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S U M M A R Y

We derive an expression for the error introduced by the second-order accurate temporal finite-

difference (FD) operator, as present in the FD, pseudospectral and spectral element methods for

seismic wave modeling applied to time-invariant media. The ‘time-dispersion’ error speeds up

the signal as a function of frequency and time step only. Time dispersion is thus independent of

the propagation path, medium or spatial modeling error. We derive two transforms to either add

or remove time dispersion from synthetic seismograms after a simulation. The transforms are

compared to previous related work and demonstrated on wave modeling in acoustic as well as

elastic media. In addition, an application to imaging is shown. The transforms enable accurate

computation of synthetic seismograms at reduced cost, benefitting modeling applications in

both exploration and global seismology.
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1 I N T RO D U C T I O N

The understanding of the earth’s subsurface from seismology ob-

servations is increasingly held back more by computing power

rather than available data. In particular, propagating seismic data

through synthetic models dominates the cost of wave equation-

based imaging methods such as reverse time migration (RTM,

Baysal et al. 1983) and full-waveform inversion (Tarantola 1984).

Coarsely discretizing the wavefield typically curbs the modeling

costs, but introduces ‘numerical dispersion’ errors. The numerical

dispersion distorts the modeled wavefield, affecting particularly the

high-frequency content of the data. In practice, thus, only the low-

frequency end of the full data bandwidth can be imaged accurately

at reasonable cost. Breaking the barrier between modeling costs and

accuracy is therefore important for many applications. In particu-

lar, modeling accurate wavefields with coarse discretization would

enable accurate imaging at low cost.

Accurate wavefield modeling implies that no errors arise from

the space and time discretization; a topic that has been addressed

in various ways by researchers in the past. For instance, the spatial

and temporal error may be combined such that they partially cancel

each other (see e.g. Etgen & Brandsberg-Dahl 2009; Wang et al.

2014). The drawback of such approaches is the need for medium-

and simulation-dependent stencils (Stork 2013). Instead, it is also

possible to minimize the spatial and temporal error separately, as

discussed below.

Modeling seismic waves involve the computation of spatial gradi-

ents of the wavefield and of the medium. In exploration seismology,

these spatial gradients are often computed with finite-difference

(FD) approximations. The FD method (Moczo et al. 2014) replaces

derivatives in the wave equation with FD approximations of lim-

ited accuracy. A fine spatial discretization improves the accuracy

of the FD method at significant computing cost. For example, re-

ducing the spacing in 3-D scales to the power four with comput-

ing cost, for equal signal bandwidth. Instead, it is common to use

higher order FD operators to reduce errors, even at a coarse dis-

cretization (see e.g. Song et al. 2013; Liu 2013, 2014; Yao et al.

2016). In the limit of using the entire wavefield to compute deriva-

tives, the pseudospectral (PS) method achieves very high accuracy

(Kosloff & Baysal 1982). Another high-order accurate spatial oper-

ator, derived from the weak formulation of the wave equation, is the

spectral element method (SEM; Tromp et al. 2008). SEM is used in

global seismology to model the phases of seismograms with high

accuracy, but the temporal error remains, and its removal would

greatly benefit seismologists.

Within FD, PS and SEM modeling, the time integration is car-

ried out with explicit time stepping, an FD approximation. Accurate

time stepping is then achieved using short steps in time, often at

large computing cost. Alternatively, higher order Lax–Wendroff

corrections can be used to reduce the errors (e.g. Dablain 1986;

Blanch & Robertsson 1997; Dumbser et al. 2007). Such correction

schemes allow long time steps, although the Courant–Friedrichs–

Lewy (CFL) condition defines an upper time-step limit for stable

simulations. If short time steps are required for a stable simulation,

large temporal errors are naturally prevented. However, temporal er-

rors accumulate and may still become significant for a given mod-

eling purpose, as the errors increase with number of propagated

wavelengths and the associated frequency, which we will further

address in the discussion section (Stork 2013). Additionally, opti-

mized Lax–Wendroff schemes increase the stable time-step upper

limit two- or threefold (Soubaras & Zhang 2008; Chu et al. 2009;

Liu et al. 2014; Amundsen & Pedersen 2017), putting the temporal
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170 E.F.M. Koene et al.

Figure 1. The concept of a time-dispersion filter, cf. Stork (2013), illustrated

in a 1-D homogeneous medium. (a) A simulation is created with a given

source wavelet and time step. (b) In the absence of spatial effects distorting

the wavelet, for example by carrying out a pseudospectral simulation in

a 1-D homogeneous medium, a trace is gained with dispersion due to the

time-stepping error only. (c) A filter bank is created which undoes the time–

frequency-varying phase shift due to the temporal error. The created filter

bank can then also be applied to traces modeled in complex media of higher

dimensions.

error at the forefront again. Stork (2013) took a radically different

approach by suggesting that the temporal error can be filtered from

seismograms at modest additional cost. A 1-D homogeneous exam-

ple to illustrate the concept put forward by Stork is shown in Fig. 1.

The procedure consists of three steps. First, a train of wavelets is

modeled in an arbitrary model (e.g. a homogeneous model) to obtain

a trace which gains temporal errors with increasing time (Fig. 1b).

