
Eliminating Single Points of Failure in
Software-Based Redundancy

Peter Ulbrich, Martin Hoffmann, Rüdiger Kapitza, Daniel Lohmann
Wolfgang Schröder-Preikschat

Chair of Distributed Systems and Operating Systems

Friedrich–Alexander University Erlangen–Nuremberg

Erlangen, Germany

{ulbrich, hoffmann, kapitza, lohmann, wosch}@cs.fau.de

Reiner Schmid
System Architecture and Platforms

Corporate Technology, Siemens AG

Munich, Germany

reiner.schmid@siemens.com

Abstract—In the domain of safety-critical embedded and
cyber-physical systems, software-based redundancy is generally
understood as an effective and cheap approach to improve
reliability. Especially redundant execution in terms of triple
modular redundancy is a well-known solution.

However, triple modular redundancy (TMR) leaves unpro-
tected single points of failure (SPOFs), such as the voter, which
have to be carefully considered in all safety considerations.

We present Combined Redundancy (CoRed), a holistic approach
that hardens safety-critical parts of a system against soft-
errors, while effectively eliminating the vulnerability caused by
SPOFs. CoRed leverages redundant execution in combination
with encoded processing to tackle the unprotected voting and
data distribution. Its implementation does not require specific
knowledge about the application and can be easily integrated into
existing projects. We evaluated CoRed in a realistic setting using a
quadrotor helicopter and provide experimental evidence for soft-
error resistance and comparable low resource demand. In our
experimental comparison plain TMR left more than seven percent
of failures undetected, whereas CoRed was able to eliminate all
silent data corruptions while inducing an overhead of just seven
percent.

Index Terms—Fault-tolerance, Soft errors, Domain-specific ar-
chitectures, Software and System Safety, Frameworks, Reliability.

I. INTRODUCTION

With the ongoing reduction of structure sizes, future

hardware designs for embedded systems will exhibit more

performance and parallelism on the price of being less and

less reliable. For safety-critical systems, the handling of soft

errors will become one of the major challenges. Soft errors

occur randomly during execution and are caused by hardware

faults, which are not easily detectable because their impact is

only temporary. These errors are severe, as common software

execution does not check for or even assume the presence of

these events. The most salient error of this kind is caused

by elementary particles striking an electronic control unit

(ECU) leading to selected bit-flips in memory, data caches,

processor registers or even the bus system and arithmetic logic

unit. Soft errors, though in general of only rare occurrence,

are nevertheless considered to occur frequently enough to be

This work was partly supported by Siemens AG under the CoSa grant, the
Bavarian Ministry of State for Economics, Traffic and Technology under the
(EU EFRE funds) grant no. 0704/883 25, and the German Research Foundation
(DFG) under grants no. LO 1719/1-1 and KA 3171/2-1.

considered for SIL3 or SIL4 categorised safety functions [1],

[2], [3].

To provide sufficient error detection and recovery, established

solutions employ extensive hardware redundancy or specifically

hardened hardware components [4], [5], [6], [7] – both of which

are too costly to be employed in commodity products, like cars.

Furthermore, there is a strong trend in this industry towards the

integration of multiple applications – critical and noncritical –

on a single ECU [8], which renders coarse-grained hardware-

based approaches impractical.

Software-based redundancy techniques can selectively in-

crease the reliability of such multi-application systems running

on commodity hardware. Especially redundant execution in

terms of TMR is a well-known solution [9].

However, TMR still leaves unprotected single points of

failure, which have to be observed in all safety considerations.

These include the sampling of input data, the necessary majority

voting, and the distribution of output values. Although these

parts are usually considered as relatively small and short in

terms of execution time, their shape and number is highly

application specific. Moreover, a recent study convincingly

shows that the generally assumed random error distribution

does not pass the reality check for commodity hardware [10].

All this makes the risk analysis of these single points of failure

for an actual application difficult and resource-consuming –

and the results questionable.

II. OUR CONTRIBUTION

We present Combined Redundancy (CoRed), a software-

based redundancy approach to provide resilience against soft

errors at the application level. CoRed combines the well-known

techniques of TMR [11], data encoding [12] and control-flow

encoding [13] into a holistic approach that omits the classical

single points of failure, while inducing an additional overhead

of just 7 percent compared to plain TMR. The key contributions

of this paper are:

• A design approach for high-reliability voters, which

eliminate the major SPOF in TMR systems.

• A design approach for the elimination of input and output

vulnerabilities, which eliminates the remaining SPOFs,

while keeping replica determinism.

2012 Ninth European Dependable Computing Conference

978-0-7695-4671-1/12 $26.00 © 2012 IEEE

DOI 10.1109/EDCC.2012.21

49

2012 Ninth European Dependable Computing Conference

978-0-7695-4671-1/12 $26.00 © 2012 IEEE

DOI 10.1109/EDCC.2012.21

49

Fig. 1. Overview of the Combined Redundancy (CoRed) approach. CoRed combines, as the name implies, different fault-detection measures to expand the
narrow sphere of replication of common TMR and eliminates the remaining single points of failure by leveraging encoded data flows and high-reliability
voters (CoRed Encoded Voters). This example shows how CoRed covers the entire chain of execution from reading the inputs � of a sensor system, to the
processing � of a safety-critical controller, and up to distributing the outputs �. By keeping the data EAN-encoded, the approach is applicable even across
node boundaries.

• The CoRed system, which implements these facilities in

an easy to use C++ library.

We evaluate our approach with the flight-control task of a

quadrotor helicopter. Our experimental results show that CoRed
is able to eliminate all failures, whereas the single points of

failure in plain TMR leave more than seven percent undetected

– leading to fatal silent data corruptions. CoRed facilitates easy

composability, real-time analysis and schedulability of TMR-

based dependability. It can be applied selectively to critical

applications in mixed-criticality scenarios.

III. THE CORED APPROACH

To describe the mechanics of fault detection schemes,

Reinhardt and Mukherjee [14] proposed the concept sphere of

replication (SOR). It identifies a logical domain protected by a

fault detection scheme ensuring that any fault occurring within

the sphere and propagating to its boundary will be detected.

The sphere of replication of common TMR concepts excludes

the critical voting procedure and the entire data flow outside

the replicated execution. Some implementations generate

checksums across complex result data to simplify and shorten

the voting procedure. This can slightly decrease the probability

of errors within this single point of failure. However, any fault

can still disrupt the critical voting procedure. The situation

is even more serious seeing that the voting directly affects

crucial data, leading to various uncovered fault scenarios. First,

exact majority voters usually can detect and tolerate data errors

that arise within the time span of the replicated execution

until shortly before the actual comparison operation begins.

However, after data are voted there is still the liability to

data corruption, which is then undetected. Secondly, voting on

checksums further increases this liability, as an alteration of the

data will not be detected if it happens after checksum creation.

The voter finds a quorum on the checksums, although the actual

data are silently corrupted. Targeting distributed embedded

systems, dominantly used in fields of automotive, medical, and

avionic industry, this period of time is often extended resulting

in an increased time span where the system is vulnerable. In

the worst-case scenario this leads to false decisions: Silently

corrupted data (SDC) propagate to the actuators.

