
In Memory of Martin Hofmann

Eliminating Reflection from Type Theory∗

Théo Winterhalter

Gallinette Project-Team, Inria

Nantes, France

theo.winterhalter@inria.fr

Matthieu Sozeau

Pi.R2 Project-Team, Inria and IRIF

Paris, France

matthieu.sozeau@inria.fr

Nicolas Tabareau

Gallinette Project-Team, Inria

Nantes, France

nicolas.tabareau@inria.fr

Abstract
Type theories with equality reflection, such as extensional

type theory (ETT), are convenient theories in which to for-

malise mathematics, as they make it possible to consider

provably equal terms as convertible. Although type-checking

is undecidable in this context, variants of ETT have been

implemented, for example in NuPRL and more recently in

Andromeda. The actual objects that can be checked are not

proof-terms, but derivations of proof-terms. This suggests

that any derivation of ETT can be translated into a typecheck-

able proof term of intensional type theory (ITT). However,

this result, investigated categorically by Hofmann in 1995,

and 10 years later more syntactically by Oury, has never

given rise to an effective translation. In this paper, we pro-

vide the first effective syntactical translation from ETT to

ITT with uniqueness of identity proofs and functional ex-

tensionality. This translation has been defined and proven

correct inCoq and yields an executable plugin that translates
a derivation in ETT into an actual Coq typing judgment. Ad-

ditionally, we show how this result is extended in the context

of homotopy type theory to a two-level type theory.

CCS Concepts • Theory of computation→ Proof the-
ory; Type theory; Constructive mathematics; Logic and ver-
ification; Automated reasoning;

Keywords dependent types, translation, formalisation

ACM Reference Format:
Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2019.

Eliminating Reflection from Type Theory. In Proceedings of the 8th
ACM SIGPLAN International Conference on Certified Programs and
Proofs (CPP ’19), January 14–15, 2019, Cascais, Portugal. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3293880.3294095

∗
This work is supported by the CoqHoTT ERC Grant 64399.

Publication rights licensed to ACM. ACM acknowledges that this contribu-

tion was authored or co-authored by an employee, contractor or affiliate of

a national government. As such, the Government retains a nonexclusive,

royalty-free right to publish or reproduce this article, or to allow others to

do so, for Government purposes only.

CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6222-1/19/01.

https://doi.org/10.1145/3293880.3294095

1 Introduction
Type theories with equality reflection, such as extensional

type theory (ETT), are convenient theories in which to for-

malise mathematics, as they make it possible to consider

provably equal terms as convertible, as expressed in the fol-

lowing typing rule:

Γ ⊢x e : u =A v

Γ ⊢x u ≡ v : A
(1)

Here, the type u =A v is Martin-Löf’s identity type with

only one constructor refl u : u =A u which represents proofs

of equality inside type theory, whereas u ≡ v : A means

that u and v are convertible in the theory—and can thus

be silently replaced by one another in any term. Several

variants of ETT have been considered and implemented, for

example in NuPRL2 [Allen et al. 2000] and more recently in

Andromeda [Bauer et al. 2016]. The prototypical example of

the use of equality reflection is the definition of a coercion

function between two types A and B that are equal (but not

convertible) by taking a term of typeA and simply returning

it as a term of type B:

λ A B (e : A = B) (x : A). x : Π A B. A = B → A→ B.

In intensional type theory (ITT), this term does not type-

check because x of type A can not be given the type B by

conversion. In ETT, however, equality reflection can be used

to turn the witness of equality into a proof of conversion and

thus the type system validates the fact that x can be given the

type B. This means that one needs to guess equality proofs

during type-checking, because the witness of equality has

been lost at the application of the reflection rule. Guessing it

was not so hard in this example but is in general undecidable,

as one can for instance encode the halting problem of any

Turing machine as an equality in ETT. That is, the actual

objects that can be checked in ETT are not terms, but instead

derivations of terms. It thus seems natural towonderwhether

any derivation of ETT can be translated into a typecheckable

term of ITT. And indeed, it is well know that one can find

a corresponding term of the same type in ITT by explicitly
transporting the term x of type A using the elimination of

internal equality on the witness of equality e , noted e∗:

λ A B (e : A = B) (x : A). e∗ x : Π A B. A = B → A→ B.

2
Although the reflection rule is provable in NuPRL, its calculus is based on

realisability rather than on intensional type theory plus reflection.

91

https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3293880.3294095

CPP ’19, January 14–15, 2019, Cascais, Portugal Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

This can be seen as a way to make explicit the silent use
of reflection. Furthermore, by making the use of transport

as economic as possible, the corresponding ITT term can

be seen as a compact witness of the derivation tree of the

original ETT term.

This result has first been investigated categorically in the

pioneering work of Hofmann [1995, 1997], by showing that

the term model of ITT can be turned into a model of ETT by

quotienting this model with propositional equality. However,

it is not clear how to extend this categorical construction

to an explicit and constructive translation from a derivation

in ETT to a term of ITT. In 2005, this result has been in-

vestigated more syntactically by Oury [2005]. However, his

presentation does not give rise to an effective translation.

By an effective translation we mean that it is entirely con-

structive and can be used to deterministically compute the
translation of a given ETT typing derivation. Two issues

prevent deriving an effective translation from Oury’s presen-

tation, and it is the process of actual formalisation of the

result in a proof assistant that led us to these discoveries.

First, his handling of related contexts is not explicit enough,

which we fix by framing the translation using ideas coming

from the parametricity translation (Section 1.2). Additionally,

Oury’s proof requires an additional axiom in ITT on top of

functional extensionality (FunExt) and uniqueness of iden-

tity proofs, that has no clear motivation and can be avoided

by considering an annotated syntax (Section 2.1).

Contributions. In this paper, we present the first effective

syntactical translation from ETT to ITT (assuming unique-

ness of identity proofs (UIP) and FunExt in ITT). By syn-

tactical translation, we mean an explicit translation from a

derivation Γ ⊢x t : T of ETT (the x index testifies that it is

a derivation in ETT) to a context Γ′, term t ′ and type T ′ of
ITT such that Γ′ ⊢ t ′ : T ′ in ITT. This translation enjoys the

additional property that if T can be typed in ITT, i.e., Γ ⊢ T ,
thenT ′ ≡ T . This means in particular that a theorem proven

in ETT but whose statement is also valid in ITT can be auto-

matically transferred to a theorem of ITT. For instance, one

could use a local extension of the Coq proof assistant with a

reflection rule, without being forced to rely on the reflection

in the entire development.

This translation can be seen as a way to build a syntac-

tical model of ETT from a model of ITT as described more

generally in Boulier et al. [2017] and has been entirely pro-

grammed and formalised in Coq [Coq development team

2017]. For this, we rely on TemplateCoq3 [Anand et al. 2018],
which provides a reifier for Coq terms as represented in

Coq’s kernel as well as a formalisation of the type system of

Coq. Thus, our formalisation of ETT is just given by adding

the reflection rule to a subset of the original type system

of Coq. This allows us to extract concrete Coq terms and

types from a closed derivation of ETT, using a little trick to

3https://metacoq.github.io/metacoq/

incorporate Inductive types and induction. We do not treat

cumulativity of universes which is an orthogonal feature of

Coq’s type theory. It would also complicate the proof which

relies on uniqueness of typing.

Outline of the Paper. Before going into the technical devel-
opment of the translation, we explain its main ingredients

and differences with previous works. Then, in Section 2, we

define the extensional and intensional type theories we con-

sider. In Section 3, we define the main ingredient of the trans-

lation, which is a relation between terms of ETT and terms

in ITT. Then, the translation is given in Section 4. Section 5

describes the Coq formalisation and Sections 6 and 7 discuss

limitations and related work. The details can be found in the

long version: https://hal.archives-ouvertes.fr/hal-01849166
The Coq formalisation can be found in https://github.com/

TheoWinterhalter/ett-to-itt.

