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Abstract
With the advent of crowdsourcing services it has become quite cheap and reasonably effective to
get a data set labeled by multiple annotators in a short amount of time. Various methods have been
proposed to estimate the consensus labels by correcting forthe bias of annotators with different
kinds of expertise. Since we do not have control over the quality of the annotators, very often
the annotations can be dominated by spammers, defined as annotators who assign labels randomly
without actually looking at the instance. Spammers can makethe cost of acquiring labels very
expensive and can potentially degrade the quality of the final consensus labels. In this paper we
propose an empirical Bayesian algorithm called SpEM that iteratively eliminates the spammers and
estimates the consensus labels based only on the good annotators. The algorithm is motivated by
defining a spammer score that can be used to rank the annotators. Experiments on simulated and
real data show that the proposed approach is better than (or as good as) the earlier approaches in
terms of the accuracy and uses a significantly smaller numberof annotators.

Keywords: crowdsourcing, multiple annotators, ranking annotators,spammers

1. Introduction

Annotating a data set is one of the major bottlenecks in using supervised learning to build good
predictive models. Getting a data set labeled by experts can be expensiveand time consuming.
With the advent of crowdsourcing services (Amazon’s Mechanical Turk1 being a prime example)
it has become quite easy and inexpensive to acquire labels from a large number of annotators in
a short amount of time (see Sheng et al. 2008, Snow et al. 2008, and Sorokin and Forsyth 2008
for some natural language processing and computer vision case studies). For example in AMT
the requestersare able to pose tasks known as HITs (Human Intelligence Tasks). Workers (called
providers) can then browse among existing tasks and complete them for a small monetary payment
set by the requester.

A major drawback of most crowdsourcing services is that we do not havecontrol over the qual-
ity of the annotators. The annotators usually come from a diverse pool including genuine experts,
novices, biased annotators, malicious annotators, and spammers. Hence inorder to get good quality
labels requestors typically get each instance labeled by multiple annotators andthese multiple an-
notations are then consolidated either using a simple majority voting or more sophisticated methods

1. Amazon’s Mechanical Turk can be found athttps://www.mturk.com.
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that model and correct for the annotator biases (Dawid and Skene, 1979; Smyth et al., 1995; Raykar
et al., 2009, 2010; Yan et al., 2010) and/or task complexity (Carpenter, 2008; Whitehill et al., 2009;
Welinder et al., 2010).

In this paper we are interested in the situation where the annotations are dominated byspam-
mers. In our context a spammer is a low quality annotator who assigns random labels (maybe
because the annotator does not understand the labeling criteria, does not look at the instances when
labeling, or maybe a bot pretending to be a human annotator). Spammers can significantly increase
the costof acquiring annotations (since they need to be paid) and at the same timedecrease the ac-
curacyof the final consensus labels. A mechanism to detect and eliminate spammers is adesirable
feature for any crowdsourcing market place. For example one can give monetary bonuses to good
annotators and deny payments to spammers. This paper makes two novel contributions:2

1. Spammer score to rank annotators The first contribution of this paper is to formalize the
notion of a spammer for binary and categorical labels. More specifically wedefine ascalar
metric which can be used torank the annotators, with the spammers having a score close
to zero and the good annotators having a score close to one. We summarize the multiple
parameters corresponding to each annotator into a single score indicativeof how spammer like
the annotator is. While this metric was implicit for binary labels in earlier works (Dawid and
Skene, 1979; Smyth et al., 1995; Carpenter, 2008; Raykar et al., 2009; Donmez et al., 2009)
the extension to categorical labels is novel and is quite different for the error rate computed
from the confusion rate matrix. An attempt to quantify the quality of the workersbased on
the confusion matrix was recently made by Ipeirotis et al. (2010) where theytransformed
the observed labels into posterior soft labels based on the estimated confusion matrix. While
we obtain somewhat similar annotator rankings, we differ from this work in that our score
is directly defined in terms of the annotator parameters. Having the score defined only in
terms of the annotator parameters makes it easy to specify a prior for Bayesian approaches to
eliminate spammers and consolidate annotations.

2. Algorithm to eliminate spammers The second contribution is that we propose an algorithm to
consolidate annotations that eliminates spammers automatically. One of the commonly used
strategy is to inject some items into the annotationswith known labels(gold standard) and
use them to evaluate the annotators and thus eliminate the spammers.3 Typically we would
like to detect the spammers with as few instances as possible and eliminate them from further
annotations. In this work we propose an algorithm called SpEM that eliminates the spammers
without using any gold standardand estimates the consensus ground truth based only on the
good annotators. The same algorithm can also be used if some labels are alsoknown.

We build on the earlier works of Dawid and Skene (1979), Smyth et al. (1995), and Raykar
et al. (2009, 2010) who proposed algorithms that correct for the annotator biases by estimat-
ing the annotator accuracy and the actual true label jointly. A simple strategy would be to
use these algorithms to estimate the annotator parameters, detect and eliminate the spammers
(as defined by our proposed spammer score) and refit the model with onlythe good annota-
tors. However this approach is not a principled approach and might be hard to control (for
example, how to define spammers and how many to remove, etc). The algorithm we pro-
pose is essentially a formalization of this strategy. Our final algorithm essentially repeats

2. A preliminary version of this paper (Raykar and Yu, 2011) mainly discussed the score to rank annotators.
3. This is the strategy used by CrowdFlower (http://crowdflower.com/docs/gold).
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this, it iterativelyeliminates the spammers and re-estimates the labels based only on the good
annotators. A crucial element of our proposed algorithm is that we eliminate spammers by
thresholding on a hyperparameter of the prior (automatically estimated from thedata) rather
than directly thresholding on the estimated spammer score.

The rest of the paper is organized as follows. In Section 2 we model the annotators in terms of
the sensitivity and specificity for binary labels and extend it to categorical labels. Based on this
model the notion of a spammer is formalized in Section 3. In Section 4 we proposea Bayesian
point estimate by using a prior (Section 4.2) derived from the proposed spammer score designed to
favor spammer detection. This is essentially a modification of the Expectation Maximization (EM)
algorithm proposed by Dawid and Skene (1979), Smyth et al. (1995), and Raykar et al. (2009, 2010).
The hyperparameters of this prior are estimated via an empirical Bayesian method in Section 5
leading to the proposed SpEM algorithm (Algorithm 1) that iteratively eliminates the spammers
and re-estimates the ground truth based only on the good annotators. In Section 6 we discuss this
algorithm in context of other methods and also propose a few extensions. inSection 7 we extend
the same ideas to categorical labels. In Section 8 we extensively validate ourapproach using both
simulated data and real data collected using AMT and other sources from different domains.

2. Annotator Model

An annotator provides a noisy version of the true label. Lety j
i ∈ {0,1} be the label assigned to the

ith instance by thej th annotator, and letyi be the actual (unobserved) label. Following the approach
of Raykar et al. (2009, 2010) we model the accuracy of the annotator separately on the positive and
the negative examples. If the true label is one, thesensitivity(true positive rate) for thej th annotator
is defined as the probability that the annotator labels it as one.

α j := Pr[y j
i = 1|yi = 1].

On the other hand, if the true label is zero, thespecificity(1−false positive rate) is defined as the
probability that the annotator labels it as zero.