A. System Model

In order to tackle this challenge CoRed makes the following

assumptions regarding the safety-critical application and the

necessary runtime environment:

• The runtime environment (i.e., the operating system) and

underlying hardware enable strict fault-containment. More

exactly, we require isolated execution in both a spatial

and temporal manner. The former can be achieved using

memory protection mechanisms provided by the hardware

(i.e., a memory protection unit), the latter is generally

realised by incorporating a real-time operating system.

• The safety-critical application resembles a deterministic

state machine and must not have interdependencies with

other uncovered applications and therefore show run-

to-completion semantics. Furthermore, the application

has to possess a dedicated and well-defined input and

output interface, which will be linked to the specific

CoRed-implementation artefacts. The prevailing pattern in

safety-critical control applications are tasks consisting of

three major building blocks: input data acquisition, data

processing and output data propagation.

Figure 1 depicts a simple example of a safety-critical appli-

cation consisting of the following blocks: Input �, acquiring

all necessary data by sampling a sensor system, processing �
as the primary application logic, and output � interacting with

the environment, more specifically an actuator element. From

this starting point, the CoRed approach applies discriminative

techniques to gradually increase the reliability of the safety-

critical application, ultimately yielding to a holistic input to

output protection.

5050

B. Holistic Protection Approach

Before going into detail, we first briefly discuss the overall

approach (Figure 1). For each part of the processing chain

CoRed uses tailored measures for ensuring reliability. The

basic SOR is implemented by TMR, as used for the sensor

data acquisition � and the computation � in this example.

In addition, CoRed employs data-flow encoding (EAN) to

extend the SOR beyond the TMR boundaries: Inputs and

outputs are encoded and decoded respectively within the

replicas’ protection domain, subsequently ensuring the data

integrity.

Still, the voting, inevitable in TMR systems, tears gaps in

the SOR. CoRed’s Encoded (Exact) Voter can determine a

quorum on encoded results. However, data-flow encoding is

insufficient and leaves the control-flow unprotected. To tackle

this issue, CoRed introduced control-flow monitoring (CFM)

in addition.

Finally, the voter passes its decision to the output where

it is sent to the actuator. A convenient side effect is that the

data can remain encoded, extending the sphere of replication

even further. For instance, by transmitting the encoded values

to a distributed actuator ECU or to seamlessly connect the

outputs to the inputs of another CoRed block. In this way, even

complex applications and systems can be composed.

The tolerance-based voting at the input side represents an

exception. To omit the performance penalties of the encoded

operations, it consists of two parts: The Pre-Stages that reside

within the replicas, mutually determine the input distances and

variants based on a tolerance range – hence, compute the costly

part. Subsequently, the Encoded Tolerance Voter determines a

quorum among the encoded variants as usual.

The remainder of this section will detail the techniques

employed by CoRed step-by-step:

C. Basic Protection

Applying the CoRed approach should not require in-depth

knowledge of the application to be safeguarded or the under-

lying system platform (runtime environment and hardware).

We therefore employ the well-known and proven concept of

TMR [11] as the basis of the CoRed approach, as it efficiently

detects and masks transient faults of replicated instances. Here,

TMR is especially suited, as it can be easily applied and does

not require further knowledge of the safety-critical application

itself.

The processing is threefold in terms of its state and code

(optional) and mapped to the replica tasks, which reside in

dedicated protection domains of the runtime environment. The

redundant execution is thereby spanning the initial sphere of

replication.

One of the advantages of implementing the replication on the

coarse-grained software component level is, that it decreases the

bandwidth required for output comparison and input replication.

That in turn potentially simplifies the voting and replication

logic [15].

D. Eliminating input and output vulnerabilities

The basic TMR approach protects only the replica execution

itself, while the propagation of data across the SOR-boundaries

and the voting procedure is still susceptible to transient faults.

The corruption of output data within the voting procedure or

on transmission level to the actuator elements can still lead to

a silent data corruption. Even worse, corrupted input data will

lead to a silent data corruption in every case, as the replicas

will work with flawed data and produce apparently correct

results. Data crossing the boundaries have to be protected to

prevent the formation of single points of failure.

To overcome this weakness and extend the protection across

the SOR-boundaries, we combined the basic TMR approach

with an arithmetic encoding of the data propagation – thereby

giving the name Combined Redundancy (CoRed).

To be more precise, we use an extension of an AN-Code,

which is based on the VCP design presented by Forin et al.

[12], specifically tailored to our purposes. It uses a combination

of per value signatures and a time stamp to detect data and

sequence faults.

To get a feel for this EAN, we exemplify the basics in the

following. An arithmetic code can detect data manipulation and,

at the same time, preserve arithmetic operations on encoded

data. The result of an encoded arithmetic operation applied to

encoded operands is again valid encoded data.

The basic AN-Code is the simplest form of an arithmetic

code, formed by multiplying the operands by a constant A:

X ′ = X ∗A (1)

A division by A can then restore the original value of AN-

encoded data. If the remainder of the division does not

equal zero, the value is an invalid code word, which exposes

a data corruption. The multiplication factor A has to be

chosen carefully to minimize the residual error probability

and achieve an adequate Hamming distance. Most AN-Code

implementations therefore suggest a large prime number [16].

A bare AN-Code can efficiently detect bit manipulations of

encoded values. However, it cannot safely indicate addressing

errors – erroneously pointing to another valid code word – nor

can it reveal outdated or out-of-sequence data as it is not aware

of periods.

Therefore the Extended AN Code used in the CoRed approach

features a unique signature BX per value to detect addressing

errors and in addition a timestamp D to reveal outdated data.

X ′ = X ∗A+BX +D (2)

As dynamic timestamp D, a cycle counter can be used with the

range 0..Dmax. The constant value of BX can then be chosen

arbitrarily with the constraint BX +Dmax < A. Furthermore

the minimum distance between two signatures has to be greater

than Dmax.

Finally, to put EAN into use within arbitrary calculations,

all arithmetic operations must be adapted. The result of an

operation X ′ � Y ′ generates an encoded value Z′ that

also includes the specific signature Bz . Applying the inverse

5151

X' = Y'

X' = Z'

apply(X', sigdyn{X',Y',Z'})
return sigconst{X',Y',Z'}

true

true

false false

false

Y' = Z'

apply(Y', sigdyn{Y',Z'})
return sigconst{Y',Z'}

true

apply(X', sigdyn{X',Y'})
return sigconst{X',Y'}

X' = Z'

apply(X', sigdyn{X',Z'})
return sigconst{X',Z'}

true

return sigconst{}

false

all correct

�X'�

no decision�Z'�

�Y'�

�

�

Control-flow error
Branch

Fig. 2. Basic structure of the CoRed Encoded Voter: To ensure the data
integrity, the variants remain encoded throughout the entire voting procedure.
The control flow is safeguarded by scope signatures, which are recomputed
dynamically at runtime. Applied to the winner, any subsequent block can
verify the correctness even in the presence of an error (e.g., � or �).

transformation, an encoded subtraction operation results in the

following equation:

Z
︷ ︸︸ ︷

1
A

(Z′ −Bz −D) =

X
︷ ︸︸ ︷

1
A

(X ′ −Bx −D)−

Y
︷ ︸︸ ︷

1
A

(Y ′ −By −D)

Z′ = X ′ −Y ′ +By −Bx +Bz
︸ ︷︷ ︸

const.

