
Eliminating Sandwich Attacks with the Help of Game Theory
Lioba Heimbach

ETH Zürich

Switzerland

hlioba@ethz.ch

Roger Wattenhofer

ETH Zürich

Switzerland

wattenhofer@ethz.ch

ABSTRACT
Predatory trading bots lurking in Ethereum’s mempool present

invisible taxation of traders on automated market makers (AMMs).

AMM traders specify a slippage tolerance to indicate the maximum

price movement they are willing to accept. This way, traders avoid

automatic transaction failure in case of small price movements

before their trade request executes. However, while a too-small

slippage tolerance may lead to trade failures, a too-large slippage

tolerance allows predatory trading bots to profit from sandwich

attacks. These bots can extract the difference between the slippage

tolerance and the actual price movement as profit.

In this work, we introduce the sandwich game to analyze sand-

wich attacks analytically from both the attacker and victim perspec-

tives. Moreover, we provide a simple and highly effective algorithm

that traders can use to set the slippage tolerance. We unveil that

most broadcasted transactions can avoid sandwich attacks while

simultaneously only experiencing a low risk of transaction failure.

Thereby, we demonstrate that a constant auto-slippage cannot ad-

just to varying trade sizes and pool characteristics. Our algorithm

outperforms the constant auto-slippage suggested by the biggest

AMM, Uniswap, in all performed tests. Specifically, our algorithm

repeatedly demonstrates a cost reduction exceeding a factor of 100.

CCS CONCEPTS
• Security and privacy→Distributed systems security; •The-
ory of computation→ Algorithmic game theory.

KEYWORDS
blockchain, Ethereum, smart contract, decentralized finance, front-

running, sandwich attack

ACM Reference Format:
Lioba Heimbach and Roger Wattenhofer. 2022. Eliminating Sandwich At-

tacks with the Help of Game Theory. In Proceedings of the 2022 ACM Asia
Conference on Computer and Communications Security (ASIA CCS ’22), May
30–June 3, 2022, Nagasaki, Japan. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3488932.3517390

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00

https://doi.org/10.1145/3488932.3517390

1 INTRODUCTION
In 2008, Nakatomo [30] introduced Bitcoin, a fully decentralized

currency based on cryptography. The introduction of smart con-

tracts [34] further fueled the initial excitement surrounding cryp-

tocurrencies. Yet, apart from a few niche applications, cryptocur-

rencies mostly were alternative investment vehicles: you invest a

dollar today and hope to have hundreds of dollars tomorrow. The

emergence of decentralized finance (DeFi) set off a new wave of

interest for cryptocurrencies. DeFi is the first widespread applica-

tion of cryptocurrencies and utilizes smart contracts running on

a blockchain, currently mainly Ethereum [34], to offer financial

services without relying on intermediaries. Traditional finance, on

the other hand, relies on financial intermediaries, such as banks,

brokerages, and exchanges. Thus, traditional finance requires users

to trust intermediaries with their assets, while in DeFi, users have

full autonomy over their assets.

Decentralized exchanges (DEXes) are a DeFi cornerstone. While

centralized exchanges (CEXes) traditionally utilize the limit order

book mechanism, matching individual sellers and buyers, traders do

not need to bematched to a trading partner with opposite intentions

in DEXes. Instead, trades on DEXes execute immediately upon

inclusion in a block. When swapping two cryptocurrencies, the

fluid exchange rate is determined algorithmically. Generally, the

ratio and amount of the cryptocurrency pair, stored in the respective

smart contract otherwise referred to as liquidity pool, control the
exchange rate.

We observe users starting to acknowledge the benefits of DEXs.

The 24hr trading volume of Uniswap [14], the most popular DEX,

topped Coinbase’s 24hr trading volume for the first time on 30

August 2020 [1], and repeatedly since. Further, all DEXes, which

also include SushiSwap [13], Curve [4], and dxdy [6], have more

than $27 billion locked as of 10 November 2021 [5].

Despite the undeniable rise in popularity of DeFi applications,

the Ethereum peer-to-peer network is recently being characterized

as a dark forest, with user transactions broadcast through the net-

work being prey to predatory trading bots. The reason: the rise of

DeFi on the Ethereum blockchain is testing some blockchain design

principles. DeFi’s smart contracts are dependent on transaction-

ordering. One example of an attack that exploits the dependency on

transaction-ordering are the omnipresent sandwich attacks on DEX

transactions. Sandwich attacks involve front- and back-running

a victim transaction – presenting a tax on the victim’s trade by

forcing the trade to execute at an unfavorable price and then tak-

ing advantage of the created price difference. More than 84,000

transactions were sandwiched on Uniswap in April 2021 alone [36].

Between May 2020 and May 2021, sandwich attacks earned at least

64,217 ETH [36] – presenting an invisible tax on trades.

A year ago, the risk presented to bots performing sandwich at-

tacks was to time the front- and back-running transactions shortly

ar
X

iv
:2

20
2.

03
76

2v
2

 [
cs

.G
T

]
 2

 M
ar

 2
02

2

https://doi.org/10.1145/3488932.3517390
https://doi.org/10.1145/3488932.3517390

before and after the victim’s transaction. However, with the recent

widespread adoption of flashbots [9] by miners, sandwich attacks

have become simpler than ever. Set out to light up the dark forest,

front-running-as-a-service, as offered by flashbots, allows attackers

to execute sandwich attacks on victim transactions in the mempool

virtually risk-free. Flashbots allows anyone submit victim transac-

tions from the mempool directly to the miner along with the attack

– guaranteeing a successful attack.

Thus far, the largest DEXes have not reacted to the risks sand-

wich attacks present to their users. The interfaces of Uniswap and

SushiSwap both auto-suggest a fixed slippage tolerance, the maxi-

mum acceptable price movement, ignorant to all trade parameters.

In this paper, we show that a fixed slippage tolerance is unable to

perform well, i.e., prevent sandwich attacks and avoid unnecessary

transaction failures due to natural price fluctuations, consistently.

Further, both platforms only warn their users of the risk of being

front-run when inputting an exorbitant slippage tolerance. Even

more startling, when users choose slippage tolerances that we find

to be sensible, the two platforms issue warnings. Thus, their sug-

gestions and (missed) warnings ramp up both the loss of their users

and the profits of attackers.

1.1 Our Contributions
Our contribution is two-fold:

(1) We analyze sandwich attacks by introducing the sandwich

game. The sandwich game formalizes the sandwich attack

problem from both the trader’s and the bot’s perspectives.

(2) We provide AMM traders with an algorithm, allowing them

to circumvent both unnecessary trade failures and most

sandwich attacks. In the evaluation, we show that our al-

gorithm outperforms the auto-slippage suggested by the

biggest AMMs, in some cases by a factor of 100 and more.

2 BACKGROUND
DeFi now offers many centralized finance services. DeFi financial

services are smart contracts on the blockchain – the Ethereum

blockchain hosts most services. DEXes are one momentous DeFi

innovation to surface in recent years. However, DEXes present new

challenges to blockchain design. While an order’s position in a

block used to be inconsequential for simple financial transactions,

a transaction’s relative position in a block is essential for many

successful attacks. This section covers the preliminaries of sandwich

attacks on DEXes.

2.1 Ethereum Blockchain
Ethereum is a public blockchain platform and the home to most

DeFi applications, includingDEXes such as Uniswap and SushiSwap.

Users send their transactions to the mempool: the waiting area for

Ethereum transactions. Along with each transaction, users indicate

the gas fee (Ethereum’s network transaction fee) they are willing to

pay for their transaction. Transactions execute upon the inclusion

in a block by a miner.

Until recently, users were over-bidding each other for block

inclusion, and miners received the entire gas fee, but this changed

with Ethereum’s London Hard Fork update on 5 August 2021 [7].

As part of the London Hard Fork, EIP-1559 launched and changed

Ethereum transactions fees. EIP-1559 aims to make transaction fees

predictable, dividing the fee into the base fee and the priority fee.

Automatically set by the network according to the current network

load, the base fee is required for block inclusion and burned by the

protocol. The priority fee, on the other hand, is collected by the

miners. Thus, with EIP-1559, anyone wishing to make an Ethereum

transaction will at least pay the base fee.

2.2 Automated Market Maker
Most DEXes are automated market makers (AMMs). AMMs allow

automatic trading of cryptocurrencies by an algorithm. Cryptocur-

rencies are aggregated in liquidity pools to facilitate this auto-

mated trading. A widespread adaptation of the AMM mechanism

is Uniswap V2’s, which we will introduce in the following. Note,

however, that there are currently two active Uniswap versions:

Uniswap V2 and Uniswap V3. This paper discusses and applies to

both versions.

Uniswap allows the creation of liquidity pools between any cryp-

tocurrency pair. Then, individual liquidity providers can deposit

both cryptocurrencies at equal value in the respective pool. The

liquidity aggregation allows traders to exchange the respective to-

kens in the pool. A transaction fee is levied for every trade and

distributed pro-rata amongst the pool’s liquidity providers.

The AMM smart contract specifies the exchange rate offered

to trades based on the number of tokens reserved in the liquidity

pool. Uniswap utilizes a constant product market maker (CPMM),

ensuring that product between the amounts of the two reserved

pool currencies stays constant.We consider a liquidity pool between

token 𝑋 and token 𝑌 , 𝑋 ⇌ 𝑌 . The respective reserves are 𝑥𝑡 and

𝑦𝑡 at time 𝑡 . A trader wishing to exchange 𝛿𝑥 tokens 𝑋 at time 𝑡

will receive 𝛿𝑦 tokens 𝑌 , where

𝛿𝑦 = 𝑦𝑡 −
𝑥𝑡 · 𝑦𝑡

𝑥𝑡 + (1 − 𝑓)𝛿𝑥
=

𝑦𝑡 (1 − 𝑓)𝛿𝑥
𝑥𝑡 + (1 − 𝑓)𝛿𝑥

, (1)

and 𝑓 is the transaction fee [18]. The fee is charged on the input

amount and is 0.3% in the case of Uniswap.

Trades, however, are not executed immediately upon submis-

sion but are first sent to the mempool. Upon inclusion in a block,

the trade executes. The delay between submission and execution

implies that the pool reserves during execution are unknown to

the trader when submitting the swap. Thus, traders indicate their

slippage tolerance – the maximum acceptable price movement.

We note that at the time of this writing, the interfaces of most

major DEXes [2, 4, 12, 13, 31] suggest an auto-slippage, i.e., the same

slippage tolerance is suggested for all transactions, independent of

the size and the pool.

2.3 Sandwich Attacks
The aforementioned slippage tolerance simultaneously gives rise

to sandwich attacks: front- and back-running victim transactions.