β j := Pr[y j
i = 0|yi = 0].

With this model we have implicitly assumed thatα j andβ j do not depend on the instance. Ex-
tensions of this basic model have been proposed to include item level difficulty (Carpenter, 2008;
Whitehill et al., 2009) and also to explicitly model the annotator performance based on the instance
feature vector (Yan et al., 2010). In principle the proposed algorithm can be extended to these
kind of complicated models (with more parameters), however for simplicity we usethe basic model
proposed in Raykar et al. (2009, 2010) in our formulation.

The same model can be extended to categorical labels. Suppose there areC≥ 2 categories. We
introduce a multinomial parameterα j

c = (α j
c1, . . . ,α

j
cC) for each annotator, where

α j
ck := Pr[y j

i = k|yi = c],
C

∑
k=1

α j
ck = 1.

The termα j
ck denotes the probability that annotatorj assigns classk to an instance given the true

class isc. WhenC= 2, α j
11 andα j

00 are sensitivity and specificity, respectively.
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3. Who is a Spammer? Score to Rank Annotators

Intuitively, a spammer assigns labels randomly, maybe because the annotator does not understand
the labeling criteria, does not look at the instances when labeling, or maybe abot pretending to be a
human annotator. More precisely an annotator is a spammer if the probability ofobserved labely j

i
being one given the true labelyi is independent of the true label, that is,

Pr[y j
i = 1|yi ] = Pr[y j

i = 1]. (1)

This means that the annotator is assigning labels randomly by flipping a coin with bias Pr[y j
i = 1]

without actually looking at the data. Equivalently (1) can be written as

Pr[y j
i = 1|yi = 1] = Pr[y j

i = 1|yi = 0],

α j = 1−β j . (2)

Hence in the context of the annotator model defined in Section 2, a spammer is an annotator for
whom

α j +β j −1= 0.

This corresponds to the diagonal line on the Receiver Operating Characteristic (ROC) plot (see
Figure 1).4 If α j + β j − 1 < 0 then the annotator lies below the diagonal line and is a malicious
annotator who flips the labels. Note that a malicious annotator has discriminatorypower if we can
detect them and flip their labels. In fact the methods proposed in Dawid and Skene (1979) and
Raykar et al. (2010) can automatically flip the labels for the malicious annotators. Hence we define
the spammer score for an annotator as

S j = (α j +β j −1)2. (3)

An annotator is a spammer ifS j is close to zero. Good annotators haveS j > 0 while a perfect
annotator hasS j = 1.

Another interpretation of a spammer can be seen from the log odds. Using Bayes’ rule the
posterior log-odds can be written as

log
Pr[yi = 1|y j

i ]

Pr[yi = 0|y j
i ]
= log

Pr[y j
i |yi = 1]

Pr[y j
i |yi = 0]

+ log
p

1− p
,

wherep := Pr[yi = 1] is the prevalence of the positive class. If an annotator is a spammer (that is
(2) holds) then

log
Pr[yi = 1|y j

i ]

Pr[yi = 0|y j
i ]
= log

p
1− p

.

Essentially the annotator provides no information in updating the posterior log-odds and hence does
not contribute to the estimation of the actual true label.

4. Note that(α j +β j )/2 is equal to the area shown in the plot and can be considered as a non-parametric approximation
to the area under the ROC curve (AUC) based on one observed point(1−β j ,α j). It is also equal to the Balanced
Classification Rate (BCR). So a spammer can also be defined as having BCR or AUC equal to 0.5. Another way to
think about this is that instead of using sensitivity and specificity we can re-parameterize an annotator in terms of
an accuracy parameter ((α j +β j )/2) and a bias parameter ((α j −β j )/2). A spammer is an annotator with accuracy
equal to 0.5. The biased (α j −β j is large) or malicious annotators (α j +β j < 1) (see Figure 1) are also sometimes
called the spammers since they can potentially degrade the consensus labels, but in this paper we do not focus on
them, since their annotations can be calibrated or reversed by the EM algorithm.
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Figure 1: For binary labels each annotator is modeled by his/her sensitivity and specificity. A spam-
mer lies on the diagonal line (that is,α j = 1−β j ) on this ROC plot.

3.1 Accuracy

This notion of a spammer is quite different from that of theaccuracyof an annotator. An annotator
with high accuracy is a good annotator but one with low accuracy is not necessarily a spammer. The
accuracy of thej th annotator is computed as

Accuracyj = Pr[y j
i = yi ] =

1

∑
k=0

Pr[y j
i = 1|yi = k]Pr[yi = k] = α j p+β j(1− p), (4)

wherep := Pr[yi = 1] is the prevalence of the positive class. Note that accuracy depends on preva-
lence. Our proposed spammer score does not depend on prevalence and essentially quantifies the
annotator’s inherent discriminatory power. Figure 2(a) shows the contours of equal accuracy on the
ROC plot. Note that annotators below the diagonal line (malicious annotators) have low accuracy.
The malicious annotators flip their labels and as such are not spammers if we can detect them and
then correct for the flipping. In fact the EM algorithms (Dawid and Skene,1979; Raykar et al.,
2010) can correctly flip the labels for the malicious annotators and hence they should not be treated
as spammers. Figure 2(b) also shows the contours of equal score for our proposed score and it can
be seen that the malicious annotators have a high score and only annotatorsalong the diagonal have
a low score (spammers).

3.2 Categorical Labels

We now extend the notion of spammers to categorial labels. As earlier a spammerassigns labels
randomly, that is,

Pr[y j
i = k|yi ] = Pr[y j

i = k],∀k.
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Figure 2: (a) Contours of equal accuracy (4) and (b) equal spammerscore (3).

This is equivalent to Pr[y j
i = k|yi = c] = Pr[y j

i = k|yi = c′],∀c,c′,k= 1, . . . ,C, which means knowing
the true class label beingc or c′ does not change the probability of the annotator’s assigned label.
This indicates that the annotatorj is a spammer if

α j
ck = α j

c′k,∀c,c′,k= 1, . . . ,C. (5)

Let A j be theC×C confusion rate matrix with entries[A j ]ck = αck, a spammer would have all
the rows ofA j equal to one another, for example, an annotator with a confusion matrixA j =[

0.50 0.25 0.25
0.50 0.25 0.25
0.50 0.25 0.25

]
, is a spammer for a three class categorical annotation problem. Essentially

A j is a rank one matrix of the formA j = ev⊤j , for some column vectorv j ∈RC that satisfiesv⊤j e= 1,
wheree is column vector of ones. In the binary case we had this natural notion of spammer as an an-
notator for whomα j +β j−1 was close to zero. One natural way to summarize (5) would be in terms
of the distance (Frobenius norm) of the confusion matrix to the closest rankone approximation, that
is,

S j := ‖A j −ev̂⊤j ‖2F , (6)

wherev̂ j solves

v̂ j = argmin
v j
‖A j −ev⊤j ‖2F subject to v⊤j e= 1. (7)

Solving (7) yieldsv̂ j = (1/C)A j⊤e, which is the mean of the rows ofA j . Then from (6) we have

S j =

∥∥∥∥
(

I − 1
C

ee⊤
)

A j

∥∥∥∥
2

F
=

1
C ∑

c<c′
∑
k

(α j
ck−α j

c′k)
2.