Second, using a simulation with very small steps in time, or with

the use of the source wavelet itself (both options contain negligible

or no temporal errors), a deconvolution is applied to the dispersed

wavelets to create a ‘bank’ of filters that can remove the temporal

error at various times (Fig. 1c). Finally, the desired wavefield simu-

lation is carried out in the actual seismic domain of interest (which

may be of arbitrarily high complexity and spatial dimension), and

the previously computed filters are applied to remove the temporal

error. Details of this approach can be found in Stork (2013), Li

et al. (2013, 2016), Dai et al. (2014) and Anderson et al. (2015).

A correct implementation of the filter is tedious, requiring many

dispersed wavelets corresponding to the particular time-step char-

acteristics of that simulation, and interpolation to correct wavelets

at intermediate times. A simpler alternative using analytical filters

was proposed by Wang & Xu (2015a,b), and later rederived in Qin

et al. (2017), Mittet (2017) and Xu et al. (2017). The suggested

analytical filters apply an altered discrete Fourier transform to seis-

mograms which eliminates the time-stepping error in one operation,

thus do not require the creation a filter bank ahead of the simulation

or interpolation of the filter operation. However, adding and cor-

respondingly removing the error with the proposed filters does not

reproduce the input signal fully (see Section 2.5 below), suggesting

that the filters are incomplete.

To this date, the time-stepping error has only been derived for

constant-velocity acoustic media, and it has only been conjectured

that the error is independent of the spatial medium (e.g. Stork 2013).

In this paper, we solve these outstanding questions by deriving an

expression for the time-stepping error that is independent of the

spatial medium and we refer to it as ‘time dispersion’. We show that

time dispersion must be added to the injection wavelet, to model

the correct kinematics and to correctly remove time dispersion af-

terwards. We derive a new exact filter pair to add and remove time

dispersion from traces, which is fully invertible. We demonstrate

the proposed method on acoustic and anisotropic elastic media, us-

ing FD, PS and SEM modeling. The results are valid for solving

the second-order wave equation, or the system of first-order partial

differential equations (Virieux 1986). Finally, the method is demon-

strated on a simple RTM example, to show that the results apply to

generic seismic modeling problems.

2 T H E O RY

In a general form, the wave equation can be written as:

∂2u(x, t)

∂t2
= L(x)u(x, t) + f(x, t), (1)

where u(x, t) represents the particle displacement at position x and

time t, L represents the elastic potential term and f the source

function. We assume that the medium is time invariant, but may be

heterogenous and anisotropic. We will discuss the implications of

time dispersion for viscoelasticity in Section 5.2.

2.1 Finite-difference operator

Numerical wave propagation methods such as FD, PS and SEM,

typically compute the second-order time derivative in the wave

equation using an FD approximation. In particular, a second-order

accurate FD operator derived from a Taylor series is often used:

u(t−�t) − 2u(t) + u(t+�t)

�t2
=

∞∑

k=1

�t2(k−1)

1
2
(2k)!

∂2ku(t)

∂t2k
, (2)

where �t denotes the time step. Disregarding O(�t2) and higher

order terms from eq. (2), thus assuming that the operator represents

just the second-order time derivative, introduces a numerical error.

Accurate simulations are typically achieved using short steps in time

or by using higher order time-stepping schemes (Dablain 1986).

Note that, although eq. (2) corresponds to an approximation of a

second-order time derivative, the results described in the following

sections apply equally to a system of first-order partial differential

equations solved with a leap-frog time-stepping scheme (Virieux

1986) as shown in Appendix A. The theory in this paper may also

be used to derive similar correction filters if higher order time-

stepping schemes are used, for example to allow longer steps in time.

Appendix B demonstrates this procedure for a higher order time-

stepping scheme (Soubaras & Zhang 2008; Amundsen & Pedersen

2017).

2.2 Describing time dispersion

Denoting the Fourier transform operator by F[·] and its inverse by

F−1[·], we begin by transforming the right-hand side of eq. (2) to

the frequency domain:

F

[ ∞∑

k=1

�t2(k−1)

1
2
(2k)!

∂2ku(t)

∂t2k

]
= −θ2ω2ũ(ω). (3)
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The right-hand side of eq. (3) corresponds to the second-order time

derivative multiplied with an additional factor θ2 corresponding to

the undesired remaining Taylor expansion terms:

θ 2 =
∞∑

k=1

(−iω�t)2(k−1)

1
2
(2k)!

=1 −
�t2ω2

1
2
4!

+ . . .=

(
sin(ω�t

2
)

1
2
ω�t

)2

. (4)

We insert the second-order accurate FD operator in time in

eq. (1), and find that:

u(x, t−�t)−2u(x, t)+u(x, t+�t)

�t2
≈ L(x)u(x, t)+ f(x,t), (5)

thus represents a modified wave equation, solving exactly:

∂2û(x, t)

∂t2
= F

−1

[
1

θ 2
F [L(x)û(x, t) + f(x, t)]

]
. (6)

The formulation in eq. (6) follows from applying a forward and

inverse Fourier transform on eq. (5), and eliminating θ from the

left-hand side. We explicitly note that û(x, t) is the time-dispersed

solution to the FD system, without specifying anything about the

spatial operator L or its accuracy. Solutions that satisfy the FD

system are closely related to solutions to the wave equation, as is

detailed in the section below. In Appendix C, we present a proof

that the relation holds in the continuous case.

