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Eliminating Scale Drift in Monocular SLAM

using Depth from Defocus
Tomoyuki Shiozaki and Gamini Dissanayake

Abstract—This paper presents a novel approach to correct
errors caused by accumulated scale drift in monocular SLAM. It
is shown that the metric scale can be estimated using information
gathered through monocular SLAM and image blur due to defo-
cus. A nonlinear least squares optimization problem is formulated
to integrate depth estimates from defocus to monocular SLAM.
An algorithm to process the output keyframe and feature location
estimates generated by a monocular SLAM algorithm to correct
for scale drift at selected local regions of the environment is
presented. The proposed algorithm is experimentally evaluated
by processing the output of ORB-SLAM [1] to obtain accurate
metric scale maps from a monocular camera without any prior

knowledge about the scene.

Index Terms—Range Sensing, SLAM, Visual-Based Naviga-

tion.

I. INTRODUCTION

MONOCULAR simultaneous localization and mapping

(SLAM) [2] enables a mobile robot to map its envi-

ronment and estimate its egomotion up to a scale. Ideally the

scale, which defines the relationship between the estimated

geometry and the metric map, while unknown, should stay

constant. It has been recognized that many monocular SLAM

algorithms are prone the scale drift, where the scale is different

in different parts of the map [3]. State-of-the-art monocular

SLAM systems, for example, ORB-SLAM [1] have ability

to reuse the map, detect loops to close, and perform global

optimization to minimize the error caused by the accumulated

scale drift. However, the scale drift can still occur, especially

when the camera turns quickly [4]. Although stereo cameras

[5] or RGB-D cameras [6] can resolve the scale ambiguity

problem, the small size and the versatility of monocular

cameras are still attractive, particularly in robotic applications.

Depth from defocus (DfD) [7] is one of the approaches that

can be used to estimate scale from information gathered from

a monocular camera. It relies on the amount of defocus blur

which is related to the distance to the scene [8]. In our previous

work [9], we demonstrated that combination of DfD and image

velocity in an extended Kalman filter (EKF) framework was

able to estimate the metric scale of an environment accurately.

In this paper, we leverage this work to integrate DfD with

monocular SLAM systems.
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We begin with ORB-SLAM [1], which is one of the best

monocular SLAM systems currently available. This system

uses ORB features to represent the environment and select a

set of frames (keyframes) for representing the camera poses.

Our method estimates the amount of defocus blur at ORB

features and uses this information to extract the metric scale

from the map and keyframe poses generated by ORB-SLAM.

The algorithm can be selectively applied to local regions of

the map to correct the ORB-SLAM output to minimize the

impact of scale drift. We note here that while the experimental

evaluations presented make use of the output from ORB-

SLAM, the proposed algorithm can be used to enhance the

output from any keyframe or feature based monocular SLAM

algorithm.

The main contributions of this paper are as follows:

• Use of DfD to reliably estimate the metric scale to feature

locations observed from a given keyframe

• An algorithm based on nonlinear optimization to post-

process keyframe pose and feature location estimates

generated by a monocular SLAM algorithm to obtain the

metric scale

• Experimental demonstration of the proposed method with

ORB-SLAM

In section II, a review of related work on scale drift in

monocular SLAM and DfD is described. Section III introduces

the DfD method. Section IV presents the optimization algo-

rithm for computing the metric scale. In section V, experimen-

tal results are presented. Section VI discusses and concludes

the paper.

II. RELATED WORK

A. Scale Drift on Monocular SLAM

One popular approach for mitigating scale ambiguity in

monocular SLAM is to impose geometrical constraints. For

example, a fixed height of the camera above the ground plane

is useful to estimate scale and therefore avoid scale drift [10],

[11], [12], [13]. Alternatively, the size of known objects in

the environment can be used as a depth cue [14], [15]. The

main drawback of these methods is that they are effective in

only limited scenes: on roads or environments populated with

known objects.

When such additional information is not available, monoc-

ular SLAM is known to suffer from scale drift. Clemente

et al. [16] proposed a filtering-based method to detect loops

automatically to correct scale drift in large environments.