Predatory traders listen to transactions in the public mempool and

attack those that present profit opportunities by manipulating the

transaction ordering and ensuring that one of the attack’s transac-

tions executes before the victim’s transaction (front-running) and

one after the victim’s transaction (back-running).

To understand how sandwich attacks present a profit opportunity

to bots, consider a victim’s transaction trading 10 tokens 𝑋 for

tokens 𝑌 with 1% slippage tolerance and 0.3% transaction fee in a

pool holding 100 tokens 𝑋 and 100 tokens 𝑌 . The trader is expected

to receive 9.066 tokens 𝑌 (Equation 1). However, after seeing the

transaction in the mempool, a trading bot front-runs the victim by

purchasing 0.524 tokens 𝑌 with 0.529 tokens 𝑋 . Thereby, the bot

raises the price of token 𝑌 for the victim to the limit indicated by

the slippage tolerance. The following victim’s trade subsequently

only buys 8.975 tokens 𝑌 . Thus, the victim’s trade is executed at a

higher price than expected – receiving exactly 1% fewer tokens 𝑌

than anticipated. The price of 𝑌 is further increased by the victim’s

transaction. Finally, the bot concludes the attack by selling 0.524

tokens𝑌 at a higher price and receiving 0.635 tokens𝑋 . We observe

that the bot’s profit from the sandwich attack is 0.106 tokens 𝑋 .

Generally, the profitability of sandwich attacks increases with the

victim’s transaction size and slippage tolerance.

Before the introduction of flashbots, bots were challenged to

time their attacks through strategically setting the gas price, the
reward given to the miner for processing the transaction, such that

a miner ordering the transactions according to gas price would

sandwich the victim’s transactions with the bots attack. As most

miners used to sort transactions according to gas price, bots were

able to predict the order of transactions. However, there was no

guarantee. Further, this resulted in high gas prices for bots as they

were overbidding each other in what is commonly referred to as

priority gas auctions (PGAs) – the competitive bidding up of gas

fees to obtain early block positions.

Since the adaptation of flashbots, it is now possible for bots to

guarantee that their attack transactions will sandwich the victim’s

transaction. Miners place bundles received from flashbots at the

beginning of the block. Bots can submit the entire sandwich attack

with the correct ordering to the miner by including the victim’s

transaction, detected in the mempool, in the bundle.

3 MODEL
There are three types of players in the sandwich game: traders,

predatory trading bots, and miners. Traders send a DEX transaction

to the mempool, representing potential bait to predatory trading

bots. Predatory trading bots listen to these incoming transactions

and launch a sandwich attack if they consider it profitable: aiming

to front- and back-run the trader’s transaction. Finally, miners select

and order the transactions from the mempool in a block. From this

point on, we will assume that the predatory trading bots are miners

themselves or collude with miners – allowing them to strategically

order their transactions around the trader’s transaction at no extra

cost.

3.1 Transaction Model
We consider the liquidity pool between token 𝑋 and token 𝑌 , 𝑋 ⇌
𝑌 , with respective reserves 𝑥0 and 𝑦0 at time 𝑡0. The current base

fee for a Uniswap transaction is denoted by 𝑏. Note that while the

base fee gives the minimum fee per gas, we utilize the minimum

fee per Uniswap transaction in our analysis. This simplification

is reasonable, as all individual Unisawp V2 transactions require

approximately the same amount of gas. Thus, given the base fee

per gas, we can compute the approximate base fee for a Uniswap

transaction.

A trade 𝑇𝑣 to exchange 𝛿𝑥 tokens 𝑋 entering the mempool at

time 𝑡0 is identified as 𝑇𝑣 = (𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0). Here, 𝑠 is the

specified slippage tolerance and 𝑓 the transaction fee. The trade

would output 𝛿𝑣𝑦 tokens 𝑌 if executed at time 𝑡0, where

𝛿𝑣𝑦 = 𝑦0 −
𝑥0 · 𝑦0

𝑥0 + (1 − 𝑓)𝛿𝑥
=

𝑦0 (1 − 𝑓)𝛿𝑥
𝑥0 + (1 − 𝑓)𝛿𝑥

.

Time advances when a trade is executed in pool 𝑋 ⇌ 𝑌 , and as the

transaction might not execute at time 𝑡0, 𝛿𝑣𝑦 is only an estimate.

Assuming that the trade executed at time 𝑡1, the trader will receive

˜𝛿𝑣𝑦 =
𝑦1 (1 − 𝑓)𝛿𝑥
𝑥1 + (1 − 𝑓)𝛿𝑥

,

tokens 𝑌 . Depending on the changes in the pool reserves between

time 𝑡0 and 𝑡1, the trader might receive more or less tokens 𝑌 . In

order to control how bad the exchange rate becomes for the traders,

they specify a slippage tolerance 𝑠 . The trade will only execute at

time 𝑡1, if
˜𝛿𝑣𝑦 ≥ (1 − 𝑠)𝛿𝑣𝑦 .

Otherwise, the trade will fail to execute. With the sandwich game,

we analyze how traders optimally set the slippage tolerance to

achieve a low expected trade cost.

3.2 Attack Model
The predatory trading bot listens to the inflowing transactions in

the mempool. Upon noticing the trade 𝑇𝑣 = (𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0)
entering the mempool, the predatory trading bot computes the

optimal input for the sandwich attack (𝛿𝑎𝑥) and assess whether

the attack will be profitable. We assume optimal conditions for

the predatory trading bot: access to unlimited funds, guaranteed

transaction ordering, and only paying the base fee. Assuming that

the predatory trading bot has access to unlimited funds is reasonable

and represents the worst case for traders. Additionally, letting the

miner be the predatory trading bot again represents the worst case

for traders. Further, it allows the trading bot to only pay the base

fee for its transactions and control transaction ordering. We further

assume that the trading bot takes the front-running transaction’s

output as the input of the back-running transaction.

4 SANDWICH GAME
We start by going through the general mechanism of the game. The

victim submits a transaction 𝑇𝑣 wishing to exchange 𝛿𝑣𝑥 > 0 in

pool 𝑋 ⇌ 𝑌 , with respective reserves 𝑥0 > 0 and 𝑦0 > 0. The pools

transaction fee is 𝑓 (0 ≤ 𝑓 < 1) and the transaction’s slippage toler-

ance is 𝑠 (0 < 𝑠 < 1). Transaction 𝑇𝑣 = (𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0) enters
the mempool at time 𝑡0. When submitting the trade, the victim

expects 𝛿𝑣𝑦 tokens 𝑌 . 𝛿𝑣𝑦 corresponds to the number of tokens the

victim would receive if no other trade is executed beforehand, i.e., if

the reserves in the pool do not shift in the meantime (cf. Figure 1a).

Thus,

𝛿𝑣𝑦 =
𝑦0 (1 − 𝑓)𝛿𝑣𝑥
𝑥0 + (1 − 𝑓)𝛿𝑣𝑥

.

However, when a sandwich attack occurs, the predatory bot first

executes a transaction 𝑇𝐴1
exchanging 𝛿 in𝑎𝑥 > 0 tokens 𝑋 for 𝛿𝑎𝑦

tokens 𝑌 , where

𝛿𝑎𝑦 =
𝑦0 (1 − 𝑓)𝛿 in𝑎𝑥
𝑥0 + (1 − 𝑓)𝛿 in𝑎𝑥

.

𝑥0𝑋

𝑦0𝑌

𝑥0𝑋

𝑦0𝑌

𝛿𝑣𝑥 𝛿𝑣𝑦

𝑥2𝑋

𝑦2𝑌

(a) Illustration of an ordinary
Uniswap transaction.

𝑥0𝑋

𝑦0𝑌

𝛿 in𝑎𝑥 𝛿𝑎𝑦

𝑥1𝑋

𝑦1𝑌

𝛿𝑣𝑥
˜𝛿𝑣𝑦

𝑥2𝑋

𝑦2𝑌

𝛿𝑎𝑦 𝛿out𝑎𝑥

(b) Illustration of a sandwich at-
tacked Uniswap transaction.

Figure 1: Illustration of a sandwich attack. In Figure 1a the
trade executes without being attacked, while the trade is
front- and back-run in Figure 1b.

Now the victims transaction executes at time 𝑡1, assuming that

the slippage tolerance is not overshot, with unfavourable reserves

𝑥1 = 𝑥0 + 𝛿 in𝑎𝑥 and 𝑦1 = (𝑥0𝑦0)/(𝑥0 + 𝛿 in𝑎𝑥 (1 − 𝑓)). The victim only

receives

˜𝛿𝑣𝑦 =
𝑦1 (1 − 𝑓)𝛿𝑣𝑥
𝑥1 + (1 − 𝑓)𝛿𝑣𝑥

=

𝑥0𝑦0

𝑥0𝛿
in

𝑎𝑥

(1 − 𝑓)𝛿𝑣𝑥

𝑥0 + 𝛿 in𝑎𝑥 + (1 − 𝑓)𝛿𝑣𝑥
tokens 𝑌 , and ˜𝛿𝑣𝑦 < 𝛿𝑣𝑦 . To finish the attack, the bot exchanges

𝛿𝑎𝑦 tokens 𝑌 at time 𝑡2 with pool reserves 𝑥2 = 𝑥1 + 𝛿𝑣𝑥 and

𝑦2 = (𝑥1𝑦1)/(𝑥1 + 𝛿𝑣𝑥 (1 − 𝑓)). In this final transaction 𝑇𝐴2
, the bot

receives

𝛿out𝑎𝑥
=

𝑥2 (1 − 𝑓)𝛿𝑎𝑦
𝑦2 + (1 − 𝑓)𝛿𝑎𝑦

=
(𝑥0 + 𝛿 in𝑎𝑥 + 𝛿𝑣𝑥) (1 − 𝑓)𝛿𝑎𝑦

(𝑥0+𝛿 in𝑎𝑥)
(

𝑥
0
𝑦
0

𝑥
0
+𝛿 in𝑎𝑥 (1−𝑓)

)
(𝑥0+𝛿 in𝑎𝑥)+𝛿𝑣𝑥 (1−𝑓) + (1 − 𝑓)𝛿𝑎𝑦

tokens 𝑋 . The bots profit 𝑃𝑎 is

𝑃𝑎 = 𝛿out𝑎𝑥
− 𝛿 in𝑎𝑥 − 2𝑏,

where 𝑏 is the base fee in the currency 𝑋 . Note, that the base fee

𝑏 ≥ 0 is fixed for a block and known.

4.1 Adversary Perspective
We start by finding the optimal strategy for a predatory trading

bot and first find the best attack input 𝛿 in𝑎𝑥 : the input maximizing

𝑃𝑎 = 𝛿out𝑎𝑥
− 𝛿 in𝑎𝑥 − 2𝑏. For this, we consider an arbitrary victim

transaction 𝑇𝑣 = (𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0) in pool 𝑋 ⇌ 𝑌 . First, we

consider the case, where 𝑠 is not set for the transaction, i.e. 𝑠 = 1.