+D

(3)

The encoded operands X ′ and Y ′ are subtracted and the

signature value is adapted by a correcting term By −Bx +Bz .

Since all signatures B are static values, this correcting term

can be determined at compile time for each encoded operation.

By using the EAN, CoRed is able to detect faults in encoded

values, a feature used to protect data flows going to and coming

from the redundant execution. Each replica, for example,

encodes its results before passing them to the voter. This

is an enabler for validity checks of the data within the voting

procedure and the extension of the sphere of replication beyond

the initial boundaries.

E. High-reliability Voters

Up to this point, EAN is used to safeguard the data exchange

between the redundant execution of software components and

the inputs and outputs. The voting procedure, necessary to

determine the majority from the three replicas is still unpro-

tected and poses a major single point of failure. Triplicated

execution of the voter cannot be employed since the results of

the redundant voters would have to be voted again.

As described above, an arithmetic code allows arbitrary

arithmetic operations on encoded values. Therefore, CoRed
leverages EAN for protecting the arithmetic operations and

operands used within the voter creating the CoRed Encoded
Voter as shown in Figure 2. To preserve the EAN protection,

it operates on encoded values throughout the entire voting

procedure. Therefore, it takes the TMR results, subsequently

called variants (X ′, Y ′, and Z′), as input, provides a voting

result (equality set E) and determines the variant to use as

the winner. In the following, we first present how to vote

on encoded data. Subsequently, we detail the control-flow

monitoring and the generalisation of the voting procedure to a

tolerance voter.

1) Encoded data voting: For implementing the

Encoded Voter, complex comparison operations as described

by Forin et al. [12] could be applied to compare the encoded

results of the replicas. For the specific purpose of finding

a majority, we simplified the comparisons according to

Equation 4. The equality of two encoded values can be easily

determined by observing their difference:

X′
︷ ︸︸ ︷

(AX +BX +D)−
Y ′

︷ ︸︸ ︷

(AY +BY +D) = AX −AY +BX −BY

= BX −BY ⇔ X = Y
(4)

If equal, the differences of the particular results must match

with the constant difference of the signatures. As the arithmetic

code allows determining the equality on encoded values, it is

not necessary to decode the result data to find a quorum.

2) Ensuring a correct control-flow and voting: As the

comparison operator is able to operate on encoded values,

the integrity of the data is ensured. Nevertheless, the voting

algorithm itself can still suffer from transient faults, for example

causing false branch decisions. Thus, the voter may return

wrong results without the consumer being able to detect this.

Consequently, it must be possible to not only determine the data

integrity but also the correctness of the voting procedure itself.

Further, it should be possible to protect the voting result1 in

the same way. For this, CoRed leverages EAN based program

flow checks in terms of encoded scope signatures similar to

the approach described by Schuette [13]. The basic design

of the Encoded Voter is depicted in Figure 2. At first, its

implementation equates a conventional voter and comes to a

decision by a sequence of conditional branches. Each branch

decision leads to a subsequent program block (scope) until a

verdict is found. In addition, the Encoded Voter applies every

EAN operation, which has led to the outcome, to the value

of the winner before returning the voting result. This requires

two additional measures for the monitoring of the control-flow:

A static and a dynamic program flow signature.

equality set: E
︷ ︸︸ ︷

{X ′,Y ′,Z′} ⇔
static signature: sigconst(E)

︷ ︸︸ ︷

(BX −BY)+(BX −BZ)+(BY −BZ)
{X ′,Y ′} ⇔ (BX −BY)
{X ′,Z′} ⇔ (BX −BZ)
{Y ′,Z′} ⇔ (BY −BZ)

{} ⇔ Bnodecision

(5)

The static program flow signatures are derived from the

signatures of the variants. According to Equation 4, the

difference between two equal variants is constant. As a result,

the voter’s decision and the corresponding control flow can

1Decoding is impossible without prior notice about the winner’s identity.

5252

be uniquely2 mapped to a constant signature, as shown in

Equation 5. Here, we utilize the fact that there is only one

valid path to each possible decision. The static program flow

signature then serves as a return value of the voting decision.

Consequently, succeeding blocks (components) are able to

relate the voting outcome and select the winner accordingly.

At this point, the static program flow signature is not

sufficient to detect all possible errors, as the successor cannot

validate the correctness of the decision – decoding a wrong

candidate still works flawlessly. Therefore, the signature of each

voting decision is computed dynamically at runtime, resulting

in a dynamic signature sigdyn(E), and applied to the chosen

variant. According to Equation 4, the dynamic signature is

the difference of the encoded values and corresponds to the

expected static signature in fault-free operation, as for example:

sigdyn({X ′,Y ′}) = X ′ −Y ′ (6)

To put it simple, the control-flow is recomputed at runtime

and applied to the voting result in terms of EAN signature

operations. All calculations are based on EAN signatures

and values assuring fault detection throughout the entire path.

Together with the voting result, a succeeding block can validate

the correctness of the voting decision and the value itself, by

inversely applying the constant program flow signature.

As a result, the CoRed Encoded Voter ensures data integrity

at all times and further eliminates, in contrast to common

checksum-based voting, control-flow errors as a SPOF.

To illustrate the error handling, we added two examples of a

faulty control flow in Figure 2. In example �, a bit flip leads to

an improper branch decision: Although X ′ is not equal to Z′,
the true branch is taken. Subsequently, the voter assumes all

variants as correct, applies the respective dynamic signature to

X ′ and returns all correct – the defective Z′ slipped through.

Still, the subsequent block detects the error as the decoding

of X ′ will fail because of sigconst �= sigdyn. The situation is

similar for other types of control-flow anomalies as in example

�. In this case, an incorrect jump leads right in the middle

of another scope. Although the dynamic signature is not even

computed, the error is detected. Again, the subsequent decoding

of X ′ with the static signature of {X ′,Y ′} will fail.

3) Tolerance Voting: Usually a CoRed block will not get

its input data already encoded. Thus, until now the extension

of the sphere of replication towards the input data acquisition

is an unresolved issue.

To gain fault tolerance at the input side, a system has to

provide redundant input data in terms of either multiple hard-

ware sensors or temporal redundant sampling. Unfortunately,

this introduction of diverse input data leads to the loss of the

replica determinism [17]. Because of the varying hardware or

diverging sampling times, sensor data will differ in specific

ranges and the replicas’ results are likely to differ – even in the

absence of a fault. A simple majority voter cannot determine

a quorum in this case.

2As a consequence, the selection of the static signatures has to observe the
uniqueness of all decision paths.

Fig. 3. The I4Copter quadrotor helicopter; specifically designed with a
redundant set of sensors.