Strasdat et al. [3] presented a scale drift-aware loop closing

strategy using a keyframe-based pose-graph optimization to
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build a consistent, global map. Mur-Artal et al. [1] proposed

ORB-SLAM that achieves real-time tracking, mapping, and

loop closing in large environments based on the pose-graph

optimization algorithm. Potential for scale drift in ORB-SLAM

has been recognized, and it has been shown that using a

stereo or an RGBD-camera, ORB-SLAM2 [4] provides a good

solution to this problem. In [17], a Visual-Inertial ORB-SLAM

that uses information from an inertial measurement unit (IMU)

to recover metric scale was presented. The focus of this paper

is an alternative strategy based on DfD to eliminate scale

drift. Our approach using DfD does not need any geometrical

constraints or known structure in the environment and thus has

a potential to enhance the performance of monocular SLAM

in a broad range of applications.

B. Depth from Defocus

Conventional DfD methods required multiple images with

different defocus levels [18], [19], thus were not especially

attractive in many applications. Pentland [20] pointed out

that defocus information can be extracted even from a single

image provided that there are sharp edges. Elder and Zucker

[21] applied the derivatives of the input image to find edges

and estimate the blur amounts. Zhuo and Sim [22] used the

Gaussian gradient ratio of input and reblured images that is

robust to noise.

However, single image DfD methods suffer from ambigui-

ties due to focal plane, motion blur, and texture. First, objects

placed in front and behind the focal plane may be viewed

with exactly the same amount of defocus blur [23]. Kumar et

al. [24] used the chromatic aberration as a clue to solve the

focal plane ambiguity. Second, in dynamic scenes both depth

and motion contribute to the blur. Punnappurath et al. [25]

developed a deep convolutional neural network for decoupling

of motion and defocus blur. Third, given a single image, it

cannot be differentiated whether a blur is caused by defocus

or texture [22]. In our previous work [9], we demonstrated that

the blur due to texture could be represented using a constant

correction factor and an EKF framework was able to produce

accurate metric reconstruction.

The method proposed in this paper makes use of the

constant correction factor proposed in our previous work.

In order to integrate with keyframe-based SLAM systems,

nonlinear least squares optimization is used to obtain the

metric reconstruction. Furthermore, through the use of the

information gathered by monocular SLAM, ambiguities due

to focal plane and motion blur can also be avoided, making

the proposed algorithm suitable for robots applications.

III. DEPTH FROM DEFOCUS

We assume that the image formation obeys the thin lens

model [20] illustrated in Fig. 1. When the object located at

out-of-focus distance d, a point on it is viewed with a blurred

circle c at the image plane. This circle is so-called the circle

of confusion (CoC), and the diameter can be written as

c =
|d − d f |

d

f 2

N(d f − f )
, (1)

Fig. 1. Thin lens model. Reprinted from [9]. The size of c depends on the
image plane distance b f and the focal plane distance d f . When the image
plane is located at b f +bδ , the object placed at d is best focused.

where d f is in-focus distance, f and N are the focal length and

the f-number of the camera, respectively [22]. Large |d − d f |
makes CoC large. Since f-number is given as N = f/A with

the aperture diameter of the lens A, the blur effect is most

obvious with a large lens.

The radius of σ of the Gaussian-shaped point spread func-

tion (PSF) G(σ) can approximate the size of c as

ci = γσ i, (2)

Ii = G(σ i)∗ Ii
f , (3)

where subscript i is used to denote the i-th feature in an image,

Ii is a small region of interest (ROI) around the feature, Ii
f is

the ROI around the same feature when this feature is best

focused, and ∗ indicates the convolution operation [8]. γ is a

camera-specific value [26]. For estimating the value of σ i, we

use the method proposed by Zhuo and Sim [22].

The Depth-Defocus function [8] which expresses the rela-

tionship between di and σ i is

σ i = D(di) =
1

φ1

exp(−
1

φ2

(bδ (d
i))2)+φ3,

bδ (d
i) =

di f

di − f
− b f ,

(4)

where φ1, φ2, and φ3 are the calibration parameters. b f is

the image plane distance. The calibration process performed

by measuring σ i at the corners on the checkerboard while

changing its position can generate these parameters along with

f and b f . Solving Eq. (4) yields di from σ i.

However, measuring σ i does not work well as expected on

features other than those with sharp edges due to the blur

texture ambiguity [8]. In our previous work [9], we found

that one of the main causes was the difference of the contrast

between the ROIs and demonstrated that this error could be

expressed by the following equation:

σ i
m = λ iσ i

t = λ iD(di), (5)

where σ i
m is the measured σ i and σ i

t is the true σ i measured

at a sharp edge. λ i describes the constant correction factor for

the extent of blur due to texture.
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Furthermore, motion blur influences the blur estimate. We

propose a method to eliminate the effect of motion blur

from estimated defocus blur by using optical flow. Eq. (3)

is rewritten as

Ii = G(σ i
m)∗G(σ i

b)∗ Ii
f , (6)

where σ i
b is the motion blur kernel and σ i

m is from Eq. (5).