We will show that eq. (6) describes an acceleration of the original

wavefield. Consider first an illustrative example where we substitute

t → 2t in the general wave equation (1):

∂2u(x, 2t)

∂(2t)2
= L(x)u(x, 2t) + f(x, 2t), (7)

∂2u(x, 2t)

∂t2
= 22 (L(x)u(x, 2t) + f(x, 2t)) . (8)

Eq. (8) computes the wavefield u(x, 2t) using the original time

differential ∂t, by multiplying the spatial terms with factor 22. By

analogy, eq. (5) similarly represents an accelerated wavefield if we

denote u(x, t̂) as the accelerated solution and modify the source

function f(x, t) → f(x, t̂):

∂2u(x, t̂)

∂t2
= F

−1

[
1

θ 2
F
[
L(x)u(x, t̂) + f(x, t̂)

]
]
. (9)

Eq. (9) implies that the second-order temporal FD operator solves

an accelerated version of the wave equation perfectly after proper

pre-processing of the source wavelet. Would we use the original

injection wavelet, the accelerated wavefield would correspondingly

contain erroneous wavelengths, changing the kinematic and dy-

namic properties of the simulation. To our knowledge, this impor-

tant observation is absent from previously published literature on

time dispersion.

As an explicit example, consider the heterogeneous acoustic wave

equation:

∂2 p(x, t)

∂t2
= c2(x)ρ(x)∇ · ρ−1(x)∇ p(x, t), (10)

where ∇ represents the spatial derivative operator. Using second-

order differencing in time solves the modified equation:

∂2 p(x, t̂)

∂t2
= F

−1

[
c(x)2

θ 2
F
[
ρ(x)∇ · ρ−1(x)∇ p(x, t̂)

]
]
, (11)

The factor c(x)/θ takes the role of the effective velocity, that is,

higher frequencies propagate faster than lower frequencies. This

Figure 2. The function 1/θ originating from the second-order FD operator

represents a frequency-dependent velocity increase. The horizontal axis

represents the range from 0 frequency up to f = 1/2�t.

effect, caused by the second-order finite differencing in time, is the

time dispersion shown in Fig. 2. Note that Dablain (1986) derived

a similar expression for the time dispersion, assuming a homoge-

nous acoustic medium and using plane-wave theory. However, this

severely restrictive limitation is not required. The theory derived in

this section remains valid for mode conversions, anisotropy or com-

plex medium responses: signals are simply accelerated as a function

of their frequency.

2.3 Time-dispersion transforms

By recognizing time dispersion as an acceleration of the wavefield,

we can consider it as a problem that only affects the time axis. Ac-

celerating the source f(x, t) → f(x, t̂), thus adding time dispersion,

or decelerating a recorded trace u(x, t̂) → u(x, t), thus removing

time dispersion, can therefore be carried out using a filter operating

on a single time-series. Adding dispersion to a signal of frequen-

cies ω0 gives rise to the following spectrum, due to the acceleration

factor 1/θ :

ω =
ω0

θ
. (12)

Note that this relation between the dispersed and original frequen-

cies is independent of the medium. The factor θ only depends on the

time step and frequency of the wavelet, describing time dispersion

with no knowledge of the propagation path, medium, or even spatial

accuracy.

Substituting eq. (4) in eq. (12) provides a relation between the

original and time-dispersed frequencies:

ω0 =
2

�t
sin

(
ω�t

2

)
, (13a)

ω =
2

�t
sin−1

(
ω0�t

2

)
. (13b)

The spectral content of the recorded signal is thus identical to

the correct signal, it is merely recorded at the wrong frequency.

However, we can map the data back to the desired frequency.

We propose a map between the correct and dispersed phase ro-

tations of a recording by inserting eq. (13a) in a forward Fourier

transform. We thus add dispersion to a trace u(t) as follows:

û(t) = F
−1

[∫ ∞

−∞
u(t)e−i2 sin( ω�t

2 ) t
�t dt

]
. (14)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

-a
b
s
tra

c
t/2

1
3
/1

/1
6
9
/4

7
7
5
1
3
0
 b

y
 E

T
H

 Z
ü
ric

h
 u

s
e
r o

n
 2

8
 A

p
ril 2

0
2
0
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Figure 3. Adding and correspondingly removing time dispersion should

return the input data. The filters from Wang & Xu (2015a) do not achieve

this, whereas the filters in this paper do. Wang & Xu (2015a) use for the

FTDT an adjoint version of the ITDT, which is an incorrect filter.

We will refer to this operation as the Forward Time Dispersion

Transform (FTDT).

Eq. (13b) allows us to map a temporally dispersed signal back to

the correct phase rotations, in a similar fashion as the FTDT. We

thus remove time dispersion from trace û(t) as follows:

u(t) = F
−1

[∫ ∞

−∞
û(t)e

−i2 sin−1
(

ω0�t

2

)
t

�t dt

]
. (15)

We will refer to this operation as the Inverse Time Dispersion Trans-

form (ITDT).

