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This article presents dynamic feedback, a technique that enables computations to adapt dynamically to different
execution environments. A compiler that uses dynamic feedback produces several different versions of the same
source code; each version uses a different optimization policy. The generated code alternately performs sampling
phases and production phases. Each sampling phase measures the overhead of each version in the current envi-
ronment. Each production phase uses the version with the least overhead in the previous sampling phase. The
computation periodically resamples to adjust dynamically to changes in the environment.

We have implemented dynamic feedback in the context of a parallelizing compiler for object-based programs.
The generated code uses dynamic feedback to automatically choose the best synchronization optimization policy.
Our experimental results show that the synchronization optimization policy has a significant impact on the overall
performance of the computation, that the best policy varies from program to program, that the compiler is unable
to statically choose the best policy, and that dynamic feedback enables the generated code to exhibit performance
that is comparable to that of code that has been manually tuned to use the best policy. We have also performed
a theoretical analysis which provides, under certain assumptions, a guaranteed optimality bound for dynamic
feedback relative to a hypothetical (and unrealizable) optimal algorithm that uses the best policy at every point
during the execution.

Categories and Subject Descriptors: D.3.4 [Compilers]: Parallelizing Compilers

General Terms: Parallelizing compilers, compilers, parallel computing

1. INTRODUCTION

The most efficient implementation of a given abstraction often depends on the environment
in which it is used. For example, the best consistency protocol in a software distributed
shared memory system often depends on the access pattern of the parallel program [Falsafi
et al. 1994]. The best data distribution of dense matrices in distributed memory machines
depends on how the different parts of the program access the matrices [Amarasinghe and
Lam 1993; Anderson and Lam 1993; Gupta and Banerjee 1992; Kennedy and Kremer
1995]. The best concrete data structure to implement a given abstract data type often de-
pends on how it is used [Freudenberger et al. 1983; Kiczales 1986]. The best algorithm to
solve a given problem often depends on the combination of input and hardware platform
used to execute the algorithm [Brewer 1995]. In all of these cases, it is impossible to stat-
ically choose the best implementation — the best implementation depends on information
(such as the input data, dynamic program characteristics, or hardware features) that is ei-
ther difficult to extract or unavailable at compile time. If a programmer has a program with
these characteristics, he or she is currently faced with two unattractive alternatives: either
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manually tune the program for each environment, or settle for suboptimal performance.
We have developed a technique,dynamic feedback, that enables programs to automat-

ically adapt to different execution environments. A compiler that uses dynamic feedback
produces several different versions of the same code. Each version uses a different opti-
mization policy. The generated code alternately performssamplingphases andproduction
phases. During a sampling phase, the generated code measures the overhead of each ver-
sion in the current environment by running that version for a fixed time interval. Each
production phase then uses the version with the least overhead in the previous sampling
phase. After running a production phase for a fixed time interval, the generated code
performs another sampling phase. If the environment has changed, the generated code
dynamically adapts by using a different version in the next production phase.

We see dynamic feedback as part of a general trend towards adaptive computing. As
the complexity of systems and the capabilities of compilers increase, compiler developers
will find that they can automatically apply a large range of transformations, but have no
good way of statically determining which transformations will deliver good results when
the program is actually executed. The problem will become even more acute with the
emergence of new computing paradigms such as mobile programs in the Internet. Mobile
programs will be expected to execute efficiently on a wide range of hardware platforms and
execution environments. The extreme heterogeneity of these systems will make it difficult,
if not impossible, to generate optimal code for all platforms. Dynamic feedback is one
example of the adaptive techniques that will enable the generated code to deliver good
performance in a variety of different environments.

In this article we illustrate the application of dynamic feedback to a particular set of
program transformations: synchronization transformations for parallel programs. These
transformations occur in the context of a parallelizing compiler for object-based languages.
The compiler generates parallel code that uses synchronization constructs to make oper-
ations execute atomically [Rinard and Diniz 1997]. Our experimental results show that
the resulting synchronization overhead can significantly degrade the performance [Diniz
and Rinard 1998; 1997]. We have developed a set of synchronization transformations and
a set of synchronization optimization policies that use the transformations to reduce the
synchronization overhead [Diniz and Rinard 1998; 1997].

Unfortunately, the best policy is different for different programs, and may even vary
dynamically for different parts of the same program. Furthermore, the best policy de-
pends on information, such as the global topology of the manipulated data structures and
the dynamic execution schedule of the parallel tasks, that is unavailable at compile time.
The compiler is therefore unable to statically choose the best synchronization optimization
policy.

Our implemented compiler generates code that uses dynamic feedback to automatically
choose the best synchronization optimization policy. Our experimental results show that
dynamic feedback enables the automatically generated code to exhibit performance com-
parable to that of code that has been manually tuned to use the best policy.

1.1 Contributions

This article makes the following contributions:

—It presents a technique, dynamic feedback, that enables systems to automatically eval-
uate several different implementations of the same source code, then use the evaluation
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to choose the best implementation for the current environment.

—It shows how to apply dynamic feedback in the context of a parallelizing compiler for
object-based programs. The generated code uses dynamic feedback to automatically
choose the best synchronization optimization policy.

—It presents a theoretical analysis that characterizes the worst-case performance of sys-
tems that use dynamic feedback. This analysis provides, under certain assumptions, a
guaranteed optimality bound for dynamic feedback relative to a hypothetical (and unre-
alizable) optimal algorithm that uses the best policy at every point during the execution.

—It presents experimental results for the automatically generated parallel code. These
results show that, for our set of benchmark applications,
—it is possible to implement dynamic feedback with very low overhead, and
—the performance of the code that uses dynamic feeedback is comparable to the per-

formance of code that has been manually tuned to use the best synchronization opti-
mization policy.

1.2 Scope

This article presents an application of dynamic feedback to a specific problem, the choice
of the synchronization optimization policy, and to a specific class of programs, irregu-
lar scientific applications with parallel loops that contain synchronized atomic operations.
Characteristics such as a small number of possible synchronization optimization policies,
the use of parallel loops as a primary control structure, the lock acquisition frequency, the
existence of a performance metric that allows the system to compare the performance of
different policies even when the policies are used for different computations, and the fact
that there is usually a single best optimization policy for each parallel loop, make dynamic
feedback work well for this combination of optimization problem and application class.
We expect that there may be significant issues that must be addressed when generalizing
the specific techniques presented in this article to other optimization problems and other
application and system contexts. We postpone a more detailed discussion of these issues
until we have presented the important details of our specific approach. Section 4.6 presents
this discussion.

1.3 Structure

The remainder of the article is structured as follows. In Section 2 we briefly summarize
the analysis technique, commutativity analysis, that our compiler is based on. Section 3
presents the issues associated with synchronization optimizations and describes the differ-
ent synchronization optimization policies. Section 4 discusses the basic issues that affect
the performance impact of dynamic feedback. Section 5 presents a theoretical analysis that
provides, under certain assumptions, a performance bound for dynamic feedback relative
to the optimal algorithm, which uses the best policy at every point in the computation. Sec-
tion 6 presents the experimental results. We discuss related work in Section 7 and conclude
in Section 8.

2. COMMUTATIVITY ANALYSIS

We next provide an overview ofcommutativity analysis, the technique that our compiler
uses to automatically parallelize our set of applications [Rinard and Diniz 1997]. This
technique is designed to parallelize object-based programs. It analyzes the program at
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the granularity ofoperationson objectsto determine if the operations commute, i.e., if
they generate the same result regardless of the order in which the operations commute. If
all operations in a given computation commute, the compiler can automatically generate
parallel code.

To test that two operations A and B commute, the compiler must consider two execution
orders: the execution order A;B in which A executes first, then B executes, and the execu-
tion order B;A in which B executes first, then A executes. The two operations commute if
they meet the following commutativity testing conditions:

—Instance Variables: The new value of each instance variable of the receiver objects of
A and B under the execution order A;B must be the same as the new value under the
execution order B;A.

—Invoked Operations: The multiset of operations directly invoked by either A or B under
the execution order A;B must be the same as the multiset of operations directly invoked
by either A or B under the execution order B;A.

Both commutativity testing conditions are trivially satisfied if the two operations have dif-
ferent receiver objects or if neither operation writes an instance variable that the other
accesses — in both of these cases the operations are independent. If the operations may
not be independent, the compiler reasons about the values computed in the two execution
orders.

The compiler uses symbolic execution [Kemmerer and Eckmann 1985] to extract ex-
pressions that denote the new values of instance variables and the multiset of invoked
operations. Symbolic execution simply executes the methods, computing with expressions
instead of values. It maintains a set of bindings that map variables to expressions that
denote their values and updates the bindings as it executes the methods. The compiler
uses the extracted expressions from the symbolic execution to apply the commutativity
testing conditions presented above. If the compiler cannot determine that corresponding
expressions are equivalent, it must conservatively assume that the two operations do not
commute.

The compiler uses commutativity analysis as outlined above to parallelize regions of the
program. For each operation invocation site, it traverses the call graph to compute the set
of operations in the computation rooted at that site. It then uses commutativity analysis to
determine if all pairs of operations commute. If so, the compiler can generate code that
executes all of the operations in that computation in parallel.

To ensure that operations in parallel computations execute atomically, the compiler aug-
ments each object with amutual exclusion lock. It then automatically inserts synchro-
nization constructs into operations that update objects. These operations first acquire the
object’s lock, perform the update, then release the lock. The synchronization constructs en-
sure that the operation executes atomically with respect to all other operations that access
the object. Figure 1 presents a general example of the generated parallel code.