1.1 On the Need for UIP and FunExt
Our translation targets ITT plus UIP and FunExt, which

correspond to the two following axioms (where □i denotes

the universe of types at level i):

UIP : Π(A : □i) (x y : A) (e e ′ : x = y). e = e ′

FunExt : Π(A : □i) (B : A→ □i) (f д : Π(x : A). B x).
(Π(x : A). f x = д x) → f = д

The first axiom says that any two proofs of the same equality

are equal, and the other one says that two (dependent) func-

tions are equal whenever they are pointwise equal
4
. These

two axioms are perfectly valid statements of ITT and they

can be proven in ETT. Indeed, UIP can be shown to be equiv-

alent to the Streicher’s axiom K

K : Π(A : □i). Π(x : A). Π(e : x = x). e = reflx

using the elimination on the identity type. But K is provable

in ETT by considering the type

Π(A : □i). Π(x y : A). Π(e : x = y). e = reflx

which is well typed (using the reflection rule to show that e
has type x = x) and which can be inhabited by elimination

of the identity type. In the same way, FunExt is provable in

ETT because

Π(x : A). f x = д x
→ x : A ⊢ f x ≡ д x by reflection

→ (λ(x : A). f x) ≡ (λ(x : A).д x) by congruence of ≡

→ f ≡ д by η-law
→ f = д

Therefore, applying our translation to the proofs of those

theorems in ETT gives corresponding proofs of the same

theorems in ITT. However, UIP is independent from ITT, as

first shown by Hofmann and Streicher using the groupoid

4
In Homotopy Type Theory (HoTT) [Univalent Foundations Program 2013],

FunExt is stated in a more complete way, using the notion of adjoint equiv-

alences, but this more complete way collapses to our simpler statement in

presence of UIP.

92

https://metacoq.github.io/metacoq/
https://hal.archives-ouvertes.fr/hal-01849166
https://github.com/TheoWinterhalter/ett-to-itt
https://github.com/TheoWinterhalter/ett-to-itt

Eliminating Reflection from Type Theory CPP ’19, January 14–15, 2019, Cascais, Portugal

model [Hofmann and Streicher 1998], which has recently

been extended in the setting of univalent type theory using

the simplicial or cubical models [Bezem et al. 2013; Kapulkin

and Lumsdaine 2012]. Similarly, FunExt is independent from

ITT, it is folklore but has recently been formalised by Boulier

et al. using a simple syntactical translation [Boulier et al.

2017].

Therefore, our translation provides proofs of axioms inde-

pendent from ITT, which means that the target of the trans-

lation already needs to have both UIP and FunExt. These

last two elements are only necessary in ITT and could be

removed from ETT but this allows us to consider only one

syntax for both. Part of our work is to show formally that

they are the only axioms required.

1.2 Heterogeneous Equality and the Parametricity
Translation

The basic idea behind the translation from ETT to ITT is

to interpret conversion using the internal notion of equal-

ity, i.e., the identity type. But this means that two terms of

two convertible types that were comparable in ETT become

comparable in ITT only up-to the equality between the two

types. One possible solution to this problem is to consider a

native heterogeneous equality, such as John Major equality
introduced by McBride [2000]. However, to avoid adding

additional axioms to ITT as done by Oury [2005], we prefer

to encode this heterogeneous equality using the following

dependent sums:

t T �U u := Σ(p : T = U).p∗ t = u .

During the translation, the same term occurring twice can

be translated in two different manners, if the corresponding

typing derivations are different. Even the types of the two

different translations may be different. However, we have

the strong property that any two translations of the same

term only differ in places where transports of proof of equal-

ity have been injected. To keep track of this property, we

introduce the relation t ∼ t ′ between two terms of ITT, of

possibly different types. The crux of the proof of the transla-

tion is to guarantee that for every two terms t1 and t2 such
that Γ ⊢ t1 : T1, Γ ⊢ t2 : T2 and t1 ∼ t2, there exists p such that

Γ ⊢ p : t1 T1�T2 t2. However, during the proof, variables of

different but (propositionally) equal types are introduced and

the context cannot be maintained to be the same for both t1
and t2. Therefore, the translation needs to keep track of this

duplication of variables, plus a proof that they are heteroge-

neously equal. This mechanism is similar to what happens

in the (relational) internal parametricity translation in ITT

introduced by Bernardy et al. [2012] and recently rephrased

in the setting of TemplateCoq [Anand et al. 2018]. Namely, a

context is not translated as a telescope of variables, but as a

telescope of triples consisting of two variables plus a witness

that they are in the parametric relation. In our setting, this

amounts to consider telescope of triples consisting of two

variables plus a witness that they are heterogeneously equal.

We can express this by considering the following dependent

sums:

Pack A1 A2 := Σ(x : A1). Σ(y : A2). x A1
�A2

y.

This presentation inspired by the parametricity translation

is crucial in order to get an effective translation, because

it is necessary to keep track of the evolution of contexts

when doing the translation on open terms. This ingredient

is missing in Oury’s work [Oury 2005], which prevents him

from deducing an effective (i.e., constructive and computable)

translation from his theorem.

2 Definitions of Extensional and
Intensional Type Theories

This section presents the common syntax, typing and main

properties of ETT and ITT. Our type theories feature a uni-

verse hierarchy, dependent products and sums as well as

Martin Löf’s identity types.

2.1 Syntax of ETT and ITT
The common syntax of ETT and ITT is given in Figure 1. It

features: dependent products Π(x : A). B, with (annotated)

λ-abstractions and (annotated) applications, negative depen-

dent sums Σ(x : A). B with (annotated) projections, sorts □i ,

identity types u =A v with reflection and elimination as well

as terms realising UIP and FunExt. Annotating terms with

otherwise computationally irrelevant typing information is

a common practice when studying the syntax of type theory

precisely (see [Streicher 1993] for a similar example). We

will writeA→ B for Π(_ : A). B the non-dependent product

/ function type.

We consider a fixed universe hierarchy without cumula-

tivity, which ensures in particular uniqueness of typing (2.2)

which is important for the translation.

About Annotations. Although it may look like a technical

detail, the use of annotation is more fundamental in ETT

than it is in ITT (where it is irrelevant and doesn’t affect

the theory). And this is actually one of the main differences

between our work (and that of Martin Hofmann [1995] who

has a similar presentation) and the work of Oury [2005].

Indeed, by using the standard model where types are inter-

preted as cardinals rather than sets, it is possible to see that

the equality nat → nat = nat → bool is independent from
the theory, it is thus possible to assume it (as an axiom, or for

those that would still not be convinced, simply under a λ that
would introduce this equality). In that context, the identity

map λ(x : nat). x can be given the type nat→ bool and we

thus type (λ(x : nat). x) 0 : bool. Moreover, the β-reduction
of the non-annotated system used by Oury concludes that

this expression reduces to 0, but cannot be given the type

bool (as we said, the equality nat → nat = nat → bool is
independent from the theory, so the context is consistent).

93

CPP ’19, January 14–15, 2019, Cascais, Portugal Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

s ::= □i (i ∈ N) sorts (universes)

T ,A,B, t ,u,v ::= x | λ(x : A).B.t | t @x :A.B u | Π(x : A). B | s dependent λ-calculus
| ⟨u;v⟩x :A.B | πx :A.B

1
p | πx :A.B

2
p | Σ(x : A). B dependent pairs

| reflA u | J(A,u,x .e .P ,w,v,p) | u =A v propositional equality

| funext(x : A,B, f ,д, e) | uip(A,u,v,p,q) equality axioms

Γ,∆ ::= • | Γ,x : A contexts

Figure 1. Common syntax of ETT and ITT

This means we lack subject reduction in this case (or unique-

ness of types, depending on how we see the issue). Our

presentation has a blocked β-reduction limited to matching

annotations: (λ(x : A).B. t)@x :A.Bu = t[x←u], from which

subject reduction and uniqueness of types follow.

Although subtle, this difference is responsible for Oury’s

need for an extra axiom. Indeed, to treat the case of equality

of applications in his proof, he needs to assume the congru-

ence rule for heterogeneous equality of applications, which

is not provable when formulated with John Major equality

(Fig. 2). Thanks to annotations and our notion of hetero-

geneous equality, we can prove this congruence rule for

applications.

JMAPP

f1 ∀(x :U1).V1
�∀(x :U2).V2

f2 u1 U1
�U2

u2

f1 u1 V1[x←u1]�V2[x←u2] f2 u2

Figure 2. Congruence of heterogeneous equality

2.2 The Typing Systems
As usual in dependent type theory, we consider contexts

which are telescopes whose declarations may depend on any

variable already introduced. We note Γ ⊢ t : A to say that t
has type A in context Γ. Γ ⊢ A shall stand for Γ ⊢ A : s for
some sort s and similarly Γ ⊢ A ≡ B stands for Γ ⊢ A ≡ B : s .

We use two relations (s, s ′) ∈ Ax (written (s, s ′) for short)
and (s, s ′, s ′′) ∈ R (written (s, s ′, s ′′)) to constrain the sorts

in the typing rules for universes, dependent products and

dependent sums, as is done in any Pure Type System (PTS).