2.4 Sampling a dispersed wavefield

As we record the accelerated wavefield on the seismograms, we

must carefully consider the sampling requirements. The Nyquist

frequency fN = 1/(2�t) represents the maximum frequency that

can be recorded without aliasing. Considering a maximum signal

acceleration of π/2 ≈ 1.6 (Fig. 2), we must sample the simulated

field with an increased sampling rate fN, d = π/2 fN = π/(4�t) to

capture signals at their original Nyquist frequency. The support of

the sin −1 function in eq. (13b) coincides exactly with this frequency

range.

2.5 Comparison to filters derived in Wang & Xu (2015a)

While the ITDT, as denoted by eq. (15), is equal to that found in

Wang & Xu (2015a), the FTDT as given in eq. (14) is not. Wang

& Xu (2015a) use for their FTDT, the adjoint of the ITDT as given

in eq. (15). The adjoint of this modified Fourier transform does

not provide a complete inverse, which leads to an incorrect phase

and amplitude response. We demonstrate this from a pure signal-

processing perspective. Applying time dispersion and correspond-

ingly removing it, should return the same data as we merely map

one frequency into another and then reverse the process. In Fig. 3,

the filter pair from Wang & Xu (2015a) has been applied on a Ricker

wavelet. The central frequency is 8 Hz with time step �t = 15 ms.

We note that the filter pair from Wang & Xu (2015a) does not repro-

duce the input wavelet, while the filter pair presented in this paper

does. The effect becomes more notable at higher frequencies.

Figure 4. The proposed workflow to eliminate time dispersion from syn-

thetic seismograms. No changes are required to the standard seismic mod-

eling application. Furthermore, the filters are independent of the medium,

and depend only on the time stepping and frequency of the signals.

2.6 Implementation of time-dispersion filters

Eqs (14) and (15) are discretized for sampled data. We implement

the FTDT using a discrete Fourier transform and a standard inverse

fast Fourier transform (IFFT), for a discrete signal u[n] of N sam-

ples recorded uniformly with a sampling interval �t. The FTDT

becomes:

û[n] = IFFT

⎡
⎣

N−1∑

j=0

u[ j]e
−i2sin

(
π f
N

)
j

⎤
⎦ , f ∈

{
0, ...,

N−1

2

}
. (16)

Similarly for the ITDT, we obtain:

u[n] = IFFT

⎡
⎣

N−1∑

j=0

û[ j]e
−i2sin−1

(
π f
N

)
j

⎤
⎦, f ∈

{
0, ...,

N−1

π

}
. (17)

The frequency vector f is limited to the support of the sin −1 func-

tion, as noted in Section 2.4. Note that discretizing the transforms in

this formation makes the operations independent of �t. We can thus

apply the transforms without any knowledge of simulation param-

eters. We zero-pad the signal to twice the length to avoid adverse

edge effects from the Fourier transforms. A MATLAB implemen-

tation of the proposed FTDT and ITDT is provided with the digital

supplements to this paper.

2.7 Application of time-dispersion filters

Eqs (16) and (17) add and remove time dispersion from signals.

This result holds for any time-invariant medium L(x), spatial er-

ror O(�xn), and is valid for both solving the second-order wave

equation as well as the corresponding system of first-order partial

differential equations (Virieux 1986). To remove time dispersion

from seismic traces, we thus follow the workflow from Fig. 4:

(i) Apply the FTDT to the source function f, as given by eq. (9).

The pre-processing of the wavelet ensures that the kinematics of the

wavefield is retained. From a numerical perspective, it means that

we inject a wavelet with an identical amount of time dispersion as

that accumulating in the wavefield.

(ii) Run the standard seismic wave simulation application and

record traces wherever desired.

(iii) Apply the ITDT to recorded traces after the simulation

is completed. This recovers the original, time-dispersion-free

wavefield.
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Figure 5. Time dispersion owing to the pseudospectral method (blue) com-

pared to the analytical solution (green). The time-dispersion transform work-

flow (Fig. 4) recreates the analytical solution (black dots), while applying the

FTDT to the analytical solution recreates the signal computed with the PS

method (red dots). The maximum difference between the analytical solution

and the computed, corrected recording is on the order of 10−10.

3 E X A M P L E S

In this section, we apply the workflow of Fig. 4 on FD, PS and SEM

modeling results for various dimensions and models. The results are

compared to analytical 1-D solutions, or against simulations using

short steps in time, to show that equivalent accuracy is reached at

reduced cost.

3.1 1-D acoustic examples

We demonstrate the FTDT and ITDT with two simple 1-D examples.

The first is a PS computed solution to the acoustic wave equation,

free of spatial errors. In addition, a staggered second-order spatial

FD operator is used to generate a solution that illustrates that the

transforms are independent of spatial errors. We use a spatial step

of �x = 5 m, a temporal step of �t = 15 ms and a constant

velocity c = 2000 m s−1, with source and receiver separated by

1 km. We inject a Ricker wavelet of 35 Hz central frequency, with

FTDT applied, thus the recorded wavelet has propagated about 20

wavelengths. The code to perform these simulations is provided

with the digital supplements to this paper.

3.1.1 Pseudospectral spatial operator

The PS method is spectrally accurate in space, and thus only accu-

mulates time dispersion. Fig. 5 compares the PS solution with an

analytical solution of the expected wavelet arrival. We observe that

applying the FTDT to the analytical solution reproduces the time-

dispersed solution, with a maximum error on the order of 10−10.