The composite blur is

σ i
mb =

√

σ i
m

2 +σ i
b

2
. (7)

In [27], the motion blur vector is expressed as b =
(l cosθ , l sinθ )T , where l = 2σ i

b and θ is the edge direction.

Here, the motion blur vector can be expressed by the optical

flow vector u = (u,v)T as b = Te
Tf

u, where Te and Tf are the

exposure time and the frame period of the camera, respectively.

Therefore, σ i
b can be obtained from the optical flow as

σ i
b =

Te

2Tf

|ucosθ + vsinθ |. (8)

Solving Eq. (7) with Eq. (8) yields σ i
m. This is illustrated

in Fig. 2. In this experiment, the chart with a tilted edge

pattern and a checkerboard shown in Fig. 2(a) was positioned

to face the camera and moved from side to side with the

velocity shown in Fig. 2(c). σ i
mb was measured at the edge

location and σ i
b was calculated by Eq. (8) using the optical

flow detected at the corners of the checkerboard. As shown in

Fig. 2(b), almost constant σ i
m was obtained as a result of the

elimination of σ i
b from σ i

mb. The result shows that this method

can clearly eliminate the motion blur. In the implementation of

the proposed algorithm with ORB-SLAM presented in section

IV, we use the ORB features present in a keyframe and the

subsequent frame to get optical flow. When the corresponding

feature cannot be found in the subsequent frame, we use the

projection of the corresponding map point onto the subsequent

frame.

IV. SCALE OPTIMIZATION

A. Optimization

We begin by defining the scale factor Λ in metric scale using

di, j = Λzi, j, (9)

where di, j is the metric distance from the camera to a map

point on each keyframe, zi, j is its up to a scale counterpart.

Subscript i, j are used to denote the i-th map point seen

from the j-th keyframe in the selected local region. zi, j can

be obtained from the map point pi
w = [xi

w yi
w zi

w]
T and the

keyframe pose T j = [R j|t j] created by ORB-SLAM as

pi, j = R j−1
(pi

w − t j), pi, j = [xi, j yi, j zi, j]T . (10)

The scale factor Λ and texture blur correction factor λi are op-

timized by the following nonlinear least squares minimization

derived from Eqs. (5) and (9):

argmin
Λ,λ i

∑
i, j

(σ i, j
m −λ iD(Λzi, j))2, (11)
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Fig. 2. Demonstration of Eq. (8). (a) shows the chart with a tilted binary
edge pattern and a checkerboard. The chart was positioned to face the camera
at a distance of 2m and moved from side to side with the velocity shown in
(c). In (b), blue ×, red + , and green ∗ show σ i

mb, σ i
m, and σ i

b, indicating

that σ i
m is nearly constant as expected. The exposure time was 8msec and the

frame period was 33msec.

where σ
i, j
m is measured at the corner extracted by the ORB

features. We note here that it is not necessary to deal with the

focal plane ambiguity since we do not use the inverse function

of Eq. (4) that causes multiple solutions across the focal plane

[8].

In our previous work [9], we demonstrated that the amount

of defocus blur cannot be estimated correctly on complex

texture such as letters, and therefore constraints of Eq. (5)

no longer hold in these situations. Furthermore, due to the

nonlinearity of Eq. (4), depth estimation from defocus blur is

only effective at short range [8]. Therefore, a staged strategy is

required to solve the optimization given in Eq. (11), to avoid

the possibility of converging to local minima.

B. Initial Guess

We first select a set of features with sharp edges to minimize

the impact of blur texture ambiguity and therefore simplify the

optimization problem of Eq. (11) to

argmin
Λ

∑
i, j

(σ i, j
m −D(Λzi, j))2. (12)

The edge selection criterion is given by

σ i, j
m =

{

inlier i f ethl < smgi, j < ethh

outlier else.
(13)

Here smgi, j is the multiplication of estimated blur σ
i, j
m and

gradient magnitude around the feature mgi, j = ||▽ Ii, j|| where
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Fig. 3. Demonstration of Eq. (13). (a) and (b) show the charts with a low-
contrast edge and a binary edge, respectively. In (c), smgi

H is the multiplication

of estimated blur σ i
m,H and gradient magnitude mgi

H measured at the edge

on (b). Also, smgi
L is the multiplication of estimated blur σ i

m,L and gradient

magnitude mgi
L measured at the edge on (a).

