubt that multiple roots pose
a serious problem. The two examples presented by
Professor Heyde illustrate that there are simple
solutions to the problems of multiple roots in two
of the cases we have considered. Our response to
his objection is contained in the point stated above,
namely, that most solutions to multiple roots are ad
hoc. Naturally, we have no objections to the median
as a location estimator for the Cauchy, or the root
of the likelihood closest to the sample correlation
coefficient for the standardized bivariate normal.
However, these solutions do not extend to general
methods that help us choose a root for other mod-
els. Our paper is an appeal for a general theory to
treat such problems that is applicable to diverse
models.



ELIMINATING MULTIPLE ROOT PROBLEMS 341

We must also respectfully disagree with Professor
Heyde’s statement that we unnecessarily complicate
the issues of multiple roots. Our claim early in the
paper that likelihood equations can formally be said
to have infinitely many roots is not just a matter of
mathematical precision. It shows a practical limi-
tation on what can be accomplished by asymptotic
arguments. In particular, it is possible for different
statisticians to choose different roots of an equa-
tion while simultaneously justifying their choices as
being the “unique consistent root.” This problem lies
at the heart of the problem of root selection and can-
not be ignored.
We close our comments by reiterating the closing

point made by Professor Heyde. Multiple root prob-
lems are indeed diverse and must be approached
pragmatically. We hope that our paper will stim-
ulate a discussion about the problems of multiple
roots without losing sight of this fact.
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