The error is likely a combination of minor artefacts of the discrete

Fourier transform in both the PS spatial operator and in the temporal

dispersion transforms. Conversely, we construct a dispersion-free

recording by applying the ITDT to the PS solution.

3.1.2 Second-order accurate staggered spatial operator

The staggered second-order spatial FD operator introduces spatial

errors in addition to time dispersion. Fig. 6 compares two seismo-

grams using a long and short time step, differing by a factor 10 to

create a ‘course’ and a ‘fine’ simulation in time. It can be concluded

Figure 6. Time dispersion in the second-order accurate spatial FD method

(blue), compared to a short time-step solution (green). The time-dispersion

transform workflow (Fig. 4) recreates the solution from the short time steps

(black dots), while applying the FTDT to the short time-step solution recre-

ates the signal computed with long time steps. All remaining ‘ringing’ from

the spatial errors is left untouched by the transforms.

Figure 7. Elastic model used for the simulation shown in Fig. 8. A verti-

cally transverse isotropy is additionally used, with Thomsen’s parameters

ǫ = δ = 0.1. The source and receiver positions are shown by the red star and

blue triangle, respectively.

that the FTDT and ITDT correctly model and remove time disper-

sion, independent of the spatial errors. We observe that the error

between the two solutions is on the order of 10−3, which predom-

inantly can be explained by remaining time dispersion in the short

time-step solution.
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174 E.F.M. Koene et al.

Figure 8. Snapshots of a 2-D elastic anisotropic simulation with a source at the red star and receiver at the blue triangle. The horizontal particle velocity

recorded at the receiver is shown on the right. The long (�t = 0.32 ms) and short (�t = 0.032 ms) time-step simulations are compared, as well as the solution

after applying the time-dispersion transforms. The solution after applying the time-dispersion transforms matches the short time-step solution for all times.

3.2 2-D elastic examples

3.2.1 2-D anisotropic elastic example using fourth-order

accurate FD

The time-dispersion transforms are not limited or influenced by the

number of spatial dimensions. We demonstrate their performance on

a 2-D elastic anisotropic model, using a staggered grid fourth-order

spatial FD operator, to solve the first-order system of equations

of the wave equation in a leap-frog fashion (Virieux 1986). The

model is shown in Fig. 7, with a vertical transverse isotropy given

by Thomsen’s parameters δ = ǫ = 0.1 (Thomsen 1986). The model

is discretized with �x = �z = 1 m, and an explosion-type Ricker

wavelet of 80 Hz central frequency is used. Fig. 8 shows snapshots

of the wavefield displaying a large variety of different wave types.

As shown on a trace recorded close to the free surface, we fully

recreate the short time-step solution from the coarse simulation.

The difference between the two solutions is small for early arrivals,

but becomes more apparent for later times. The code to perform this

simulation is provided with the digital supplements of this paper.

3.2.2 2-D isotropic elastic example using the spectral

element method

We demonstrate the time-dispersion transforms on the SEM, using

SPECFEM2D with its default isotropic elastic model shown in
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Figure 9. The SPECFEM 2-D (Tromp et al. 2008) default four layer model

as shown with four different colours, with as overlay the used mesh, as well

as the vertical particle displacement at 0.38 s. The receivers are shown in

black along the surface and the blue rhombus represents the trace that is

zoomed-in on in Fig. 10.

Fig. 9 (Tromp et al. 2008). We inject a Ricker wavelet of 25 Hz

central frequency, with FTDT applied. We compare solutions using

a long time step (�t = 1 ms) and a short time step (�t = 0.1 ms).

Fig. 10 shows that applying the ITDT to the long time-step solution

correctly reproduces the solution from the short time step, where

the presence of time dispersion is negligible.

3.3 3-D elastic example using high-order FD

Spatial numerical errors can be limited using a high-order spatial

FD operator. Here, we demonstrate the time-dispersion transforms

for such a case on the 3-D elastic SEG/EAGE overthrust model

(Aminzadeh 1996), shown in Fig. 11. We use a shear wave velocity

of 0.6 times the P-wave velocity and derive the density model

through Gardner’s relation (Gardner et al. 1974). We use a 20

point spatial operator with optimized coefficients (Liu 2014) and

a second-order accurate FD operator in time to solve the system of

first-order equations in the conventional leap-frog fashion (Virieux

1986). We inject a Ricker wavelet of 25 Hz central frequency, with

FTDT applied. Fig. 12 shows that the ITDT applied to a long time-

step seismogram removes time dispersion, thereby reproducing the

short time-step solution where the presence of time dispersion is

negligible.

4 A P P L I C AT I O N T O R E V E R S E T I M E

M I G R AT I O N

RTM recovers subsurface reflectors by evaluating the zero-lag time

correlation between a forward propagated source wavefield and

a time-reversed backpropagated receiver wavefield. The wavefields

accumulate time dispersion in opposing time directions, which blurs

the migration. Stork (2013) notes that this blurring is mitigated by

adding time dispersion to the receiver traces before time reversal –

the time-reversal process removes the added time dispersion as the

simulation runs backwards in time, and as a result the two wavefields

contain equal time dispersion at all times. We will refer to such an

Figure 10. Comparison between the recorded horizontal particle velocity

from a long (�t = 1 ms) and a short (�t = 0.1 ms) time-step 2-D elastic

spectral element simulation using SPECFEM2D (Tromp et al. 2008). The

top panel compares traces from the two simulations, in addition to the ITDT

applied to the long time-step solution. The left bottom panel shows the

difference between the two shot gathers of different time-step lengths. The

right bottom panel shows the difference after applying the ITDT to the long

time-step solution.