In our case, because we do not have cumulativity, the rules

are as follows:

(□i ,□i+1) ∈ Ax (□i ,□j ,□max(i, j)) ∈ R

We give the typing rules of ITT in Figure 3. The rules are

standard andwe do not explain them. Let us just point out the

conversion rule, which says that u : A can be given the type

u : B when A ≡ B, i.e., when A and B are convertible. As the

notion of conversion is central in our work—the conversion

of ETT being translated to an equality in ITT—we provide an

exhaustive definition of it, with computational conversion

rules (including β-conversion or reduction of the elimination

principle of equality over reflexivity, see Figure 4), however

congruence conversion rules are omitted due to lack of space.

Note that we use Christine Paulin-Möhring’s variant of the J

rule rather than Martin-Löf’s original formulation. Although

pretty straightforward, being precise here is very important,

as for instance the congruence rule for λ-terms is the reason

why FunExt is derivable in ETT. Congruence of equality

terms is a standard extension of congruence to the new prin-

ciples we add (UIP and FunExt).

ETT is thus simply an extension of ITT (we write ⊢x for

the associated typing judgment) with the reflection rule on

equality, which axiomatises that propositionally equal terms

are convertible (see Equation 1). Note that, as already men-

tioned, in the presence of reflection and J, UIP is derivable

so we could remove it from ETT, but keeping it allows us

to share a common syntax which makes the statements of

theorems simpler and does not affect the development.

2.3 General Properties of ITT and ETT
We now state the main properties of both ITT and ETT. We

do not detail their proof as they are standard and can be

found in the Coq formalisation.

First, although not explicit in the typing system, weaken-

ing is admissible in ETT and ITT.

Lemma 2.1 (Weakening). If Γ ⊢ J and ∆ extends Γ (possibly
interleaving variables) then ∆ ⊢ J .

Then, as mentioned above, the use of a non-cumulative

hierarchy allows us to prove that a term t can be given at

most one type in a context Γ, up-to conversion.

Lemma 2.2 (Uniqueness of typing). If Γ ⊢ u : T1 and Γ ⊢ u :

T2 then Γ ⊢ T1 ≡ T2.

Finally, an important property of the typing system (seen

as a mutual inductive definition) is the possibility to deduce

hypotheses from their conclusion, thanks to inversion of

typing. Note that it is important here that our syntax is

annotated for applications and projections as it provides a

richer inversion principle.

Lemma 2.3 (Inversion of typing).
1. If Γ ⊢ x : T then (x : A) ∈ Γ and Γ ⊢ A ≡ T .
2. If Γ ⊢ □i : T then Γ ⊢ □i+1 ≡ T .
3. If Γ ⊢ Π(x : A). B : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′

and Γ ⊢ s ′′ ≡ T for some (s, s ′, s ′′).

94

Eliminating Reflection from Type Theory CPP ’19, January 14–15, 2019, Cascais, Portugal

Well-formedness of contexts.

⊢ •

⊢ Γ Γ ⊢ A

⊢ Γ,x : A
(x < Γ)

Types.

⊢ Γ

Γ ⊢ s : s ′
(s, s ′)

Γ ⊢ A : s Γ,x : A ⊢ B : s ′

Γ ⊢ Π(x : A). B : s ′′
(s, s ′, s ′′)

Γ ⊢ A : s Γ,x : A ⊢ B : s ′

Γ ⊢ Σ(x : A). B : s ′′
(s, s ′, s ′′)

Γ ⊢ A : s Γ ⊢ u : A Γ ⊢ v : A

Γ ⊢ u =A v : s

Structural rules.
⊢ Γ (x : A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ u : A Γ ⊢ A ≡ B : s

Γ ⊢ u : B

λ-calculus terms.
Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ,x : A ⊢ t : B

Γ ⊢ λ(x : A).B.t : Π(x : A). B

Γ ⊢ A : s
Γ,x : A ⊢ B : s ′ Γ ⊢ t : Π(x : A). B Γ ⊢ u : A

Γ ⊢ t @x :A.B u : B[x←u]

Γ ⊢ u : A
Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ ⟨u;v⟩x :A.B : Σ(x : A). B

Γ ⊢ p : Σ(x : A). B

Γ ⊢ πx :A.B
1

p : A

Γ ⊢ p : Σ(x : A). B

Γ ⊢ πx :A.B
2

p : B[x←πx :A.B
1

p]

Equality terms.

Γ ⊢ A : s Γ ⊢ u : A

Γ ⊢ reflA u : u =A u

Γ ⊢ e1, e2 : u =A v

Γ ⊢ uip(A,u,v, e1, e2) : e1 = e2

Γ ⊢ A : s Γ ⊢ u,v : A Γ,x : A, e : u =A x ⊢ P : s ′

Γ ⊢ p : u =A v Γ ⊢ w : P[x←u, e← reflA u]

Γ ⊢ J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]

Γ ⊢ f ,д : Π(x : A). B
Γ ⊢ e : Π(x : A). f @x :A.B x =B д@x :A.B x

Γ ⊢ funext(x : A,B, f ,д, e) : f = д

Figure 3. Typing rules

4. If Γ ⊢ λ(x : A).B.t : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′

and Γ,x : A ⊢ t : B and Γ ⊢ Π(x : A). B ≡ T .
5. If Γ ⊢ u @x :A.B v : T then Γ ⊢ A : s and Γ,x : A ⊢

B : s ′ and Γ ⊢ u : Π(x : A). B and Γ ⊢ v : A and
Γ ⊢ B[x←u] ≡ T .

6. . . . Analogous for the remaining term and type construc-
tors.

Proof. Each case is proven by induction on the derivation

(which corresponds to any number of applications of the

conversion rule following one introduction rule). □

3 Relating Translated Expressions
Wewant to define a relation on terms that equates two terms

that are the same up to transport. This begs the question of

what notion of transport is going to be used. Transport can

be defined from elimination of equality as follows:

Definition 3.1 (Transport). Given Γ ⊢ p : T1 =s T2 and
Γ ⊢ t : T1 we define the transport of t along p, written p∗ t , as
J(s,T1,X .e . T1 → X , λ(x : T1).T1.x ,T2,p) @T1 .T2 t such that

Γ ⊢ p∗ t : T2.

However, in order not to confuse the transports added by

the translation with the transports that were already present

in the source, we consider p∗ as part of the syntax in the

reasoning. It will be unfolded to its definition only after the

complete translation is performed. This idea is not novel as

Hofmann already had a Subst operator that was part of his
ITT (noted TTI in his paper [Hofmann 1995]).

We first define the (purely syntactic) relation ⊏ between

ETT terms and ITT terms in Figure 5 stating that the ITT

term is simply a decoration of the first term by transports. Its

purpose is to state how close to the original term its transla-

tion is. Then, we extend this relation to a similarity relation∼

on ETT terms by taking its symmetric and transitive closure:

∼B (⊏ ∪ ⊏−1)+

Lemma 3.2 (∼ is an equivalence relation). ∼ is reflexive,
symmetric and transitive.

Proof. For reflexivity we proceed by induction on the term.

□

The goal is to prove that two terms in this relation, that

are well-typed in the target type theory, are heterogeneously

equal. As for this notion, we recall the definition we previ-

ously gave: t T �U u := Σ(p : T = U).p∗ t = u. This defini-
tion of heterogeneous equality can be shown to be reflexive,

symmetric and transitive. Because of UIP, heterogeneous

equality collapses to equality when taken on the same type.

Lemma 3.3. If Γ ⊢ e : u A�A v then there exists p such that
Γ ⊢ p : u =A v .

Proof. This holds thanks to UIP on equality, which implies K,

and so the proof of A = A can be taken to be reflexivity. □

95

CPP ’19, January 14–15, 2019, Cascais, Portugal Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Computation.

Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ,x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ (λ(x : A).B.t) @x :A.B u ≡ t[x←u] : B[x←u]

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A, e : u =A x ⊢ P : s ′ Γ ⊢ w : P[x←u, e← reflA u]

Γ ⊢ J(A,u,x .e .P ,w,u, reflA u) ≡ w : P[x←u, e← reflA u]

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ πx :A.B
1

⟨u;v⟩x :A.B ≡ u : A

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ πx :A.B
2

⟨u;v⟩x :A.B ≡ v : B[x←u]

Conversion.
Γ ⊢ t1 ≡ t2 : T1 Γ ⊢ T1 ≡ T2

Γ ⊢ t1 ≡ t2 : T2

Figure 4. Main conversion rules (omitting congruence rules)

Note. As a corollary, � on types corresponds to equality. In-
deed when we have Γ ⊢ e : A s�s ′ B we have that s = s ′,
which implies that s and s ′ have the same sort and thus are
syntactically the same (by an inversion argument).