▽ means the gradient. ethl and ethh are threshold values and

decided from smgi, j of the binary edge pattern measured in

advance. We can make the assumption that mgi, j is inversely

proportional to σ
i, j
m . Therefore, multiplying σ

i, j
m and mgi, j

can effectively cancel the blur effect, thus is a good index

to evaluate the edge strength. This is illustrated in Fig. 3.

Fig. 3(a) and (b) are low-contrast and binary edge patterns,

respectively. In Fig. 3(c), smgi
H is the multiplication of σ i

m,H

and mgi
H measured from the binary edge, and so smgi

L is

from the low-contrast edge. As expected, smgi
H and smgi

L stay

almost constant despite the change of defocus blur. The same

Gaussian kernel is used for both the blur estimates and the

gradient magnitude estimates. The results demonstrate that the

proposed index can express the edge strength, independent of

the amount of defocus blur.

The solution of Eq. (12) gives an accurate scale estimate,

provided a sufficient number of features with sharp edges

exist in the scene. In situations where this is not the case, we

found that the scale estimate obtained serves as a good initial

guess to the more general optimization problem given by Eq.

(11). Features to be incorporated into computing the objective

function defined by Eq. (11) can be selected as follows.

C. Feature Selection

Change of λ i: The features that satisfy the constraint of Eq.

(5) are selected as

σ i, j
m =

{

inlier i f rthl < ri, j < rthh

outlier else,
(14)

ri, j =
λ

i, j
ini

λ
i, j−1
ini

, (15)

where rthl and rthh are threshold values and empirically de-

cided from the accuracy of the initial guess in advance. λ
i, j
ini

Fig. 4. The camera and lens used in this experiment. The field of view is
about 37-degree width. The focal length and f-number were fixed during the
experiment.

is calculated from Eq. (5) with the initial sale Λini estimated

from Eq. (12) as

λ
i, j
ini =

σ
i, j
m

D(Λinizi, j)
. (16)

When satisfied with this condition, λ i is regarded as a constant

value between two keyframes.

Effective Range: The features which have zi, j within a range

threshold are used:

σ i, j
m =

{

inlier i f zi, j < zth

outlier i f zi, j ≥ zth,
(17)

where zth is the range threshold. The value of zth is decided

from the focal plane position.

V. EXPERIMENTAL EVALUATIONS

A. Dataset

To evaluate the proposed algorithm, a number of image

sequences with 752 × 480 pixels resolution at 30fps were

captured with a FLIR R© BFLY-U3-23S6M-C camera and a

Fujinon R© CF16HA-1 lens shown in Fig. 4 walking in a

corridor environment at University of Technology Sydney. The

maps and camera trajectories generated by ORB-SLAM from

the datasets are shown in Fig. 5. In Fig. 5(a), the camera moved

in the direction of the arrows and returned to the origin to

make a closed loop. In Fig. 5(b), the camera traveled along a

figure of eight trajectory as indicated by the arrows in the same

environment to make two closed loops. Checkerboard patterns

were placed at locations CA, CB, C1, C2, C3, and C4 so that

the true scale in each local region could be computed. Fig.

5(c) shows examples of keyframes including the checkerboards

indicated on Fig. 5(b).

The scale estimated using the checkerboard patterns and

the scale error in each of the local region are shown in

Table I. The mean ratio of the true distances between the

camera and the checkerboard patterns to the distances obtained

from ORB-SLAM were used to estimate scale. The true dis-

tance was measured by the checkerboard detection algorithm

[28] implemented in MATLAB R©. The range over where the

checkerboard was detected reliably was about 7m. The scale

error was computed relative to the initial scale estimated at CA

for trajectory 1 and C1 for trajectory 2. ORB-SLAM result was

found to be quite accurate in case of the trajectory 1 in Fig.
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(a) (b)

C3

C2C1

C4

(c)

Fig. 5. In (a) and (b), green lines show the camera trajectory and blue dots
show the point cloud of features generated by ORB-SLAM. The scale was
reconstructed using the mean value of the scales computed using checkerboard
patterns and shown in Table I. Some turns of the trajectory used to capture
(b) were sharper than the trajectory shown in (a).