The compiler also applies an optimization that exposes parallel loops to the run-time
system. If afor loop contains nothing but invocations of parallel versions of methods,
the compiler generates parallel loop code instead of code that serially spawns the invoked
operations. The run-time system can then apply standard loop scheduling techniques such
as guided self-scheduling [Polychronopoulos and Kuck 1987]. A barrier at the end of
the loop ensures that all of the iterations complete before the computation continues its
execution after the loop.
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class Object f
private:

iv1; : : : ; ivn; // instance variables
public:

void Method( p1; : : : ; pk);
g;

void Object::Method( p1; : : : ; pk) f
// receiver object update
li = expr(iv1; � � � ; ivk; p1; � � � ; pk);
ivi = expr(iv1; � � � ; ivn; p1; � � � ; pk);
// operation invocations

recvi-> Methodi(expr1i ; � � � ; expr
ki
i
);

...

recvj -> Methodj(expr
1

j ; � � � ; expr
kj
j );

g

class lock f
public:

void acquire();
void release();

g;

class Object f
private:

lock mutex; // mutual exclusion lock
iv1; : : : ; ivn; // instance variables

public:
void ParMethod( p1; : : : ; pk);

g;

void Object::ParMethod( p1, � � �, pk) f
// receiver object update, executed atomically
mutex.acquire();
li = expr(iv1; � � � ; ivk; p1; � � � ; pk);
ivi = expr(iv1; � � � ; ivn; p1; � � � ; pk);
mutex.release();
// operation invocations, spawned concurrently

spawn(recvi-> Methodi(expr
1

i ; � � � ; expr
ki
i );

...

spawn(recvj -> Methodj(expr1j ; � � � ; expr
kj
j

);

g

Fig. 1. Generic Parallel Code (parallel constructs inbold font)

In our applications, parallel loops are the primary source of available concurrency. The
compiler therefore exploits concurrency only within parallel loops. The generated code
executes a sequence of parallel and serial sections. Parallel sections correspond to the exe-
cution of parallel loops; serial sections correspond to the execution of serial code between
parallel loops.

3. SYNCHRONIZATION OPTIMIZATIONS

We found that, in practice, the overhead generated by the synchronization constructs often
reduced the performance. We therefore developed several synchronization optimization
algorithms [Diniz and Rinard 1998; 1997]. These algorithms are designed for parallel
programs, such as those generated by our compiler, that use mutual exclusion locks to im-
plementcritical regions. Each critical region acquires its mutual exclusion lock, performs
its computation, then releases the lock.

Computations that use mutual exclusion locks may incur two kinds of overhead:lock-
ing overhead andwaiting overhead. Locking overhead is the overhead generated by the
execution of constructs that successfully acquire or release a lock. Waiting overhead is the
overhead generated when one processor waits to acquire a lock held by another processor.

If a computation releases a lock, then reacquires the same lock, it is possible to reduce
the locking overhead by eliminating the release and acquire. Our synchronization opti-
mization algorithms statically detect computations that repeatedly release and reacquire
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the same lock. They then applylock elimination transformationsto eliminate the inter-
mediate release and acquire constructs [Diniz and Rinard 1998]. The goal of the lock
elimination algorithm is to reduce the number of times the computation releases and ac-
quires locks. The basic idea is to identify a computation that contains multiple critical
regions that acquire and release the same lock, then transform the computation so that
it contains one large critical section that acquires and releases the lock only once. Be-
cause the transformed computation acquires and releases the lock fewer times, it generates
less lock overhead. Given a region over which to eliminate synchronization constructs,
the algorithm uses the lock movement transformation to increase the sizes of critical re-
gions that acquire and release the same lock until they are adjacent in the Interprocedural
Control-Flow Graph (ICFG).1 It then uses the lock cancellation transformation to elim-
inate adjacent release and acquire nodes. In effect, this optimization coalesces multiple
critical regions that acquire and release the same lock multiple times into a single larger
critical region that includes all of the original critical regions. The larger critical region,
of course, acquires and releases the lock only once. This reduction in the number of times
that the computation acquires and releases locks translates directly into a reduction in the
locking overhead.

Figures 2 and 3 present an example of how synchronization optimizations can reduce the
number of executed acquire and release constructs. Figure 2 presents a program (inspired
by the Barnes-Hut application described in Section 6) that uses mutual exclusion locks to
makebody::one interaction operations execute atomically. Figure 3 presents the
program after the application of a synchronization optimization algorithm. The optimiza-
tion algorithm interprocedurally lifts the acquire and release constructs out of the loop in
thebody::interactions operation. This transformation reduces the number of times
that theacquire andrelease constructs are executed.

An overly aggressive synchronization optimization algorithm may introducefalse exclu-
sion. False exclusion may occur when a processor holds a lock during an extended period
of computation that was originally part of no critical region. If another processor attempts
to execute a critical region that uses the same lock, it must wait for the first processor to
release the lock even though the first processor is not executing a computation that needs
to be in a critical region. The result is an increase in the waiting overhead. Excessive
false exclusion reduces the amount of available concurrency, which can in turn decrease
the overall performance.

The synchronization optimization algorithms must therefore mediate a trade-off between
the locking overhead and the waiting overhead. Transformations that reduce the locking
overhead may increase the waiting overhead, and vice-versa. The synchronization op-
timization algorithms differ in the policies that govern their use of the lock elimination
transformation:

—Original: Never apply the transformation — always use the default placement of ac-

1The ICFG is a generalization of the standard control-flow graph to include control-flow edges from call sites
to the entry nodes of invoked operations, and from exit nodes of invoked operations back to the nodes after the
call sites. The compiler constructs the ICFG in two phases. During the first phase, the compiler constructs the
control-flow graph for each operation. It splits each operation invocation statement into two separate nodes: a
call node and a return node. In the second phase, the compiler inserts an edge from the call node to the entry node
of the invoked operation, and an edge from the exit node of the invoked operation back to the return node in the
caller.
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extern double interact(double,double);
class body f

private:
lock mutex;
double pos,sum;

public:
void one interaction(body *b);
void interactions(body b[], int n);

g;

void body::one interaction(body *b) f
double val = interact(this->pos, b->pos);
mutex.acquire();
sum = sum + val;
mutex.release();

g

void body::interactions(body b[], int n) f
for (int i = 0; i < n; i++) f

this->one interaction(&b[i]);
g

g

Fig. 2. Unoptimized Example Computation

extern double interact(double,double);
class body f

private:
lock mutex;
double pos,sum;

public:
void one interaction(body *b);
void interactions(body b[], int n);

g;

void body::one interaction(body *b) f
double val = interact(this->pos, b->pos);
sum = sum + val;

g

void body::interactions(body b[], int n) f
mutex.acquire();
for (int i = 0; i < n; i++) f

this->one interaction(&b[i]);
g
mutex.release();

g

Fig. 3. Optimized Example Computation
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quire and release constructs. In the default placement, each operation that updates an
object acquires and releases that object’s lock.

—Bounded: Apply the transformation only if the new critical region will contain no cycles
in the call graph. The idea is to limit the severity of any false exclusion by limiting the
dynamic size of the critical region.

—Aggressive:Always apply the transformation.

In general, the amount of overhead depends on complicated dynamic properties of the com-
putation such as the global topology of the manipulated data structures and the run-time
scheduling of the parallel tasks. Our experimental results show that the synchronization
optimizations have a large impact on the performance of our benchmark applications. Un-
fortunately, there is no one best policy. Because the best policy depends on information
that is not available at compile time, the compiler is unable to statically choose the best
policy.

4. IMPLEMENTING DYNAMIC FEEDBACK

The compiler generates code that executes an alternating sequence of serial and parallel
sections. Within each parallel section, the generated code uses dynamic feedback to auto-
matically choose the best synchronization optimization policy. The execution starts with a
sampling phase, then continues with a production phase. During the sampling phase, code
compiled with each policy executes for a fixed time interval. The parallel section measures
the overhead of each policy, and uses the best policy during the production phase. The par-
allel section periodically resamples to adapt to changes in the best policy. We next discuss
the specific issues associated with implementing this general approach.

4.1 Detecting Interval Expiration

The generated code for the sampling phase executes each policy for a fixed sampling time
interval. The production phase also executes for a fixed production time interval, although
the production intervals are typically much longer than the sampling intervals. The com-
piler uses two values to control the lengths of the sampling and production intervals: the
target sampling intervaland thetarget production interval. At the start of each interval,
the generated code reads a timer to obtain the starting time. As it executes, the code peri-
odicallypolls the timer: it reads the timer, computes the difference of the current time and
the starting time, then compares the difference with the target interval. The comparison
enables the code to detect when the interval has expired. Several implementation issues
determine the effectiveness of this approach:

—Potential Switch Points: In general, it is possible to switch policies only at specificpo-
tential switch pointsduring the execution of the program. The rate at which the potential
switch points occur in the execution determines the minimum polling rate, which in turn
determines how quickly the generated code responds to the expiration of the current
interval.
In all of our benchmark applications, each parallel section executes a parallel loop. A
potential switch point occurs at each iteration of the loop, and the generated code tests
for the expiration of the current interval each time it completes an iteration. A potential
drawback of using polling to determine interval expiration is that if the execution of a
single iteration is significantly longer than the target sampling or production interval,
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the code will be able to react only after it has successfully completed the computation
alloted to the sampled code.2 In our benchmark applications, the individual iterations of
the loops are small enough so that each processor can respond reasonably quickly to the
expiration of the interval.
Code that uses parallel operations instead of parallel loops requires a more evolved code
generation scheme. For the problem of choosing the synchronization optimization pol-
icy, a potential switch point would occur at the beginning of each parallel operation.3

The compiler would therefore generate code that checks for the expiration of the current
interval at the start of each parallel operation instead of at the start of each loop iteration.

—Polling Overhead: The polling overhead is determined in large part by the overhead of
reading the timer. Our currently generated code uses the timer on the Stanford DASH
machine. The overhead of accessing this timer is approximately nine microseconds,
which, as we report in Section 6, is negligible compared with the sizes of the iterations
of the parallel loops in our benchmark set of applications.