Before we can prove the fundamental lemma stating that

two terms in relation are heterogeneously equal, we need

to consider another construction. As explained in the intro-

duction, when proving the property by induction on terms,

we introduce variables in the context that are equal only

up-to heterogeneous equality. This phenomenon is similar

to what happens in the parametricity translation [Bernardy

et al. 2012]. Our fundamental lemma on the decoration re-

lation ∼ assumes two related terms of potentially different

types T1 and T2 to produce an heterogeneous equality be-

tween them. For induction to go through under binders (e.g.

for dependent products and abstractions), we hence need to

consider the two terms under different, but heterogeneously

equal contexts. Therefore, the context we produce will not

only be a telescope of variables, but rather a telescope of

triples consisting of two variables of possibly different types,

and a witness that they are heterogeneously equal. To make

this precise, we define the following macro:

Pack A1 A2 := Σ(x : A1). Σ(y : A2). x � y

together with its projections

Proj
1
p := π .

1
p Proj

2
p := π .

1
π .
2
p Proje p := π .

2
π .
2
p.

We can then extend this notion canonically to contexts of

the same length that are well formed using the same sorts:

Pack (Γ1,x : A1) (Γ2,x : A2) :=
(Pack Γ1 Γ2),x : Pack (A1[γ1]) (A2[γ2])

Pack • • := •.

When we pack contexts, we also need to apply the correct

projections for the types in that context to still make sense.

Assuming two contexts Γ1 and Γ2 of the same length, we can

define left and right substitutions:

γ1 := [x ← Proj
1
x | (x : _) ∈ Γ1]

γ2 := [x ← Proj
2
x | (x : _) ∈ Γ2].

These substitutions implement lifting of terms to packed

contexts: Γ,Pack Γ1 Γ2 ⊢ t[γ1] : A[γ1] whenever Γ, Γ1 ⊢ t : A
(resp. Γ,Pack Γ1 Γ2 ⊢ t[γ2] : A[γ2] whenever Γ, Γ2 ⊢ t : A).

For readability, when Γ1 and Γ2 are understood we will

write Γp for Pack Γ1 Γ2.
Implicitly, whenever we use the notation Pack Γ1 Γ2 it

means that the two contexts are of the same length and

well-formed with the same sorts. We can now state the fun-

damental lemma.

Lemma 3.4 (Fundamental lemma). Let t1 and t2 be two terms.
If Γ, Γ1 ⊢ t1 : T1 and Γ, Γ2 ⊢ t2 : T2 and t1 ∼ t2 then there exists
p such that Γ,Pack Γ1 Γ2 ⊢ p : t1[γ1] T1[γ1]�T2[γ2] t2[γ2].

Proof. The proof is by induction on the derivation of t1 ∼ t2.
We show the three most interesting cases:

• Var

x ∼ x

96

Eliminating Reflection from Type Theory CPP ’19, January 14–15, 2019, Cascais, Portugal

t1 ⊏ t2

t1 ⊏ p∗ t2

x ⊏ x

A1 ⊏ A2 B1 ⊏ B2

Π(x : A1). B1 ⊏ Π(x : A2). B2

A1 ⊏ A2 B1 ⊏ B2

Σ(x : A1). B1 ⊏ Σ(x : A2). B2

A1 ⊏ A2 u1 ⊏ u2 v1 ⊏ v2

u1 =A1
v1 ⊏ u2 =A2

v2 s ⊏ s

A1 ⊏ A2 B1 ⊏ B2 t1 ⊏ t2

λ(x : A1).B1.t1 ⊏ λ(x : A2).B2.t2

t1 ⊏ t2 A1 ⊏ A2 B1 ⊏ B2 u1 ⊏ u2

t1 @x :A1 .B1
u1 ⊏ t2 @x :A2 .B2

u2

A1 ⊏ A2 B1 ⊏ B2 t1 ⊏ t2 u1 ⊏ u2

⟨t1;u1⟩x :A1 .B1
⊏ ⟨t2;u2⟩x :A2 .B2

A1 ⊏ A2 B1 ⊏ B2 p1 ⊏ p2

πx :A1 .B1

1
p1 ⊏ πx :A2 .B1

1
p2

A1 ⊏ A2 B1 ⊏ B2 p1 ⊏ p2

πx :A1 .B1

2
p1 ⊏ πx :A2 .B2

2
p2

A1 ⊏ A2 u1 ⊏ u2

reflA1
u1 ⊏ reflA2

u2

A1 ⊏ A2 B1 ⊏ B2 f1 ⊏ f2 д1 ⊏ д2 e1 ⊏ e2

funext(x : A1,B1, f1,д1, e1) ⊏ funext(x : A2,B2, f2,д2, e2)

A1 ⊏ A2 u1 ⊏ u2 v1 ⊏ v2 p1 ⊏ p2 q1 ⊏ q2

uip(A1,u1,v1,p1,q1) ⊏ uip(A2,u2,v2,p2,q2)

A1 ⊏ A2

u1 ⊏ u2 P1 ⊏ P2 w1 ⊏ w2 v1 ⊏ v2 p1 ⊏ p2

J(A1,u1,x .e .P1,w1,v1,p1) ⊏ J(A2,u2,x .e .P2,w2,v2,p2)

Figure 5. Relation ⊏

If x belongs to Γ, we apply reflexivity—together with

uniqueness of typing (2.2)—to conclude. Otherwise,

Proje x has the expected type (since x[γ1] ≡ Proj
1
x

and x[γ2] ≡ Proj
2
x).

• Application

t1 ∼ t2 A1 ∼ A2 B1 ∼ B2 u1 ∼ u2

t1 @x :A1 .B1
u1 ∼ t2 @x :A2 .B2

u2

Wehave Γ, Γ1 ⊢ t1@x :A1 .B1
u1 : T1 and Γ, Γ2 ⊢ t2@x :A2 .B2

u2 : T2 which means by inversion (2.3) that the sub-

terms are well-typed. We apply the induction hypoth-

esis and then conclude.

• TransportLeft

t1 ∼ t2

p∗ t1 ∼ t2

We have Γ, Γ1 ⊢ p∗ t1 : T1 and Γ, Γ2 ⊢ t2 : T2. By inver-

sion (2.3) we have Γ, Γ1 ⊢ p : T ′
1
= T1 and Γ, Γ1 ⊢ t1 : T

′
1
.

By induction hypothesis we have e such that Γ, Γp ⊢ e :

t1[γ1] � t2[γ2]. From transitivity and symmetry we

only need to provide a proof of t1[γ1] � p[γ1]∗ t1[γ1]
which is inhabited by ⟨p[γ1]; refl (p[γ1]∗ t1[γ1])⟩_._.

□

We can also prove that ∼ preserves substitution.

Lemma 3.5. If t1 ∼ t2 and u1 ∼ u2 then t1[x←u1] ∼
t2[x←u2].

Proof. We proceed by induction on the derivation of t1 ∼
t2. □

4 Translating ETT to ITT
4.1 The Translation
We now define the translations (let us stress the plural here)

of an extensional judgment. We extend ⊏ canonically to

contexts (Γ ⊏ Γ when they bind the same variables and the

types are in relation for ⊏).
Before defining the translation, we define a set JΓ ⊢x t : AK

of typing judgments in ITT associated to a typing judgment

Γ ⊢x t : A in ETT. The idea is that this set describes all

the possible translations that lead to the expected property.

When Γ ⊢ t : A ∈ JΓ ⊢x t : AK, we say that Γ ⊢ t : A realises

Γ ⊢x t : A. The translation will be given by showing that this

set is inhabited by induction on the derivation.

Definition 4.1 (Characterisation of possible translations).
• For any ⊢x Γ we define J⊢x ΓK as a set of valid judg-

ments (in ITT) such that ⊢ Γ ∈ J⊢x ΓK if and only if

Γ ⊏ Γ.
• Similarly, Γ ⊢ t : A ∈ JΓ ⊢x t : AK iff ⊢ Γ ∈ J⊢x ΓK and
A ⊏ A and t ⊏ t .

In order to better master the shape of the produced realiser,

we state the following lemma which shows that it has the

same head type constructor as the type it realises. This is

important for instance for the case of an application, where

we do not know a priori if the translated function has a

dependent product type, which is required to be able to use

the typing rule for application.