TABLE I
SCALE AND SCALE ERROR

Trajectory 1 Trajectory 2

Scale(mm/unit) Error(%) Scale(mm/unit) Error(%)

CA 9134 - C1 4740 -
CB 9241 1.2 C2 4480 -5.5

C3 5135 8.3
C4 5051 6.6

5(a), where the scale error at CB was only 1.2%. On the other

hand, in the trajectory 2 in Fig. 5(b), the maximum scale error

was 8.3% perhaps due to the presence of multiple sharp turns.

The root mean square errors (RMSE) of the keyframe positions

are shown in Table III. The dataset used in the experiments

can be made available on request.

B. Scale estimation using DfD

Ten keyframes around each checkerboard pattern were used

in the optimization process. The parameters used for DfD are

shown in Table V. The threshold values for optimization are

shown in Table VI. The trust-region reflective method [29]

implemented in MATLAB R© was used to solve for the initial

guess using Eq. (12) and for the full solution using Eq. (11).
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*
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Fig. 6. In (a) and (b), Cyan ’o’ show all features, blue ’x’ show the features
selected for the initial guess. Each blue line connects the same feature for
different keyframes, which is selected for the second optimization. Magenta,
orange, and green lines show the approximations D(zi, j) as results of the initial
guess, the second optimization, and the truth. (c) and (d) are the examples of
keyframes in the local regions C3 and C4, respectively. Green ’x’ show the
features selected for the initial guess, and red ’∗’ show the features selected
for the second optimization. To be fair, features on the checkerboards were
excluded for the optimizations.

TABLE II
ERROR IN SCALE ESTIMATE IN EACH AREA (%)

Trajectory 1 Trajectory 2

Initial Guess 2nd Opt. Initial Guess 2nd Opt.

CA -6.77 -0.03 C1 3.19 -0.20
CB -2.11 0.17 C2 8.14 -0.01

C3 -10.40 0.14
C4 0.83 -0.01

The error in the scale estimate is calculated as e = (Λe −Λt)/Λt where
subscripts e and t are the estimation and the truth, respectively.

Table II shows the results of optimization. As can be seen,

solving for the simplified optimization problem given by Eq.

(12) results in a metric scale with an error of 10% or less.

Although this result is not adequate to correct for the scale

drift, it is a good initial guess for the optimization problem

Eq. (11). The final errors in the scale estimates are less than

0.20%. This is illustrated in Fig. 6. Fig. 6(a) and (b) show zi, j

vs σ
i, j
m in all keyframes in the local regions around C3 and

C4, respectively. In (b), a set of features distributed around the

true approximation curve D(zi, j) were detected for obtaining

the initial guess. Fig. 6(d) is an example of the keyframes in

the local region including C4. This image demonstrates that

the features used to obtain the initial guess were selected at

the edge positions. On the other hand, in (a), the number of

features selected for the initial guess was smaller than in (b)

and resulted in a scale estimation error of 10.4%. Fig. 6(c)

is an example of the keyframes in the local region including

C3. This image was a little darker than (d) and it was difficult

to find the features with sharp edges. However, in the second

optimization step, the proposed feature selection algorithm was

able to select the features which satisfied the Eq. (5) to reduce

the scale estimation error to 0.14%.
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(a) (b)

Fig. 7. (a) and (b) show the local maps including C4 and C3, respectively.
Blue lines show the trajectory generated by ORB-SLAM. Red lines show the
trajectory corrected by the estimated scales. Green lines show ground truth
obtained from the checkerboard detection algorithm. Point clouds indicated
by arrows are the map points on the corresponding checkerboards.

TABLE III
RMSE OF KEYFRAME POSITIONS (mm)

ORB-SLAM ONLY ORB-SLAM with DfD

CB 34 18

C2 198 19
C3 361 36
C4 263 9

Fig. 7 shows the camera trajectories corrected by the es-

timated scales. The RMSE of keyframe positions are shown

in Table III. All keyframes which could see the checkerboard

within 7m were used for calculating RMSE as

RMSE =
( 1

m

m

∑
j=1

||t j − t
j
t ||

2
) 1

2 , (18)

where t j is the translational components of the keyframe

pose, t
j
t is its truth obtained from the checkerboard detection

algorithm, and m is the number of keyframes. In the trajectory

2, RMSE of ORB-SLAM was around 300mm. Our method

was able to reduce RMSE to below 40mm. Results from this

experiment demonstrate that the proposed method can correct

the scale error accurately from only a monocular camera

without any prior knowledge about the scene.