This is equivalent to subtracting the mean row from each row of the confusion matrix and then
summing up the squares of all the entries. So a spammer is an annotator for whom S j is close to
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zero. A perfect annotator hasS j =C−1. We normalize this score to lie between 0 and 1.

S j =
1

C(C−1) ∑
c<c′

∑
k

(α j
ck−α j

c′k)
2

WhenC= 2 this is equivalent to the score proposed earlier for binary labels.

4. Algorithm to Consolidate Multiple Annotations

Using the spammer score proposed in the earlier section to define a prior we describe an empirical
Bayesian algorithm to consolidate the multiple annotations and eliminate the spammers simultane-
ously. For ease of exposition we first start with binary labels and later extend it to categorical labels
in Section 7.

4.1 Likelihood

Let N be the number of instances andM be the number annotators. LetD = {y1
i , . . . ,y

M
i }Ni=1

be the observed annotations from theM annotators, and letp = Pr[yi = 1] be the prevalence of
the positive class. Assuming the instances are independent, the likelihood of the parametersθ =
[α1,β1, . . . ,αM,βM, p] given the observationsD can be factored as Pr[D|θ] = ∏N

i=1Pr[y1
i , . . . ,y

M
i |θ].

Under the assumption that the annotation labelsy1
i , . . . ,y

M
i are independent given the true labelyi ,

the log likelihood can be written as

logPr[D|θ] =
N

∑
i=1

log
1

∑
yi=0

M

∏
j=1

Pr[y j
i |yi ,θ] ·Pr[yi |θ] =

N

∑
i=1

log
[
ai p+bi(1− p)

]
, (8)

where we denote

ai =
M

∏
j=1

Pr[y j
i |yi = 1,α j ] =

M

∏
j=1

[α j ]y
j
i [1−α j ]1−y j

i ,

bi =
M

∏
j=1

Pr[y j
i |yi = 0,β j ] =

M

∏
j=1

[β j ]1−y j
i [1−β j ]y

j
i .

This log likelihood can be efficiently maximized by the Expectation Maximization (EM)algorithm
(Dempster et al., 1977) leading to the iterative algorithm proposed in the earlier works (Dawid and
Skene, 1979; Smyth et al., 1995; Raykar et al., 2010).

4.2 Automatic Spammer Detection Prior

Several authors have proposed a Bayesian approach by imposing a prior on the parameters (Raykar
et al., 2009; Carpenter, 2008). For example, Raykar et al. (2009) assigned a beta prior for each
α j andβ j independently. Since we are interested in the situation when the annotations are mostly
dominated by spammers, based on the scoreS j (3) derived earlier we propose a prior calledAu-
tomatic Spammer Detection(ASD) prior which favors the spammers. Specifically we assign the
following prior to the pair{α j ,β j} with a separate precision parameterλ j > 0 (hyperparameter) for
each annotator:

Pr[α j ,β j |λ j ] =
1

N(λ j)
exp

(
−λ j(α j +β j −1)2

2

)
. (9)
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Figure 3: The proposed Automatic Spammer Detection prior (9) for different values ofλ j .

where the normalization termN is given by (see Appendix A)

N(λ j) =
∫ 1

0

∫ 1

0
exp

(
−λ j(α j +β j −1)2

2

)
dα jdβ j =

√
2π
λ j

(
2√
λ j

∫ √λ j

0
Φ(t)dt−1

)
,

whereΦ is the Gaussian cumulative distribution function. This prior is effectively a truncated
Gaussian onα j +β j −1 with mean zero and variance 1/λ j . Figure 3 illustrates the prior for two
different values of the precision parameter. Whenλ j is large the prior is sharply peaked along the
diagonal corresponding to the spammers on the ROC plot.

We also assume that the ASD priors for each annotator are independent. For sake of com-
pleteness we further assume a beta prior for the prevalence, that is, Beta(p|p1, p2). Denoteλ =
[λ1, . . . ,λM, p1, p2], we have

Pr[θ|λ] = Beta(p|p1, p2)
M

∏
j=1

Pr[α j ,β j |λ j ]. (10)

4.3 Maximum-a-posteriori Estimate Via EM Algorithm

Given the log likelihood (8) and the prior (10), the task is to estimate the parameters θ =
[α1,β1, . . . ,αM,βM, p]. The maximum-a-posteriori (MAP) estimator is found by maximizing the
log-posterior, that is,

θ̂MAP = argmax
θ

{lnPr[D|θ]+ lnPr[θ]}.

An EM algorithm can be derived for MAP estimation by relying on the interpretation of Neal and
Hinton (1998) which is an efficient iterative procedure to compute the solution in presence of miss-
ing/hidden data. We will use the unknown hidden true labely = [y1, . . . ,yN] as the missing data.
The complete data log-likelihood can be written as

logPr[D,y|θ] =
N

∑
i=1

[
yi logpai +(1−yi) log(1− p)bi

]
.
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Each iteration of the EM algorithm consists of two steps: an Expectation(E)-step and a
Maximization(M)-step. The M-step involves maximization of a lower bound on thelog-posterior
that is refined in each iteration by the E-step.

E-step: Given the observationD and the current estimate of the model parametersθ, the con-
ditional expectation (which is a lower bound on the true likelihood) is computed as

E{logPr[D,y|θ]}=
N

∑
i=1

[
µi logpai +(1−µi) log(1− p)bi

]
,

where the expectation is with respect to Pr[y|D,θ], andµi = Pr[yi = 1|y1
i , . . . ,y

M
i ,θ] is the expected

label foryi conditioned on the observed annotations and the model parameters. Using Bayes theo-
rem we can compute

µi ∝ Pr[y1
i , . . . ,y

M
i |yi = 1,θ] ·Pr[yi = 1|θ] = ai p

ai p+bi(1− p)
. (11)

M-step: Based on the current estimateµi and the observationsD, we can estimatep by maxi-
mizing the lower bound on the log posterior,θ̂MAP = argmaxθLθ, where

Lθ = E{logPr[D,y|θ]}+ logPr[θ|λ]

=
N

∑
i=1

[
µi logpai +(1−µi) log(1− p)bi

]
+ logBeta(p|p1, p2)

−
M

∑
j=1

λ j

2
(α j +β j −1)2−

M

∑
j=1

logN(λ j). (12)

Equating the derivative ofLθ with respect top to zero, we estimatep as

p=
p1−1+∑N

i=1µi

p1+ p2−2+N
. (13)

The derivative with respect toα j andβ j can be computed as follows:

∂Lθ

∂α j =
∑N

i=1µiy
j
i −α j ∑N

i=1µi

α j(1−α j)
−λ j(α j +β j −1), (14)

∂Lθ

∂β j =
∑N

i=1(1−µi)(1−y j
i )−β j ∑N

i=1(1−µi)

β j(1−β j)
−λ j(α j +β j −1). (15)

Equating these derivatives to zero we obtain two cubic equations5 involving α j andβ j , respectively.
We can iteratively solve one cubic equation (for example, forα j ) by fixing the counterpart (for

5. The pair of cubic equations are given by

λ j (α j )3+(β j λ j −2λ j )(α j )2− (λ j −β j λ j −
N

∑
i=1

µi)α j +(
N

∑
i=1

µiy
j
i ) = 0

λ j (β j )3+(α j λ j −2λ j )(β j )2− (λ j −α j λ j −
N

∑
i=1

µi)β j +(
N

∑
i=1

µiy
j
i ) = 0

For each equation we retain only the root that lies in the range[0,1].
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example,β j ) till convergence. Also note that whenλ j = 0 we get the standard EM algorithm
proposed by Dawid and Skene (1979). These two steps (the E- and M-step) can be iterated till
convergence. We use majority votingµi = 1/M ∑M

j=1y j
i as the initialization forµi to start the EM-

algorithm.