—Synchronous Switching:The generated code switches policies synchronously. When
an interval expires, each processor waits at a barrier until all of the other processors
detect that the interval has expired and arrive at the barrier. This strategy ensures that all
processors use the same policy during each sampling interval. The measured overhead
therefore accurately reflects the overhead of the policy. Synchronous switching also
avoids the possibility of interference between incompatible policies.4

Synchronous switching poses two potential drawbacks – barrier waiting and barrier over-
head. Barrier waiting occurs when each processor must wait for all of the other proces-
sors to detect the expiration of the current interval before it can proceed to the next
interval. This effect can have a significant negative impact on the performance if one of
the iterations of the parallel loop executes for a long time relative to the other iterations
and to the sampling interval. The combination of an especially bad policy (for exam-
ple, a synchronization optimization policy that serializes the computation) and iterations
of the loop that execute for a significant time relative to the sampling interval can also
cause poor performance.
Barrier overhead is the inherent overhead of the barrier construct itself. On the Stanford
DASH machine, we implemented the barrier by maintaining a count of the number of
processors that reach the barrier. We used a lock to make the count operations atomic.
For this implementation, the overhead of the barrier is negligible compared to the other
overheads associated with the use of dynamic feedback.

—Timer Precision: The precision of the timer places a lower bound on the size of each
interval. The timer must tick at least once before the interval expires. In general, we do
not expect the precision of the timer to cause any problems. Our generated code uses

2An interrupt driven implementation for computations that acquire and release mutual exclusion locks presents
itself as a challenging task. Complications include the possibility of a timer interrupt occurring in the middle of
a critical region or at a state from which a potential switch point can be reached only after unwinding many stack
frames from the call stack.
3We assume here that the compiler would serialize all computation that takes place inside a critical region.
4This potential problem does not arise when using dynamic feedback to choose the best synchronization opti-
mization policy. All of the synchronization optimization policies are compatible: it is possible to concurrently
execute different versions without affecting the correctness of the computation. We expect that in other applica-
tions of dynamic feedback, however, the different policies may be incompatible and the concurrent execution of
different versions may cause the computation to execute incorrectly.
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target sampling intervals of at least several milliseconds in length. Most systems provide
timers with at least this resolution.

All of these issues combine to determine theeffective sampling interval, or the minimum
time from the start of the interval to the time when all of the processors detect that the
interval has expired and proceed to the next interval.

4.2 Switching Policies

During the sampling phase, the generated code must switch quickly between different syn-
chronization optimization policies. The current compiler generates three versions of each
parallel section of code. Each version uses a different synchronization optimization policy.

The advantage of this approach is that the code for each policy is always available, which
enables the compiler to switch very quickly between different policies. The currently gen-
erated code simply executes aswitch statement at each parallel loop iteration to dispatch
to the code that implements the current policy.

The potential disadvantage is an increase in the size of the generated code. Table I
presents the sizes of the text segments for several different versions of the benchmark ap-
plications from Section 6. These data are from the object files of the compiled applications
before linking and therefore include code only from the applications — there is no code
from libraries. The Serial version is the original serial program, the Original version uses
the Original synchronization optimization policy, and the Dynamic version uses dynamic
feedback. In general, the increases in the code size are quite small. This is due, in part,
to an algorithm in the compiler that locates closed subgraphs of the call graph that are the
same for all optimization policies. The compiler generates a single version of each method
in the subgraph, instead of one version per synchronization optimization policy.

Application Version Size (bytes)
Serial 25; 248

Barnes-Hut Original 31; 152
Dynamic 33; 648

Serial 36; 832
Water Original 46; 960

Dynamic 50; 784
Serial 36; 064

String Original 43; 616
Dynamic 45; 664

Table I. Executable Code Sizes (bytes)

We also considered using dynamic compilation [Auslander et al. 1996; Engler 1996;
Lee and Leone 1996] to produce the different versions of the parallel sections as they were
required. Although this approach would reduce the amount of code present at any given
point in time, it would significantly increase the amount of time required to switch policies
in the sampling phases. This alternative would therefore become viable only for situations
in which the minimum sampling phases could be significantly longer than we wished.

Finally, it is possible for the compiler to generate a single parameterized version of the
code that can use any of the three synchronization optimization policies. The idea is to
generate a conditional acquire or release construct at all of the sites that may acquire or
release a lock in any of the synchronization optimization policies. Each site has a flag that
controls whether it actually executes the construct; each acquire or release site tests its flag
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to determine if it should acquire or release the lock. In this scenario, the generated code
switches policies by changing the values of the flags. The advantage of this approach is
the guarantee of no code growth; the disadvantage is the residual flag checking overhead
at each conditional acquire or release site.

4.3 Measuring the Overhead of Each Policy

To choose the policy with the least overhead, the generated code must first measure the
overhead. The compiler instruments the code to collect three measurements:

—Locking Overhead: The generated code computes the locking overhead by counting
the number of times that the computation acquires and releases a lock. This number is
computed by incrementing a counter every time the computation acquires a lock. The
locking overhead is simply the time required to acquire and release a lock times the
number of times the computation acquires a lock.

—Waiting Overhead: The current implementation uses spin locks. The hardware exports
a construct that allows the computation to attempt to acquire a lock; the return value
indicates whether the lock was actually acquired. To acquire a lock, the computation
repeatedly executes the hardware lock acquire construct until the attempted acquire suc-
ceeds. The computation increments a counter every time an attempt to acquire a lock
fails. The waiting overhead is the time required to attempt, and fail, to acquire a lock
times the number of failed acquires.

—Execution Time: The amount of time that the computation spends executing code from
the application. This time is measured by reading the timer when a processor starts
to execute application code, then reading the timer again when the processor finishes
executing application code. The processor then subtracts the first time from the second
time, and adds the difference to a running sum. As measured, the execution time includes
the waiting time and the time spent acquiring and releasing locks. It is possible to
subtract these two sources of overhead to obtain the amount of time spent performing
useful computation.

Together, these measurements allow the compiler to evaluate the total overhead of each
synchronization optimization policy. The total overhead is simply the lock overhead plus
the waiting overhead divided by the execution time. The total overhead is therefore always
between zero and one. The compiler uses the total overhead to choose the best synchro-
nization optimization policy — the policy with the lowest overhead is the best.

One potential concern is the instrumentation overhead, which consists primarily of the
operations that count the number of times each processor acquires and releases a lock. The
operations that count the number of times that a processor attempted to acquire a lock and
failed have little impact on the execution, because they occur during an interval when the
processor would otherwise be waiting idle for another processor to release the lock.

We experimentally measured the impact of the instrumentation overhead on our set of
benchmark applications by generating versions of the applications that use a single, stati-
cally chosen, synchronization optimization policy. We then executed these versions with
and without the instrumentation. The performance differences between the instrumented
and uninstrumented versions were very small, which indicates that the instrumentation
overhead had little or no impact on the overall performance.
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4.4 Choosing Sampling and Production Intervals

The sizes of the target sampling and production intervals can have a significant impact
on the overall performance of the generated code. Excessively long sampling intervals
may degrade the performance by executing non-optimal versions of the code for a long
time. But if the sampling interval is too short, it may not yield an accurate measurement
of the overhead. In the worst case, an inaccurate overhead measurement may cause the
production phase to use the wrong synchronization optimization policy.

We expect the minimum absolute length of the sampling interval to be different for
different applications. In practice, we have had little difficulty choosing default values that
work well for our applications. In fact, it is possible to make the target sampling intervals
very small for all of our applications — the minimum effective sampling intervals are large
enough to provide overhead measurements that accurately reflect the relative overheads in
the production phases.

To achieve good performance, the production phase must be long enough to profitably
amortize the cost of the sampling phase. In practice, we have found that the major compo-
nent of the sampling cost is the time spent executing the non-optimal versions.

In our current implementation of dynamic feedback, the length of the parallel section
may also limit the performance. Our current implementation always executes a sampling
phase at the beginning of each parallel section. If a parallel section does not contain enough
computation for a production phase of the desired length, the computation may be unable
to successfully amortize the sampling overhead. It should be possible to eliminate this
potential problem by generating code that allows sampling and production intervals to span
multiple executions of the parallel phase. This code would still maintain separate sampling
and production intervals for each parallel section, but allow the intervals to contain multiple
executions of the section.

In practice, we have had little difficulty choosing target production intervals that work
well for our applications. All of our applications perform well with a fixed target produc-
tion intervals that range from five to1000 seconds.

4.5 Early Cut Off and Policy Ordering

In many cases, we expect that the individual sources of overhead will be either monotoni-
cally nondecreasing or monotonically nonincreasing across the set of possible implementa-
tions. The locking overhead, for example, never increases as the policy goes from Original
to Bounded to Aggressive. The waiting overhead, on the other hand, should never decrease
as the policy goes from Original to Bounded to Aggressive. These properties suggest the
use of an early cut off to limit the number of sampled policies. If the Aggressive policy
generates very little waiting overhead or the Original policy generates very little locking
overhead, there is no need to sample any other policy.

It may therefore be possible to improve the sampling phase by trying extreme policies
first, then going directly to the production phase if the overhead measurements indicate
that no other policy would do significantly better. It may also be possible to improve the
sampling phase by ordering the policies. The generated code could sample a given policy
first if it has done well in the past. If the measured overhead continued to be acceptable,
the generated code could go directly to the production phase.
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4.6 Limitations

In this article, we present an application of dynamic feedback to a specific problem: the
choice of the best synchronization optimization policy. In the context of our benchmark
applications, this problem has a set of characteristics that make it particularly suitable for
the use of dynamic feedback. First, we were able to identify a small number of poten-
tial policies that were suitable for the synchronization optimization problem. The final
executable contains code compiled with each different policy. For problems with a large
number of potential policies, it is clearly infeasible to include code for all of the policies
in the shipped executable. As discussed in Section 4.2, it may be possible in some cases
to generate parameterized code that would implement different policies depending on the
setting of the parameters. In general, however, it would be necessary to generate the code
for each policy dynamically, which would add to the overhead of using dynamic feedback.