We show that bot can then analytically determine the the optimal

sandwich attack size in Lemma 1.

Lemma 1. We can analytically determine the trading bot’s optimal
input, (𝛿𝑜𝑎𝑥) when the victim’s transaction 𝑇𝑣 indicates no slippage
tolerance, i.e., 𝑠 = 1.

Proof. To maximize 𝑃𝑎 , it is sufficient for the bot to maximize

𝛿diff𝑎 = 𝛿out𝑎𝑥
− 𝛿 in𝑎𝑥 . We start by finding the zero crossing of the

derivative of 𝛿diff𝑎 with respect to 𝛿 in𝑎𝑥 .

𝜕𝛿diff𝑎

𝜕𝛿 in𝑎𝑥

=
𝑥0 (𝛿 in𝑎𝑥

2

𝑓 (𝛿𝑣𝑥 (1 − 𝑓)2 − (2 − 𝑓)𝑥0)(
𝛿 in𝑎𝑥 (1 − 𝑓)2 (𝛿 in𝑎𝑥 + 𝛿𝑣𝑥 − 𝛿𝑣𝑥 𝑓) + 𝛿 in𝑎𝑥 (2 − (2 − 𝑓) 𝑓)𝑥0 + 𝑥2

0

)
2

+
2𝛿 in𝑎𝑥 𝑥0 (𝛿𝑣𝑥 (1 − 𝑓)2 − (2 − 𝑓) 𝑓 · 𝑥0))(

𝛿 in𝑎𝑥 (1 − 𝑓)2 (𝛿 in𝑎𝑥 + 𝛿𝑣𝑥 − 𝛿𝑣𝑥 𝑓) + 𝛿 in𝑎𝑥 (2 − (2 − 𝑓) 𝑓)𝑥0 + 𝑥2
0

)
2

+
𝑥2
0
(𝛿2𝑣𝑥 (1 − 𝑓)3 + 𝛿𝑣𝑥 (2 − 𝑓) (1 − 𝑓)2𝑥0 − (2 − 𝑓) 𝑓 𝑥2

0
)(

𝛿 in𝑎𝑥 (1 − 𝑓)2 (𝛿 in𝑎𝑥 + 𝛿𝑣𝑥 − 𝛿𝑣𝑥 𝑓) + 𝛿 in𝑎𝑥 (2 − (2 − 𝑓) 𝑓)𝑥0 + 𝑥2
0

)
2

The single zero crossing of 𝜕𝛿diff𝑎 /𝜕𝛿 in𝑎𝑥 , such that 𝛿 in𝑎𝑥 > 0 is

located at

𝛿o𝑎𝑥 =
(𝛿𝑣𝑥 (1 − 𝑓)2𝑥0 − (2 − 𝑓) 𝑓 𝑥2

0

((2 − 𝑓) 𝑓 𝑥0 − 𝛿𝑣𝑥 (1 − 𝑓)2 𝑓)

+

√︃
𝛿2𝑣𝑥 (1 − 𝑓)3𝑥0 (𝑥0 − (1 − 𝑓)2 𝑓 (𝛿𝑣𝑥 + 𝑥0)))

((2 − 𝑓) 𝑓 𝑥0 − 𝛿𝑣𝑥 (1 − 𝑓)2 𝑓)
.

As

𝜕2𝛿diff𝑎

𝜕𝛿 in𝑎𝑥
2

�����
𝛿o𝑎𝑥

< 0,

𝛿𝑜𝑎𝑥 is the trading bot’s optimal input. □

While one might expect that the input of the optimal attack 𝛿𝑎𝑥
to be infinite, Lemma 1 shows that this is not the case. The optimal

input amount is limited, as the bot performing the sandwich attack

needs to pay the fee 𝑓 twice, which increases with the input amount.

However, in most cases, traders will specify the slippage toler-

ance 𝑠 , further limiting the maximum input size of the bots attack.

In Lemma 2 we find the bot’s maximal input such that the trade

executes and show that the bot can compute it analytically.

Lemma 2. The bot’s maximal input (𝛿𝑠𝑎𝑥) for a transaction ex-
changing 𝛿𝑥 tokens 𝑋 with slippage tolerance 𝑠 such that the victim’s
trade still executes can be calculated analytically and is given in the
proof.

Proof. We consider a sandwich attack with initial input 𝛿𝑎𝑥 ,

changing the pool reserves from 𝑥0 to 𝑥1 = 𝑥0 + 𝛿𝑎𝑥 tokens 𝑋 and

from 𝑦0 to 𝑦1 = (𝑥0𝑦0)/(𝑥0 + 𝛿𝑎𝑥) tokens 𝑌 . The new output of the

victim transaction, assuming that it goes through will be

˜𝛿𝑣𝑦 =
𝑦1 (1 − 𝑓)𝛿𝑣𝑥
𝑥1 + (1 − 𝑓)𝛿𝑣𝑥

=

𝑥0𝑦0
𝑥0+𝛿𝑎𝑥

(1 − 𝑓)𝛿𝑣𝑥
𝑥0 + 𝛿𝑎𝑥 + (1 − 𝑓)𝛿𝑣𝑥

,

and the victims transaction will go through, if

˜𝛿𝑣𝑦 ≥ (1 − 𝑠)𝛿𝑣𝑦
𝑥0𝑦0

𝑥0+𝛿𝑎𝑥
(1 − 𝑓)𝛿𝑣𝑥

𝑥0 + 𝛿𝑎𝑥 + (1 − 𝑓)𝛿𝑣𝑥
≥ (1 − 𝑠)

𝑦0 (1 − 𝑓)𝛿𝑣𝑥
𝑥0 + (1 − 𝑓)𝛿𝑣𝑥

.

Thus, the bot’s maximal input (𝛿𝑠𝑎𝑥) increases the slippage incurred

by the victim to its tolerance, i.e.,
˜𝛿𝑣𝑦 = (1 − 𝑠)𝛿𝑣𝑦 . Solving for 𝛿𝑠𝑎𝑥 ,

we find that the maximal input is

𝛿𝑠𝑎𝑥 =

√
𝑛 (𝑥0,𝑓 ,𝛿𝑣𝑥 ,𝑠)

1−𝑠 − 𝛿𝑣𝑥 (1 − 𝑓)3 − (2 − 𝑓) (1 − 𝑓)𝑥0
2(1 − 𝑓)2

,

where

𝑛(𝑥0, 𝑓 , 𝛿𝑣𝑥 , 𝑠) =(1 − 𝑓)2 (1 − 𝑠) (𝛿2𝑣𝑥 (1 − 𝑓)4 (1 − 𝑠)
+ 2𝛿𝑣𝑥 (1 − 𝑓)2 (2 − 𝑓 (1 − 𝑠))𝑥0
+ (4 − 𝑓 (4 − 𝑓 (1 − 𝑠)))𝑥2

0
. □

Following from Lemma 1 and Lemma 2, we find that the bot’s

optimal input is 𝛿 in𝑎𝑥 = min{𝛿𝑜𝑎𝑥 , 𝛿
𝑠
𝑎𝑥

} in Theorem 1. In case the

profit of the corresponding attack is negative, not profitable attack

exitst and the bot does not execute any attack.

Theorem 1. The bot’s optimal input is 𝛿 in𝑎𝑥 = min{𝛿𝑜𝑎𝑥 , 𝛿
𝑠
𝑎𝑥

}.

Proof. From Lemma 1 we know, that the there is a single maxi-

mum 𝛿𝑜𝑎𝑥 , such that 𝛿 in𝑎𝑥 > 0. However, in case the victim’s trade

does not execute for 𝛿 in𝑎𝑥 = 𝛿𝑜𝑎𝑥 , themaximumwill be at the endpoint

of the permitted interval (𝛿𝑠𝑎𝑥). Thus, 𝛿
in

𝑎𝑥
= min{𝛿𝑜𝑎𝑥 , 𝛿

𝑠
𝑎𝑥

}. □

In Figure 2, we show the effects of the slippage tolerance, trans-

action fee, and trade size in relation to the pool size on a bots

profit. Note that the simulation in Figure 2 disregards the base

fee, which would remove the constant amount (2𝑏) from the profit.

Figure 2a demonstrates that, as expected, a bot’s maximum profit

is dependent on both the slippage tolerance and transaction size.

For small transaction sizes, even transactions with high slippage

tolerances are not attackable. Additionally, higher transaction fees

allow higher slippage tolerances before the trades become attack-

able. Thus, the constant auto-slippage, independent of transaction

size and transaction fee, suggested by Uniswap and SushiSwap,

appears counter-intuitive.

Further, we show in Theorem 2 that the bot’s maximum profit

cannot exceed the victim’s loss. We will rely on this result in Sec-

tion 4.2 to allow for straightforward computations on the trader

side. Seeing that the bot’s maximum profit can trail the victim’s loss,

we wonder where the remaining profit is collected. By noticing that

sandwich attacks increase the volume in the pool, we conclude that

liquidity providers also profit through sandwich attacks.

Theorem 2. The bot’s profit cannot exceed the victim’s loss.

Proof. Without loss of generality, we assume both the transac-

tion fee 𝑓 and the base fee𝑏 to be zero. Both would only decrease the

bot’s profit. Note, that without transaction fees, the slippage toler-

ancewill restrict the bot’s optimal input for all 𝑠 ≠ 1. Wewill start by

analyzing the casewhere the victim trade𝑇𝑣 = (𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0)
sets the slippage tolerance 𝑠 ≠ 1, for 𝑓 the bot’s optimal input

(Lemma 2) becomes

𝛿 in𝑎𝑥 =
1

2

(√︃
(1 − 𝑠) (𝛿2𝑣𝑥 (1 − 𝑠) + 4𝛿𝑣𝑥 𝑥0 + 4𝑥2

0
)

1 − 𝑠
− 2𝑥0 − 𝛿𝑣𝑥

)
.

The bot’s profit is then given by

(a) Effects of slippage tolerance (𝑠) and transaction size in relation
to pool size (𝛿𝑣𝑥 /𝑥0) on the bot’s maximal profit. We set 𝑓 = 0.003.

(b) Effects of slippage tolerance (𝑠) and transaction fee (𝑓) on the
bot’s maximal profit. We set 𝛿𝑣𝑥 /𝑥0 = 0.01.

Figure 2: The effects of slippage tolerance (𝑠), transaction fee
(𝑓), and transaction size in relation to pool size (𝛿𝑣𝑥 /𝑥0) on a
predatory trading bot’s maximal profit for a victim’s trade
𝑇𝑣 = (𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0). We disregard the base fee, set 𝑥0 to
5000000 𝑋 and give the profit in the currency 𝑋 .