5. Algorithm to Eliminate Spammers

For each annotator we imposed the Automatic Spammer Detection prior of the formPr[α j ,β j |λ j ] ∝
exp
(
−λ j(α j +β j −1)2/2

)
, parameterized by precision hyperparameterλ j . If we know the hyper-

parametersλ = [λ1, . . . ,λM] we can compute the MAP estimate efficiently via the EM algorithm
as described in the previous section. However it is crucial that we use theright λ j for each anno-
tator for two reasons: (1) For the good annotators we want the precisionterm to be small so that
we do not over penalize the good annotators. (2) We can use the estimatedλ j to detect spammers.
Clearly, as the precisionλ j increases, that is, the variance tends to zero, thus concentrating the prior
sharply around the random diagonal line in the ROC plot. Hence, regardless of the evidence of the
training data, the posterior will also be sharply concentrated aroundα j +β j = 1, thus that annotator
will not affect the ground truth and hence, it can be effectively removed. Therefore, the discrete
optimization problem corresponding to spammer detection (should each annotator be included or
not?), can be more easily solved via an easier continuous optimization over hyperparameters. In
this section we adopt an empirical Bayesian strategy (specifically thetype-II maximum likelihood)
to automatically learn the hyperparameters from the data itself. This is in the spiritof the commonly
used automatic relevance determination (ARD) prior used for feature selection by relevance vector
machine (Tipping, 2001) and Gaussian process classification (Rasmussen and Williams, 2006).

5.1 Evidence Maximization

In type-II maximum likelihoodapproach, the hyperparametersλ are chosen to maximize the marginal
likelihood (or equivalently the log marginal likelihood), that is,

λ̂= argmax
λ

Pr[D|λ] = argmax
λ

logPr[D|λ],

where the marginal likelihood Pr[D|λ] is essentially theevidencefor λ with the parametersθ
marginalized or integrated out.

Pr[D|λ] =
∫
θ

Pr[D|θ]Pr[θ|λ]dθ.

Since this integral is analytically intractable we use the Laplace method which involves a second
order Taylor series approximation around the MAP estimate.

5.2 Laplace Approximation

The marginal likelihood can be rewritten as follows, Pr[D|λ] = ∫
θ

exp[Ψ(θ)]dθ where

Ψ(θ) = logPr[D|θ]+ logPr[θ|λ].

We approximateΨ using a second order Taylor series around the MAP estimateθ̂MAP,

Ψ(θ)≈Ψ(θ̂MAP)+
1
2
(θ− θ̂MAP)H(θ̂MAP,λ)(θ− θ̂MAP)

⊤,
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whereH is the Hessian matrix. We have made use of the fact that the gradient ofΨ evaluated at
the MAP estimatêθMAP is zero. Hence we have the following approximation to the log-marginal
likelihood.

logPr[D|λ]≈ logPr[D|θ̂MAP]+ logPr[θ̂MAP|λ]−
1
2

logdet[−H(θ̂MAP,λ)]+
d
2

log2π.

The hyperparametersλ are found by maximizing this approximation to the log marginal likelihood.
We use a simple iterative re-estimation method by setting the first derivative to zero. The derivative
can be written as (see Appendix B for more details)

∂
∂λ j logPr[D|λ]≈−1

2
(α̂ j + β̂ j −1)2+

1
2λ j δ(λ j)− 1

2
σ(λ j),

where we have defined

δ(λ j) = 2−
√

2πλ j erf(
√

λ j/2)√
2πλ j erf(

√
λ j/2)+2exp(−λ j/2)−2

, (16)

in which erf(x) = (2/
√

π)
∫ x

0 exp(−t2)dt is the error function, and

σ(λ j) = Tr

[
H−1(θ̂MAP,λ)

∂
∂λ j H(θ̂MAP,λ)

]
.

See Appendix B for more details on computation ofσ(λ j). Assumingδ j = δ(λ j) andσ j = σ(λ j)
does not depend onλ j , a simple update rule for the hyperparameters can be written by equating the
first derivative to zero.6

λ j =
δ j

(α̂ j + β̂ j −1)2+σ j
. (17)

One way to think of this is that the penalization is inversely proportional to(α̂ j + β̂ j − 1)2, that
is, good annotators get penalized less while the spammers suffer a large penalization. Figure 4(b)
plots the estimated hyperparameterλ̂ j for each annotator as a function of the iteration number for a
simulation setup shown in Figure 4(a). The simulation has 5 good annotators and 20 spammers. It
can be seen that as expected for the good annotatorsλ̂ j starts decreasing7 while for the spammerŝλ j

starts increasing with iterations.8 By using a suitable pruning threshold we can detect and eliminate
the spammers.

The final algorithm has two levels of iterations (see Algorithm 1): in an outer loop we update the
hyper-parameterŝλ j and in an inner loop we find the MAP estimator for sensitivity and specificity
given the hyper-parameters. At each iteration we eliminate all the annotators for whom the estimated
λ̂ j is greater than a certain pruning thresholdT.9

6. In practice, one can iterate (17) and (16) several times to get better estimate forλ j .
7. For numerical stability we do not let the hyper parameter go below 10−6.
8. We have different rates of convergence for the good annotators and the spammers. This is because of our assumption

thatδ (16) does not depend onλ. This is almost true for largeλ and is not a good approximation for smallλ.
9. For all our experiments for each annotator we set the pruning threshold to 0.1 times the number of instances labeled

by him.
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Figure 4: Illustration of spammer elimination via evidence maximization(a) The black cross plots
the actual sensitivity and specificity of each annotator. The simulation has 5 good annota-
tors and 20 spammers and 500 instances. The red dot plots the sensitivity and specificity
as estimated by the SpEM algorithm. The green squares show the annotators eliminated
as spammers. (b) The estimated hyperparameterλ j for each annotator as a function of
the iteration number. The pruning threshold is also shown on the plot.
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Algorithm 1 SpEM

Require: Annotationsy j
i ∈ {0,1}, j = 1, . . . ,M, i = 1, . . . ,N from M annotators onN instances.

1: Initialize λ j = 1/N, for j = 1, . . . ,M.
2: InitializeA = {1, . . . ,M} the set of good annotators.
3: Initialize µi = 1/M ∑M

j=1y j
i using soft majority voting.