RTM as a temporally spectral accurate (TSA) RTM. Effectively, we

pre-process the data by adding time dispersion in accordance with

the modified wave equation (9) that we compute numerically. The

workflow is shown in Fig. 13.

We show a simple example of the TSA RTM in an acoustic case

with a second-order accurate in time and eight-order accurate in

space-staggered FD simulation (Virieux 1986). Our model contains

a shallow as well as a deep box-shaped target (velocity anomalies).

The simplicity of the model makes the size of the errors more vis-

ible, as blurring of phases in complex media is less apparent when

multiple reflectors blur. Fig. 14(a) corresponds to a case where we

inject ‘recorded traces’ (numerical dispersion-free) and a forward

modeled source wavefield (numerically dispersed) in a smooth ve-

locity model, and reverse propagate the two simulations in tandem

to produce an image by cross-correlation of snapshots. The image

of the shallow target is well recovered (due to the short propagation

paths of reflections in the shallow part of the model), but the deep

target is imaged at the incorrect depth and with distorted phases.

In Fig. 14(b), we have injected the time-reversed receiver data after

applying the FTDT. The procedure images both the shallow and

deep targets accurately. This result comes at no extra computing

cost other than pre-processing the recorded traces with the altered

forward Fourier transform and standard inverse (fast) Fourier trans-

form constituting the FTDT. An important consequence is that rel-

atively long time steps may be used in the RTM simulation without

compromising on accuracy.
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Figure 11. The P-wave velocities for the 3-D SEG/EAGE overthrust model

(Aminzadeh 1996), the black lines denote the location of the slices projected

on the 3-D cube. The receivers are denoted with blue (overlapping the black

line), the black rhombus represents the trace that is zoomed-in on Fig. 12,

the source is located at 100 m depth below the black star.

5 D I S C U S S I O N

5.1 Computing cost

The computational cost of computing the response of the wave

equation (1) on a model using for instance an FD or SEM solution

scales proportionally to NxNyNzNt, where Nx, y, z represent the num-

ber of gridpoints in x-, y- and z-directions respectively, and Nt rep-

resents the number of time steps. The time-dispersion transforms,

conversely, apply a discrete Fourier transform and IFFT on M seis-

mograms, which scales with M(N 2
t + Nt log2(Nt )). The computing

cost of the transforms is therefore modest compared to the full sim-

ulation when the number of recorded seismograms M is limited to

a subset of the full grid, that is, M ≪ NxNyNz. The methodology

proposed in this paper enables the use of large steps in time to re-

duce Nt, in contrast to the conventional solution to achieve higher

temporal accuracy by increasing Nt.

The CFL condition defines an upper time-step limit that may be

used. However, we have shown that time dispersion accumulates

with time, and that it distorts the kinematics of the wavefield prop-

agating in the model, particularly at higher frequencies. Therefore,

even with small time-step sizes, the time dispersion may play a sig-

nificant role for long simulations. The conventional CFL limit may

furthermore be increased with the use of higher order time-stepping

schemes (Soubaras & Zhang 2008; Chu et al. 2009; Amundsen &

Pedersen 2017), whose time dispersion can be similarly removed

with the time-dispersion transforms as shown in Appendix B.

As time dispersion accumulates with time, and thus is more severe

for longer simulations, it is difficult to categorically state where and

when its use is advantageous. The most straightforward suggestion

is to always execute simulations at maximum stable �t, using the

FTDT on the source wavelet to ensure correct kinematics of waves

propagating on the model. One may apply the ITDT on a synthetic

Figure 12. Comparison between the recorded horizontal particle velocity

from a long (�t = 1.6 ms) and a short (�t = 0.16 ms) time-step 3-D elastic

FD simulation. The top panel compares traces from the two simulations,

in addition to the ITDT applied to the long time-step solution. The left

bottom panel shows the difference between the two shot gathers of different

time-step lengths, extracted from the full 3-D gather. The right bottom panel

shows the difference after applying the ITDT to the long time-step solution.

seismogram to test if the correction significantly alters the phases

for a given modeling purpose. If the correction is judged to be

significant, one may then apply the ITDT to all traces.

5.2 Viscoelastic media

The derived workflow provides a ‘black box’ method to eliminate

time dispersion without requiring any changes to the seismic model-

ing engine. The method then returns equivalent results regardless of

the chosen time-step length. However, the method does not directly

generalize to viscoelastic media. Consider a model with constant

attenuation, used for a simulation with large time steps compared to

a simulation with small time steps. The wavefield in the coarse sim-

ulation is accelerated with respect to the simulation with the small

time steps. However, both simulations contain identical amounts of

attenuation at any given time. The simulation with large time dis-

persion, thus, attenuates waves at a lower rate along its propagation

path than the simulation with the small time step. The workflow

presented in this paper cannot correct for this reduced amplitude

attenuation effect. We speculate that the solution to this problem

may lie in the use of a frequency-varying attenuation model which

applies a larger than nominal amount of attenuation to higher fre-

quencies. In such a case, the workflow presented in this paper cannot

be used as a ‘black box’ method any longer, and requires modifi-

cation on the side of the modeling engine. The exact form of the
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Figure 13. Workflow to eliminate time dispersion from reverse time mi-

gration. The ITDT and FTDT are each other’s inverse, thus the dispersed

synthetic traces may be used straight as input to the reverse run. Conversely,

the recorded data are pre-processed to prepare it for the reverse-time simu-

lation. Effectively, thus, only two processing steps are required.