𝑃𝑎 =𝛿out𝑎𝑥
− 𝛿 in𝑎𝑥 =

𝛿𝑣𝑥 𝑠
(
𝛿𝑣𝑥 + 𝑥0

)
𝛿𝑣𝑥 𝑠 + 𝑥0

,

while the victims loss is given as

𝐿𝑣 = 𝑠 · 𝛿𝑣𝑦
𝑥2

𝑦2
= 𝑠 · 𝛿𝑣𝑥

(
𝛿𝑣𝑥 +

√︄(
𝛿2𝑣𝑥 + 4𝛿𝑣𝑥 𝑥0+4𝑥2

0

1−𝑠

))2
4𝑥0 (𝛿𝑣𝑥 + 𝑥0)

.

To obtain the loss 𝐿𝑣 , we multiply the victim’s loss in tokens

𝑌 (𝑠 · 𝛿𝑣𝑦) by the price 𝑝𝑦→𝑥 at the time the victim’s losses were

realized, such that it is in the same currency as the bot’s profit. To

show that the profit cannot exceed the loss, we show 𝑃𝑎/𝐿𝑣 ≤ 1.

𝑃𝑎/𝐿𝑣 =
4𝑥0 (𝛿𝑣𝑥 + 𝑥0)2

(𝛿𝑣𝑥 𝑠 + 𝑥0)
(
𝛿𝑣𝑥 +

√︄(
𝛿2𝑣𝑥 + 4𝛿𝑣𝑥 𝑥0+4𝑥2

0

1−𝑠

))2
≤

4𝑥0 (𝛿𝑣𝑥 + 𝑥0)2

(𝛿𝑣𝑥 𝑠 + 𝑥0)
(
𝛿𝑣𝑥 + (𝛿𝑣𝑥 + 2𝑥0)

)
2
=

𝑥0

𝛿𝑣𝑥 𝑠 + 𝑥0
≤ 1.

We turn the the case where 𝑠 = 1. The bot’s optimal input is then

𝛿 in𝑎𝑥 → ∞ and we find the associated profit to be

lim

𝛿 in𝑎𝑥→∞
𝑃𝑎 = lim

𝛿 in𝑎𝑥→∞
(𝛿out𝑎𝑥

− 𝛿 in𝑎𝑥)

= lim

𝛿 in𝑎𝑥→∞

𝛿𝑣𝑥 𝛿
in

𝑎𝑥
(𝛿𝑣𝑥 + 2𝑥0 + 𝛿 in𝑎𝑥)

𝛿𝑣𝑥 𝛿
in

𝑎𝑥 + (𝛿 in𝑎𝑥 + 𝑥0)2
+ 𝑥0)2 = 𝛿𝑣𝑥 .

Further, for 𝛿 in𝑎𝑥 → ∞ the victims loss 𝐿𝑣 = 𝛿𝑣𝑥 , as lim𝛿 in𝑎𝑥→∞ 𝛿𝑣𝑦 =

0. Thus, the bot’s gain cannot exceed the victim’s loss. □

4.2 Trader Perspective
Intending to minimize the victim’s expected transaction execu-

tion cost, we turn to the victim’s perspective of the sandwich

game. We again consider an arbitrary victim’s transaction 𝑇𝑣 =

(𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0). First, we note that we consider the victim’s

transaction unattackable for

𝑠 · 𝛿𝑣𝑦 ≥ 2𝑏,

as 𝑠 · 𝛿𝑣𝑦 an upper bound for the bot’s profit (cf. Theorem 2). Note

that here the base fee for the transaction is given in currency 𝑌 .

Thus, high slippage tolerances and trade sizes make victim trades

attackable. Any 𝑠 ≤ 𝑠𝑎 , where

𝑠𝑎 =
2𝑏

𝛿𝑣𝑦
,

ensure that no profitable sandwich attack for the victim’s transac-

tion exists. However, by selecting a low slippage tolerance, potential

victims risk their trade failing to execute due to the natural move-

ments in the pool, from trades, or liquidity withdrawals. Therefore,

it is unreasonable to set a low slippage tolerance to avoid a sand-

wich attack when this low slippage tolerance is associated with

high expected costs linked with resubmitting failed transactions.

The costs of transaction failure consist of the cost of redoing the

transaction and the cost associated with the price shift between

the two blocks. We estimate the cost of redoing the transaction to

be (𝑙 +𝑚)𝑏, where 𝑙 is the portion of the base fee used for a failed

transaction, and𝑚 is the potential increase of the base fee in the

next block. We set 𝑙 = 0.25, as the gas used by a failed Uniswap

transaction is approximately a quarter of that of a successful trans-

action [8]. Additionally, we set𝑚 = 0.125, as it is the maximum

increase of the base fee within a block [11]. The expected cost of

the associated price shift in the pool is denoted by E(𝑠 |𝑠 > 𝑠)𝛿𝑣𝑦 .
More precisely, −E(𝑠 |𝑠 > 𝑠) is expected fractional price change

given that the transaction failed (𝑠 > 𝑠). Here, 𝑠 is the block’s price

slippage. Finally, we denote the probability of the transaction failing

for slippage tolerance 𝑠 and trade size 𝛿𝑣𝑥 as 𝑝 (𝑠, 𝛿𝑣𝑥). Note, that
𝑝 (𝑠, 𝛿𝑣𝑥) can be estimated reliably by looking at the recent history

of the pool (cf. Section 5.2).

Thus, an approximative upper bound for redoing the transaction

is given as

∞∑︁
𝑖=1

𝑝 (𝑠, 𝛿𝑣𝑥)𝑖 ((𝑙 +𝑚)𝑏 + E(𝑠 |𝑠 > 𝑠)𝛿𝑣𝑦)

=
𝑝 (𝑠, 𝛿𝑣𝑥)

1 − 𝑝 (𝑠, 𝛿𝑣𝑥)
((𝑙 +𝑚)𝑏 + E(𝑠 |𝑠 > 𝑠)𝛿𝑣𝑦)

Setting the slippage tolerance to 𝑠 < 𝑠𝑟 , where

𝑠𝑟 =
𝑝 (𝑠, 𝛿𝑣𝑥)

1 − 𝑝 (𝑠, 𝛿𝑣𝑥)

(
(𝑙 +𝑚)𝑏
𝛿𝑣𝑦

+ E(𝑠 |𝑠 > 𝑠)
)
,

ensures that the estimated costs associated with the transaction

failing to execute do not exceed the costs of a possible sandwich

attack. Note, that finding 𝑠𝑟 is possible with a ternary search, as the

left side of the equation decreases with 𝑠 , while the right side of

the equation increases with 𝑠 .

In case 𝑠𝑟 < 𝑠𝑎 , the potential victim can choose 𝑠 ∈ [𝑠𝑟 , 𝑠𝑎)
to make sure that no profitable sandwich attack exists. We will

always choose 𝑠 = 𝑠 = 𝑠𝑎 − Y, where Y → 0
+
to minimise the

costs of transaction failure. Simultaneously, the victim does not

face an unreasonable high expected cost related to the transaction

failing. On the other hand, if 𝑠𝑟 ≤ 𝑠𝑎 , the potential victim cannot

easily set the slippage tolerance to avoid both sandwich attacks

and the risk of having to pay the costs related to the transaction

failing. However, as we find in Section 5.3, this generally only occurs

for comparatively large transactions. In reality, these transactions

are better divided into several smaller trades to reduce their price

impact. Price impact is an unrelated effect a trader should consider

before executing a trade.

We conclude the analysis by presenting the algorithm utilized by

the trader to choose the optimal slippage tolerance in Algorithm 1.

Algorithm 1 Setting Slippage

For transaction 𝑇𝑣 = (𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0) in pool 𝑋 ⇌ 𝑌

Calculate 𝑠𝑎 = 2𝑏
𝛿𝑣𝑦

and 𝑠𝑟 =
𝑝 (𝑠,𝛿𝑣𝑥)

1−𝑝 (𝑠,𝛿𝑣𝑥)

(
(𝑙+𝑚)𝑏
𝛿𝑣𝑦

+ E(𝑠 |𝑠 > 𝑠)
)
for

transaction 𝑇𝑣
if 𝑠𝑟 < 𝑠𝑎 :

set 𝑠 = 𝑠 = 𝑠𝑎 − Y, where Y → 0
+

else:
set 𝑠 = 𝑠𝑟

Algorithm 1 can also be used to set the slippage tolerance in

Uniswap V3. The implementation of Algorithm 1 will vary only

slightly between Uniswap V2 and V3. The estimations of both the

probability of the transaction failing for slippage tolerance 𝑠 and

trade size 𝛿𝑣𝑥 (𝑝 (𝑠, 𝛿𝑣𝑥)) and the expected fractional price change

given that the transaction failed (−E(𝑠 |𝑠 > 𝑠)) are calculated with

the specific liquidity distribution. For Uniswap V2 (cf. Section 5.2)

the number of tokens reserved in the pool suffice for the prediction.

5 EVALUATION
We analyze past Uniswap data to compare the costs for traders using

the slippage tolerance proposed by Uniswap and the sandwich game.

The data description follows in the succeeding section.

5.1 Data Description
To collect data, we launch a go-ethereum client and export all

transactions executed on Uniswap V2. We collect all Uniswap V2

transactions recorded on Ethereum up to block 11709847 (on 23

January 2021). In the following data analysis, we focus on 120,000

blocks (from block 11589848 to block 11709847) in January 2021,

a particularly active time for Uniswap V2 before the launch of

USDC⇌WETH USDC⇌USDT WBTC⇌WETH DPI⇌WETH

` 𝜎 ` 𝜎 ` 𝜎 ` 𝜎

size [$]

10 1.80 · 10−4 6.18 · 10−3 9.52 · 10−5 8.31 · 10−4 6.83 · 10−5 9.24 · 10−4 1.65 · 10−4 1.19 · 10−3
100 1.81 · 10−4 6.35 · 10−3 9.52 · 10−5 8.31 · 10−4 6.83 · 10−5 9.25 · 10−4 1.65 · 10−4 1.19 · 10−3
1000 1.82 · 10−4 6.45 · 10−3 9.52 · 10−5 8.30 · 10−4 6.87 · 10−5 1.07 · 10−3 1.65 · 10−4 1.19 · 10−3
10000 1.84 · 10−4 7.07 · 10−3 9.51 · 10−5 8.48 · 10−4 7.19 · 10−5 4.57 · 10−3 1.66 · 10−4 1.23 · 10−3
100000 1.85 · 10−4 7.67 · 10−3 9.42 · 10−5 1.15 · 10−3 8.08 · 10−5 1.68 · 10−2 1.63 · 10−4 1.39 · 10−3

Table 1: Mean (`) absolute fractional price change (𝑟) and volatility (𝜎) of absolute fractional price change for four Uniswap
pools: USDC⇌WETH, USDC⇌USDT, WBTC⇌WETH and DPI⇌WETH.