4: repeat{Outer loop with evidence maximization}
5: repeat{EM loop}
6: {M-step}
7: Updatep based on (13).
8: Updateα j , β j based on (14)-(15),∀ j ∈ A .
9: {E-step}

10: Estimateµi using (11),∀i = 1, . . . ,N.
11: until Change of expected posterior (12)< ε1.
12: {Evidence Maximization}
13: for all j ∈ A do
14: Updateλ j based on (17).
15: if λ j > T (the pruning threshold)then
16: A ← A\{ j}
17: end if
18: end for
19: until Change of expected posterior (12)< ε2.
Ensure: Detected spammers in set{1, . . . ,M}\A .
Ensure: Non-spammers inA with sensitivityα j and specificityβ j , for j ∈ A .
Ensure: Prevalence factorp and expected hidden labelµi , ∀i = 1, . . . ,N.
In all our experiments we set the convergence toleranceε1 = ε2 = 10−3. The pruning threshold was set toT = 0.1N.

6. Discussions

1. Can we use the EM algorithm directly to eliminate spammers? Majority Voting and
EM algorithm do not have a mechanism to explicitly detect spammers. However we could
define an annotator as a spammer if the estimated|α̂ j + β̂ j −1| ≤ ε. However it is not clear
what is the rightε to use. Also the spammers influence the estimation ofα̂ j and β̂ j for the
good annotators. A fix to this would be to eliminate the spammers and get an improved
estimate of the ground truth. In principle this process could be repeated till convergence,
which essentially boils down to a discrete version of our proposed SpEM algorithm.

2. What is the advantage of different shrinkage for each annotator? We could have imposed
a common shrinkage prior (that is, sameλ j ≡ λ for all annotators) and then estimated oneλ
as shown earlier. While this is a valid approach, the advantage of our ASD prior is that the
amount of shrinkage for each annotator is different and depends on how good the annotator
is, that is, good annotators suffer less shrinkage while spammers suffersevere shrinkage.

3. Missing annotationsThe proposed SpEM algorithm can be easily extended to handle missing
annotations (which is more realistic scenario in crowdsourcing marketplaces). Let Mi be the
number of annotators labeling theith instance, and letNj be the number of instances labeled
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by the j th annotator. Then in the EM loop, we just need to replaceN by Nj for estimatingα j

andβ j in (14) and (15), and replaceM by Mi for updatingµi in (11).

4. Training a classifier directly The proposed algorithm can be readily extended to learn a
classifier along with the ground truth (Raykar et al., 2009). Let instancei have features
xi ∈Rd, and define the classification problem as learningw ∈Rd such that Pr[yi = 1|xi ,w] =
pi = f (w⊤xi), with f a mapping function (for example, logistic function). To learnw in
SpEM we just need to replace (13) with a Newton-Raphson step to updatew, and replacep
with pi in (11).

5. Partially known gold standard If the actual ground truth is available for some instances,
SpEM can readily incorporate them into the learning loop. The only change we need to make
is to estimateµi in (11) only for the instances for which the ground truth is not available,
and fixµi = yi if the ground truthyi is available. Therefore, the gold standard instances and
unlabeled instances will be used together to estimate the sensitivity and specificity of each
annotator (and also to estimate the labels).

7. Extension to Categorical Annotations

We now extend the proposed algorithm to handle categorical annotations. Asimple solution for
categorical outcomes is to use a one-against-all strategy and run the binary SpEMC times, each
time obtaining a spammer indicatorλ j for each annotator. One might then identify an annotatorj as
a spammer if all of theλ j in theC runs indicate that this is a spammer. However in this section we
provide a more principled solution in line with the framework proposed for binary labels. Following
the same motivation as before, we define the ASD prior as follows

Pr[A j |λ j ] =
1

N(λ j)
exp

(
− λ j

2C ∑
c<c′

C

∑
k=1

(
α j

ck−α j
c′k

)2

)
,

which gives more probability mass to a spammer. A similar EM algorithm can be developed under
this prior, and evidence maximization follows naturally with Laplace approximation. Under the
same assumptions as earlier, the log-likelihood of the parametersθ = [A1, . . . ,AM, p1, . . . , pC] is

logPr[D|θ] =
N

∑
i=1

log

[
C

∑
c=1

Pr(yi = c)
M

∏
j=1

Pr(y j
i |yi = c)

]
=

N

∑
i=1

log

[
C

∑
c=1

pc

M

∏
j=1

C

∏
k=1

(α j
ck)

δ(y j
i ,k)

]
,

wherepc = Pr(yi = c) andδ(u,v) = 1 if u= v and 0 otherwise. If we know the missing labelsy the
complete log likelihood can be written as

logPr[D,y|θ] =
N

∑
i=1

C

∑
c=1

δ(yi ,c) log

[
pc

M

∏
j=1

C

∏
k=1

(α j
ck)

δ(y j
i ,k)

]
.

In the E-step we compute the conditional expectation as

E{logPr[D,y|θ]}=
N

∑
i=1

C

∑
c=1

µic log

[
pc

M

∏
j=1

C

∏
k=1

(α j
ck)

δ(y j
i ,k)

]
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whereµic = Pr[yi = c|y1
i , . . . ,y

M
i ,θ] and is computed asµic ∝ pc ∏M

j=1 ∏C
k=1(α

j
ck)

δ(y j
i ,k). Based on the

current estimateµic in the M-step we can estimate the parameters by maximizing the lower bound
on the log posterior (along with the Lagrange multipliersγ), θ̂MAP = argmaxθL , where

L =
N

∑
i=1

C

∑
c=1

µic

[
logpc+

M

∑
j=1

C

∑
k=1

δ(y j
i ,k) logα j

ck

]

−
M

∑
j=1

λ j

2C ∑
c<c′

C

∑
k=1

(
α j

ck−α j
c′k

)2−
M

∑
j=1

logN(λ j)+
M

∑
j=1

C

∑
c=1

γ j
c

(
1−

C

∑
k=1

α j
ck

)
.

We update the prevalence aspc = (1/N)∑N
i=1µic and for theα j

ck we have

∂L
∂α j

ck

=
∑N

i=1µicδ(y j
i ,k)

α j
ck

− λ j

C ∑
c′ 6=c

(
α j

ck−α j
c′k

)
− γ j

c = 0, (18)

∂L
∂γ j

c
=

C

∑
k=1

α j
ck−1= 0.

The practical solution to solve10 this for everyα j
ck is to fix theα j

c′k for c′ 6= c, solve the equation

array with a fixedγ j
c, and then updateγ j

c as

γ j
c =

1
C

C

∑
k=1

∑N
i=1µicδ(y j

i ,k)

α j
ck

,

which follows by summing (18) for allk. As earlier in order to determine the hyperparameters we
obtain a simple iterative update by setting the derivative of the approximate log-marginal likelihood
to zero.

∂
∂λ j logPr[D|λ] ≈ − 1

2C ∑
c<c′

C

∑
k=1

(
α j

ck−α j
c′k

)2− 1
N(λ j)

∂
∂λ j N(λ j)− 1

2
σ(λ j),

where we have defined

σ(λ) = Tr

[
H−1(θ̂MAP,λ)

∂
∂λ

H(θ̂MAP,λ)

]
.

and

− 1
N(λ j)

∂
∂λ j N(λ j) =

1
2λ j δ(λ j).

See Appendix C for more details on computation ofσ andδ. Then the update is given by

λ̂ j =
δ(λ j)

(1/C)∑c<c′ ∑C
k=1

(
α j

ck−α j
c′k

)2
+σ(λ j)

.