A common solution is the integration of tolerance-based

voting at the output side. On a correct execution, the distance

of the results is within a bounded region and a threshold can

be defined as comparison tolerance [18]. Such a tolerance voter

first examines the particular distances of the replica results x,

y and z:

d(x,y) = |y −x| = δ1

d(x,z) = |z −x| = δ2

d(y,z) = |y −z| = δ3

(7)

Given the results of this evaluation, the voter then compares the

distances δi to the application-specific comparison tolerance.

However, finding appropriate tolerance values for the replicas’

outputs is a difficult task especially if they arise out of complex

control algorithms.

We therefore integrated a tolerance-based voter right after

the sensor data acquisition to recover replica determinism at

an early stage.

CoRed directly supports tolerance voting by providing a

generic Encoded Tolerance Voter and facilities specifying the

necessary tolerance information. Each sensor provides an EAN

encoded value to the Encoded Tolerance Voter as shown in

Figure 1 (input side). The tolerance voter itself is split into two

parts. A TMR-based execution of the tolerance based voting,

resulting in three equal variants, and a succeeding EAN-based

majority voter choosing a quorum, as described in the previous

section. Here, we follow the same design approach by executing

complex calculations redundantly, that is the tolerance based

voting, and concentrating the ultimate decision to a small single

point of failure, which is resolved by the exact Encoded Voter.

In summary, CoRed is able to eliminate the voting procedures

(whether exact or tolerance) as a single point of failure

and facilitates input to output protection of safety-critical

applications.

IV. IMPLEMENTATION

CoRed focuses on an application-oriented implementation

approach, which can easily be applied to existing projects. For

the sake of general applicability, CoRed is implemented using

C++ template programming. This way only a common C++

compiler is necessary, which should leverage the application

of our approach also in industry settings where tool chains

have to be verified in operation or even accredited by reg-

ulatory authorities. All non-application specific parts of the

implementation, such as EAN and voting, are provided as

5353

Fig. 4. Overview of the I4Copter software system. We selectively applied the CoRed approach to the safety-critical flight-control application without altering
the non-critical applications such as Surveillance and Tracking. The CoRed extension involved the separation of the hardware-dependent device drivers and the
identification of sensor tolerance parameters. Data encoding, voting, decoding, and replica generation is largely automated. An adaption of the complex sensor
fusion and control algorithms is not necessary, as the replicas can process decoded data.

hardware-independent libraries that support automatic replica

and interface generation. In contrast to existing compiler-based

solutions [19], we implemented EAN as a platform independent

library, which does not require proprietary tools.

Depending on the underlying operating system, CoRed can

harness existing fault isolation mechanisms, as for example

memory protection and deadline monitoring. We integrated the

CoRed framework both into CiAO OS, our academic aspect-

oriented AUTOSAR-OS implementation [20], and PxROS-

HR,3 an industry-strength commercial RTOS platform used in

SIL-4 applications. By leveraging the requested facilities of the

underlying operating system, replicas exposed by the watchdog

or the trap handling routines, are terminated, reinitialized

and restarted. Non-critical tasks that erroneously break their

isolation domain (spatially, when accessing illegal memory

areas, temporally when violating their deadline) are caught by

the runtime monitor and restarted. Thereby, the system can

always recover to an error-free state and remain fail-safe.

Having the means to restore the internal state of a replica, we

further implemented an optimized variant of the TMR approach

in terms of a Pair-and-Spare (PaS) [15] concept. Because of

the relatively low probability of a transient fault, in most cases

the first and second replica will produce identical results. In

that case an additional third result is not required. Benefiting

from this fact, the overall response time can be shortened in

the average; the slack time available for low-priority tasks is

increased. Initially, only two of the replicas are executed and

voted. Only if a fault is detected by an absence of quorum, the

third replica is also executed to ultimately find a majority and

identify the erroneous replica. At the beginning of each cycle,

the internal state of the spare replica must be updated using

the state of one of the pairs.

3http://www.hightec-rt.com

A. Target System

To illustrate the application of the CoRed approach to a

realistic real-time system, we choose the I4Copter quadrotor

helicopter (see Figure 3) [21] as a target system: Quadrotor

helicopters are simple in mechanical design and rely on

four fixed pitch propellers, pair-wise spinning in the opposite

direction, and a simple gearless drive. The flight attitude4 is

solely controlled by varying the rotation speed of the engines,

which requires a challenging control software to reliably control

its inherently unstable flight characteristics. The I4Copter has

been especially designed and developed to resemble embedded

real-time systems arising in real-world industrial settings.

The I4Copter is equipped with an Infineon TriCore micro-

controller commonly used in automotive ECUs and a custom

made sensor periphery board featuring a wide range of sensors

(12 in total). With regard to the intended safety-critical mission

scenario, we have extended the original system by a redundant

sensor setting with three gyroscopes per axis and customised

engine actuator controllers.

The control software of the I4Copter currently consists of

approximately 26,000 physical lines of C++ source code and

comprises a total of 13 mostly periodical tasks. In addition to

the flight control, the system also provides less critical auxiliary

and user-defined functions such as waypoint navigation or

surveillance. Thereby, the I4Copter is a realistic example for

a mixed-criticality multi-application real-time system.

The I4Copter software is structured in components, each

implementing a dedicated functional aspect of the system and

interacting only by means of data flow and messaging. The

overall architecture is shown in Figure 4: The Navigation and

Surveillance components serve as an example for auxiliary

applications and do not require a highly dependable setting as

they either do not influence on the attitude of the flight at all

or can be overridden in case of faulty behaviour.

4Angle of the aircraft in regard to a reference point

5454

The same applies to the communication subsystem, as

sending telemetry data to the base station is optional at all and

the steering data transmission is implemented dual channel.

For demonstrating the feasibility of our approach we selec-

tively hardened the flight-control application of the I4Copter,

where soft errors cannot be tolerated and might have disastrous

consequences. The flight-control application consists of the

three well-known stages input, processing, and output: The

device drivers sample and preprocess the redundant sensor

sets and provide the input data. The flight control, consisting

of signal processing, fusion, and control, is the actual core;

it is responsible for attitude and altitude control as well as

rudimentary collision avoidance. The controllers compute the

thrust levels of the four engines as an output. Finally, these

setpoints are sent to the four dedicated engine controllers,

which actuate the engines, via an SPI communication bus.

B. CoRed Protected Flight Control

To apply CoRed to the flight-control application, the devel-

oper first has to encapsulate its implementation into a self-

contained class that inherits from generic CoRed wrapper

classes. These classes then automatically replicate the imple-

mentation (by multiple instantiation of a C++ template) while

keeping a generic interface to the input and output components.

All application-specific information, these are data types and

sinks, must be passed to this interface. During compilation,

the templates generate the necessary interfaces and replicas

accordingly. The individual replicas are mapped to separate

tasks and isolation domains of the runtime environment, thereby

implementing the basic TMR.

The next step is to apply CoRed’s data encoding facilities to

harden input and output data. The basic element provided by

the library is the Encoded template data type. It offers seam-

less encoding, numeracy and decoding with EAN protected

variables by overloading the necessary arithmetic operators.

The developer only has to declare the data to be safeguarded

as Encoded data and assign unique signatures. The generic

implementation of the voting procedure can then decide based

on a quorum of the encoded result data of each replica.