Uniswap V3. Thus, the trade activity on Uniswap V2 at this time is

uninfluenced by Uniswap V3.
1
We obtain the price of each cryp-

tocurrency in a common currency, US$ in our case, from the pool

reserves and Coinbase [3].

In the following, we analyze data from eight Uniswap pools. The

pools analyzed are USDC⇌WETH, USDC⇌USTD,WBTC⇌WETH,

DPI⇌WETH, WBTC⇌USDC, UNI⇌USDC, LINK⇌WETH, and

KIMCHI⇌WETH. We choose pools through a combination of size

and type
2
to represent a representative sample of Uniswap pools.

5.2 Slippage Prediction
To understand the price changes between blocks, we start by ana-

lyzing the fractional price change in all eight Uniswap pools over

120,000 blocks in January 2021. The absolute fractional price change

(𝑟) is given as:

𝑟 =
| ˜𝛿𝑣𝑦 − 𝛿𝑣𝑦 |

𝛿𝑣𝑦
= |𝑠 |.

We see that the fractional price change is dependent on the trade

size. Thus, we find the average absolute fractional price change

and its volatility for five trade sizes ($10, $100, $1000, $10000, and

$100000) in Table 1 for a selection of four pools. We note that we

consider the anticipated trade output (𝛿𝑣𝑦) to be the trade size

throughout the entire analysis. These trade sizes cover the majority

of trades executed on Uniswap – Uniswap’s median trade size was

$634 in 2020 [16].

We notice immediately that the mean absolute fractional price

change is small in all considered pools – contradicting the com-

mon assumption that the price of cryptocurrencies fluctuates sig-

nificantly, even between blocks. Instead, we find the price to be

relatively constant between two blocks (around 13 seconds). Fur-

ther, the average absolute price change is significantly less than

the fractional slippage tolerance of 5 · 10−3 proposed by Uniswap

across all four pools [15]. The difference is even more startling as

slippage only concerns negative price changes.

In the sandwich game, the trader estimates the required slippage

tolerance 𝑠 such that the probability of the transaction failing is

𝑝 (𝑠). To allow facile computation, we estimate the required slippage

tolerance 𝑠𝑤
𝑝 (𝑠) such that the probability of transaction failure is

𝑝 (𝑠) to be the 𝑝 (𝑠)th percentile of the observed fractional price

1
We note that while the data precedes flashbots, flashbots, however, does not impact a

pool’s price fluctuations but the success of sandwich attacks. As we assume optimal

conditions for sandwich attacks anyways, this does not impact our analysis.

2
Type divides pools into normal pools, stable pools, and exotic pools. These categories

were introduced by Uniswap [19].

change in the past 𝑤 blocks. Here, 𝑤 is the window size used for

the estimation. We then compute the accuracy of our estimation

over 120,000 blocks and summarize the results in Table 2. There

we show the mean (`) and the relative error ([) of the prediction

of 𝑠𝑤
𝑝 (𝑠) for a given the probability of transaction failure 𝑝 (𝑠) and

window size𝑤 .

While the approximation is largely inaccurate for the smallest

window size (𝑤 = 200), it is accurate for all larger window sizes.

Only for the largest tested slippage tolerance (cf. Table 2c) does the

prediction become inaccurate. However, this stems from the proba-

bility of transaction failure 𝑝 (𝑠) = 0.1 being large enough, such that

in less than a fraction of 𝑝 (𝑠) blocks, the fractional price change
is positive. Consequently, the estimation 𝑠𝑤

𝑝 (𝑠) becomes zero. This

is true for three of the tested pools: WBTC⇌USDC (cf. Figure 3f),

USDC⇌USDT (cf. Figure 3d) and DPI⇌WETH (cf. Figure 3h), and

caused by low volume in the pools. If no trade is executed in the

pool during a block, the required slippage tolerance is inevitably

zero. Only for the most active pool (USDC⇌WETH), does predic-

tion 𝑠𝑤
𝑝 (𝑠) remain accurate for 𝑝 (𝑠) = 0.1 (cf. Figure 3b). However, as

these inaccuracies cause the slippage tolerance to be over-estimated

rather than under-estimated, they do not cause unnecessary fail-

ures. In the following, we will use𝑤 = 2000 as a window size for

the estimation. The estimation does not become noticeably more

accurate for larger window sizes, and using 𝑤 = 2000 allows the

system to react to changes more quickly.

5.3 Setting Slippage
With the ability to predict the required slippage tolerance, we con-

tinue by calculating the slippage tolerance’s lower bound, ensuring

that the expected cost of transaction failure does not exceed the

cost of a sandwich attack. We find this lower bound for trades of

sizes: $10, $100, $1000, $10000, and $100000 using Algorithm 1 for

each block in our data set. In the following evaluation, we set the

base fee to $4. A base fee of $4 for a Uniswap V2 transaction is

in line with current values [17]. We repeat our evaluation with

different base fees ($2 and $8) in Appendix B. Over 120,000 blocks,

we compute the lower bound for the slippage tolerance (𝑠𝑟) for the

eight analyzed pools. As 𝑠𝑟 adapts to the current pool character-

istics, we compute different values for every block. We visualize

the results as a box plot for two trade sizes ($10 and $100000) in

Figure 4.

Note that even though the trade size differs by a factor of 10000,

𝑠𝑟 only decreases by a factor of 10 (cf. Figures 4a and 4b). Further, we

note that for both trade sizes, we observe a similar pattern between

USDC⇌WETH USDC⇌USDT WBTC⇌WETH DPI⇌WETH

` [` [` [` [

window size

200 −2.37 · 10−3 0.637 −8.04 · 10−4 0.512 −1.03 · 10−3 0.611 −1.65 · 10−3 0.656

2000 −2.74 · 10−3 0.093 −8.95 · 10−4 0.065 −1.22 · 10−3 0.106 −2.03 · 10−3 0.078

20000 −2.93 · 10−3 0.014 −9.27 · 10−4 0.014 −1.37 · 10−3 0.007 −2.13 · 10−3 0.045

(a) 𝑝 (𝑠) = 0.01

USDC⇌WETH USDC⇌USDT WBTC⇌WETH DPI⇌WETH

` [` [` [` [

window size

200 −9.22 · 10−4 0.124 −9.05 · 10−5 0.024 −1.47 · 10−4 0.063 −2.61 · 10−4 0.063

2000 −9.74 · 10−4 0.013 −7.76 · 10−5 0.021 −1.06 · 10−4 0.022 −1.90 · 10−4 0.025

20000 −9.88 · 10−4 0.007 −8.39 · 10−5 0.019 −7.87 · 10−5 0.020 −1.52 · 10−4 0.018

(b) 𝑝 (𝑠) = 0.05

USDC⇌WETH USDC⇌USDT WBTC⇌WETH DPI⇌WETH

` [` [` [` [

window size

200 −3.49 · 10−4 0.042 −7.35 · 10−6 0.335 −1.85 · 10−5 0.194 −4.36 · 10−5 0.213

2000 −2.99 · 10−4 0.001 −1.24 · 10−6 0.314 −4.34 · 10−6 0.148 −2.18 · 10−5 0.186

20000 −2.56 · 10−4 0.003 0.00 0.310 −1.04 · 10−6 0.114 −7.81 · 10−6 0.143

(c) 𝑝 (𝑠) = 0.1

Table 2: Average (`) and relative error ([) of slippage tolerance 𝑠 prediction using historical percentile for transaction failure
probabilities 𝑝 (𝑠) ∈ [0.01, 0.05, 0.1] andwindow sizes𝑤 ∈ [200, 2000, 20000] for four Uniswap pools: USDC⇌WETH, USDC⇌USDT,
WBTC⇌WETH and DPI⇌WETH.

pools. 𝑠𝑟 tends to be smaller for pools with lower volume such

as LINK⇌WETH and is largest for USDC⇌WETH, the biggest

pool in terms of volume. This trend might be counter-intuitive

initially, as we would expect prices of these, generally more exotic,

cryptocurrencies in lower volume pools to fluctuate more. However,

while this might be true for larger time frames, e.g., days, this

is not true in the time-scale of blocks. Due to the low trading

volume in the pools, there are many blocks without any trade

execution. Thus, there are no price fluctuations between these

blocks. We also see that 𝑠𝑟 differs within pools across time. For

instance, we observe that 𝑠𝑟 varies by a factor of more than five for

USDC⇌WETH for 𝛿𝑣𝑦 = $100000. Pools go through periods of both

lower and higher volume. Therefore, it is natural that the expected

fractional price change between two blocks also varies over time.

Observing the difference of 𝑠𝑟 within and across pools indicates

that the constant auto-slippage, as suggested by several AMMs,

cannot be suitable for all trades. We will further underscore this

point in the following with a comparison of the slippage tolerances

computed by Algorithm 1 and Uniswap’s constant auto-slippage

(cf. Figure 5).

In Figure 5a we compare 𝑠𝑎 and 𝑠𝑟 . We find that the mean value of

𝑠𝑟 does not exceed 𝑠𝑎 for all transaction sizes analyzed up to $10000.

Note that when looking at the entire data set, 𝑠𝑟 never exceeds 𝑠𝑎 for

these transaction sizes. Thus, for all these transactions, the slippage

tolerance can easily be set to 𝑠 = 𝑠𝑎 − Y, Y → 0
+
, to avoid being

attacked and ensure that the costs related to potentially having to

redo the transaction are small. Only for the largest transaction size

does 𝑠𝑟 occasionally exceed 𝑠𝑎 . The mean value of 𝑠𝑟 exceeds 𝑠𝑎

in half the pools and in Figure 4b we see that there is at least one

block for all pools in which 𝑠𝑟 surpasses 𝑠𝑎 . Thus, when the trade

size exceeds $100000, sandwich attacks are not (always) avoidable

with our parameter configuration.

We turn to Figure 5b, where we compare the slippage tolerance

chosen by Algorithm 1 (𝑠) to the slippage tolerance recommended

by Uniswap (𝑠u). We show in blue where 𝑠𝑢 is smaller than 𝑠 and in

red where 𝑠𝑢 exceeds 𝑠 . For small trade sizes, 𝑠𝑢 is comparatively

small. This unnecessarily small slippage tolerance is up to a factor of

160 smaller than the slippage tolerance at which the trade becomes

attackable (𝑠𝑎) and causes easily preventable transaction failures.