10. Keeping all terms exceptα j
ck fixed this is a quadratic equationA(α j

ck)
2+B(α j

ck)+C = 0 whereA =
λ j (C−1)

C , B =

γ j
c− λ j

C ∑c′ 6=c α j
c′k, andC=−∑N

i=1µicδ(y j
i ,k). We keep the root which lies between 0 and 1.
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8. Experimental Validation

We first experimentally validate the proposed algorithm on simulated data. Figure 5(a) shows the
simulation setup consisting of 5 good annotators (shown as red squares) and 100 spammers (shown
as black crosses). The good annotators have sensitivity and specificitybetween 0.65 and 0.85.
All the spammers lie around the diagonal. We compare our proposed SpEM algorithm against the
commonly used Majority Voting and the EM algorithm (Dawid and Skene, 1979; Smyth et al., 1995;
Raykar et al., 2009, 2010). All these methods estimate a probabilistic version([0 1]) of the binary
ground truth ({0,1}). Since we simulate the instances we know the actual binary ground truth and
hence can compute the area under the ROC curve (AUC) of the estimated probabilistic ground truth.

8.1 Effect of Increasing Spammers

For the first experiment we deliberately choose 100 instances (with prevalencep = 0.5), since it
is beneficial if we can detect the spammers with fewer instances. Figure 5(b) plots AUC of the
estimated probabilistic ground truth as a function of the fraction of spammers (number of spam-
mers/total number of annotators), for each point we keep all the five goodannotators and keep
adding more annotators from the pool of 100 spammers. All plots show the mean and one standard
deviation error bars (over 100 repetitions). The pruning threshold forthe SpEM algorithm was set
to 20. Figure 5(d) plots the sensitivity for spammer detection which is essentiallythe fraction of
spammers correctly detected. The following observations can be made:

1. As the fraction of spammers increases the performance of the Majority Voting degrades dras-
tically as compared to the EM and the SpEM algorithm (refer Figure 5(b)). The proposed
SpEM algorithm has a better AUC than the EM algorithm especially when the spammers
dominate (when the fraction of spammers is greater than 0.7 in Figure 5(b)). The variability
(one standard deviation error bars) for all the methods increases as thenumber of spammers
increases.

2. The clear advantage of the proposed SpEM algorithm can be seen in Figure 5(d) where it
can identify almost 90% of the spammers correctly as compared the EM algorithmwith can
identify about 40% correctly. Majority Voting and EM algorithm do not have amechanism to
explicitly detect spammers, we define an annotator as a spammer if the estimated|α̂ j + β̂ j −
1| ≤ ε (We have usedε = 0.05 in our experiments.11.)

3. The SpEM algorithm iteratively eliminates the spammers and then re-estimates theground
truth without the spammers. Figure 5(c) plots the actual number of annotatorsthat were used
in the final model. Note that the EM and the Majority Voting use all the annotators toestimate
the model parameters while the SpEM algorithm uses only a small fraction of the annotators.

To summarize, the proposed SpEM algorithm is slightly more accurate than the EMalgorithm and
at the same time uses a small fraction of the annotators thus effectively eliminatingmost of the
spammers.
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(d) Precision

Figure 5: Effect of increasing the number of spammers(Section 8.1) (a) The simulation setup has 5
good annotators (red squares) and 100 spammers (black crosses) and 100 instances. (b)
The AUC of the estimated ground truth as a function of the fraction of spammers. (c) The
actual number of annotators that were used. (d) The fraction of spammers correctly de-
tected. All plots show mean and one standard deviation error bars (over 100 repetitions).

8.2 Effect of Increasing Instances

For the proposed algorithm to be practically useful we would like to detect thespammers with as
few examples as possible so that they can be eliminated early on. Figure 6 plotsthe performance for
the same setup as earlier as a function of the number of instances. From Figure 6(a) we see that the
AUC for the proposed method is much better than the EM algorithm especially forsmaller number
of instances. As the number of instances increases the accuracy of the EM algorithm is as good as the
proposed SpEM algorithm. The EM algorithm (and also the proposed SpEM) automatically gives

11. The 0.05 value is just a heuristic based on a band around the diagonal of the ROC plot.

507



RAYKAR AND YU

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Instances

A
U

C
 o

f 
th

e
 e

st
im

a
te

d
 g

ro
u

n
d

 t
ru

th

5 good annotators 100 spammers

 

 

Majority Voting
EM Algorithm
SpEM Proposed Algorithm

(a) Accuracy

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Instances

S
e

n
st

iv
ity

 f
o

r 
sp

a
m

m
e

r 
d

e
te

ct
io

n

5 good annotators 100 spammers

 

 

Majority Voting
EM Algorithm
SpEM Proposed Algorithm

(b) Sparsity

Figure 6: Effect of increasing the number of instances(Section 8.2) (a) The AUC of the estimated
ground truth as a function of the number of instances. (b) The fraction ofactual spammers
that were eliminated. All plots show the mean and one standard deviation errorbars (over
100 repetitions). The simulation setup has 5 good annotators and 100 spammers. The
pruning threshold was set to 0.1N whereN is the total number of instances.

less emphasis for annotators with small|α̂ j + β̂ j −1|. The reason SpEM achieves better accuracy is
that the parameterŝα j andβ̂ j are better estimated because of the ASD prior we imposed. This also
explains the fact that when we have a large number of instances both the EMand SpEM algorithm
estimate the parameters equally well. The main benefit can be seen in Figure 6(b) where the SpEM
algorithm can eliminate most of the spammers. For example with just 50 examples the SpEM
algorithm can detect> 90% of the spammers and at the same time achieve a higher accuracy.

8.3 Effect of Missing Labels

In a realistic scenario an annotator does not label all the instances. Figure 7 plots the behavior of
the different algorithms as a function of the fraction of annotators labeling each instance. When
each annotator labels only a few instances all three algorithms achieve verysimilar performance in
terms of the AUC. However the proposed SpEM algorithm can still eliminate more spammers then
the EM algorithm.

8.4 Effect of Prevalence

Figure 8 plots the behavior of the different algorithms as a function of the prevalence of the positive
class. Note that when the prevalence is low the majority voting seems superior toother algorithms
in terms of AUC. When the prevalence is small (or large) there are very fewexamples to reliably
estimate the sensitivity (or specificity).
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(b) Precision

Figure 7: Effect of missing labels(Section 8.3) (a) The AUC of the estimated labels as a function
of the fraction of annotators labeling each instance. (b) The fraction of actual spammers
that were eliminated. All plots show the mean and one standard deviation errorbars (over
100 repetitions). The simulation setup has 5 good annotators and 50 spammers.
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(b) Precision

Figure 8: Effect of prevalence(Section 8.4) (a) The AUC of the estimated labels as a function of the
prevalence of the positive class. (b) The fraction of actual spammers that were eliminated.
All plots show the mean and one standard deviation error bars (over 100 repetitions). The
simulation setup has 5 good annotators and 50 spammers.