The SOR could even be extended up to the actuator elements

by transferring the encoded results directly to the remote

Fig. 5. Divergence in redundant sensor data; three diverse gyroscope sensors
measuring the same axis.

TABLE I
EXPERIMENTAL RESULT CATEGORIES

Result Description

Fail Silent No errors have been detected, the application
terminated normally and produced correct
results.

E
ff

ec
tiv

e
Fa

ul
ts

Masked An error has been detected and masked by a
redundant result.

Hardware De-
tected

An error has been detected by a hardware error
detection mechanism or the runtime-system
temporal or spatial isolation.

EAN-Code An encoded data value was altered, lost or
incorrectly accessed and the subsequent vali-
dation failed.

Control-Flow
Monitoring
(CFM)

An unexpected control flow was detected by
the voter’s scope signature checks.

Silent Data
Corruption
(SDC)

No errors have been detected, but the applica-
tion produced wrong results compared to the
reference.

engine controllers. This would make it possible to detect faults

affecting the data in transit (if the protocol is unprotected) or on

the actuator side. As the EAN library does not exhibit platform-

specific parts, we could easily adapt the implementation of

the ATmega–based engine controllers to directly deal with the

encoded data.

To tackle faults at the input side, we integrated three

redundant gyroscope sensors into the sensor system of the

I4Copter. As can be seen in Figure 5, the particular measured

values of the angular speed slightly differ within a bounded

region.

The comparison tolerance required by the encoded tolerance

voter can be easily determined applying the noise margins and

deviations in production, which can be found in the respective

data sheets, as well as the inertia of the quadrotor.

V. EVALUATION

The occurrence of soft-errors is very rare under normal

operating conditions. Accordingly, we have to artificially induce

errors to test the functionality of our fault-detection and fault-

tolerance techniques (see for more details on testing [22]).

A. Fault-injection technique

There are various possibilities to inject faults into a target

application [23]. Hardware-based fault injection tools utilize

special physical phenomena, such as heavy-ion radiation or

electromagnetic interference, causing spurious currents inside

the target chip. This technique actually generates real transient

faults, however it cannot be used to inject reproducible faults

at specific locations at a specific time.

Software-based fault-injection approaches, on the other hand,

allow repeatable experiments by adding fault injecting code

to the target software of the system under test (SUT). These

modifications, however, can influence the original behaviour

of the system in other unwanted ways as a side effect (probe

effect).

To gain reproducible experiments with minimal probe effect,

our evaluation of the CoRed approach utilizes the On-Chip

5555

TABLE II
ABSOLUTE NUMBER OF EXPERIMENTS

Execution Voter

Type: Unprotected Plain TMR CoRed TMR Plain CoRed Encoded

Register: Data Address Data Address Data Address Data Address Data Address Sum

Fail-Silent 25,063 19,219 25,141 19,319 26,492 20,320 29,207 24,372 76,251 68,847 333,976

Effective 2,073 7,917 2,144 7,966 2,273 8,444 3,049 7,884 9,253 16,657 67,617

Masked 0 0 1,527 1,668 1,619 1,996 1,583 882 859 369 10,503

Detected 442 5,926 546 6,255 654 6,448 832 6,413 8,394 16,288 52,198

SDC 1,631 1,991 71 0 0 0 634 589 0 0 4,916

Total 27,136 27,136 27,285 27,285 28,764 28,764 32,256 32,256 85,504 85,504 401,592

Debug Support (OCDS) provided by the TriCore processor.

This allows the injection of arbitrary fault patterns and the

observation of the resulting system behaviour without the need

to modify the actual program code. Faults are injected into the

SUT by a hardware debugger controlled by a fault-injection

script on the host platform.

This script first executes an injection free golden run to

obtain the processing results of an unaffected execution of

the target system as a reference. A specific fault pattern is

then injected successively at each bit position of each data and

address register at each instruction of an execution path. The

script ultimately observes the possible effects of the injection

that are outlined in Table I.

B. Fault model

A fault injection campaign processes a fault list containing

the fault pattern, location (memory address or register) and

injection trigger (time or instruction). This fault list can be

generated randomly, which mimics the nature of transient faults

very well. However, a large proportion of these faults behave

fail-silent, for example affecting unused memory. The potential

fault space, that is all possible combinations of fault pattern,

location and trigger, is tremendous making a fault injection

campaign extremely time consuming.

We therefore made some restrictions to the fault list regarding

these three components, similar to other approaches [24].

The purpose of the CoRed approach is to encounter transient

hardware faults. Therefore, the fault pattern assumed in this

approach is the single-bit flip, which is inserted at the assembly

level between two consecutive instructions. This single-bit flip

fault model is similar to and representative for faults occurring

in real systems [25] and is frequently used in existing fault

injection techniques [22], [26]. We concentrated on single-bit

flips as these amount to over 95 % of the soft-error rate [27].

Regarding the location, faults are injected only into CPU

registers, as the impact is equivalent to faults in other parts of

the system such as the buses or the arithmetic unit. A fault that

changes the operand of an add instruction is equivalent to a

fault in the cell containing the operand as well as a fault in the

arithmetic unit itself [24]. As the employed TriCore processor

features a load-store architecture and separated data and address

registers, all memory accesses are processed indirectly via CPU

registers5. On the one hand, faults affecting memory cells can

be seen as equivalent to faults occurring in data registers. On

the other hand, faults in address registers correspond to data

access errors as for example, due to address miscalculation or

mutation during execution (e.g., logic or buses).

We further excluded those parts of the execution that are

entirely encapsulated within a SOR, as failures striking inside

will either propagate to the sphere’s boundaries or trigger the

runtime-system’s isolation mechanisms. Therefore, we focused

on the critical boundaries as well as the entire voting procedure,

to further decrease the number of possible fault triggers.

C. Experimental Results

To evaluate the effectiveness of the CoRed approach we

applied it to the attitude flight control of the I4Copter being

the safety critical part of the system. The CoRed experiments

are compared with an equivalent campaign of the unprotected

execution and voting procedure, respectively.

We applied extensive fault-injection campaigns according to

the aforementioned testing rules and stressed our implementa-

tion with 401,592 systematic experiments as shown in Table II.

In general, a high number of 333,976 faults is still fail-silent,

at which their percentage certainly depends on the register

utilization. Of vested interest is the set of 67,617 effective

faults that do lead to substantial failures.

The overall experimental results are depicted in Figure 6 by

two bar charts: On the left, the redundant execution and on

the right, the voter campaign. In each case, the charts show

the relative distribution among the failure classes described in

Table I. For each campaign, two dedicated bars show the results

for injections into address registers (A) and data registers (D)
– a fact owed to the TriCore’s architecture. The results are

quoted below by (D: % | A: %).

1) Redundant Execution: The left-hand chart in Figure 6

checks the unprotected and the plain TMR execution against

the CoRed TMR type. At first, the unprotected execution

certainly is susceptible to soft errors and does show a

high number of dangerous silent data corruption (SDC)

(D: 78.7 % | A: 25.1 %). The remaining fraction of failures can

be detected (D: 21.3 % | A: 74.9 %) by the runtime environment,

even though the execution is unprotected. Noticeable, the

number of detected failures is much higher when affecting

5With the exception of DMA transfers from peripherals to the memory.