The sampling phases in the dynamic feedback algorithm execute different computations
with different optimal execution times. This raises the question of how to compare perfor-
mance results from different computations with different optimal execution characteristics.
Locks support a performance measure (the sum of the locking and waiting overheads) that
can be used to compute the overhead of each policy as a percentage of the running time
of the computation. Because these overhead measurements factor out the running times
of the computations, they can be used to compare the performance impact of the different
policies even when the policies were used for different computations. In general, however,
it may not be clear how to derive a performance metric with this property.

In all of our applications, the locking frequency is small enough and the overhead of ac-
quiring and releasing a lock is large enough so that it is possible to instrument the locking
code without significantly perturbing the performance or execution characteristics of the
sampling code. In general, however, instrumentation code may unacceptably perturb the
computation. In some situations, zero-overhead hardware instrumentation such as perfor-
mance counters may provide an acceptable alternative [Anderson et al. 1997].

In all of our applications, the concurrency is exploited within parallel loops that contain
synchronized atomic operations. Parallel loops provide a convenient way to set up the
boundaries of the sampling and production phases: the compiler can simply check for the
expiration of the phase at the beginning of each loop iteration.5 In our applications, the
loop iterations are large enough to profitably amortize the checking overhead, but small
enough to quickly detect the expiration of sampling and production phases. In general, the
issue of where to place the code that checks for the expiration of phases may complicate
the application of dynamic feedback to different optimization problems.

In all of our applications, the best policy is relatively constant for each parallel loop. So
the approach of sampling to find the best policy, then using the best policy for a relatively
long production phase, works well for our applications. For applications in which the best
policy changes more quickly, it would be necessary to sample more frequently. Because
increasing the sampling frequency also increases the sampling overhead, it is possible to
imagine applications for which it is simply not possible to sample fast enough to profitably
adapt to changes in the best policy. This raises the question of how to choose the best
sampling and production intervals. In most situations, we expect the smallest sampling

5As described in Section 4.1, it would be straightforward to generalize this approach to check also at procedure
boundaries. This might be important in applications that use recursion as a primary control flow construct instead
of loops.
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frequency that profitably amortizes the sampling overhead to be significantly smaller than
the largest sampling frequency that adapts quickly enough to changes in the best policy.

In extreme cases, it might be possible to use a second-order application of dynamic
feedback to choose an acceptable sampling frequency. In these scenarios, the compiler
would generate code that accepts the sampling frequency as a parameter. A second-order
sampling algorithm would test different values of the sampling frequency to find one with
an acceptable trade-off between the adaptation latency and the sampling overhead.

Another issue related to the sizes of the sampling and production intervals is that the
production interval must be long enough to profitably amortize the time wasted while sam-
pling a policy with poor performance. Section 5 presents a theoretical analysis that can be
used to guide the choice of sampling and production interval lengths, but this analysis is
valid only under some fairly restrictive assumptions. In practice, some of our applications
sample policies that deliver almost no useful work. Even for these applications, it was not
difficult to obtain a production interval long enough to amortize the sampling overhead.

5. DYNAMIC SELECTION OF SAMPLING AND PRODUCTION INTERVALS

In this section we present a theoretical analysis of the performance of dynamic feedback.
We start by observing that if no constraint is imposed on how fast the overhead of each pol-
icy may change, it is difficult to obtain any meaningful optimality result for any sampling
algorithm — the overhead of each policy may change dramatically right after the sampling
phase. To simplify the analysis, we assume that the best policy does not change during the
production intervals. In this situation, the worst-case scenario for dynamic feedback is for
the best policy to have no overhead at all, and for all of the other policies to perform no
useful work. We analyze a slightly more general scenario in which there areN policies
whose relative overheads do not change over time. While simple, this scenario provides
insight into how to dynamically select the lengths of the sampling and production intervals.
As part of this theoretical analysis, we derive a performance bound for dynamic feedback
as compared to the optimal algorithm that always uses the best policy.

5.1 Definitions

We first establish some notation. There areN different policies,p0; � � � ; pN�1. Each
variablesi denotes the effective sampling interval for the policypi. The total lengthS of
the sampling phase is therefore the sum of the sampling intervals for the sampled policies,
i.e.,S =

PN�1
i=0 si. The length of the production interval is denoted byP .

The computation starts with a sampling phase. During this phase, the dynamic feedback
algorithm executes each of theN policies for a sampling intervalsi to derive overhead
measurementso0; � � � ; oN�1 for each of theN policies. The overhead is the proportion of
the total execution time spent acquiring and releasing locks or waiting for other processors
to release locks. The overhead therefore varies between zero (if the computation never
acquires a lock) and one (if the computation performs no useful work), i.e.0 < oi < 1.

We now define a precise way to measure the amount of useful work that a given policy
delivers during a given period of time.

DEFINITION 1. The amount of useful work delivered by a policypi over a period of
timeT is denoted byWorkTpi whereWorkTpi is defined as

WorkTpi = T (1� oi) (1)
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Conversely, we define the performance of a given policy as the amount of time taken to
deliverW units of work. Given the definition above for the amount of useful work, finding
the time it takes for a given policy to deliverW units of work amounts to finding the time
T for whichT (1� oi) equalsW . The next definition formalizes this notion.

DEFINITION 2. The performance of a given policypi for a given amount of workW is
defined to be the amount of timeTimeW

pi
that pi takes to deliverW units of work. Given

an amount of workW , the following equation provides the value ofTime W
pi

:

TimeW
pi

=
W

(1� oi)
(2)

We now define how to precisely compare the performance of two policies. Basically, we
compare the performance of two policies by computing the ratio of the time they require
to deliver a given amount of work. The definition below formalizes this notion.

DEFINITION 3. Policypi is at most� worse than policypj for a given amount of work
W if

TimeW
pi

TimeW
pj

� (1 + �) (3)

5.2 Performance Analysis

We now analyze the performance of dynamic feedback. We first derive the performance of
dynamic feedback algorithm, then compare the performance of this algorithm with that of
the optimal algorithm that always executes the policy with the lowest overhead. Based on
this comparison, we determine the production intervalP for which the dynamic feedback
algorithm is guaranteed to be at most� worse than the optimal algorithm.

Without loss of generality, we assume that policyp0 is the policy with the lowest sam-
pled overhead. The dynamic feedback algorithm therefore executes policyp0 during the
production intervalP . We further assume that the values measured during the sampling
phase accurately reflect the actual overheads at the start of the production phase, and that
the measured overheads do not change during the sampling or production phases.

Under these assumptions, the worst-case scenario is for the dynamic feedback algorithm
to complete the work at the very end of a sampling phase. In other words, the dynamic
feedback algorithm completesM + 1 sampling phases but onlyM production phases.
This is the worst-case scenario because it maximizes the amount of time that the dynamic
feedback algorithm spends executing suboptimal policies. We derive the time it would
take for the optimal algorithm to deliver the same amount of work, then compare the times
taken by the two algorithms.

For this scenario, the amount of work performed by the dynamic feedback algorithm
during theM + 1 sampling phases andM production phases is given by:

Workdf = (M + 1)

N�1X
i=0

(1� oi)si +M(1� o0)P (4)

The corresponding amount of time required to deliver this amount of work is simply the
combined time of theM + 1 sampling phases andM production phases.
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Time df = (M + 1)

N�1X
i=0

si +MP (5)

The time required for the optimal algorithm to deliver the same amount of work is:

Time opt =
Workdf
(1� o0)

= (M + 1)

N�1X
i=0

(1� oi)

(1� o0)
si +MP (6)

The relative performance of the two algorithms, as defined above, is:

Time df

Time opt

=
(M + 1)

PN�1
i=0 si +MP

(M + 1)
PN�1

i=0
(1�oi)
(1�o0)

si +MP
(7)

Expanding the factorsi in the numerator first as
�
(1�o0+oi�oi)

(1�o0)

�
si, then as�

(1�oi)
(1�o0)

+ (oi�o0)
(1�o0)

�
si , we obtain the following intermediate equation:

Time df

Time opt

=
(M + 1)

PN�1
i=0

�
(1�oi)
(1�o0)

+ (oi�o0)
(1�o0)

�
si +MP

(M + 1)
PN�1

i=0
(1�oi)
(1�o0)

si +MP
(8)

Distributing the summation across the two fractions in the numerator yields:

Time df

Time opt

=
(M + 1)

PN�1
i=0

�
(1�oi)
(1�o0)

�
si + (M + 1)

PN�1
i=0

�
(oi�o0)
(1�o0)

�
si +MP

(M + 1)
PN�1

i=0
(1�oi)
(1�o0)

si +MP
(9)

We can rearrange the the terms in the numerator to obtain the following equation:

Time df

Time opt

= 1 +
(M + 1)

PN�1
i=0

(oi�o0)
(1�o0)

si

(M + 1)
PN�1

i=0
(1�oi)
(1�o0)

si +MP
(10)

Given a performance bound�, we use Equation 10 above to derive the minimum value
for the production intervalP required to satisfy the performance bound.