8.5 Effect of Pruning Threshold

The only tunable parameter of the SpEM algorithm is the pruning threshold. For all our experiments
for each annotator we set the pruning threshold to 0.1 times the number of instances labeled by the
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(b) Precision

Figure 9: Effect of pruning threshold(Section 8.5) (a) The AUC of the estimated labels as a function
of the pruning threshold. (b) The fraction of actual spammers that were eliminated. All
plots show the mean and one standard deviation error bars (over 100 repetitions). The
simulation setup has 5 good annotators and 50 spammers.

annotator. However we can use this parameter to control the number of annotators we want to use.
Figure 9 plots the performance for the same setup as earlier for differentpruning thresholds. From
Figure 9(b) we see that as the pruning threshold decreases the sensitivity for spammer elimination
increases thereby using less annotators. Interestingly the accuracy also increases. If we had imposed
a common shrinkage prior (that is, sameλ j for all annotators) then we would expect a drop in
accuracy as the model becomes more sparse. The advantage of our ASDprior is that the amount
of shrinkage for each annotator is different and depends on how accurate the annotator is, more
accurate annotators suffer less shrinkage while spammers suffer severe shrinkage.

8.6 Experiments On Crowdsourced Data

We report results on some publicly available linguistic and image annotation data collected using
the Amazon Mechanical Turk and other sources. Table 1 summarizes the data sets along with a brief
description of the tasks. Table 2 summarizes the results for the binary data sets with known ground
truth. We compare the proposed SpEM, EM (Dawid and Skene, 1979; Raykar et al., 2010), and the
Majority Voting (MV) algorithm in terms of AUC and accuracy. To compute the accuracy we use a
threshold of 0.5 on the estimated probabilities. In terms of the AUC all three algorithms have similar
performance. In terms of accuracy the SpEM and EM were better than the MV algorithm. The table
also shows the number of annotators eliminated as spammers by the proposed algorithm. Figure 10
plots the actual and the estimated annotator performance for the SpEM algorithm for binary data
sets with known ground truth.
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Data Set Type N M M∗ N∗ Brief Description

bluebird binary 108 39 39/39 108/108 bird identification(Welinder et al., 2010) The an-
notator had to identify whether there was a Indigo Bunting or Blue
Grosbeak in the image.

rte binary 800 164 10/10 49/20 recognizing textual entailment(Snow
et al., 2008) The annotator is presented with two sentences and
given a binary choice of whether the second hypothesis sentence
can be inferred from the first.

temp binary 462 76 10/10 61/16 event annotation(Snow et al., 2008) Annotators are
presented with a dialogue and a pair of verbs from the dialogue,
and need to label whether the event described by the first verb
occurs before or after the second.

localview× binary 832 97 5/5 43/14 word sense disambiguation(Parent and Es-
kenazi, 2010) Workers were asked to indicate if two definitions of
a word were related to the same meaning or different meanings.

valence ordinal 100 38 10/10 26/20 affect recognition(Snow et al., 2008) Each annota-
tor is presented with a short headline and asked to rate the overall
positive or negative valence of the emotional content of thehead-
line.

sentiment× categorical/3 1660 33 6/6 291/175 Irish economic sentiment analy-
sis (Brew et al., 2010) Articles from three Irish online news
sources were annotated by a group of 33 volunteer users, who
were encouraged to label the articles as positive, negative, or ir-
relevant.

Table 1: Data Sets. Nis the number of instances andM is the number of annotators.M∗ is the
mean/median number of annotators per instance.N∗ is the mean/median number of in-
stances labeled by each annotator. All the data sets except those marked× have a known
gold standard. Except sentiment data set all others were collected using Amazons’s Me-
chanical Turk. The valence data set was converted to a binary scale in our experiments.

Data Spammers AUC Accuracy

S SpEM EM MV SpEM EM MV

bluebird 11/39 .96 .95 .88 .91 .90 .76
rte 12/164 .96 .96 .96 .93 .93 .92

temp 3/76 .96 .96 .97 .94 .94 .94
valence 1/38 .90 .91 .94 .86 .86 .80

localview× 12/97 - - - - - -
sentiment× 1/33 - - - - - -

Table 2: Comparison of the various methods for the data sets in Table 1.SpEM is the proposed
algorithm, EM is the algorithm proposed in Dawid and Skene (1979) and Raykar et al.
(2010), and MV is the soft majority voting algorithm. S is the number of annotators
eliminated as spammers by the proposed algorithm. The accuracy and AUC areshown
only for data sets with known gold standard.
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Figure 10: SpEM results for binary datsets shown in Table 2The black cross plots the actual sensi-
tivity and specificity of each annotator. The red dot plots the sensitivity andspecificity
estimated by the SpEM algorithm. The green squares show the annotators eliminated
as spammers. We plot the ROC for the estimated ground truth and the operating point
corresponding to a threshold of 0.5.
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8.7 Ranking Annotators

The proposed spammer score can be used to rank the annotators. Figure11 plots the spammer scores
and rankings obtained for four data sets. The mean and the 95% CI obtained via bootstrapping are
also shown. The number at the top of the CI bar shows the number of instances annotated by that
annotator. The rankings are based on the lower limit of the 95% CI which factors the number of
instances labeled by the annotator into the ranking. An annotator who labels only a few instances
will have very wide CI. Some annotators who label only a few instances may have a high mean
spammer score but the CI will be wide and hence ranked lower. Ideally we would like to have
annotators with a high score and at the same time label a lot of instances so thatwe can reliably
identify them. The authors (Brew et al., 2010) for the sentiment data set shared with us some of the
qualitative observations regarding the annotators and they somewhat agree with our rankings. For
example the authors made the following comments about Annotator 7”Quirky annotator - had a lot
of debate about what was the meaning of the annotation question. I’d sayhe changed his labeling
strategy at least once during the process”. Our proposed score gave a low rank to this annotator.

9. Conclusion

In this paper we formalized the notion of a spammer for binary and categorical annotations. Using
the score to define a prior we proposed an empirical Bayesian algorithm called SpEM that simul-
taneously estimates the consensus ground truth and also eliminates the spammers. Experiments on
simulated and real data show that the proposed approach is better than (oras good as) the earlier
approaches in terms of the accuracy and uses a significantly smaller numberof annotators.

Appendix A. ASD Prior Normalization

In this appendix we analytically derive the normalization term for the proposed ASD prior. The
normalization termN(λ j) can be computed as

N(λ j) =
∫ 1

0

∫ 1

0
exp

(
−λ j(α j +β j −1)2

2

)
dα jdβ j

=
∫ 1

0

[∫ 1

0

√
2π
λ j N

(
β j ;1−α j ,

1
λ j

)
dβ j

]
dα j

=

√
2π
λ j

[∫ 1

0
Φ(
√

λ jα j)dα j −
∫ 1

0
Φ[
√

λ j(α j −1)]dα j
]
,

where Φ(x) = (1/
√

2π)
∫ x
−∞ exp(−t2/2)dt is the Gaussian cumulative distribution function and

N (x;u,v) the Gaussian distribution ofx with meanu and variancev. Using the fact that
∫

Φ(x)dx=
xΦ(x)+ φ(x), whereφ is the standard normal andΦ(x) = (1/2)[1+erf(t/

√
2)] the normalization
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Figure 11: Annotator RankingsThe rankings obtained for the data sets in Table 1. The spammer
score ranges from 0 to 1, the lower the score, the more spammy the annotator. The mean
spammer score and the 95% confidence intervals (CI) are shown, obtained from 100
bootstrap replications. The annotators are ranked based on the lower limit of the 95%
CI. The number at the top of the CI bar shows the number of instances annotated by that
annotator. Note that the CIs are wider when the annotator labels only a few instances.