Lemma 4.2. We can always choose types T that have the
same head constructor as T .

97

CPP ’19, January 14–15, 2019, Cascais, Portugal Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Proof. Assume we have Γ ⊢ t : T ∈ JΓ ⊢x t : T K. By definition
of ⊏, T ⊏ T means that T is shaped p∗ q∗ ... r∗ T

′
with T

′

having the same head constructor asT . By inversion (2.3), the

subterms are typable, including T
′
. Actually, from inversion,

we even get that the type of T
′
is a universe. Then, using

lemma 3.4 and lemma 3.3, we get Γ ⊢ e : T = T
′
. We conclude

with Γ ⊢ e∗ t : T
′
∈ JΓ ⊢x t : T K. □

Finally, in order for the induction to go through, we need to

know that when we have a realiser of a derivation Γ ⊢x t : T ,
we can pick an arbitrary other type realising Γ ⊢x T and

still get a new derivation realising Γ ⊢x t : T with that type.

This is important for instance for the case of an application,

where the type of the domain of the translated function may

differ from the type of the translated argument. So we need

to be able to change it a posteriori.

Lemma 4.3. When we have Γ ⊢ t : T ∈ JΓ ⊢x t : T K and
Γ ⊢ T

′
∈ JΓ ⊢x T K then we also have Γ ⊢ t ′ : T

′
∈ JΓ ⊢x t : T K

for some t ′.

Proof. By definition we have T ⊏ T and T ⊏ T
′
and thus

T ∼ T and T ∼ T
′
, implying T ∼ T

′
by transitivity (3.2). By

lemma 3.4 (in the case Γ1 ≡ Γ2 ≡ •) we get Γ ⊢ p : T � T
′
for

some p. By lemma 3.3 (and lemma 4.2 to give universes as

types to T and T
′
) we can assume Γ ⊢ p : T = T

′
. Then Γ ⊢

p∗ t : T
′
is still a translation since ⊏ ignores transports. □

We can now define the translation. This is done by mutual

induction on context well-formedness, typing and conver-

sion derivations. Indeed, in order to be able to produce a

realiser by induction, we need to show that every conver-

sion in ETT is translated as an heterogeneous equality in

ITT.

Theorem 4.4 (Translation).
• If ⊢x Γ then there exists ⊢ Γ ∈ J⊢x ΓK,
• If Γ ⊢x t : T then for any ⊢ Γ ∈ J⊢x ΓK there exist t and
T such that Γ ⊢ t : T ∈ JΓ ⊢x t : T K,
• If Γ ⊢x u ≡ v : A then for any ⊢ Γ ∈ J⊢x ΓK there
exist A ⊏ A,A ⊏ A

′
,u ⊏ u,v ⊏ v and e such that

Γ ⊢ e : u A�A′ v .

Proof. We prove the theorem by induction on the derivation

in the extensional type theory. We only show the two most

interesting cases of application and conversion.

• Application

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x t : Π(x : A). B Γ ⊢x u : A

Γ ⊢x t @x :A.B u : B[x←u]

Using IH together with lemmata 4.2 and 4.3 we get

Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and Γ ⊢ t : Π(x : A). B
and Γ ⊢ u : Ameaning we can conclude Γ ⊢ t@x :A.Bu :

B[x←u] ∈ JΓ ⊢x t @x :A.B u : B[x←u]K.

• Conversion

Γ ⊢x u : A Γ ⊢x A ≡ B

Γ ⊢x u : B

By IH and lemma 3.3 we have Γ ⊢ e : A = B which

implies Γ ⊢ A ∈ JΓ ⊢x AK by inversion (2.3), thus,

from lemma 4.3 and IH we get Γ ⊢ u : A, yielding

Γ ⊢ e∗ u : B ∈ JΓ ⊢x u : BK.
□

4.2 Meta-theoretical Consequences
We can check that all ETT theorems whose type are typable

in ITT have proofs in ITT as well:

Corollary 4.5 (Preservation of ITT). If ⊢x t : T and ⊢ T then
there exist t such that ⊢ t : T ∈ J⊢x t : T K.

Proof. Since ⊢ • ∈ J⊢x •K, by Theorem (4.4), there exists t

and T such that ⊢ t : T ∈ J⊢x t : T K But as ⊢ T , we have
⊢ T ∈ J⊢x T K, and, using Lemma 4.3, we obtain ⊢ t : T ∈ J⊢x
t : T K. □

Corollary 4.6 (Relative consistency). Assuming ITT is con-
sistent, there is no term t such that ⊢x t : Π(A : □0). A.

Proof. Assume such a t exists. By the Corollary 4.5, because

⊢ Π(A : □0). A, there exists t such that ⊢ t : Π(A : □0). A
which contradicts the assumed consistency of ITT. □

4.3 Optimisations
Up until now, we remained silent about one thing: the size

of the translated terms. Indeed, the translated term is a deco-

ration of the initial one by transports which appear in many

locations. For example, at each application we use a transport

by lemma 4.2 to ensure that the term in function position

is given a function type. In most cases—in particular when

translating ITT terms—this produces unnecessary transports

(often by reflexivity) that we wish to avoid.

In order to limit the size explosion, in the above we use a

different version of transport, namely transport′ such that

transport′A1,A2

(p, t) = t when A1 =α A2

= p∗t otherwise.

The idea is that we avoid trivially unnecessary transports (we
do not deal with β-conversion for instance). We extend this

technique to the different constructors of equality (symmetry,

transitivity, . . .) so that they reduce to reflexivity whenever

possible. Take transitivity for instance:

transitivity′(refl u,q) = q

transitivity′(p, refl u) = p

transitivity′(p,q) = transitivity(p,q).

We show these defined terms enjoy the same typing rules

as their counterparts and use them instead. In practice it is

98

Eliminating Reflection from Type Theory CPP ’19, January 14–15, 2019, Cascais, Portugal

enough to recover the exact same term when it is typed in

ITT.

5 Formalisation with Template-Coq
We have formalised the translation in the setting of Tem-
plateCoq [Anand et al. 2018] in order to have a more precise

proof, but also to evidence the fact that the translation is in-

deed constructive and can be used to perform computations.

TemplateCoq is a Coq library that has a representation of

Coq terms as they are in Coq’s kernel (in particular using de

Bruijn indices for variables) and a (partial) implementation

of the type checking algorithm (not checking guardedness

of fixpoints or positivity of inductive types). It comes with

a Coq plugin that permits to quote Coq terms into their

representations, and to produce Coq terms from their rep-

resentation (if they indeed denote well-typed terms). We

have integrated our formalisation within that framework in

order to ensure our presentations of ETT and ITT are close

to Coq, but also to take advantage of the quoting mechanism

to produce terms using the interactive mode (in particular

we get to use tactics). Note that we also rely on Mangin

and Sozeau’s Equations [Sozeau 2010] plugin to derive nice

dependent induction principles.

Our formalisation takes full advantage of its easy interfac-

ing with TemplateCoq: we define two theories, namely ETT

and ITT, but ITT enjoys a lot of syntactic sugar by having

things such as transport, heterogeneous equality and pack-

ing as part of the syntax. The operations regarding these

constructors—in particular the tedious ones—are written in

Coq and then quoted to finally be realised in the translation

from ITT to TemplateCoq.

Interoperability with TemplateCoq. The translation we

define from ITT to TemplateCoq is not proven correct, but

it is not really important as it can just be seen as a feature to

observe the produced terms in a nicer setting. In any case,

TemplateCoq does not yet provide a complete formalisa-

tion of CIC rules, as guard checking of recursive definitions

and strict positivity of inductive type declarations are not

formalised yet.

Our formalised theorems however do not depend on Tem-
plateCoq itself and as such there is no need to trust the
plugin.

We also provide a translation from TemplateCoq to ETT

that we will describe more extensively with the examples

(Section 5.4).

5.1 Quick Overview of the Formalisation
The file SAst.v contains the definition of the (common) ab-

stract syntax of ETT and ITT in the form of an inductive

definition with de Bruijn indices for variables (like in Tem-
plateCoq). Sorts are defined separately in Sorts.v and we will

address them later in Section 5.3.

Inductive sterm : Type :=
| sRel (n : nat)
| sSort (s : sort)
| sProd (nx : name) (A B : sterm)
| sLambda (nx : name) (A B t : sterm)
| sApp (u : sterm) (nx : name) (A B v : sterm)
| sEq (A u v : sterm)
| sRefl (A u : sterm)
| (* ... *) .