VI. DISCUSSION AND CONCLUSION

The effective measuring range of DfD depends on the

lens, especially its focal length and aperture size. For the

camera used in section V, this is approximately 3m. The

scale estimation is not feasible if all the visible features fall

outside the effective measuring range of the DfD technique.

For example, defocus blur is not significant in the KITTI

dataset [30] due to the outdoor scenes where features in the

environment are at a relatively large distance from the camera.
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Fig. 9. In (a), Cyan ’o’ show all features, blue ’x’ show the features selected
for the initial guess. Each blue line connects the same feature for different
keyframes, which is selected for the second optimization. Magenta, orange,
and green lines show the approximations D(zi, j) as results of the initial guess,
the second optimization, and the truth. (b) is the example of keyframes in the
local region CII. Green ’x’ show the features selected for the initial guess,
and red ’∗’ show the features selected for the second optimization. To be fair,
features on the checkerboards were excluded for the optimizations.

The same is true in the TUM dataset [31], where the short focal

length of the camera limits the effective measuring range to

less than 400mm. Therefore, the lens and camera properties

need to be selected to suit a given application scenario. Fig.

8(a) shows the map and the camera trajectory generated by

using the rear camera on iPhone SE in an office environment

shown in Fig. 8(b). The effective measuring range for this

small camera is only about 300mm. Fig. 9(a) shows zi, j vs σ
i, j
m

around CII and (b) is an example of the keyframes. As can be

seen, the adequate amount of defocus blur was observed and

our algorithm could select the good features for optimization

properly in the environment where some of the features were

observed within the range. The results of RMSE are shown in

Table IV.

Although it did not appear in the experiment shown in

section V, a possible failure scenario relates to the ability

to obtain a suitable initial guess to the optimization problem

defined by Eq. (11). If sufficiently sharp edges within the

measuring range are not available, the initial guess may be

too poor and the method may converge to a local minimum.

Obtaining the sparse defocus map of an image with 752

× 480 pixels resolution used in the experiment shown in

section V takes about 0.4 seconds in MATLAB R© with Intel R©

CoreTM i5-6300U CPU at 2.40GHz × 4. The optimization
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TABLE IV
RMSE OF KEYFRAME POSITIONS BY IPHONE SE (mm)

ORB-SLAM ONLY ORB-SLAM with DfD

CII 31 24

TABLE V
PARAMETERS USED IN DFD

φ1 φ2 φ3 b f [mm] f [mm] d f [mm] N

-0.317 0.0825 4.20 16.9 16.8 8000 1.4

TABLE VI
THRESHOLD VALUES USED IN THE OPTIMIZATION

ethl ethh rthl rthh zth

0.03 0.15 0.8 1.2 0.37 d f /Λini

including the initial guess estimation needs about 0.3 seconds

in MATLAB R©. It is expected that with an efficient imple-

mentation in C, these times could be substantially reduced.

However, it is important to note that the proposed technique

is a post-processing step and therefore does not influence the

real-time operation of the underlying SLAM algorithm.

In this paper, we have described a method for correcting

scale drift in monocular SLAM with the aid of depth from

defocus and illustrate it using the ORB-SLAM algorithm.

Using the amount of defocus blur estimated on ORB features

together with the map points and keyframe poses obtained

from ORB-SLAM, the metric scales in selected local regions

are estimated. The proposed algorithm only relies on the local

accuracy of the underlying SLAM algorithm and therefore

could be used before or after loop closure. The experimental

evaluation demonstrated the effectiveness of the proposed

algorithm. In this work, the output from ORB-SLAM is

post-processed through a nonlinear optimization algorithm to

estimate the metric scales in local regions. Therefore, while the

local maps are accurate, the global locations of these regions

are not corrected for scale drift. Given that the scale drift is

relatively small, it could be argued that accurate local maps

are adequate for many practical applications.

Future work will focus on exploring the effectiveness of a

tightly coupled strategy where defocus constraints are incor-

porated within the ORB-SLAM bundle adjustment process.

Integration of information from inertial sensors into this pro-

cess is also planned.
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[8] C. Wöhler, P. d’Angelo, L. Krüger, A. Kuhl, and H.-M. GroB, “Monocu-
lar 3D scene reconstruction at absolute scale,” ISPRS J. Photogrammetry
and Remote Sens., vol. 64, pp. 529-540, 2009.

[9] T. Shiozaki, G. Dissanayake, “Monocular 3D Metric Scale Reconstruc-
tion using Depth from Defocus and Image Velocity,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots and Syst. (IROS), 2017, pp. 6723-6728.
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