Time df

Time opt

� (1 + �)) 1 +
(M + 1)

PN�1
i=0

(oi�o0)
(1�o0)

si

(M + 1)
PN�1

i=0
(1�oi)
(1�o0)

si +MP
� (1 + �) (11)

Algebraic simplification of this inequality yields:

(M + 1)

N�1X
i=0

(oi � o0)

(1� o0)
si � (M + 1)

N�1X
i=0

(1� oi)

(1� o0)
si�+MP� (12)

We can divide both sides of this inequality byM� to obtain the following inequality:
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(M + 1)

M

PN�1
i=0

(oi�o0)
(1�o0)

si

�
�

(M + 1)

M

N�1X
i=0

(1� oi)

(1� o0)
si + P (13)

We can now rearrange terms and divide to obtain the final inequality:

P �
(M + 1)

M

0
@
PN�1

i=0
(oi�o0)
(1�o0)

si

�
�

N�1X
i=0

(1� oi)

(1� o0)
si

1
A (14)

This inequality defines an inverse relationship betweenP and�: the smaller the perfor-
mance bound�, larger the production intervalP required to meet the performance bound.
For infinite work, i.e., asM !1, the asymptotic value of the performance bound�1 for
a given production intervalP is:

�1 = lim
M!1

Time df

Time opt

� 1 =

PN�1
i=0

(oi�o0)
(1�o0)

si
PN�1

i=0
(1�oi)
(1�o0)

si + P
(15)

In our implementation of dynamic feedback, the compiler generates code that experi-
mentally extracts the values for the sampling intervalssi and sampled overheadsoi. In
Section 6, we use this data to calculate asymptotic performance bounds for dynamic feed-
back as applied to our benchmark programs.

6. EXPERIMENTAL RESULTS

This section presents experimental results that characterize how well dynamic feedback
works for three benchmark applications. The applications are Barnes-Hut, a hierarchical
N-body solver [Barnes and Hut 1986], Water, which simulates water molecules in the liq-
uid state [Singh et al. 1992], and String, which builds a velocity model of the soil between
two oil wells [Harris et al. 1990]. Each application is a serial C++ program that performs
a computation of interest to the scientific computing community. Barnes-Hut consists of
approximately1500 lines of code, Water consists of approximately1850 lines of code, and
String consists of approximately2050 lines of code. We used our prototype compiler to
parallelize each application. This parallelization is completely automatic — the programs
contain no pragmas or annotations, and the compiler performs all of the necessary analyses
and transformations. To compare the performance impact of the different synchronization
optimization policies, we used compiler flags to obtain four different versions of each ap-
plication. One version uses the Original policy, another uses the Bounded policy, another
uses the Aggressive policy, and the final version uses dynamic feedback.

We report results for the applications running on a16 processor Stanford DASH ma-
chine [Lenoski 1992] running a modified version of the IRIX 5.2 operating system. The
programs were compiled using the IRIX 5.3 CC compiler at the -O2 optimization level.
We report the best results out of five runs for each application and evaluation parameter
settings.

6.1 Stanford DASH Machine Characteristics

The Stanford DASH machine [Lenoski 1992] is a cache-coherent shared-memory multi-
processor. It uses a distributed directory-based protocol to provide cache coherence. It is
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organized as a group of processing clusters connected by a mesh interconnection network.
Each of the clusters is a Silicon Graphics 4D/340 bus-based multiprocessor. The 4D/340
system has four processing nodes, each of which contains a 33MHz R3000 processor, a
R3010 floating-point co-processor, a 64KByte instruction cache, 64KByte first-level write-
through data cache, and a 256KByte second-level write-back data cache. Each node has a
peak performance of 25 VAX MIPS and 10 double-precision MFLOPS. Cache coherence
within a cluster is maintained at the level of 16-byte lines via a bus-based snoopy protocol.
Each cluster also includes a directory processor that snoops on the bus and handles refer-
ences to and from other clusters. The directory processor maintains directory information
on the cacheable main memory within that cluster that indicates which clusters, if any,
currently cache each line.

The interconnection network consists of a pair of wormhole routed meshes, one for
request messages and one for replies. The total bandwidth in and out of each cluster is120
megabytes per second.

6.2 Barnes-Hut

Table II presents the execution times for the different versions of Barnes-Hut. Figure 4
presents the corresponding speedup curves. All experimental results are for an input data
set of 16; 384 bodies. The static versions (Original, Bounded and Aggressive) execute
without the instrumentation required to compute the locking or waiting overhead. The
Dynamic version, the version that uses dynamic feedback, must contain this instrumenta-
tion because it uses the locking and waiting overhead measurements to determine the best
synchronization optimization policy.6

Version Processors
1 2 4 8 12 16

Serial 147:8 — — — — —
Original 217:2 111:6 56:59 32:61 20:76 15:64
Bounded 191:7 97:25 49:22 26:98 19:62 15:12

Aggressive 149:9 76:30 37:81 21:88 15:57 12:87
Dynamic 158:3 80:37 41:00 24:27 17:22 13:85

Table II. Execution Times for Barnes-Hut (seconds)

For this application, the synchronization optimization policy has a significant impact on
the overall performance, with the Aggressive version significantly outperforming both the
Original and the Bounded versions. The performance of the Dynamic version is quite close
to that of the Aggressive version. A programmer manually tuning this application would
select the Aggressive as the best static synchronization optimization policy.

Table III presents the locking overhead for the different versions of Barnes-Hut. The
execution times are correlated with the locking overhead. For all versions except Dynamic,
the number of executed acquire and release constructs (and therefore the locking overhead)
does not vary as the number of processors varies. For the Dynamic version, the number
of executed acquire and release constructs increases slightly as the number of processors

6Strictly speaking, the Dynamic version needs to execute instrumented code only during the sampling phase. But
because the instrumentation overhead does not significantly affect the performance, the production phase simply
executes the same instrumented code as the best version in the previous sampling phase. This approach inhibits
code growth by eliminating the need to generate instrumented and uninstrumented versions of the code.
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Fig. 4. Speedups for Barnes-Hut

increases. The numbers in the table for the Dynamic version are from an eight processor
run.

Version Executed Acquire Absolute Locking
And Release Pairs Overhead (seconds)

Original 15; 471; 682 77:4
Bounded 7; 744; 033 38:7
Aggressive 49; 152 0:246
Dynamic 72; 050 0:360

Table III. Locking Overhead for Barnes-Hut

Although the absolute performance varies with the synchronization optimization policy,
the performance of the different versions scales at approximately the same rate. This indi-
cates that the synchronization optimizations introduced no significant false exclusion. The
reason that this application does not exhibit perfect speedup is that the compiler is unable
to parallelize one section of the computation. At large numbers of processors the serial
execution of this section becomes a bottleneck [Rinard and Diniz 1997].

To investigate how the overheads of the different policies change over time, we pro-
duced a version of the application with small target sampling and production intervals. We
instrumented this version to print out the measured overhead at the end of each sampling
interval. Figure 5 presents this data from an eight processor run in the form of a time-series
graph for the main computationally intensive parallel section, the FORCES section. Our
benchmark executes the FORCES section two times. The gap in the time series lines cor-
responds to the execution of a serial section of the code. Figure 5 shows that the measured
overheads stay relatively stable over time.

We next discuss the characteristics of the application that relate to the minimum effective
sampling interval for the FORCES section. The computation in this section consists of a
single parallel loop. Table IV presents the mean section size, the number of iterations in
the parallel loop, and the mean iteration size. The mean section size is the mean execution
time of the FORCES section in the serial version, and is intended to measure the amount
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Fig. 5. Sampled Overhead for the Barnes-Hut FORCES Section on Eight Processors

of useful work in the section. We report the mean iteration size because the generated code
checks for the expiration of the sampling and production intervals only at the granularity
of the loop iterations. The loop iterations must therefore be large enough to amortize the
expiration checks. For Barnes-Hut this is clearly the case — the cost of the expiration
check is dominated by the 9 microsecond cost of reading the timer, which is negligible
compared with the 4.2 millisecond mean iteration size. Tables X and XVI present the
mean loop iteration sizes for Water and String, respectively. The cost of the expiration
check is also negligible compared with the mean iteration sizes in these applications.

Mean Number of Mean
Section Size Iterations Iteration Size

69.14 seconds 16,384 4.2 milliseconds

Table IV. Statistics for the Barnes-Hut FORCES Section

We used the version with small target sampling and production intervals to measure
the minimum effective sampling intervals for each of the different synchronization opti-
mization policies. In this version, the sampling and production intervals are as small as
possible given the application characteristics — in other words, the actual intervals are
the same length as the minimum effective sampling intervals. We instrumented this ver-
sion to measure the length of each actual sampling interval, and used the data to compute
the mean minimum effective sampling interval for each policy. Table V presents the data
from an eight processor run. As expected, the mean minimum effective sampling intervals
are larger than but still roughly comparable in size to the mean loop iteration size. The
differences in the mean minimum effective sampling intervals are correlated with the dif-
ferences in lock overhead. As the lock overhead increases, the amount of time required to
execute each iteration also increases. Because none of the versions have significant waiting
overhead, the increases in the amount of time required to execute each iteration translate
directly into increases in the mean minimum effective sampling interval. Table V also
presents the mean sampled overhead for each of the available policies on eight processors.
We measured these overheads by setting the production interval to zero and saving all of
the sampled overhead values.

ACM Transactions on Computer Systems, Vol. 17, No. 6, May 1999.



Eliminating Synchronization Overhead Using Dynamic Feedback � 21

Version Mean Minimum Effective Mean
Sampling Interval (milliseconds) Sampled Overhead

Original 10.0 0.333
Bounded 7.8 0.216

Aggressive 6.5 0.002

Table V. Mean Minimum Effective Sampling Intervals for Barnes-Hut FORCES Section on Eight Processors

We next consider the impact of varying the target sampling and production intervals. For
the performance numbers in Table II, the target sampling interval was set to10milliseconds
and the target production interval was set to1000 seconds. This target sampling interval
was small enough to ensure that the minimum effective sampling interval, rather than the
target sampling interval, determined the length of each actual sampling interval. A target
production interval of1000 seconds was long enough to ensure that each parallel section
finished before it executed another sampling phase. The execution of each parallel section
therefore consisted of one sampling phase and one production phase.