The files ITyping.v and XTyping.v define respectively the

typing judgments for ITT and ETT, using mutual inductive

types. Then, most of the files are focused on the meta-theory

of ITT and can be ignored by readers who don’t need to see

yet another proof of subject reduction.

The most interesting files are obviously those where the

fundamental lemma and the translation are formalised: Fun-

damentalLemma.v and Translation.v. For instance, here is

the main theorem, as stated in our formalisation:

Theorem complete_translation Σ :
type_glob Σ ->
(forall Γ (h : XTyping.wf Σ Γ),

∑
Γ', Σ |--i Γ' # J Γ K) *

(forall Γ t A (h : Σ ;;; Γ |-x t : A)
Γ' (hΓ : Σ |--i Γ' # J Γ K),∑

A' t', Σ ;;;; Γ' |--- [t'] : A' # J Γ |--- [t] : A K) *
(forall Γ u v A (h : Σ ;;; Γ |-x u = v : A)
Γ' (hΓ : Σ |--i Γ' # J Γ K),∑

A' A'' u' v' p', eqtrans Σ Γ A u v Γ' A' A'' u' v' p').

Herein type_glob Σ refers to the fact that some global con-

text is well-typed, its purpose is detailed in Section 5.2. The

fact that the theorem holds in Coq ensures we can actually

compute a translated term and type out of a derivation in

ETT.

5.2 Inductive Types and Recursion
In the proof of Section 4, we didn’t mention anything about

inductive types, pattern-matching or recursion as it is a bit

technical on paper. In the formalisation, we offer a way to

still be able to use them, and we will even show how it works

in practice with the examples (Section5.4).

The main guiding principle is that inductive types and in-

duction are orthogonal to the translation, they should more

or less be translated to themselves. To realise that easily,

we just treat an inductive definition as a way to introduce

new constants in the theory, one for the type, one for each

constructor, one for its elimination principle, and one equal-

ity per computation rule. For instance, the natural numbers

can be represented by having the following constants in the

context:

nat : □0

0 : nat
S : nat→ nat
natrec : ∀P , P 0→ (∀m, P m → P (Sm)) → ∀n, P n
natrec0 : ∀P Pz Ps , natrec P Pz Ps 0 = Pz
natrecS : ∀P Pz Ps n,

natrec P Pz Ps (S n) = Ps n (natrec P Pz Ps n)

Here we rely on the reflection rule to obtain the computa-

tional behaviour of the eliminator natrec.

99

https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/SAst.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Sorts.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/ITyping.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/XTyping.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/FundamentalLemma.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/FundamentalLemma.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Translation.v

CPP ’19, January 14–15, 2019, Cascais, Portugal Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

This means for instance that we do not consider inductive

types that would only make sense in ETT, but we deem this

not to be a restriction and to the best of our knowledge isn’t

something that is usually considered in the literature. With

that in mind, our translation features a global context of

typed constants with the restriction that the types of those

constants should be well-formed in ITT. Those constants are

thus used as black boxes inside ETT.

With this we are able to recover what we were missing

from Coq, without having to deal with the trouble of proving
that the translation doesn’t break the guard condition of fixed

points, and we are instead relying on a more type-based

approach.

5.3 About Universes and Homotopy
The experienced reader might have noticed that our treat-

ment of universes (except perhaps for the absence of cumu-

lativity) was really superficial and the notion of sorts used

is rather orthogonal to our main development. This is even

more apparent in the formalisation. Indeed, we didn’t fix a

specific universe hierarchy, but instead specify what proper-

ties it should have, in what is reminiscent to a (functional
5
)

PTS formulation.

Class Sorts.notion := {
sort : Type ;
succ : sort -> sort ;
prod_sort : sort -> sort -> sort ;
sum_sort : sort -> sort -> sort ;
eq_sort : sort -> sort ;
eq_dec : forall s z : sort, {s = z} + {s <> z} ;
succ_inj : forall s z, succ s = succ z -> s = z

}.

From the notion of sorts, we require functions to get the sort

of a sort, the sort of a product from the sorts of its arguments,

and (crucially) the sort of an identity type. We also require

some measure of decidable equality and injectivity on those.

This allows us to instantiate this by a lot of different no-

tions including the one presented earlier in the paper or

even its extension with a universe Prop of propositions (like

CIC [Bertot and Castéran 2004]). We present here two in-

stances that have their own interest.

Type in Type. One of the instances we provide is one with
only one universe Type, with the inconsistent typing rule

Type : Type. Although inconsistent, this allows us to inter-

face with TemplateCoq, without the—for the time being—

very time-consuming universe constraint checking.

Homotopy Type System and Two-Level Type Theory. An-
other interesting application (or rather instance) of our for-

malisation is a translation from Homotopy Type System

(HTS) [Voevodsky 2013] to Two-Level Type Theory (2TT) [Al-

tenkirch et al. 2016; Annenkov et al. 2017].

HTS and 2TT arise from the incompatibility between UIP—

recall it is provable in ETT—and univalence. The idea is

5
Meaning the sort of a sort, and the sort of a product are functions, necessary

to the uniqueness of types (2.2).

to have two distinct notions of equality in the theory, a

strict one satisfying UIP, and a fibrant one corresponding
to the homotopy type theory equality, possibly satisfying

univalence. This actually induces a separation in the types

of the theory: some of them are called fibrant and the fibrant
or homotopic equality can only be eliminated on those. HTS

can be seen as an extension of 2TT with reflection on the

strict equality just like ETT is an extension of ITT.

We can recover HTS and 2TT in our setting by taking

Fi and Ui as respectively the fibrant and strict universes

of those theories (for i ∈ N), along with the following PTS

rules:

(Fi , Fi+1) ∈ Ax (Ui ,Ui+1) ∈ Ax
(Fi , Fj , Fmax(i, j)) ∈ R (Fi ,Uj ,Umax(i, j)) ∈ R
(Ui , Fj ,Umax(i, j)) ∈ R (Ui ,Uj ,Umax(i, j)) ∈ R

and the fact that the sort of the (strict) identity type on A : s
is the strictified version of s , i.e., Ui for s = Ui or s = Fi . In
order to have the fibrant equality, one simply needs to do as

in Section 5.2.

In short, the translation from HTS to 2TT is basically the

same as the one from ETT to ITT we presented in this paper,

and this fact is factorised through our formalisation.

5.4 ETT-flavoured Coq: Examples
In this section we demonstrate how our translation can bring

extensionality to the world of Coq in action. The examples

can be found in plugin_demo.v.

First, a pedestrian approach. We would like to begin by

showing how one can write an example step by step before

we show how it can be instrumented and automated as a

plugin. For this we use a self-contained example without any

inductive types or recursion, illustrating a very simple case of

reflection. The term we want to translate is our introductory

example of transport:

λ A B e x . x : Π A B. A = B → A→ B

which relies on the equality e : A = B and reflection to

convert x : A to x : B. Of course, this definition isn’t accepted
in Coq because this conversion is not valid in ITT.

Fail Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := x.

However, we still want to be able to write it in some way, in
order to avoid manipulating de Bruijn indices directly. For

this, we use a little trick by first defining a Coq axiom to

represent an ill-typed term:

Axiom candidate : forall A B (t : A), B.

candidate A B t is a candidate t of type A to inhabit type

B. We complete this by adding a notation that is reminiscent

to Agda’s [Norell 2007] hole mechanism.

Notation "'{!' t '!}'" := (candidate _ _ t).

We can now write the ETT function within Coq.
Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := {! x !}.

100

https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/plugin_demo.v

Eliminating Reflection from Type Theory CPP ’19, January 14–15, 2019, Cascais, Portugal

We can then quote the term and its type to TemplateCoq
thanks to the Quote Definition command provided by the

plugin.

Quote Definition pseudoid_term :=
ltac:(let t := eval compute in pseudoid in exact t).

Quote Definition pseudoid_type :=
ltac:(let T := type of pseudoid in exact T).

The terms that we get are now TemplateCoq terms, repre-

senting Coq syntax. We need to put them in ETT, meaning

adding the annotations, and also removing the candidate
axiom. This is the purpose of the fullquote function that

we provide in our formalisation.

Definition pretm_pseudoid :=
Eval lazy in fullquote (2^18) Σ [] pseudoid_term empty empty nomap.

Definition tm_pseudoid :=
Eval lazy in match pretm_pseudoid with

| Success t => t
| Error _ => sRel 0
end.

Definition prety_pseudoid :=
Eval lazy in fullquote (2^18) Σ [] pseudoid_type empty empty nomap.