We notice that independent of the transaction size, Uniswap’s in-

terface warns users that their transaction may be front-run when

setting the slippage tolerance slightly below 𝑠𝑎 for trades of size

$10 and $100. As 𝑠𝑎 specifies the slippage tolerance at which trades

become attackable, they cannot be front-run profitably. Thus, the

warning is misleading and can cause to unnecessary transaction

failures. We note that while 𝑠𝑎 depends on the current base fee,

Uniswap’s warnings are fixed and independent of trade size, pool,

and base fee. Thus, it suffices to test the Uniswap interface with

realistic base fees.

Simultaneously, for large trades, 𝑠u exceeds 𝑠 by up to a factor

of more than 50, and thus opens greater parts of the transaction up

for attacks than necessary. For example, when setting the slippage

tolerance as indicated by our algorithm for trades of size $10000,

Uniswap warns that the transaction may fail and suggests users

use a higher slippage tolerance. While not necessarily incorrect,

any transaction may fail, the warning might encourage users to

(a) USDC⇌ETH (b) USDC⇌ETH

(c) USDC⇌USDT (d) USDC⇌USDT

(e) BTC⇌ETH (f) BTC⇌ETH

(g) DPI⇌ETH (h) DPI⇌ETH

Figure 3: Required slippage prediction
(
𝑠𝑤
𝑝 (𝑠)

)
for transaction failure probabilities 𝑝 (𝑠) ∈ [0.01, 0.05, 0.1] and window sizes

𝑤 ∈ [200, 2000, 20000] for four Uniswap pools: USDC⇌WETH, USDC⇌USDT, WBTC⇌WETH and DPI⇌WETH. We predict
the required slippage tolerance over 120,000 blocks from block 11589848 to block 11709847.

choose a higher slippage tolerance. Consequently, these users would

encounter excess costs, as we will show in the subsequent section.

5.4 Cost Comparison
To conclude the analysis, we simulate trades of sizes $10, $100, $1000,

$10000 and $100000 in every block between blocks 11589848 and

11709847 across all eight pools. We simulate all trades both with the

slippage tolerance as specified by Algorithm 1 and with the slippage

tolerance suggested by Uniswap. We note that we consider a trade

𝑇𝑣 = (𝛿𝑣𝑥 , 𝑠, 𝑓 , 𝑏, 𝑥0, 𝑦0, 𝑡0) to be attackable, whenever 𝑠𝛿𝑣𝑦 ≥ 2𝑏 in

accordance with Theorem 2.

We summarize the results of the simulation in Table 3, where we

show the fractional cost incurred when using our algorithm and

the cost incurred when using the slippage tolerance recommended

by Uniswap. This cost consists of both of the cost incurred from

sandwich attacks and of the costs involved in resubmitting failed

transactions. We further provide the detailed results on the number

of times transactions fail to execute and suffer sandwich attacks in

Appendix A.

Our algorithm is significantly more cost-effective than the sug-

gestions from Uniswap for all analyzed trade sizes in all analyzed

pools. We notice that across all pools, very small trades experi-

ence no additional costs in our case but fail from time to time with

Uniswap’s suggested slippage tolerance. As we saw in Figure 5b,

the transactions fail as Uniswap’s constant slippage tolerance is

unnecessarily low for small trade sizes and leads to easily avoidable

trade failures. While trades of size $10 are never attacked nor fail

when utilizing our algorithm for setting the slippage tolerance, a

couple of transactions always fail when using Uniswap’s slippage

tolerance suggestion – leading to an infinite cost reduction.

While our protocol for setting the slippage tolerance still saves

costs in comparison to the auto-slippage across all pools, we find

(a) transaction size: 𝛿𝑣𝑦 = $10

(b) transaction size: 𝛿𝑣𝑦 = $100000

Figure 4: We compute the lower bound for the slippage
tolerance (𝑠𝑟) (Algorithm 1) over 120,000 blocks from
block 11589848 to block 11709847. 𝑠𝑟 adapts to current
pool characteristics and we, thus, record different val-
ues for every block which we show as a blue boxplot
for pools: USDC⇌WETH, USDC⇌USTD, WBTC⇌WETH,
DPI⇌WETH, WBTC⇌USDC, UNI⇌USDC, LINK⇌WETH,
and KIMCHI⇌WETH.

the smallest difference in costs for trades of size $1000. We infer

that the auto-slippage selected by Uniswap appears reasonable for

transactions of size $1000 when the base fee is $4. This finding

is in line with our observations from Figure 5b, 𝑠𝑢 is closest to

the slippage tolerance suggested by Algorithm 1 for trades of size

$1000.

Finally, for large trades ($10000 and $100000), our algorithm con-

sistently demonstrates a high cost reduction of up to a factor of

273. Looking at the results in further detail, we observe differing

patterns for high volume pools such as USDC⇌WETH (cf. Table 3a)

and WBTC⇌WETH (cf. Table 3b) and lower volume pools such

as UNI⇌USDC (cf. Table 3e) and LINK⇌WETH (cf. Table 3f). In

high volume pools, the difference between the costs experienced by

trades using our algorithm and Uniswap’s auto-slippage decreases

more starkly for large trades. Regardless of this decrease, the dif-

ference remains significant across all pools. In comparatively low

volume pools, the cost ratio does not decrease noticeably for large

trades. Low volume leads to smaller inter-block price movements:

allowing our algorithm to select lower slippage tolerances and avoid

sandwich attacks. Precisely, while 80% of trades using our slippage

tolerance algorithm were attacked for trades of size $100000 in the

USDC⇌WETH (cf. Table 4a), less than 3% of trades were attacked

in the low volume pool LINK⇌WETH (cf. Table 4f).

Thus, we deduce that using a constant auto-slippage, as sug-

gested by both Uniswap and SushiSwap, ignorant of the trade size

and pool characteristics, imposes unreasonably high costs on trades.

The inefficiency of the constant auto-slippage is highlighted by our

(a) Comparison between the slippage tolerance at which trades be-
come attackable (𝑠𝑎) and the mean of the lower bound for the slip-
page tolerance such that the expected costs of transaction failure
does not exceed the cost of a sandwich attack (𝑠𝑟). Values larger
than 1 suggest that sandwich attacks can be avoided (𝑠 = 𝑠𝑎 in Algo-
rithm 1), while values smaller than 1 indicate that sandwich attacks
cannot be avoided easily (𝑠 = 𝑠𝑟 in Algorithm 1).

(b) Comparison between the slippage tolerance chosen by Algo-
rithm 1 (𝑠) and the auto-slippage suggested by Uniswap (𝑠𝑢). Values
larger than 1 suggest that Uniswap auto-slippage is to low thereby
leads to unnecessary trade failures. On the other hand, values larger
than 1 indicate that the auto-slippage suggested by Uniswap is too
high and unnecessary sandwich attacks occur.

Figure 5: Slippage tolerance for pools: USDC⇌WETH,
USDC⇌USTD, WBTC⇌WETH, DPI⇌WETH, WBTC⇌
USDC, UNI⇌USDC, LINK⇌WETH, and KIMCHI⇌WETH
and trade sizes: $10, $100, $1000, $10000 and $100000.

algorithm repeatedly demonstrating a cost reduction of a three-

figure factor. Further, we note that setting the slippage tolerance per

our simple algorithm avoids sandwich attacks for all tested pools

and transaction sizes smaller than $100000. This success shows that

contrary to common assumptions, traders can mostly avoid being

sandwich attacked by setting the slippage tolerance.

To conclude, we infer that in pools with smaller inter-block price

movements, the additional costs traders need to face from the trans-

action ordering tax can be reduced significantly. In Uniswap V3,

liquidity providers no longer automatically commit to providing

liquidity for the entire price range but can choose to provide liquid-

ity in a smaller price range [19]. As a consequence, their liquidity

is up to 4000 times more capitally efficient [10]. Thus, we expect

inter-block price movements to be even smaller, and our algorithm

would allow traders to avoid the invisible tax even further.

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 2,267 · 10−4 ∞
100 0,000 3,545 · 10−5 ∞
1000 3,555 · 10−6 1,633 · 10−5 4.5924

10000 1,435 · 10−4 5,104 · 10−3 35.5718

100000 3,179 · 10−4 5,014 · 10−3 15.7735

(a) USDC⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 7,441 · 10−5 ∞
100 2,490 · 10−6 1,516 · 10−5 6.0858

1000 5,830 · 10−6 9,230 · 10−6 1.5832

10000 4,133 · 10−5 5,105 · 10−3 123.5364

100000 6,576 · 10−5 5,015 · 10−3 76.2684

(b) WBTC⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 8,311 · 10−5 ∞
100 0,000 1,336 · 10−5 ∞
1000 2,086 · 10−6 6,382 · 10−6 3.0588

10000 2,613 · 10−5 5,102 · 10−3 195.2647

100000 4,151 · 10−5 5,012 · 10−3 120.7390

(c) USDC⇌USDT

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 8,026 · 10−4 ∞
100 0,000 1,343 · 10−4 ∞
1000 3,475 · 10−5 6,747 · 10−5 1.9417

10000 9,764 · 10−5 5,123 · 10−3 52.4730

100000 1,619 · 10−4 5,033 · 10−3 31.0901

(d) WBTC⇌USDC

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 3,207 · 10−4 ∞
100 0,000 7,606 · 10−5 ∞
1000 4,710 · 10−5 5,147 · 10−5 1.0929

10000 5,080 · 10−5 5,133 · 10−3 101.0540

100000 5,098 · 10−5 5,036 · 10−3 98.7995

(e) UNI⇌USDC

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 5,707 · 10−5 ∞
100 4,471 · 10−6 2,032 · 10−5 4.5450

1000 1,659 · 10−5 1,664 · 10−5 1.0031

10000 1,637 · 10−5 5,114 · 10−3 312.3494

100000 1,834 · 10−5 5,024 · 10−3 273.9272

(f) LINK⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 2,764 · 10−4 ∞
100 2,468 · 10−6 4,688 · 10−5 18.9989

1000 9,209 · 10−6 2,393 · 10−5 2.5988

10000 7,234 · 10−5 5,159 · 10−3 71.3064

100000 1,324 · 10−4 5,024 · 10−3 37.9494

(g) DPI⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 2,764 · 10−4 ∞
100 2,468 · 10−6 4,688 · 10−5 18.9989

1000 9,209 · 10−6 2,393 · 10−5 2.5988

10000 7,232 · 10−5 5,109 · 10−3 70.6393

100000 1,320 · 10−4 5,019 · 10−3 38.0253

(h) KIMCHI⇌WETH
Table 3: Cost comparison when using our own algorithm to set the slippage tolerance vs. the slippage tolerance suggested
by Uniswap. The fractional cost includes both the costs of being attacked as well as the costs associated with redoing the
transactions. The simulation spans over 120,000 blocks, from block 11589848 to block 11709847, and the base fee is set to $4.