term can be further simplified as follows,

N(λ j) =

√
2π

λ j

(√
λ j(2Φ(

√
λ j)−1)+2φ(

√
λ j)−2φ(0)

)

=

√
2π

λ j

(√
λ jerf(

√
λ j/2)+2φ(

√
λ j)−2φ(0)

)

=
1
λ j

(√
2πλ jerf(

√
λ j/2)+2exp(−λ j/2)−2

)

=

√
2π
λ j

(
2√
λ j

∫ √λ j

0
Φ(t)dt−1

)
.
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Appendix B. Derivatives of the Log-marginal—Binary Case

The derivative of the approximation to the log-marginal likelihood can be written as

∂
∂λ j logPr[D|λ]≈ ∂

∂λ j logPr[θ̂MAP|λ]−
1
2

Tr

[
H−1(θ̂MAP,λ)

∂
∂λ j H(θ̂MAP,λ)

]

=
∂

∂λ j logPr[α̂ j , β̂ j |λ j ]− 1
2

σ(λ j)

where we have definedσ(λ) =Tr
[
H−1(θ̂MAP,λ)

∂
∂λH(θ̂MAP,λ)

]
. From the ASD prior we can show

that
∂

∂λ j logPr[α̂ j , β̂ j |λ j ] =−1
2
(α̂ j + β̂ j −1)2+

1
2λ j δ(λ j),

where we have defined

δ(λ) =

[
2−

√
2πλerf(

√
λ/2)√

2πλerf(
√

λ/2)+2exp(−λ/2)−2

]
.

To computeσ(λ j), let us compute the Hessian matrix first. Since logPr[D|θ] is again not tractable,
we use the following lower bound (as used by the EM algorithm earlier) to compute the likelihood
term:

logPr[D|θ]≥
N

∑
i=1

[
µi logpai +(1−µi) log(1− p)bi

]
,

whereµi = Pr[ŷi |θ] is the expected class label for itemi (calculated in the E-step). Then we have

Ψ(θ) = logPr[D|θ]+ logPr[θ|λ]

≈
N

∑
i=1

[
µi logpai +(1−µi) log(1− p)bi

]
−

M

∑
j=1

λ j

2
(α j +β j −1)2−

M

∑
j=1

logC(λ j).

Note that this is equal toLθ as defined in (12). The first-order derivatives with respect toα j andβ j

are:

∂Ψ(θ)

∂α j =
∑N

i=1µiy
j
i −α j ∑N

i=1µi

α j(1−α j)
−λ j(α j +β j −1),

∂Ψ(θ)

∂β j =
∑N

i=1(1−µi)(1−y j
i )−β j ∑N

i=1(1−µi)

β j(1−β j)
−λ j(α j +β j −1).

The second-order derivatives are:

∂2Ψ(θ)

∂α j∂α j =
∑i µiy

j
i · (2α j −1)− (α j)2 ∑i µi

[α j(1−α j)]2
−λ j (19)

∂2Ψ(θ)

∂α j∂β j =
∂2Ψ(θ)

∂β j∂α j =−λ j

∂2Ψ(θ)

∂β j∂β j =
∑i(1−µi)(1−y j

i ) · (2β j −1)− (β j)2 ∑i(1−µi)

[β j(1−β j)]2
−λ j (20)

∂2Ψ(θ)

∂α j∂αk =
∂2Ψ(θ)

∂α j∂βk =
∂2Ψ(θ)

∂β j∂αk =
∂2Ψ(θ)

∂β j∂βk = 0, ∀ j 6= k.
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If we arrange all the parameters column-wise as a vector{α1,β1, . . . ,αM,βM}, then the Hessian
matrix can be written in a block diagonal formH(θ̂MAP,λ) = A(α,β)−B(λ), where matrixA (a
diagonal matrix with entries equal to the first terms in (19) and (20)) depends onα andβ only, and
matrixB is a block diagonal matrix of the form

B(λ) =




λ1 λ1 0 0 · · · 0 0
λ1 λ1 0 0 · · · 0 0
0 0 λ2 λ2 · · · 0 0
0 0 λ2 λ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · λM λM

0 0 0 0 · · · λM λM




.

It is now easy to take the derivative ofH(θ̂MAP,λ) with respect toλ j and computeσ(λ j). Let
Σ= H−1(θ̂MAP,λ), a block diagonal matrix, then we have we have

σ(λ j) = Tr

[
H−1(θ̂MAP,λ)

∂
∂λ j H(θ̂MAP,λ)

]
=−Σ2 j−1,2 j−1−Σ2 j−1,2 j −Σ2 j,2 j−1−Σ2 j,2 j .

That is,σ(λ j) is computed by taking the negative of the element-wise sum of the sub-matrixΣ(2 j−
1 : 2j,2 j−1 : 2j).

Appendix C. Derivatives of the Log Marginal—Categorical Labels

Similarly the second-order derivatives for the categorical case can bewritten as

∂2L

∂α j
ck∂α j

ck

=−∑i µicδ(y j
i ,k)

[α j
ck]

2
− (C−1)λ j

C
, (21)

∂2L

∂α j
ck∂α j

c′k

=
λ j

C
,

∂2L

∂α j
ck∂α j

ck′
=

∂2L

∂α j
ck∂α j

c′k′
= 0.

If we rearrange all the parameters in the multinomial termα j column-wise as a vector of the form
{α j

11,α
j
21, . . . ,α

j
C1,α

j
12, . . . ,α

j
C2, . . . ,α

j
CC}, then Hessian matrix for the parametersθ= {α1, . . . ,αM}

can be written in a block diagonal form asH = diag(H1, . . . ,HM), with H j = diag(D j
1, . . . ,D

j
C),

where each matrixD j
c is a C×C matrix of the formD j

c = Ac(α
j) +B(λ j), whereAc(α

j) is a
diagonal matrix with entries equal to the first term in (21) andB(λ j) = λ j

(
(1/C)ee⊤− IC).

B j
c(λ

j) =
1
C




−(C−1)λ j λ j λ j · · · λ j

λ j −(C−1)λ j λ j · · · λ j

...
...

. ..
...

...
λ j · · · λ j −(C−1)λ j λ j

λ j · · · λ j λ j −(C−1)λ j
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Therefore, ∂
∂λ j H j is aC2×C2 block diagonal matrix with(1/C)ee⊤− IC on every diagonal. This

greatly simplifies the computation ofσ(λ j).
Since computing the normalization constantN(λ j) is analytically hard we numerically calculate

δ(λ j) by observing that

δ(λ j) =− 2λ j

N(λ j)

∂
∂λ j N(λ j)

= λ j ·
∫

Sexp
(
−λ j

2

∥∥(I − 1
Cee⊤

)
A j
∥∥2

F

)
·
∥∥(I − 1

Cee⊤
)

A j
∥∥2

F dA j

∫
Sexp

(
−λ j

2

∥∥(I − 1
Cee⊤

)
A j
∥∥2

F

)
dA j

,

whereS= {A j = [α j
ck] ∈ R

C×C|αck ∈ [0,1],A je= e}. We compute the integration numerically via
sampling.
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