5656

Fig. 6. Overall experimental results of the I4Copter flight-control scenario. Each of the charts compares the unprotected and CoRed enabled version of the
execution (left) and voter (right).

the address registers in general. Here, the high detection rate is

due to the employment of hardware memory protection, which

effectively detects illegal memory accesses.

Employing TMR is a proven instrument to eliminate the

fatal SDCs. The effectiveness of a redundant execution can

be seen in direct comparison to the unprotected version,

the number of SDC nearly changed over to masked failures

(D: 71.2 % | A: 23.6 %). However, a small fragment of SDCs

(D: 3.3 % | A: 0 %) still remains due to data manipulations on

the boundaries of the replicated execution. This is before the

replicas read the input data and after the results are passed

to the voter. Although being only a small share, this renders

the plain TMR unimmunized to SDCs. In principle, this is

a general problem when passing data between protected and

unprotected domains.

By contrast, CoRed is able to eliminate this incidents and

thereby all remaining SDCs by encoding the susceptible data

values. The thereby prevented failures appear in terms of

detected by EAN-Code (D: 3.3 % | A: 0 %) in the plot for the

CoRed TMR (data registers). The remaining numbers equal the

plain version except for minor deviations due to the different

code size.

2) Voting: Finally, the right-hand chart in Figure 6 is

presenting the voting procedure results. Interestingly, the

plain voter is able to mask a significant amount of failures

(D: 51.9 % | A: 11.2 %) and even seems to outperform the CoRed
voter. The ability to mask failures derives from the redundant

input data, the mutation of a single replica result does not affect

the constitution of a quorum. The higher masking rate is related

to the different voter implementations and the resulting code

size — a circumstance that applies to the TMR experiments as

well. Although the voter is protected by the TMR extensions, it

is nonetheless susceptible to fatal SDCs (D: 20.8 % | A: 7.5 %)

and therefore a serious SPOF.

Again, the unique design of the CoRed voter is able

to detect all effective faults and to eliminate this SPOF

completely. The surprisingly low percentage of masked failures

(D: 9.3 % | A: 2.2 %) is the outcome of the employed EAN

(D: 52.3 % | A: 7.7 %), which is, in addition to the data distri-

bution, able to detect failures before the voting logic would

mask them. In contrast to the CoRed TMR experiments, the

EAN is no longer sufficient. Here, the additional measures for

monitoring the control flow (D: 24.0 % | A: 1.7 %) employed in

the CoRed voter comes into play. In case of an unexpected

control flow, the voting result is discarded and the voting

is repeated. Interestingly, a high percentage of control flow

violations seem to be detected within data registers. The reason

is that the scope signatures are naturally stored in data registers

and their mutation therefore is leading to an effective and

detected fault.

In conclusion, we are able to eliminate all SDCs and the

voter as a SPOF, respectively.

D. Runtime overhead

The overhead induced by our approach is certainly closely

related to the ratio of SPOF to be protected (i.e., data-flows and

voting) and the actual size of the application. Thus, the absolute

results of the evaluation are case-specific. Nevertheless, we

assume the results are representative for real-world applications.

We evaluated the overhead of our approach by a worst-

case execution time (WCET) analysis of the basic building

blocks and response time measurements of the realised TMR

approaches. To determine the WCET we used the Absint6 aiT

WCET analyser.

Figure 7 depicts the resulting overhead of the various CoRed
variants compared to a plain TMR execution. The bar chart

plots a detailed break down of the overhead, which is necessary

to implement a redundant execution, these are interfacing the

replicas and voting in general. First of all, it is particularly

6AbsInt homepage - http://www.absint.de

5757

Fig. 7. Runtime overhead induced by the CoRed approach. The bars show
the absolute overhead of the TMR-specific parts. The plot depicts the relative
execution-time overhead added to the redundant flight-control application in
comparison to the plain TMR setting.

noticeable that the overhead for the CoRed voter (77.6μs)

is a multiple of the plain voter (10.2μs) – we merged the

numbers for tolerance and exact voting. The reason for this

major increment is owed to the generally more complex

EAN operations as well as the control flow monitoring. The

EAN encoding and decoding (21.9μs) at the SOR boundaries

accounts for the remaining overhead.

As soft errors are of rare occurrence, we implemented the

Pair-and-Spare (PaS) version to reduce the number of replicas

running in the faultless case. The nascent slack time can be

harnessed by background execution or less critical tasks. In

general, this requires an additional state recovery (6μs) to keep

the third replica state up-to-date. In exchange, the overhead

for voting and EAN operations is reduced accordingly (minus

25.9μs). In case of the absence of a quorum, the third replica

is executed and the voting is repeated resulting in an additional

overhead of 20.5μs compared to the nonoptimistic execution.

However, rating the CoRed approach on the basis of its

building blocks (voter and interface) ignores reality, since this

would disregard the costs for protecting the overall application.

To put the overhead in perspective, we therefore compared a

conventional TMR with the CoRed setting of the flight-control

application. For this, we used the mean value of 256 runtime

measurements. To avoid caching effects, the caches of the

microprocessor were disabled during the test runs. The results

are shown in Figure 7 by the line plot. In relative numbers, the

overhead is low due to CoRed’s expedient use of the costly

protection measures and its tailored design. In our example the

overhead is just 7.1 percent compared to a plain TMR schema.

In the PaS setting, the overhead even drops to 3.2 percent

(15.1 % in case of an error). We consider this as a more than

acceptable price – given that we thereby eliminate all silent

data corruptions and the voter as a single point of failure!

E. I4Copter Results

The actual CPU utilisation of the unprotected I4Copter
system is at approximately 41 percent, whereas the mission-

critical flight control consumes about eight percent. At this point

a plain triplication of the entire system is not only superfluous

but also impossible as the CPU would be instantly overloaded.

Thus, selective hardening is mandatory or a more powerful

and likely more expensive hardware has to be used.

CoRed enables us to protect those events and tasks related

to the distinct mission-critical application, while leaving the

remaining uncritical applications unprotected. The three replicas

can be shifted within the controller period (9ms) and the

remaining slack time can be used to simplify the overall

schedulability or to maximise the temporal distance between

each other.

We therefore successfully protected the flight-control compo-

nent, ensuring a controllable and stable attitude of the I4Copter,

while keeping the rest of the system and the CPU utilisation

below 60 percent.

VI. RELATED WORK

Many hardware-centric approaches enable tolerating soft er-

rors and focus on double or triple hardware redundancy ([4], [5],

[6], [7]). These approaches have their origin in the aerospace

domain and are extremely costly making their application too

expensive for the targeted class of systems. Furthermore, due

to the additionally required hardware components, they are not

suited for an application like the quadcopter that has stringent

weight demands. Consequently, we further focused on software-

based approaches that are comparatively inexpensive and do

not demand for additional hardware.

Over the last few years, there has been major interest in

developing software-based fault handling methods for control

flow ([28], [29], [30]) or memory protection [31] All these

approaches typically focus on a single specific technique or

a family of techniques that have their individual strength and

weaknesses and their application is proposed on a rather coarse-

grained level (i.e., the whole system).