Figure 14. Comparing a conventional RTM against a temporally spectral

accurate (TSA) RTM. The boxes in red display the location of the targets

(velocity anomalies). Top: zoom on shallow target. Bottom: zoom on deep

target. (a) Injecting the data without applying dispersion results in a blurred

image of the deep target at incorrect depth. (b) Injecting the data after

applying the FTDT, creates a sharp image of the deep target at the correct

depth. The effect becomes more pronounced at greater depths or longer

propagation paths.

required changes to the attenuation model are the subject of future

research.

Finally, the noted effects of time dispersion on kinematics (larger

than expected wavelengths due to acceleration) and viscoelastic-

ity (less than expected attenuation) are the result of second-order

accurate time stepping, and not of the time-dispersion transforms.

The time-dispersion transforms provide a solution to undo the dis-

torted kinematics of the simulation. The attenuation model will

be distorted regardless, particularly notable when simulating long

time-series with large steps in time.

6 C O N C LU S I O N S

Coarse modeling of the wave equation enables the generation of syn-

thetic seismograms at low computing cost, but may introduce ‘nu-

merical dispersion’ errors that affect particularly the high-frequency

range of the signal bandwidth. In this paper, we showed that the er-

ror introduced by the temporal FD operator, which we refer to as

‘time disperison’, can be analysed separately from that introduced

by the spatial operator. In our paper, we present a novel descrip-

tion of time dispersion which is equally valid for the second-order

system as well as for a first-order system of partial differential equa-

tions solved through a leap-frog time-stepping scheme. The time-

dispersion error is described as an acceleration of the wavefield, as

a function of frequency and the time step only, independent of the

propagation path. We derived two simple transforms that add and

remove time dispersion from time-series, which are both required

to remove the adverse effects of time dispersion from seismic wave

modeling. The two transforms were demonstrated on 1-D, 2-D and

3-D acoustic and elastic examples, showing perfect removal of time

dispersion in FD, PS and SEM modeling. A simple application to

RTM showed how pre-processing the data removes the detrimental

effects of time dispersion in the resulting image.

The time-dispersion transforms have a modest computing cost

compared to the full simulation, when only a limited number of seis-

mograms is required. Furthermore, the time-dispersion transforms

enable the use of as large time steps as possible while honouring

the CFL stability condition. We thus showed that we can model the

wave equation coarsely in time, without the adverse effects of time

dispersion. A note is made that the time-dispersion transforms do

not apply to viscoelastic media without making alterations to the

attenuation model.
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A P P E N D I X A : F I R S T - O R D E R S Y S T E M

O F E Q UAT I O N S

We will first show how the factor θ can be recovered from the

finite-difference operator itself. Note that in general, an nth-order

derivative is written as F [∂nu(t)/∂tn] = (−iω)n ũ(ω). Phase shifts

are denoted as F[u(t + �t)] = e−iω�t ũ(ω). The temporal FD oper-

ator in the Fourier domain is thus:

F

[
u(t−�t)−2u(t)+u(t+�t)

�t2

]
=
(

e−iω�t − 2+eiω�t

�t2

)
ũ(ω),

(A1)

= −
[

2 − 2 cos(ω�t)

�t2

]
ũ(ω),

(A2)

= −

[
sin( ω�t

2
)

1
2
ω�t

]2

ω2ũ(ω), (A3)

= −θ2ω2ũ(ω). (A4)

We note that −ω2 represents the second-order time derivative, and

the additional factor θ2 corresponds to the undesired remaining

Taylor expansion terms.

We use this method to show the equivalence in the first-order

system of equations solved in a leap-frog manner (Virieux 1986):

F

[
u
(
t + �t

2

)
− u

(
t − �t

2

)

�t

]
=
(

e−iω�t/2 − eiω�t/2

�t

)
ũ(ω), (A5)

= −

(
2i sin

(
ω�t

2

)

�t

)
ũ(ω), (A6)

= −

(
sin
(

ω�t

2

)

1
2
ω�t

)
iωũ(ω), (A7)

= −θ iωũ(ω). (A8)

We note that −iω represents the first-order time derivative, and the

additional factor θ corresponds to the undesired remaining Taylor

expansion terms.

The factor θ is identical in both derivations, representing the

same acceleration of the wavefield in every calculation. In other
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words, the time-dispersion error is identical when solving either the

first- or second-order system of equations. The results derived in

this paper apply thus equally to both cases.