Table VI presents the execution times for the Barnes application running on eight pro-
cessors for several combinations of target sampling and production intervals. Both per-
formance figures are relatively insensitive to the variation in the target sampling and pro-
duction intervals. Even when the target sampling and production intervals are identical
(which means that the computation spends approximately three times as long in the sam-
pling phase as in the production phase), the overall performance is never more than11%
slower than with the best combination of the sampling and production interval.

Target Sampling FORCES Section Complete Application
Interval Target Production Interval (seconds) Target Production Interval (seconds)

(seconds) 1 5 10 1000 1 5 10 1000
0.01 9.138 9.058 9.058 9.025 24.29 24.10 24.20 23.72
0.1 9.697 9.178 9.122 9.220 24.33 23.52 23.38 23.64
1.0 10.784 9.834 9.726 9.670 26.89 24.91 24.65 23.69

Table VI. Execution Times for Varying Production and Sampling Intervals for Barnes-Hut on Eight Processors
(seconds)

In Section 5 we derived Equation 15, which provides the asymptotic performance bound
�1 of dynamic feedback given values for the overheadsoi, sampling intervalssi, and
production intervalP . This equation is valid under the assumption that the overheads
do not change during the production phase. As Figure 5 indicates, the overheads of the
different policies are roughly constant for the FORCES section of Barnes-Hut. Table VII
presents the calculated asymptotic performance bounds for the FORCES section of Barnes-
Hut on eight processors as a function of the measured overheads and different production
and sampling intervals.

For each policypi, we use the mean sampled overhead asoi and the maximum of the
target sampling interval and that policy’s mean minimum effective sampling interval as the
value for that policy’s sampling intervalsi in the calculations. This choice reflects the fact
that for some policies, it may not be possible to achieve a small target sampling interval.
For the FORCES section of Barnes-Hut, all of the mean minimum effective sampling in-
tervals are smaller than all of the target sampling intervals. This is not true for our other
applications.
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The asymptotic bounds numbers show that the asymptotic performance of the dynamic
feedback algorithm is very close to that of the optimal algorithm. Even when the sampling
and production intervals are the same, the asymptotic bound is less than0:16.

Application Section
FORCES

Target Target Production
Sampling Interval
Interval (seconds)

(seconds) 1 5 10 1000
0.01 .005 .001 .001 .0000
0.1 .044 .010 .005 .0001
1.0 .158 .073 .044 .0001

Table VII. Asymptotic Performance Bound�1 for Varying Production and Sampling Intervals for the FORCES
Section of Barnes-Hut on Eight Processors

6.3 Water

Table VIII presents the execution times for the different versions of Water. Figure 6
presents the corresponding speedup curves. All experimental results are for an input data
set of 512 molecules. The static versions (Original, Bounded and Aggressive) execute
without the instrumentation required to compute the locking or waiting overhead. The Dy-
namic version needs the instrumentation to apply the dynamic feedback algorithm, so this
version contains the instrumentation.

Version Processors
1 2 4 8 12 16

Serial 165:8 — — — — —
Original 184:4 94:60 47:51 28:39 22:06 19:87
Bounded 175:8 88:36 44:28 26:42 21:06 19:50

Aggressive 165:3 115:2 88:45 79:18 75:16 73:54
Dynamic 165:4 88:76 44:29 27:20 21:60 20:54

Table VIII. Execution Times for Water (seconds)

For this application, the synchronization optimization policy has a significant impact on
the overall performance. For one processor, the Aggressive version performs the best. As
the number of processors increases, however, the Aggressive version fails to scale, and the
Bounded version outperforms both the Aggressive and the Original versions. For this ap-
plication, the Bounded policy is the best static synchronization optimization policy. As the
performance results presented below indicate, false exclusion causes the poor performance
of the Aggressive version. The performance of the Dynamic version is very close to the
performance of the Bounded version, which exhibits the best performance.

Table IX presents the locking overhead for the different versions of Water. For the Orig-
inal, Bounded, and Dynamic versions, the execution times are correlated with the locking
overhead. For all versions except Dynamic, the number of executed acquire and release
constructs (and therefore the locking overhead) does not vary as the number of processors
varies. For the Dynamic version at two processors and above, the number of executed ac-
quire and release constructs is very close to the Bounded version, with a slight increase as
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Fig. 6. Speedups for Water

the number of processors increases. At one processor, the Dynamic version executes ap-
proximately the same number of acquire and release constructs as the Aggressive version.
The numbers in the table for the Dynamic version are from an eight processor run.

Version Executed Acquire Absolute Locking
And Release Pairs Overhead (seconds)

Original 4; 200; 448 21:0
Bounded 2; 099; 200 10:5

Aggressive 1; 577; 980 7:9
Dynamic 2; 119; 840 10:6

Table IX. Locking Overhead for Water

We instrumented the parallel code to determine why Water does not exhibit perfect
speedup. Figure 7 presents thewaiting proportion, which is the proportion of time spent in
waiting overhead.7 These data were collected using program-counter sampling to profile
the execution [Graham et al. 1982; Knuth 1971]. This figure clearly shows that waiting
overhead is the primary cause of performance loss for this application, and that the Ag-
gressive synchronization optimization policy generates enough false exclusion to severely
degrade the performance.

Water has two computationally intensive parallel sections: the INTERF section and the
POTENG section. Figures 8 and 9 present time-series graphs of the measured overheads of
the different synchronization optimization policies. For the INTERF section, the generated
code would be the same for the Bounded and Aggressive policies. The compiler therefore
does not generate an Aggressive version, and the sampling phases execute only the Original
and Bounded versions. A similar situation occurs in the POTENG section, except that in
this case, the code would be the same for the Original and Bounded versions. As for

7More precisely, the waiting proportion is the sum over all processors of the amount of time that each processor
spends waiting to acquire a lock held by another processor divided by the execution time of the program times
the number of processors executing the computation.
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Fig. 7. Waiting Proportion for Water
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Fig. 9. Sampled Overhead for the Water POTENG Section on Eight Processors

Barnes-Hut, the overheads are relatively stable over time. The gaps in the time-series
graphs correspond to the executions of other serial and parallel sections.

Table X presents the parallel section statistics for the INTERF and POTENG sections.
Table XI presents the mean minimum effective sampling intervals and the mean sampled
overheads for the two sections. As expected, the mean minimum effective sampling in-
tervals for all of the versions except the Aggressive version in the POTENG section are
larger than but still roughly comparable to the corresponding mean iteration sizes. The
mean minimum effective sampling interval for the Aggressive version in the POTENG
section is significantly larger than for the Original version. We attribute this difference to
the fact that the Aggressive policy serializes much of the computation, which, as described
in Section 4.1, increases the effective sampling interval.

Application Section
INTERF POTENG

Mean Number of Mean Mean Number of Mean
Section Size Iterations Iteration Size Section Size Iterations Iteration Size

20.80 seconds 511 40.7 milliseconds 16.34 seconds 511 32.0 milliseconds

Table X. Statistics for Water

Application Section
INTERF POTENG

Version Mean Minimum Effective Mean Mean Minimum Effective Mean
Sampling Interval Sampled Overhead Sampling Interval Sampled Overhead

(milliseconds) (milliseconds)
Original 93 0.152 59 0.226
Bounded 82 0.081 – –

Aggressive – – 286 0.913

Table XI. Mean Minimum Effective Sampling Intervals and Mean Sampled Overheads for Water Sections on
Eight Processors
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For the performance numbers in Table VIII, the target sampling interval was set to10
milliseconds and the target production interval was set to1000 seconds. This combination
ensured that the execution of each parallel section consisted of one sampling phase and
one production phase.

Table XII presents the execution times for the INTERF and POTENG sections as well
as the entire application running on eight processors for several combinations of target
sampling and production intervals. For the INTERF section, all of the combinations yield
approximately the same performance. We attribute this uniformity to the fact that the
performance of the two versions in the section (the Original and Bounded versions) is not
dramatically different.

Application Section
Target INTERF POTENG Complete Application

Sampling Target Production Target Production Target Production
Interval Interval (seconds) Interval (seconds) Interval (seconds)

(seconds) 1 5 10 1000 1 5 10 1000 1 5 10 1000
0.01 3.67 3.54 3.51 3.55 3.32 2.62 2.64 2.65 29.54 26.25 26.11 26.34
0.1 3.73 3.53 3.53 3.57 3.07 2.69 2.71 2.72 28.78 26.49 26.55 26.70
1.0 3.71 3.67 3.68 3.67 4.18 3.48 3.48 3.49 33.12 30.26 30.24 30.12

Table XII. Mean Execution Times for Varying Production and Sampling Intervals for Water on Eight Processors
(seconds)

As shown in Table XII, the performance of the POTENG section is quite sensitive to
the choice of target sampling interval when the target production interval is either1 or 5
seconds. Recall that there is a dramatic difference in this section between the performance
of the Aggressive and Original versions. In this case, one would intuitively expect the
performance to increase with increases in the target production interval and decrease with
increases in the target sampling interval. We address the ways in which the data fail to
conform to this expectation.

First, the execution times are virtually identical at target production intervals of5, 10 and
1000 seconds. We attribute this uniformity to the fact that the execution of the POTENG
section always terminates in less than5 seconds. Extending the target production interval
beyond 5 seconds therefore has no effect on the execution time.

Second, the execution times are virtually identical for a target production interval of5
seconds and target sampling intervals of0:01 and0:1 seconds. We attribute these data to the
fact that the execution of the POTENG section always terminates in less than5 seconds and
the fact that the minimum effective sampling interval for the Aggressive policy is greater
than0:1 seconds. Both of the executions in question consist of an Aggressive sampling
interval whose length is the same in both executions, an Original sampling interval, then
an Original production interval during which the section completes its execution. Both
executions spend almost identical amounts of time executing the Aggressive and Original
versions.