Definition ty_pseudoid :=
Eval lazy in match prety_pseudoid with

| Success t => t
| Error _ => sRel 0
end.

tm_pseudoid and ty_pseudoid correspond respectively to

the ETT representation of pseudoid and its type. We then

produce, using our home-brewed Ltac type-checking tactic,

the corresponding ETT typing derivation (notice the use of

reflection to typecheck).

Lemma type_pseudoid : Σi ;;; [] |-x tm_pseudoid : ty_pseudoid.
Proof.

unfold tm_pseudoid, ty_pseudoid.
ettcheck. cbn.
eapply reflection with (e := sRel 1).
ettcheck.

Defined.

We can then translate this derivation, obtain the translated

term and then convert it to TemplateCoq.
Definition itt_pseudoid : sterm :=

Eval lazy in
let '(_ ; t ; _) :=
type_translation type_pseudoid istrans_nil

in t.

Definition tc_pseudoid : tsl_result term :=
Eval lazy in
tsl_rec (2 ^ 18) Σ [] itt_pseudoid empty.

Once we have it, we unquote the term to obtain a Coq term

(notice that the only use of reflection has been replaced by a

transport).

fun (A B : Type) (e : A = B) (x : A) => transport e x
: forall A B : Type, A = B -> A -> B

Making a Plugin with TemplateCoq. All of this work

is pretty systematic. Fortunately for us, TemplateCoq also

features a monad to reify Coq commands which we can use

to program the translation steps. As such we have written a

complete procedure, relying on type checkers we wrote for

ITT and ETT, which can generate equality obligations.

Thanks to this, the user doesn’t have to know about the

details of implementation of the translation, and stay within

the Coq ecosystem.

For instance, our previous example now becomes:

Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := {! x !}.

Run TemplateProgram (Translate ε "pseudoid").

This produces a Coq term pseudoid' corresponding to the

translation (ε is the empty translation context, see the next

example to understand the need for a translation context).

Notice how the user doesn’t even have to provide any proof

of equality or derivations of any sort. The derivation part is

handled by our own typechecker while the obligation part

is solved automatically by the Coq obligation mechanism.

About inductive types. As we promised, our translation is

able to handle inductive types. For this consider the inductive

type of vectors (or length-indexed lists) below, together with

a simple definition (we will remain in ITT for simplicity).

Inductive vec A : nat -> Type :=
| vnil : vec A 0
| vcons : A -> forall n, vec A n -> vec A (S n).

Arguments vnil {_}.
Arguments vcons {_} _ _ _.

Definition vv := vcons 1 _ vnil.

This time, in order to apply the translation we need to extend

the translation context with nat and vec.
Run TemplateProgram (
Θ <- TranslateConstant ε "nat" ;;
Θ <- TranslateConstant Θ "vec" ;;
Translate Θ "vv"

).

The command TranslateConstant enriches the current

translation context with the types of the inductive type and

of its constructors. The translation context then also con-

tains associative tables between our own representation of

constants and those of Coq. Unsurprisingly, the translated
Coq term is the same as the original term.

Reversal of vectors. Next, we tackle a motivating example:

reversal on vectors. Indeed, implementing this operation the

same way it can be done on lists ends up in the following

conversion problem:

Fail Definition vrev {A n m} (v : vec A n) (acc : vec A m)
: vec A (n + m) :=
vec_rect A (fun n _ => forall m, vec A m -> vec A (n + m))

(fun m acc => acc)
(fun a n _ rv m acc => rv _ (vcons a m acc))
n v m acc.

The recursive call returns a vector of length n + S m where

the context expects one of length S n + m. In ITT, these

types are not convertible. This example is thus a perfect fit

for ETT where we can use the fact that these two expressions

always compute to the same thing when instantiated with

concrete numbers.

Definition vrev {A n m} (v : vec A n) (acc : vec A m)
: vec A (n + m) :=
vec_rect A (fun n _ => forall m, vec A m -> vec A (n + m))

(fun m acc => acc)
(fun a n _ rv m acc => {! rv _ (vcons a m acc) !})
n v m acc.

Run TemplateProgram (
Θ <- TranslateConstant ε "nat" ;;
Θ <- TranslateConstant Θ "vec" ;;

101

CPP ’19, January 14–15, 2019, Cascais, Portugal Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Θ <- TranslateConstant Θ "Nat.add" ;;
Θ <- TranslateConstant Θ "vec_rect" ;;
Translate Θ "vrev"

).

This generates four obligations that are all solved automati-

cally. One of them contains a proof of S n + m = n + S m
while the remaining three correspond to the computation

rules of addition (as mentioned before, add is simply a con-

stant and does not compute in our representation, hence the

need for equalities). The returned term is the following, with

only one transport remaining (remember our interpretation

map removes unnecessary transports).

fun (A : Type) (n m : nat) (v : vec A n) (acc : vec A m) =>
vec_rect A
(fun n _ => forall m, vec A m -> vec A (n + m))
(fun m acc => acc)
(fun a n0 v0 rv m0 acc0 =>
transport (vrev_obligation_3 A n m v acc a n0 v0 rv m0 acc0)
(rv (S m0) (vcons a m0 acc0))) n v m acc

: forall A n m, vec A n -> vec A m -> vec A (n + m)

5.5 Towards an Interfacing between Andromeda
and Coq

Andromeda [Bauer et al. 2016] is a proof assistant implement-

ing ETT in a sense that is really close to our formalisation.

Aside from a concise nucleus with a basic type theory, most

things happen with the declaration of constants with given

types, including equalities to define the computational be-

haviour of eliminators for instance. This is essentially what

we do in our formalisation. Furthermore, their theory relies

on Type : Type, meaning, our modular handling of universes

can accommodate for this as well.

All in all, it should be possible in the near future to use our

translation to produce Coq terms out of Andromeda devel-
opments. Note that this would not suffer from the difficulties

in generating typing derivations since Andromeda generates
them.

5.6 Composition with other Translations
This translation also enables the formalisation of translations

that target ETT rather than ITT and still get mechanised

proofs of (relative) consistency by composition with this ETT

to ITT translation. This could also be used to implement plu-

gins based on the composition of translations. In particular,

supposing we have a theory which forms a subset of ETT

and whose conversion is decidable. Using this translation,

we could formalise it as an embedded domain-specific type

theory and provide an automatic translation of well-typed

terms into witnesses in Coq. This would make it possible to

extend conversion with the theory of lists for example.

This would provide a simple way to justify the consistency

of CoqMT [Jouannaud and Strub 2017] for example, seeing

it as an extensional type theory where reflection is restricted

to equalities on a specific domain whose theory is decidable.

6 Limitations and Axioms
Currently, the representation of terms and derivations and

the computational content of the proof only allow us to deal

with the translation of relatively small terms but we hope

to improve that in the future. As we have seen, the actual

translation involves the computational content of lemmata of

inversion, substitution, weakening and equational reasoning

and thus cannot be presented as a simple recursive definition

on derivations.

As we already mentioned, the axioms K and FunExt are

both necessary in ITT if we want the translation to be conser-

vative as they are provable in ETT [Hofmann 1995]. However,

one might still be concerned about having axioms as they

can for instance hinder canonicity of the system. In that re-

spect, K isn’t really a restriction since it preserves canonicity.

The best proof of that is probably Agda itself which natively

features K—in fact, one needs to explicitly deactivate it with

a flag if they wish to work without.

The case of FunExt is trickier. It should be possible to re-

alise the axiom by composing our translation with a setoid

interpretation [Altenkirch 1999] which validates it, or by

going into a system featuring it, for instance by implement-

ing Observational Type Theory [Altenkirch et al. 2007] like

EPIGRAM [McBride 2004].

However, these two axioms are not used to define the

translation itself, but only to witness UIP and function exten-

sionality in the translation toCoq. The translation only relies
on one axiom, called conv_trans_AXIOM in the formalisa-

tion, stating that conversion of ITT is transitive. The proof

of this property basically sums up to the confluence of the

reduction rules of ITT which is out of scope for this paper

and has recently been formalised in Agda [Abel et al. 2017]

(in a simpler setting with only one universe). Regardless, this

axiom inhabits a proposition (the type of conversion is in

Prop) and is thus irrelevant for computation. Actually no

information about the derivation leaks to the production of

the ITT term.

On a different note, the candidate axiom allows us to

derive False but is merely used to write ill-typed terms in

Coq. The translated term will never make us of it and one

can always check if a term is relying on unsafe assumptions

thanks to the Print Assumptions command.