Rebaudengo et al. [32] proposed a source-to-source code

transformation that generates fault-detection code to the source

language. Every variable in the source code is duplicated,

steadily updated on every write operation and checked for

consistency on every read operation.

EDDI, proposed by Oh et al. [28], implements a low-

level detection technique by duplicating all instructions except

branches. Validation code, pasted in before all store and control

instructions, ensures the correctness of all values to be written

to memory. Another approach presented by Oh et al. [33]

is a pure software control-flow checking scheme (CFCSS)

wherein the compiler generates signatures for every branch

decision, which can be validated by an error checking code.

ED4I [34] incorporates data diversity in duplicated execution

of functionally equivalent programs.

Reis et al. [35] proposed SWIFT. SWIFT refines EDDI and

uses a software only signature-based control-flow checking

scheme. SWIFT does not include the memory subsystem in the

SoR, as this part of the hardware is nowadays well-protected

by hardware-based parity checks.

Chang et al. [36] proposed a SWIFT-like technique called

5858

SWIFT-R using triplicated instructions and a majority voter,

and TRUMP a recovery technique using AN-codes.

Homomorphic encryption techniques, allowing arbitrary

mathematical operations on encrypted data, are designed to

mainly address security issues, rather than safety aspects. Fully

homomorphic codes, as for example presented by Gentry [37],

[38], rely on costly operations and do not add safety related

redundancy – for instance, in terms of outdated data detection.

Forin [12] presented such a safety related homomorphic

encoding in the vital coded monoprocessor (VCP). In principle,

it encodes all the variables of a program for fault-detection.

The VCP consists of three types of codes, intimately mixed and

able to detect various classes of errors, providing an enhanced

form of arithmetic code. It is used to detect computing errors,

in which a signature reveals addressing errors and a timestamp

assures the data being up-to-date. The VCP incorporates special

hardware for encoding input data and error checking.

Fetzer et al. [19] adopted this approach proposing software
encoded processing which does not require special hardware,

but also incorporates an additional tool chain calculating valid

signatures and modifying the original code.

In comparison to the discussed related work CoRed enables

selective and application specific soft error tolerance and

combines encoding of data (based on the homomorphic code

by Forin) and redundant execution in an effective way. At the

implementation level a large tool chain such as an enhanced

compiler is avoided.

More in the direction of CoRed is the architectural approach

proposed by Afonso et al. [39], which enhances an embedded

real-time system with fault tolerance on thread level. Based on a

middleware using aspect-oriented programming (AOP) several

fault-tolerant configurations have been integrated. Contrary to

our approach, the data acquisition and output propagation is

not covered.

Another approach for real-time system fault-tolerance fo-

cuses on temporal redundancy on task level [40]. Its aim is

to mask transient errors by triple time redundant execution

and majority voting of the results of all critical tasks. The

replica tasks generate a checksum over all necessary output

data, which is then compared to each other. Using fixed

priority scheduling to control temporal error masking, the

system is able to check whether a re-execution of a replica can

meet all real-time constraints. Furthermore hardware inherent

error detection mechanisms are employed. Fault injection

experiments demonstrate the error detection and masking

capability of this approach. The experiments also evidence

a certain amount of undetected errors. Amongst others, these

errors are caused by errors affecting the input variables and

errors affecting the output after the checksum generation. These

errors can be detected by our CoRed approach.

VII. DISCUSSION

In our experience, the CoRed approach can be easily applied

to a broad range of real-time systems. Beyond the assumptions

regarding the design of a safety-critical application we stated

in Section III, the composability of CoRed facilitates the

implementation of even more complex tasks. Interdependencies,

for example, can be split up to subtasks connected by the CoRed
mechanisms. This kind of break down is a well-known design

concept in real-time systems anyway. Mapping the CoRed
artefacts and replicas to real-time operating system resources

and setting up a schedule is therefore straightforward.

Eliminating the single points of failure in software-based

TMR solutions might seem to be exaggerative as they usually

are considered to be small and short in terms of execution

time. Nevertheless, we consider the seven percent silent

data corruptions in our experiments that are not detected by

the plain TMR are worth the effort. Moreover, a primary

advantage of CoRed is that it significantly simplifies the

safety considerations: single points of failure that have been
eliminated do not have to be considered by a risk analysis –

a fact that is even more worthwhile as the generally assumed

random error distribution does not pass the reality check for

commodity hardware: Nightingale et al. [10] showed that soft

errors tend to spatially dense; we assume that this also holds

for the temporal distribution. Hence, it could be beneficial to

schedule the replica executions with maximum distance – the

easy composability of CoRed tasks provides just that.

While CoRed has very low technical requirements (it is

only based on C++ template programming, which is certainly

an advantage once the certification of a system is necessary),

this also limits the support to automatically generate replica

interfaces. Lifting the system description to a model-based

approach could speed-up the design and the analysis as well

as the implementation process.

VIII. OUTLOOK

Most of our effort has focused on the protection on

application level. Virtually all real-time operating systems

designed for safety-critical applications do offer memory and

timing protection. Nevertheless, the operating system itself is

susceptible to transient faults. Certainly, it is possible to realise

a basic system without an operating system. The impact of the

operating system on the overall reliability is depending on its

design. To solve these issues, the operating system and its vital

services like scheduling need to be hardened against soft-errors.

We are currently investigating CoRed as one building block to

achieve this as part of the DanceOS project7.

IX. CONCLUSION

In this paper we presented CoRed, a holistic approach

that selectively hardens safety-critical parts of a system

against soft-errors. Specifically, CoRed features an input-to-

output protection by interweaving two software fault-tolerance

schemes: redundant execution for the basic computation and

Extended AN Code at the input and output side. To complete the

coverage and ultimately eliminate all remaining SPOFs, CoRed
employs Encoded Voters featuring control-flow monitoring.

To apply CoRed no specific knowledge about the application

and the hardware is demanded. Its implementation is based

on C++ template programming and can be easily adopted and

7DanceOS ()

5959

integrated in existing tool chains and projects. As the approach

is acting on software module level, it facilitates the real-time

design of the system as the framework and replica modules

can be scheduled in a user-defined way. In contrast to related

approaches, CoRed does consider the input data acquisition and

the output data distribution and even allows for extending the

fault-detection mechanism to the communication with external

actuator components. We successfully evaluated the approach

by hardening the mission-critical flight control of the I4Copter.

In our experimental comparison to plain TMR, CoRed induced

an overhead of seven percent. However, TMR left more than

seven percent of all failures undetected, whereas CoRed was

able to eliminate all SDCs.

REFERENCES

[1] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 389–398.

[2] R. Mariani, P. Fuhrmann, and B. Vittorelli, “Fault-robust microcontrollers
for automotive applications,” in On-Line Testing Symposium, 2006. IOLTS
2006. 12th IEEE International, 0-0 2006, p. 6 pp.

[3] International Electrotechnical Commission, IEC 61508 - Functional safety
of electrical/electronic/programmable electronic safety-related systems.
International Electrotechnical Commission, Dec. 1998.