Finally, the execution time decreases for a target production interval of1 seconds when
the target sampling interval increases from0:01 seconds to0:1 seconds. The effect is
caused by the fact that the minimum effective sampling interval of the Original version is
smaller than0:1 seconds, while the minimum effective sampling interval of the Aggressive
version is larger than0:1 seconds. The program therefore spends a larger proportion of
the sampling phase executing the more efficient Original version with a target sampling
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interval of0:1 seconds than it does with a target sampling interval of0:01 seconds. An
effect associated with the end of the section exacerbates the performance impact. With a
target sampling interval of0:1 seconds, the section completes after two sampling phases
and two production phases. With a target sampling interval of0:01 seconds, the section
performs less computation in the Original sampling intervals, and it does not complete until
after it has executed a third Aggressive sampling interval. The net effect of the decrease in
the target sampling interval is a significant increase in the amount of time spent executing
the inefficient Aggressive sampling intervals.

Table XIII presents the asymptotic performance bounds for the INTERF and POTENG
sections on eight processors. For the INTERF section, the asymptotic performance of the
dynamic feedback algorithm is very close to the performance of the optimal algorithm.
For the POTENG section, however, the asymptotic performance difference is significant
when the target production interval is small. Two factors contribute to this behavior. First,
the mean minimum effective sampling interval for the Aggressive policy in the POTENG
section is approximately0:29 seconds, which is quite large compared to the target produc-
tion interval. Second, the mean sampled overhead of the Aggressive policy is0:91 for the
POTENG section. This policy delivers almost no useful work during its sampling phases.
The result is that for small target production intervals, the application spends a significant
amount of its time executing a policy that delivers almost no useful work.

Application Section
INTERF POTENG

Target Target Production Target Production
Sampling Interval Interval
Interval (seconds) (seconds)

(seconds) 1 5 10 1000 1 5 10 1000
0.01 .006 .001 .0007 0.00 .23 .05 .025 .0003
0.1 .007 .002 .0008 0.00 .22 .05 .025 .0003
1.0 .026 .011 .0065 0.01 .42 .15 .080 .0009

Table XIII. Asymptotic Performance Bound�1 for Varying Production and Sampling Intervals for the INTERF
and POTENG Sections of Water on Eight Processors

6.4 String

For String, the Bounded and Original policies produce the same parallel code. We therefore
report performance results for only the Original, Aggressive, and Dynamic policies. Ta-
ble XIV presents the execution times for the different versions of String. Figure 10 presents
the corresponding speedup curves. All experimental results are for the Big Well input data
set. The static versions (Original and Aggressive) execute without the instrumentation
required to compute the locking or waiting overhead; the Dynamic version includes the
instrumentation.

For String, the best synchronization optimization policy is the Original policy, as the
Aggressive policy completely serializes the computation. The Aggressive version therefore
fails to scale at all. The execution time of the Dynamic version is comparable to the
execution time of the Original version, with a small loss of performance at12 and 16
processors.

Table XV presents the locking overhead for the different versions of String. For the
Dynamic version at two processors and above, the number of executed acquire and release
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Version Processors
1 2 4 8 12 16

Serial 2181:3 — — — — —
Original 2599:0 1289:4 646:7 331:9 223:9 172:3

Aggressive 2337:7 2313:5 2231:9 2244:3 2254:8 2260:9
Dynamic 2363:8 1295:5 653:5 342:5 241:3 194:9

Table XIV. Execution Times for String (seconds)
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Fig. 10. Speedups for String

constructs is slightly less than in the Original version. The number also increases slightly
as the number of processors increases. At one processor, the Dynamic version executes
approximately six times fewer acquire and release constructs than the Original version.
The numbers in the table for the Dynamic version are from an eight processor run.

Version Executed Acquire Absolute Locking
And Release Pairs Overhead (seconds)

Original 30; 286; 596 151:43
Aggressive 2; 313 0:01156
Dynamic 30; 016; 913 150:08

Table XV. Locking Overhead for String

We instrumented the parallel code to determine why String does not exhibit perfect
speedup. Figure 11 presents the waiting proportion. This figure clearly shows that waiting
overhead is the primary cause of performance loss for this application, and that the Ag-
gressive synchronization optimization policy generates enough false exclusion to serialize
the computation.

Figure 12 presents time-series graphs of the measured overheads of the different syn-
chronization optimization policies for the main computationally intensive parallel section,
the PROJFWD section. We collected these data by setting the target sampling and produc-
tion intervals to one second, then instrumenting the code to print out the measured overhead
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Fig. 11. Waiting Proportion for String
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Fig. 12. Sampled Overhead for the String PROJFWD Section on Eight Processors

Mean Section Size Number of Iterations Mean Iteration Size
801 seconds 28,288 28.3 milliseconds

Table XVI. Statistics for the String PROJFWD Section

Application Section
PROJFWD

Version Mean Minimum Effective Mean
Sampling Interval Sampled Overhead

(milliseconds)
Original 54 0.112

Aggressive 260 0.887

Table XVII. Mean Minimum Effective Sampling Intervals and Mean Sampled Overheads for String Sections
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at the end of each sampling interval. As for Barnes-Hut and Water, the overheads are rela-
tively stable over time. The gaps in the time-series graphs correspond to the executions of
other serial and parallel sections.

Table XVI presents the parallel section statistics for the PROJFWD section. Table XVII
presents the mean minimum effective sampling intervals and the mean sampled overheads
for the available policies. The mean minimum effective sampling interval for the Original
version is larger than but roughly comparable to the iteration size. As in the POTENG
section of Water, the mean minimum effective sampling interval for the Aggressive version
is significantly larger than for the Original version. The reason is the same: the Aggressive
version serializes much of the computation.

For the performance numbers in Table XIV, the target sampling interval was set to10
milliseconds and the target production interval was set to1000 seconds. This combination
ensured that the execution of each parallel section consisted of one sampling phase and
one production phase. Table XVIII presents the execution times for the PROJFWD section
running on eight processors and for the entire application for several combinations of tar-
get sampling and production intervals. As expected for an application with a section with
dramatic efficiency differences between the versions, the performance increases with in-
creases in the target production interval and decreases with increases in the target sampling
interval.

Application Code Section
PROJFWD Complete Application

Target Target Production Target Production
Sampling Interval Interval
Interval (seconds) (seconds)

(seconds) 1 5 10 1000 1 5 10 1000
0.01 140.6 117.1 114.7 112.54 434.0 365.4 357.8 352.4
0.1 144.7 118.3 114.3 112.69 445.3 368.2 356.1 348.4
1.0 165.5 131.1 121.7 112.96 507.7 405.9 377.8 352.1

Table XVIII. Execution Times for Varying Production and Sampling Intervals for String on Eight Processors
(seconds)

Table XIX presents the asymptotic performance bounds for the PROJFWD section on
eight processors. For reasons similar to the POTENG section in Water, the asymptotic
bound is fairly large when the target production interval is small. Two factors contribute
to this behavior. First, the mean minimum effective sampling interval for the Aggressive
policy is approximately0:26 seconds, which is quite large compared to the target produc-
tion interval. Second, the mean sampled overhead of the Aggressive policy is0:88. This
policy delivers almost no useful work during its sampling phases. The result is that for
small target production intervals, the application spends a significant amount of its time
executing a policy that delivers almost no useful work.

6.5 Discussion

For each application, the best static synchronization optimization policy is different from
that of the other two applications. Furthermore, the performance differences are significant
— at 16 processors, the best version of Barnes-Hut is approximately 20% faster than the
worst; for Water, the best is more than three times faster than the worst; for String, the
best is more than ten times faster than the worst. In all of these cases, dynamic feedback
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Application Code Section
PROJFWD

Target Target Production
Sampling Interval
Interval (seconds)

(seconds) 1 5 10 1000
0.01 .21 .05 .023 .0002
0.1 .20 .04 .022 .0002
1.0 .41 .14 .078 .0008

Table XIX. Asymptotic Performance Bound� for Varying Production and Sampling Intervals for PROJFWD
Section of String on Eight Processors

allows the Dynamic version to exhibit performance that is not only very close to that of the
best static policy, but also almost always better than that of the next best static policy. The
compiler can therefore automatically generate robust code that performs well in a variety of
environments, which eliminates the need for the programmer to manually tune the program
to use the best synchronization optimization policy.

7. RELATED WORK

Many researchers have developed systems that collect information about the dynamic char-
acteristics of programs, then use that information to improve the performance. We discuss
several approaches: profiling, adaptive execution techniques, dynamic type feedback tech-
niques for improving the performance of object-oriented languages, and dynamic tech-
niques for parallelizing loops. We also discuss dynamic compilation and related work in
synchronization optimizations.

7.1 Profiling

Profiling is a standard way to obtain information about the dynamic characteristics of a
program. In this approach, the program is instrumented, then executed to collect profiling
data. The program can then be recompiled, with the profiling data used to guide policy
decisions in the compiler.

A fundamental issue in profiling is the level of granularity and the specific mechanism
used to collect data. Some profilers modify the binary source code to insert instructions
that increment counter variables [Smith 1991]. Other profilers periodically interrupt the
execution of the binary to sample the program counter [Anderson et al. 1997; Zhang et al.
1997; Graham et al. 1982].

Profiling has been used to guide decisions to inline procedures in C programs [Chang
et al. 1992], to drive instruction scheduling algorithms [Chen et al. 1994], to help place
code so as to minimize the impact on the memory hierarchy [Pettis and Hansen 1990], to
minimize the overhead associated with cache coherency in CC-NUMA machines [Chilimbi
and Larus 1994], to aid in register allocation [Morris 1991; Wall 1986], and to direct the
compiler to frequently executed parts of the program so that the compiler can apply further
optimizations [Fernandez 1995; Anderson et al. 1997].