6 RELATEDWORK
The prevalence of front-running on centralized exchanges is a well-

studied area [20, 22] and most types of front-running are outlawed

in traditional markets [28, 29]. Still, there are legal trading strate-

gies utilized by high-frequency trading (HTF) firms that front-run

transactions for profit [26, 33].

Onlywith the introduction of EthereumDApps has front-running

become a pervasive issue on permissionless blockchains. Eskandir

et al. [25] are the first to combine the scattered body of knowledge

of front-running on permissionless blockchains at the time. Seeing

the effects of front-running on AMM users and the limited actions

taken by the AMMs themselves, we offer them a simple way of

protecting themselves against such attacks.

Daian et al. [24] present a study on price gas auctions (PGA), an-
alyzing various types of predatory trading behaviors known from

traditional finance and adapting to DeFi. They further introduce

miner-extractable value (MEV) as a concept and empirically show

its risks. MEV measures the profit miners can extract through ei-

ther arbitrarily including or excluding transactions from blocks

or re-ordering transactions within blocks. Subsequently, Qin et

al. [32] quantify the transaction ordering tax and provide evidence

of miners already extracting MEV. In contrast, we focus specifically

on sandwich attacks from both the victims’ and bot’s perspectives

by introducing the sandwich game.

Zhou et al. [35] formalize the sandwich attack problem on AMM

exchanges. They study the problem analytically and empirically

from the attackers’ perspective and quantify when profitable at-

tacks exist. We generalize the analytical sandwich attack problem

and include the victim perspective – letting victims adjust the slip-

page tolerance to avoid sandwich attacks. Our analysis reveals that

contrary to popular belief, victims can mitigate sandwich attacks

in most cases.

A large-scale analysis of sandwich attacks is performed by Züst

in [36]: quantifying the frequency and profitability of sandwich

attacks and showing that the number of bots performing sandwich

attacks is becoming increasingly efficient. While Züst suggests

splitting up large trades as a mitigation strategy, we demonstrate

that it is generally sufficient for DeFi users to adjust their slippage

tolerance to protect against sandwich attacks.

Several solutions to blockchain front-running have been intro-

duced recently. With Tesseract, Bentov et al. [21] introduce an

exchange that relies on trusted hardware to resit front-running.

Aequitas is a premissioned consensus protocol to achieve order-

fairness by Kelkar et al. [27]. Cachin et al. [23] strengthen the

fairness notion achieved by Aequitas. In contrast to these works,

we show that sandwich attacks are preventable without the need for

trusted hardware or premissioned consensus. Further, our approach

allows users to protect themselves immediately without having to

wait for the DeFi ecosystem to evolve.

7 CONCLUSION
Sandwich attacks are a constant threat to the transactions of traders

on AMMs. In this work, we generalized the sandwich attack prob-

lem to include both traders and bots. Our model demonstrates that

the constant auto-slippage suggested by most AMMs only performs

well for a small set of trade parameters. Further, we highlight that,

contrary to popular belief, traders can easily avoid most sandwich

attacks. An adjustment of the slippage tolerance suffices in most

cases and does not face an unnecessarily high risk of trade fail-

ure due to an insufficiently small slippage tolerance. The simple

algorithm we present can be utilized by traders to protect them-

selves against sandwich attacks and outperforms the auto-slippage

suggested by Uniswap in all tested settings – demonstrating a three-

figure factor cost reduction. We foresee the possibility that some

more conservative traders prefer accepting the transaction ordering

tax instead of accepting the small risk of transaction failure. How-

ever, this would open up the opportunity for AMMs themselves or

a new DeFi service to guarantee a given (low) slippage tolerance to

their users by amortizing the cost across a pool of users.

While our simple approach is successful at avoiding sandwich

attacks without incurring unnecessary costs and allows traders to

protect themselves, it does not prevent other predatory trading

behaviors leading to MEV. The development of an approach to

prevent all predatory trading behaviors is, thus, an open question

for future research.

REFERENCES
[1] 2020. DeFi explosion: Uniswap surpasses Coinbase Pro in daily vol-

ume. https://cointelegraph.com/news/defi-explosion-uniswap-surpasses-

coinbase-pro-in-daily-volume.

[2] 2021. Balancer. https://app.balancer.fi/#/trade.

[3] 2021. Coinbase. https://www.coinbase.com/.

[4] 2021. Curve. https://curve.fi/.

[5] 2021. DeFi Pulse. https://defipulse.com/.

[6] 2021. dxdy. https://dydx.exchange/.

[7] 2021. EIP-1559. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.

md.

[8] 2021. Etherscan Transaction Details. https://etherscan.io/tx/

0x08e0c04a0447bde695588b57630d5f62a94879af6bce796ac892810937cf8830.

[9] 2021. flashbots. https://docs.flashbots.net/.

[10] 2021. Introducing Uniswap V3. https://uniswap.org/blog/uniswap-v3.

[11] 2021. The Investment Implications of Ethereum Improvement Pro-

posal 1559. https://downloads.coindesk.com/research/EIP-1559-Ethereum-Fee-

Market-Upgrade-Explained-1.pdf.

[12] 2021. pancakeswap. https://pancakeswap.finance/.

[13] 2021. Sushiswap. https://sushi.com/.

[14] 2021. Uniswap. https://uniswap.org/.

[15] 2021. Uniswap Interface. https://app.uniswap.org/#/swap.

[16] 2021. Uniswap’s Year in Review: 2020. https://uniswap.org/blog/year-in-review.

[17] 2021. Watch The Burn. https://watchtheburn.com/.

[18] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.

(2020).

[19] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson.

2021. Uniswap v3 core. Technical Report. Tech. rep., Uniswap.
[20] James J. Angel, Lawrence E. Harris, and Chester S. Spatt. 2011. Equity Trading in

the 21st Century. The Quarterly Journal of Finance 01, 01 (2011), 1–53.
[21] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.

2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware.

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security (London, United Kingdom) (CCS ’19). Association for Computing

Machinery, New York, NY, USA, 1521–1538.

[22] Dan Bernhardt and Bart Taub. 2008. Front-running dynamics. Journal of Economic
Theory 138, 1 (2008), 288–296.

[23] Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. 2021. Quick Order

Fairness. arXiv preprint arXiv:2112.06615 (2021).
[24] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decen-

tralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

[25] Shayan Eskandari, Mahsa Moosavi, and Jeremy Clark. 2019. SOK: Transparent

dishonesty: front-running attacks on blockchain. In Financial Cryptography and
Data Security (FC), St. Kitts, Saint Kitts and Nevis.

[26] Larry Harris. 2013. What to Do about High-Frequency Trading. Financial Analysts
Journal 69, 2 (2013), 6–9.

[27] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-fairness

for byzantine consensus. In Annual International Cryptology Conference. Springer,
451–480.

[28] Jerry W. Markham. 1988-1989. Front-Running - Insider Trading under the Com-

modity Exchange Act. Catholic University Law Review 38 (1988-1989), 69.

[29] Imad Moosa. 2015. The regulation of high-frequency trading: A pragmatic view.

Journal of Banking Regulation 16, 1 (2015), 72–88.

[30] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[31] Pintail. 2021. Uniswap: A Good Deal for Liquidity Providers?

[32] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2021. Quantifying Blockchain Ex-

tractable Value: How dark is the forest? arXiv preprint arXiv:2101.05511 (2021).
[33] Gregory Scopino. 2014-2015. The (Questionable) Legality of High-Speed Pinging

and Front Running in the Futures Market. Connecticut Law Review 47 (2014-2015),

607.

[34] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. (2014).

[35] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.

2021. High-frequency trading on decentralized on-chain exchanges. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 428–445.

[36] Patrick Züst. 2021. Analyzing and Preventing Sandwich Attacks in Ethereum.

https://pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-07.pdf.

https://cointelegraph.com/news/defi-explosion-uniswap-surpasses-coinbase-pro-in-daily-volume
https://cointelegraph.com/news/defi-explosion-uniswap-surpasses-coinbase-pro-in-daily-volume
https://app.balancer.fi/#/trade
https://www.coinbase.com/
https://curve.fi/
https://defipulse.com/
https://dydx.exchange/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://etherscan.io/tx/0x08e0c04a0447bde695588b57630d5f62a94879af6bce796ac892810937cf8830
https://etherscan.io/tx/0x08e0c04a0447bde695588b57630d5f62a94879af6bce796ac892810937cf8830
https://docs.flashbots.net/
https://uniswap.org/blog/uniswap-v3
https://downloads.coindesk.com/research/EIP-1559-Ethereum-Fee-Market-Upgrade-Explained-1.pdf
https://downloads.coindesk.com/research/EIP-1559-Ethereum-Fee-Market-Upgrade-Explained-1.pdf
https://pancakeswap.finance/
https://sushi.com/
https://uniswap.org/
https://app.uniswap.org/#/swap
https://uniswap.org/blog/year-in-review
https://watchtheburn.com/
https://pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-07.pdf

A FAILED AND ATTACKED TRADES
Table 4 compares the number of failed and attacked trades when

using our slippage tolerance setting algorithm and Uniswap’s sug-

gested slippage tolerance. It is apparent while the constant slippage

tolerance used by Uniswap cannot be effective for both different

trade patterns and pools. Our simple slippage tolerance algorithm,

on the other hand, adjusts well to the varying conditions. We notice

that Uniswap’s auto-slippage leads to a similar number of failed

trades caused by an insufficient slippage tolerance for all tested

trade sizes in a pool. Especially for smaller trade sizes, these failures

are unnecessary, as we see when comparing the performance of

the auto-slippage to that chosen by our slippage tolerance algo-

rithm. For trade sizes up to a $1000, our algorithm can successfully

failed trades average failed
attempts

attacked trades

ours UNI ours UNI ours UNI

size [$]

10 0 253 0.0000 1.0079 0 0

100 0 253 0.0000 1.0079 0 0

1000 36 253 1.0000 1.0079 0 0

10000 6814 253 1.1611 1.0079 0 119747

100000 14697 253 1.2232 1.0079 101371 119747

(a) USDC⇌WETH

failed trades average failed
attempts

attacked trades

ours UNI ours UNI ours UNI

size [$]

10 0 79 0.0000 1.0000 0 0

100 3 79 1.0000 1.0000 0 0

1000 21 79 1.0000 1.0000 0 0

10000 1992 79 1.0658 1.0000 0 119921

100000 5455 79 1.0948 1.0000 16026 119921

(b) WBTC⇌WETH

failed trades average failed
attempts

attacked trades

ours UNI ours UNI ours UNI

size [$]