[4] A. Mahmood and E. J. McCluskey, “Concurrent error detection using
watchdog processors-a survey,” IEEE Transactions on Computers, vol. 37,
pp. 160–174, February 1988.

[5] T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W.
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall, T. J.
McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and C. F. Webb,
“Ibm’s s/390 g5 microprocessor design,” IEEE Micro, vol. 19, pp. 12–23,
March 1999.

[6] Y. Yeh, “Triple-triple redundant 777 primary flight computer,” in
Proceedings of the IEEE Aerospace Applications Conference, vol. 1.
IEEE, Feb. 1996, pp. 293 –307 vol.1.

[7] Y. C. B. Yeh, “Design considerations in boeing 777 fly-by-wire
computers,” in The 3rd IEEE International Symposium on High-Assurance
Systems Engineering (HASE ’98), 1998.

[8] M. Broy, “Challenges in automotive software engineering,” in 28th Int.
Conf. on Software Engineering (ICSE ’06). New York, NY, USA: ACM,
2006, pp. 33–42.

[9] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante, Software-
Implemented Hardware Fault Tolerance. Secaucus, NJ, USA: Springer,
2006.

[10] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells and
platters: An empirical analysis of hardware failures on a million consumer
PCs,” in ACM SIGOPS/EuroSys Eur. Conf. on Computer Systems 2011
(EuroSys ’11). ACM, Apr. 2011, pp. 343–356.

[11] J. von Neumann, “Probabilistic logics and synthesis of reliable organisms
from unreliable components,” in Automata Studies, C. Shannon and
J. McCarthy, Eds. Princeton University Press, 1956, pp. 43–98.

[12] Forin, “Vital coded microprocessor principles and application for various
transit systems,” IFA-GCCT, pp. 79–84, 1989.

[13] M. A. Schuette and J. P. Shen, “Processor control flow monitoring using
signatured instruction streams,” IEEE Trans. Comput., vol. 36, pp. 264–
276, March 1987.

[14] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” in In Proceedings of the 27th Annual
International Symposium on Computer Architecture. ACM Press, 2000,
pp. 25–36.

[15] s. Mukherjee, Architecture design for soft errors. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2008.

[16] P. Ozello, “The coded microprocessor certification,” in International
Conference on Computer Safety, Reliability and Security (SAFECOMP
’92), 1992, pp. 185–190.

[17] S. Poledna, “Replica determinism in distributed real-time systems: a
brief survey,” Real-Time Systems Journal, vol. 6, no. 3, pp. 289–316,
1994.

[18] P. Lorczak, A. Caglayan, and D. Eckhardt, “A theoretical investigation of
generalized voters,” in Digest of Papers 19th IEEE Symp. Fault-Tolerant
Computing Systems. Los Alamitos, Calif.: IEEE Computer Society
Press, 1989, pp. 444–451.

[19] C. Fetzer, U. Schiffel, and M. Suesskraut, “AN-Encoding compiler:
Building safety-critical systems with commodity hardware,” in Computer
Safety, Reliability, and Security, ser. Lecture Notes in Computer Science,
vol. 5775. Springer Berlin / Heidelberg, 2009, pp. 283–296.

[20] D. Lohmann, W. Hofer, W. Schröder-Preikschat, J. Streicher, and
O. Spinczyk, “CiAO: An aspect-oriented operating-system family
for resource-constrained embedded systems,” in 2009 USENIX ATC.
USENIX, Jun. 2009, pp. 215–228.

[21] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-
Preikschat, “I4Copter: An adaptable and modular quadrotor platform,” in
Proceedings of the 26th ACM Symposium on Applied Computing (SAC
’11). New York, NY, USA: ACM, 2011, pp. 380–396.

[22] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A flexible
software-based fault and error injection system,” IEEE Transactions on
Computers, vol. 44, pp. 248–260, 1995.

[23] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, pp. 75–82, 1997.

[24] M. Rebaudengo and M. S. Reorda, “Evaluating the fault tolerance
capabilities of embedded systems via bdm,” in VTS ’99: Proceedings of
the 1999 17TH IEEE VLSI Test Symposium. Washington, DC, USA:
IEEE Computer Society, 1999, p. 452.

[25] P. K. Lala, Fault tolerant and fault testable hardware design. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1985.

[26] T. A. Delong, B. W. Johnson, and J. A. P. Iii, “A fault injection technique
for vhdl behavioral-level models,” IEEE Design and Test of Computers,
vol. 13, pp. 24–33, 1996.

[27] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization
of multi-bit soft error events in advanced srams,” in Electron Devices
Meeting, 2003. IEDM ’03 Technical Digest. IEEE International, Dec.
2003, pp. 21.4.1 – 21.4.4.

[28] N. Oh, N. Shirvani, and E. P.P. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” Reliability, IEEE Transactions
on, vol. 51, pp. 63–75, 2002.

[29] J. Ohlsson and M. Rimen, “Implicit signature checking,” Fault-Tolerant
Computing, International Symposium on, vol. 0, p. 0218, 1995.

[30] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, “Low-cost on-line
fault detection using control flow assertions,” IEEE International On-Line
Testing Symposium, vol. 0, p. 137, 2003.

[31] P. P. Shirvani, N. Saxena, S. M. Ieee, E. J. Mccluskey, and L. F. Ieee,
“Software-implemented edac protection against seus,” Reliability, IEEE
Transactions on, vol. 49, pp. 273–284, 2000.

[32] M. Rebaudengo, M. S. Reorda, M. Violante, and M. Torchiano, “A
source-to-source compiler for generating dependable software,” Source
Code Analysis and Manipulation, IEEE International Workshop on, vol. 0,
p. 0035, 2001.

[33] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow checking by software
signatures,” Reliability, IEEE Transactions on, vol. 51, no. 1, pp. 111
–122, Mar. 2002.

[34] N. Oh, S. Mitra, and E. McCluskey, “Ed4i: Error detection by diverse
data and duplicated instructions,” Computers, IEEE Transactions on,
vol. 51, no. 2, pp. 180–199, 2002.

[35] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in In Proceedings of the
3rd International Symposium on Code Generation and Optimization,
2005, pp. 243–254.

[36] G. A. Reis, J. Chang, and D. I. August, “Automatic instruction-level
software-only recovery,” IEEE Micro, vol. 27, no. 1, pp. 36–47, 2007.

[37] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation,
Stanford University, 2009.

[38] ——, “Computing arbitrary functions of encrypted data,” Commun. ACM,
vol. 53, pp. 97–105, Mar. 2010.

[39] F. Afonso, C. Silva, N. Brito, S. Montenegro, and A. Tavares, “Aspect-
oriented fault tolerance for real-time embedded systems,” in Proceedings
of the 2008 AOSD workshop on Aspects, components, and patterns for
infrastructure software (ACP4IS ’08), 2008, pp. 1–8.

[40] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “Experimental
evaluation of time-redundant execution for a brake-by-wire application,”
in Proceedings of the 2002 International Conference on Dependable
Systems and Networks (DSN ’02), 2002, pp. 210–218.

6060