Brewer [Brewer 1995] describes a system that uses statistical modeling to automatically
predict which algorithm will work best for a given combination of input and hardware
platform. The different algorithms are implemented by hand, not automatically generated
from a single specification. The system uses profiling to characterize the performance of
the different algorithms on the different hardware platforms.
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A primary difference between dynamic feedback and standard profile-based approaches
is that dynamic feedback can adapt dynamically to the current execution environment,
rather than generating code based on the assumption that the environment will always
be similar to the environment in the profiling run of the program. Dynamic feedback
can also adjust to changes that occur within a single execution of the program. Profile-
based approaches typically collect a single aggregate set of measurements for the entire
execution, and can therefore miss environment changes that take place within a single
execution.

The Morph system [Zhang et al. 1997], however, is an exception: it uses profiling to
dynamically optimize the generated code. Morph collects trace samples to find frequently
executed paths. The instrumented binary code uses this profiling data to dynamically apply
several low-level machine specific transformations such as branch alignment and procedure
code layout.

Another important difference between profile-based approaches and dynamic feedback
is that profile-based approaches usually use the profile information to statically choose one
or two policies that should work well. The generated code is compiled only with those
policies, and there is little if any code growth. Our implementation of dynamic feedback,
on the other hand, produces code compiled with all of the different policies. For some
optimizations, there are an enormous number of possible policies. For example, trace
scheduling [Fisher 1981] optimizes frequently-executed paths in the program. In effect,
each path through the program corresponds to a different policy; it is clearly infeasible to
produce an executable that contains all of the different paths.

7.2 Adaptive Execution Techniques

Many other researchers have recognized the need to use dynamic performance data to
optimize the execution of programs [Dubnicki and LeBlanc 1992; Cox and Fowler 1993;
Romer et al. 1994; Saavedra and Park 1996; Kim and Vaidya 1996; Falsafi and Wood
1997].

Some of the adaptive execution approaches described in the literature can be viewed as
using control-theoretic approaches to select the values of variables that control the behavior
of a parameterized algorithm. Typically, the programmer defines a set of observable vari-
ables and a feedback function that uses the observed values to generate new values for the
control variables. Changes in the values of the observable variables propagate through the
feedback function to change the control variables, and the program responds by modifying
its behavior. Ideally, the observable variables, control variables, and feedback function are
defined so that the program maximizes its performance across a range of dynamic environ-
ments. Saavedra and Park describe the application of such an adaptive execution technique
to determine, at run time, the best value for the prefetch distance in an algorithm that
prefetches data accessed by a loop [Saavedra and Park 1996].

Fox et. al. describe a manual experiment in which communication servers use current
values of available bandwidth, client processing capabilities, and display resolution to dy-
namically change the representation of the data to send to the client [Fox et al. 1996].
Although full automation is suggested, the authors do not describe a clear feedback mech-
anism and adaptation strategy.

In the context of consistency protocols for distributed shared-memory machines, re-
searchers have developed systems that measure the behavior of the program to gather
statistics about the pages that the program accesses [Kim and Vaidya 1996; Falsafi and
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Wood 1997]. These systems use the gathered statistics to dynamically select a memory
consistency protocol for each page.

The SCI standard uses a simple adaptive cache consistency scheme [IEEE 1993]. The
implementation maintains a list of the nodes that hold references to shared pages. If exactly
two nodes reference a shared page, SCI uses an update protocol — each modification by
either of the nodes is reflected in the other node’s cache. But if more than two nodes
reference a page, SCI reverts to an invalidation scheme. At a different granularity, Dubnicki
and LeBlanc [Dubnicki and LeBlanc 1992] describe a scheme to match the granularity of
sharing of cache lines and either split or merge data blocks across caches based on recent
access patterns.

All of these systems use techniques similar to dynamic feedback in that the memory
consistency protocol for a given page or the cache line granularity can change dynamically
if the application changes the way it accesses the corresponding memory. Another simi-
larity is the assumption that the behavior of the system in the recent past can be used to
predict its behavior in the near future.

7.3 Dynamic Dispatch Optimizations

In object-oriented languages, the method that is invoked at a given call site depends on
the dynamic class of the receiver object. The same call site may therefore invoke many
different methods; the algorithm that determines which method to invoke is called the
dynamic dispatch algorithm. Researchers have proposed several adaptive optimizations for
improving the efficiency of dynamic dispatch. The standard mechanism is to collect data
that indicates which methods tend to be invoked from which call sites, then to insert a type
test that checks for common types first [Chambers and Ungar 1989]. Profiling has been
used in this context to predict the most frequently occurring class of the receiver object at
a given call site [Grove et al. 1995]. This information is then used to drive optimizations
that inline methods based on predictions about the class of the receiver.

Dynamic type feedback is designed to direct the compiler’s attention to parts of the
program that would benefit from optimization [H¨olzle and Ungar 1994]. Once a method
has been optimized, the generated code continues to collect data that can be used to drive
further optimizations and reverse poor implementation choices. In this sense, dynamic
feedback is similar to dynamic type feedback in that both techniques generate code that
dynamically adapts to its execution environment.

7.4 Run-Time Analysis and Speculative Execution

In certain circumstances, a lack of statically available information may prevent the com-
piler from parallelizing the program. Several systems address this problem by parallelizing
programs dynamically using information that is available only as the program runs. The
inspector/executor approach dynamically analyzes the values in index arrays to automat-
ically parallelize computations that access irregular meshes [Leung and Zahorjan 1993;
Saltz et al. 1991]. The Jade implementation dynamically analyzes how tasks access data
to exploit the concurrency in coarse-grain parallel programs [Rinard et al. 1992]. Specu-
lative approaches optimistically execute loops in parallel, rolling back the computation if
the parallel execution violates the data dependences [Rauchwerger and Padua 1995]. Pred-
icated analysis can be used to dynamically determine if it is possible to parallelize a given
loop [Moon et al. 1998].

A major difference between dynamic feedback and these run-time techniques is that
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dynamic feedback is designed to automatically choose between several implementations
that deliver the same functionality. Each implementation is equally valid, and may very
well perform the best in the current environment. In all of the run-time techniques, the
goal is clearly to parallelize the computation, but the compiler simply lacks the information
necessary to do so. It must therefore postpone the decision to apply the optimization until
run-time, when the information is available.

7.5 Dynamic Compilation

Dynamic compilation systems enable the generation of code at run time [Auslander et al.
1996; Engler 1996; Lee and Leone 1996]. Because delaying the compilation until run time
provides the compiler with information about the concrete values of input parameters, the
compiler may be able to generate more efficient code. Existing research has focused on
providing efficient mechanisms for dynamic compilation.

We see dynamic compilation as one way to generate the different implementations that
dynamic feedback samples to find a best implementation. The advantage would be the
elimination of potential code growth — the memory used to hold the generated code can be
deallocated if the code will not be executed for a significant period of time. The compiler
could dynamically regenerate the code when the dynamic feedback algorithm needs to
sample its performance.

The major drawback would be the overhead required to perform the compilation dynam-
ically. This overhead would become less of a concern if the program executed sampling
phases very infrequently — the dynamic compilation overhead would be amortized away
by the long production phases.

7.6 Synchronization Optimizations

This article presents research that applies dynamic feedback to the problem of choosing
the best synchronization policy. Our previous research produced analyses and transfor-
mations for reducing the synchronization overhead [Diniz and Rinard 1998; 1997]. As
part of this research, we also developed the different synchronization optimization policies
discussed in this article. Plevyak, Zhang and Chien have developed a similar synchro-
nization optimization technique,access region expansion, for concurrent object-oriented
programs [Plevyak et al. 1995]. Because access region expansion is designed to reduce
the overhead in sequential executions of such programs, it does not address the trade off
between lock overhead and waiting overhead. The goal is simply to minimize the lock
overhead.

Lim and Agarwal [Lim and Agarwal 1994] developed areactivesynchronization mech-
anism for synchronization operations in multiprocessors. The basic idea is to change the
implementation of the locking constructs based on the observed contention. This reactive
synchronization mechanism resembles dynamic feedback in that it uses a dynamic selec-
tion mechanism to optimize the synchronization. A key difference is that a program that
uses reactive synchronization does not change its synchronization granularity. Reactive
synchronization is designed to choose the most efficient implementation for each individ-
ual locking construct given the current amount of contention for the lock. The optimiza-
tions described in this paper, on the other hand, improve the synchronization performance
by eliminating locking constructs. Dynamic feedback mediates the resulting trade-off be-
tween false exclusion and locking overhead.
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8. CONCLUSION

This article presents a technique, dynamic feedback, that enables computations to adapt
dynamically to different execution environments. A compiler that uses dynamic feedback
produces several different versions of the same source code; each version uses a different
optimization policy. Dynamic feedback automatically chooses the most efficient version
by periodically sampling the performance of the different versions.

We have implemented dynamic feedback in the context of a parallelizing compiler
for object-based programs. The generated code uses dynamic feedback to automatically
choose the best synchronization policy. For this particular optimization problem, our ex-
perimental results show that dynamic feedback enables the compiler to automatically gen-
erate code that exhibits performance comparable to that of code that has been manually
tuned to use the best synchronization optimization policy. Issues that must be addressed
when using dynamic feedback for other optimizations include choosing an appropriate
set of optimization policies, finding points in the program where it is safe to switch poli-
cies, determining an appropriate frequency for checking for the expiration of sampling
and production intervals, determining effective sampling and production target intervals,
and deriving a performance metric that allows the system to compare the performance of
different policies when the policies are used for different computations.

As systems become more complex, developers will find it increasingly difficult to stat-
ically choose single policies that give good performance in all situations. The emerging
paradigm of mobile programs highlights the potential difficulties: mobile programs will be
expected to run well on a wide range of systems, many of which will be simply unavail-
able during the development and compilation process. One way to attack this problem is
to use techniques that deliver good performance by dynamically measuring and adapting
to the characteristics of the current environment. Dynamic feedback is an example of such
a technique.
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