10 0 93 0.0000 1.0000 0 0

100 0 93 0.0000 1.0000 0 0

1000 20 93 1.0000 1.0000 0 0

10000 1336 93 1.0352 1.0000 0 119907

100000 5964 92 1.1160 1.0000 1536 119908

(c) USDC⇌USDT

failed trades average failed
attempts

attacked trades

ours UNI ours UNI ours UNI

size [$]

10 0 881 0.0000 1.0114 0 0

100 0 881 0.0000 1.0114 0 0

1000 345 881 1.0087 1.0114 0 0

10000 2450 880 1.0351 1.0114 0 119120

100000 3189 858 1.0442 1.0105 57470 119142

(d) WBTC⇌USDC

failed trades average failed
attempts

attacked trades

ours UNI ours UNI ours UNI

size [$]

10 0 325 0.0000 1.0031 0 0

100 0 324 0.0000 1.0031 0 0

1000 252 325 1.0040 1.0031 0 0

10000 482 317 1.0041 1.0032 0 119683

100000 542 277 1.0037 1.0036 7872 119723

(e) UNI⇌USDC

failed trades average failed
attempts

attacked trades

ours UNI ours UNI ours UNI

size [$]

10 0 49 0.0000 1.0000 0 0

100 5 49 1.0000 1.0000 0 0

1000 48 49 1.0000 1.0000 0 0

10000 52 49 1.0000 1.0000 0 119951

100000 52 49 1.0000 1.0000 3080 119951

(f) LINK⇌WETH

failed trades average failed
attempts

attacked trades

ours UNI ours UNI ours UNI

size [$]

10 0 305 0.0000 1.0033 0 0

100 3 305 1.0000 1.0033 0 0

1000 56 305 1.0000 1.0033 0 0

10000 2720 305 1.1162 1.0033 0 119695

100000 6701 304 1.1310 1.0033 41511 119696

(g) DPI⇌WETH

failed trades average failed
attempts

attacked trades

ours UNI ours UNI ours UNI

size [$]

10 0 183 0.0000 1.0055 0 0

100 3 183 1.0000 1.0055 0 0

1000 57 183 1.0000 1.0055 0 0

10000 815 183 1.0049 1.0055 0 119817

100000 2591 183 1.0243 1.0055 1706 119817

(h) KIMCHI⇌WETH
Table 4: Comparison between the number of failed and attacked trades when using our algorithm to set the slippage tolerance
vs. the slippage tolerance suggested by Uniswap. The simulation spans between blocks 11589848 and 1170984. The base fee is
set to $4.

avoid the vast majority of trade failures in all pools, and simultane-

ously not a single trade suffers a sandwich attack. All large ($10000

and $100000) trades with Uniswap’s auto-slippage are sandwich

attacked or failed to execute. Our algorithm, on the other hand,

avoids all sandwich attacks for trades up to size $1000, while at

the same time only experiencing a few, at most 5.5% for trades of

size $10000 in the USDC⇌WETH pool (cf. Table 4a), trade failures.

For the largest trade size ($100000), our algorithm cannot avoid

all sandwich attacks. Still, trades are only attacked very rarely in

comparison to those that use Uniswap’s auto-slippage.

B COST COMPARISON (𝑏 = $2 AND 𝑏 = $8)
We repeat the simulation from Section 5.4 with a smaller base fee,

i.e., 𝑏 = $2, and present the results in Table 5. The table shows

the fractional cost incurred when trades use our algorithm and

the cost incurred by trades using Uniswap’s auto-slippage. For the

smaller base fee, our algorithm also saves significant amounts of

money in comparison to the suggestions from Uniswap. Due to

the lower base fee, smaller trades with Uniswap’s auto-slippage

become attackable. Thus, while Uniswap’s auto-slippage appeared

reasonable for trades of size $1000 for 𝑏 = $4, Uniswap’s auto-

slippage is greatly outperformed our algorithm for trades of size

$1000 for 𝑏 = $2.

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 2,267 · 10−4 ∞
100 0,000 3,545 · 10−5 ∞
1000 2,652 · 10−5 5,505 · 10−3 207.5644

10000 1,754 · 10−4 5,054 · 10−3 28.8085

100000 3,201 · 10−4 5,009 · 10−3 15.6483

(a) USDC⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 7,441 · 10−5 ∞
100 4,562 · 10−6 1,516 · 10−5 3.3219

1000 1,104 · 10−5 5,506 · 10−3 498.8522

10000 4,659 · 10−5 5,055 · 10−3 108.5005

100000 8,746 · 10−5 5,010 · 10−3 57.2870

(b) WBTC⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 8,311 · 10−5 ∞
100 0,000 1,336 · 10−5 ∞
1000 7,741 · 10−6 5,502 · 10−3 710.7457

10000 3,257 · 10−5 5,052 · 10−3 155.1261

100000 5,974 · 10−5 5,007 · 10−3 83.8038

(c) USDC⇌USDT

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 8,026 · 10−4 ∞
100 5,465 · 10−7 1,343 · 10−4 245.7445

1000 7,548 · 10−5 5,527 · 10−3 73.2224

10000 9,881 · 10−5 5,074 · 10−3 51.3471

100000 1,909 · 10−4 5,028 · 10−3 26.3332

(d) WBTC⇌USDC

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 3,207 · 10−4 ∞
100 8,919 · 10−6 7,606 · 10−5 8.5274

1000 5,142 · 10−5 5,537 · 10−3 107.6673

10000 5,078 · 10−5 5,084 · 10−3 100.1143

100000 7,058 · 10−5 5,031 · 10−3 71.2869

(e) UNI⇌USDC

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 5,707 · 10−5 ∞
100 1,152 · 10−5 2,032 · 10−5 1.7641

1000 1,652 · 10−5 5,514 · 10−3 333.7329

10000 1,635 · 10−5 5,064 · 10−3 309.7068

100000 2,657 · 10−5 5,019 · 10−3 188.8764

(f) LINK⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 2,764 · 10−4 ∞
100 4,539 · 10−6 4,688 · 10−5 10.3277

1000 3,002 · 10−5 5,510 · 10−3 183.5702

10000 8,138 · 10−5 5,059 · 10−3 62.1630

100000 1,562 · 10−4 5,014 · 10−3 32.0972

(g) DPI⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 1,693 · 10−4 ∞
100 4,562 · 10−6 3,134 · 10−5 6.8693

1000 1,847 · 10−5 5,509 · 10−3 298.3095

10000 2,915 · 10−5 5,059 · 10−3 173.5636

100000 4,424 · 10−5 5,013 · 10−3 113.3132

(h) KIMCHI⇌WETH
Table 5: Cost comparison when using our own algorithm to set the slippage tolerance vs. the slippage tolerance suggested
by Uniswap. The fractional cost includes both the costs of being attacked as well as the costs associated with redoing the
transactions. The simulation spans between blocks 11589848 and 1170984. The base fee 𝑏 is set to $2.

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 2,267 · 10−4 ∞
100 0,000 3,545 · 10−5 ∞
1000 7,779 · 10−7 1,633 · 10−5 20.9851

10000 1,025 · 10−4 5,203 · 10−3 50.7475

100000 2,583 · 10−4 5,024 · 10−3 19.4491

(a) USDC⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 7,441 · 10−5 ∞
100 0,000 1,516 · 10−5 ∞
1000 4,583 · 10−6 9,230 · 10−6 2.0138

10000 3,048 · 10−5 5,205 · 10−3 170.7785

100000 5,059 · 10−5 5,025 · 10−3 99.3369

(b) WBTC⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 8,311 · 10−5 ∞
100 0,000 1,336 · 10−5 ∞
1000 4,817 · 10−7 6,382 · 10−6 13.2498

10000 1,906 · 10−5 5,202 · 10−3 272.8749

100000 3,806 · 10−5 5,022 · 10−3 131.9262

(c) USDC⇌USDT

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 8,026 · 10−4 ∞
100 0,000 1,343 · 10−4 ∞
1000 2,567 · 10−6 6,747 · 10−5 26.2815

10000 9,356 · 10−5 5,223 · 10−3 55.8192

100000 1,253 · 10−4 5,043 · 10−3 40.2571

(d) WBTC⇌USDC

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 3,207 · 10−4 ∞
100 0,000 7,606 · 10−5 ∞
1000 3,632 · 10−5 5,147 · 10−5 1.4172

10000 5,070 · 10−5 5,233 · 10−3 103.2274

100000 4,661 · 10−5 5,046 · 10−3 108.2632

(e) UNI⇌USDC

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 5,707 · 10−5 ∞
100 0,000 2,032 · 10−5 ∞
1000 1,600 · 10−5 1,664 · 10−5 1.0402

10000 1,642 · 10−5 5,214 · 10−3 317.6139

100000 1,623 · 10−5 5,034 · 10−3 310.1651

(f) LINK⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 2,764 · 10−4 ∞
100 0,000 4,688 · 10−5 ∞
1000 5,428 · 10−6 2,393 · 10−5 4.4089

10000 5,853 · 10−5 5,208 · 10−3 88.9918

100000 1,021 · 10−4 5,029 · 10−3 49.2509

(g) DPI⇌WETH

size [$] fractional
cost ours

fractional
cost UNI

ratio cost
UNI/ours

10 0,000 1,693 · 10−4 ∞
100 0,000 3,134 · 10−5 ∞
1000 5,781 · 10−6 1,754 · 10−5 3.0336

10000 2,353 · 10−5 5,208 · 10−3 221.3346

100000 3,041 · 10−5 5,028 · 10−3 165.3476

(h) KIMCHI⇌WETH
Table 6: Cost comparison when using our own algorithm to set the slippage tolerance vs. the slippage tolerance suggested
by Uniswap. The fractional cost includes both the costs of being attacked as well as the costs associated with redoing the
transactions. The simulation spans between blocks 11589848 and 1170984. The base fee 𝑏 is set to $8.

Further, when also considering the simulation results with 𝑏 =

$8 (cf. Table 6), we see that the general pattern stays the same.

Independent of the precise base fee, our algorithm outperforms

Uniswap’s auto-slippage. The auto-slippage is too low for smaller

trades and consequently small trades fail unnecessarily. On the

other hand, for larger trades Uniswap’s auto-slippage is too high

and causes all trades to be attackable. It is clear that a constant

auto-slippage cannot consistently perform well.

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Background
	2.1 Ethereum Blockchain
	2.2 Automated Market Maker
	2.3 Sandwich Attacks

	3 Model
	3.1 Transaction Model
	3.2 Attack Model

	4 Sandwich Game
	4.1 Adversary Perspective
	4.2 Trader Perspective

	5 Evaluation
	5.1 Data Description
	5.2 Slippage Prediction
	5.3 Setting Slippage
	5.4 Cost Comparison

	6 Related Work
	7 Conclusion
	References
	A Failed and Attacked Trades
	B Cost Comparison