7 Related Works and Conclusion
The seminal works on the precise connection between ETT

and ITT go back to Streicher [1993] and Hofmann [1995,

1997]. In particular, the work of Hofmann provides a categor-

ical answer to the question of consistency and conservativity

of ETT over ITT with UIP and FunExt. Ten years later, Oury

[2005, 2006] provided a translation from ETT to ITT with

UIP and FunExt and other axioms (mainly due to technical

difficulties). Although a first step towards a move from cate-

gorical semantics to a syntactic translation, his work does

102

Eliminating Reflection from Type Theory CPP ’19, January 14–15, 2019, Cascais, Portugal

not stress any constructive aspect of the proof and shows

that there merely exist translations in ITT to a typed term

in ETT.

van Doorn et al. [2013] have later proposed and formalised

a similar translation between a PTS with and without ex-

plicit conversion. This does not entail anything about ETT

to ITT but we can find similarities in that there is a wit-

ness of conversion between any term and itself under an

explicit conversion, which internalises irrelevance of explicit

conversions. This morally corresponds to a Uniqueness of

Conversions principle.

The Program [Sozeau 2007] extension of Coq performs

a related coercion insertion algorithm, between objects in

subsets on the same carrier or in different instances of the

same inductive family, assuming a proof-irrelevance axiom.

Inserting coercions locally is not as general as the present

translation from ETT to ITT which can insert transports in

any context.

In this paper we provide the first effective translation from

ETT to ITT with UIP and FunExt. The translation has been

formalised in Coq using TemplateCoq, a meta-programming

plugin of Coq. This translation is also effective in the sense

that we can produce in the end a Coq term using the Tem-
plateCoq denotation machinery. With ongoing work to ex-

tend the translation to the inductive fragment of Coq, we
are paving the way to an extensional version of the Coq
proof assistant which could be translated back to its inten-

sional version, allowing the user to navigate between the

two modes, and in the end produce a proof term checkable

in the intensional fragment.

Acknowledgments
We would like to thank Andrej Bauer and Philipp Hasel-

warter with whom we had fruitful discussions on the subject,

prior to this work. We also would like to thank the attendees

of the Aarhus EUTypes 2018 meeting for their insightful

feedback on the plugin stemming from the translation.

References
Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2017. Decidability of

Conversion for Type Theory in Type Theory. Proc. ACM Program. Lang. 2,
POPL, Article 23 (Dec. 2017), 29 pages. https://doi.org/10.1145/3158111

Stuart F. Allen, Robert L. Constable, Richard Eaton, Christoph Kreitz, and

Lori Lorigo. 2000. The Nuprl Open Logical Environment. In Automated
Deduction - CADE-17, Pittsburgh, PA, USA, June 17-20, 2000, Proceedings
(LNCS), David A. McAllester (Ed.), Vol. 1831. Springer, 170–176.

T. Altenkirch. 1999. Extensional equality in intensional type theory. In

Proceedings of LICS. 412–420.
Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending

Homotopy Type Theory with Strict Equality. (2016). arXiv:1604.03799

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observa-

tional equality, now!. In Proceedings of the 2007 workshop on Programming
languages meets program verification. ACM, 57–68.

Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nico-

las Tabareau. 2018. Towards Certified Meta-Programming with Typed

Template-Coq. In ITP 2018, Oxford, UK, July 9-12, 2018, Proceedings (Lec-
ture Notes in Computer Science), Jeremy Avigad and Assia Mahboubi

(Eds.), Vol. 10895. Springer, 20–39.

Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. 2017. Two-Level Type

Theory and Applications. CoRR abs/1705.03307 (2017). arXiv:1705.03307

Andrej Bauer, Gaëtan Gilbert, Philipp G. Haselwarter, Matija Pretnar,

and Chris Stone. 2016. The ‘Andromeda’ prover. http://www.
andromeda-prover.org/

Jean-philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for

free: Parametricity for dependent types. Journal of Functional Program-
ming 22, 2 (2012), 107–152.

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and

Program Development.

Marc Bezem, Thierry Coquand, and Simon Huber. 2013. A Model of Type

Theory in Cubical Sets. (December 2013). http://www.cse.chalmers.se/
~coquand/mod1.pdf

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next

700 Syntactical Models of Type Theory. In Certified Programs and Proofs
– CPP 2017. 182–194.

The Coq development team. 2017. The Coq proof assistant reference manual.
LogiCal Project. http://coq.inria.fr Version 8.7.

Martin Hofmann. 1995. Conservativity of equality reflection over inten-

sional type theory. In International Workshop on Types for Proofs and
Programs. Springer, 153–164.

Martin Hofmann. 1997. Extensional constructs in intensional type theory.
Springer.

Martin Hofmann and Thomas Streicher. 1998. The Groupoid Interpretation

of Type Theory. In Twenty-five years of constructive type theory (Venice,
1995). Vol. 36. Oxford Univ. Press, New York, 83–111.

Jean-Pierre Jouannaud and Pierre-Yves Strub. 2017. Coq without Type Casts:

A Complete Proof of Coq Modulo Theory. In LPAR-21, Maun, Botswana,
May 7-12, 2017 (EPiC Series in Computing), Thomas Eiter and David Sands

(Eds.), Vol. 46. EasyChair, 474–489.

Chris Kapulkin and Peter LeFanu Lumsdaine. 2012. The simplicial model of

univalent foundations. arXiv preprint arXiv:1211.2851 (2012).
Conor McBride. 2000. Dependently typed functional programs and their

proofs. Ph.D. Dissertation. University of Edinburgh.

Conor McBride. 2004. Epigram: Practical programming with dependent

types. In International School on Advanced Functional Programming.
Springer, 130–170.

Ulf Norell. 2007. Towards a practical programming language based on depen-
dent type theory. Vol. 32. Citeseer.

Nicolas Oury. 2005. Extensionality in the calculus of constructions. In Inter-
national Conference on Theorem Proving in Higher Order Logics. Springer,
278–293.

Nicolas Oury. 2006. Egalité et filtrage avec types dépendants dans le calcul
des constructions inductives. Ph.D. Dissertation. http://www.theses.fr/
2006PA112136

Matthieu Sozeau. 2007. Program-ing Finger Trees in Coq. In ICFP’07. ACM
Press, Freiburg, Germany, 13–24.

Matthieu Sozeau. 2010. Equations: A Dependent Pattern-Matching Compiler.

In ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings (Lecture Notes
in Computer Science), Matt Kaufmann and Lawrence C. Paulson (Eds.),

Vol. 6172. Springer, 419–434.

Thomas Streicher. 1993. Investigations into intensional type theory.
The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent

Foundations of Mathematics. Institute for Advanced Study.

Floris van Doorn, Herman Geuvers, and Freek Wiedijk. 2013. Explicit

convertibility proofs in pure type systems. In Proceedings of the Eighth
ACM SIGPLAN international workshop on Logical frameworks & meta-
languages: theory & practice. ACM, 25–36.

Vladimir Voevodsky. 2013. A simple type system with two identity types.

https://ncatlab.org/homotopytypetheory/files/HTS.pdf

103

https://doi.org/10.1145/3158111
http://arxiv.org/abs/1604.03799
http://arxiv.org/abs/1705.03307
http://www.andromeda-prover.org/
http://www.andromeda-prover.org/
http://www.cse.chalmers.se/~coquand/mod1.pdf
http://www.cse.chalmers.se/~coquand/mod1.pdf
http://coq.inria.fr
http://www.theses.fr/2006PA112136
http://www.theses.fr/2006PA112136
https://ncatlab.org/homotopytypetheory/files/HTS.pdf

	Abstract
	1 Introduction
	1.1 On the Need for UIP and FunExt
	1.2 Heterogeneous Equality and the Parametricity Translation

	2 Definitions of Extensional and Intensional Type Theories
	2.1 Syntax of ETT and ITT
	2.2 The Typing Systems
	2.3 General Properties of ITT and ETT

	3 Relating Translated Expressions
	4 Translating ETT to ITT
	4.1 The Translation
	4.2 Meta-theoretical Consequences
	4.3 Optimisations

	5 Formalisation with Template-Coq
	5.1 Quick Overview of the Formalisation
	5.2 Inductive Types and Recursion
	5.3 About Universes and Homotopy
	5.4 ETT-flavoured Coq: Examples
	5.5 Towards an Interfacing between Andromeda and Coq
	5.6 Composition with other Translations

	6 Limitations and Axioms
	7 Related Works and Conclusion
	Acknowledgments
	References