A P P E N D I X B : F O U RT H - O R D E R

A C C U R AT E T I M E D I S P E R S I O N

B1 Taylor-series fourth-order accurate scheme

The method developed in this paper may be extended to any or-

der time stepping. We demonstrate this for a fourth-order accurate

scheme in time, where we solve a system based on eq. (2), the Taylor

series of the FD operator:

u(x, t−�t)−2u(x, t)+u(x, t+�t)

�t2
=

∞∑

k=1

�t2(k−1)

1
2
(2k)!

∂2ku(t)

∂t2k
, (B1)

≈

(
L +

�t2 L2

1
2
4!

)
u(x, t).

(B2)

In other words, the Taylor series of the temporal FD operator is trun-

cated, and we substitute spatial operators using the wave equation to

eliminate higher order temporal error terms. For this time-stepping

scheme, we get the following relation between the time-dispersed

(ω) and original frequencies (ω0):

ω =
2

�t
sin−1

⎛
⎜⎜⎝

ω0�t

√
1 − (ω0�t)2

1
2

4!

2

⎞
⎟⎟⎠ . (B3)

The square-root term corresponds to θ from eq. (3), truncated to the

two terms solved in the fourth-order accurate scheme. Kinematically

speaking, the second-order FD operator, that is, left-hand side of eq.

(B2), accelerates the wavefield as discussed in the paper, while the

fourth-order accurate scheme, that is, right-hand side of eq. (B2),

decelerates the original wavefield, leading to a reduced overall time

dispersion. Solving the system for ω0 gives:

ω0 =
1

�t

√
6 −

√
12 + 24 cos(ω�t), (B4)

for ω�t ≤
2π

3
≈ 2.1.

One can substitute identities (B3) and (B4) in the ITDT and FTDT,

replacing eqs (13a) and (13b), to obtain an ITDT and FTDT for the

fourth-order scheme. The ITDT based on eq. (B3) is equal to that

found in Wang & Xu (2015a,b), who do not report the limitation

ω�t ≤ 2.1, which may cause unintended leaking of low frequencies

into the higher signal spectrum.

B2 Optimized-series fourth-order accurate scheme

The advantage of a fourth-order accurate scheme in time is reduced

time dispersion and a larger CFL condition. The Taylor series in

eq. (B1) may be replaced with a more efficient series expansion that

achieves an even larger CFL condition, at the cost of accumulating

more time dispersion. Soubaras & Zhang (2008) and Amundsen &

Pedersen (2017) describe such a procedure that achieves twice the

CFL condition using the following series expansion:

u(x, t−�t)−2u(x, t)+u(x, t+�t)

�t2
≈
(

L +
�t2 L2

16

)
u(x, t).

(B5)

Figure A1. Recording due to a pseudospectral, modified fourth-order ac-

curate in time scheme, eq. (B5) (blue), and the derived FTDT and ITDT

identities of eq. (B6) restore the original input Ricker wavelet (red).

Comparing eqs (B5) with (B2), we observe that the single difference

between the two schemes is the factor 16. For this scheme, we may

similarly propose the FTDT and ITDT, using identities:

ω =
2

�t
sin−1

⎛
⎝ω0�t

√
1 − (ω0�t)2

16

2

⎞
⎠ , (B6a)

ω0 =
4

�t
sin

(
ω�t

4

)
. (B6b)

Note that eq. (B6a) is valid for ω0�t ≤ 4 sin(π/4) = 2
√

2 ≈ 2.8,

related to the Nyquist sampling explained in Section 2.4. We show

a simple example, using the pseudospectral method. The standard

CFL limit is 2/π , whereas this fourth-order scheme allows stable

computations using a CFL limit of 4/π . Fig. A1 shows a recording

of a 25 Hz central frequency Ricker wavelet, using the same model

as in the 1-D examples in this paper: �x = 5 m, c = 2000 m s−1 and

the distance between source and receiver is 1 km, but we use time

steps at double the CFL limit of 1.2. As the PS method is spectrally

accurate in space, only time dispersion accumulates. Using the pro-

posed time-dispersion workflow proposed in this paper, we recover

the Ricker wavelet without dispersion.

A P P E N D I X C : C O R R E S P O N D E N C E

B E T W E E N S O LU T I O N S S AT I S F Y I N G

T H E F I N I T E - D I F F E R E N C E S Y S T E M

A N D T H E WAV E E Q UAT I O N

In this section, we will show the relation between continuous so-

lutions satisfying the wave equation and those satisfying the finite-

difference (FD) system.

Let u be a solution to the wave equation:

Au(x, t)
def=
(

∂2

∂t2
− L

)
u(x, t) = f (x, t), (C1)

where t > 0 denotes time, x ∈ R
d , f describes the source term and

L is a spatial operator independent of time. Now consider a related

solution v to the FD system:

Av(x, t)
def= (D − L)v(x, t) = g(x, t), (C2)

where Dv(x, t) =
∑

n cnv(x, t − n�t), with coefficients cn chosen

such that D approximates the second-order time derivative. We will

show that we can write v(x, t) as a function of u(x, t), to give a relation
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between solutions satisfying the FD system and those satisfying the

wave equation.

Applying a Fourier transform to eq. (C2) yields:

∫ ∞

−∞
Av(x, t)e−iωt dt =

(∑

n

cneiω�tn − L

)
v̂(x, ω), (C3)

=
(
−ω2θ 2 − L

)
v̂(x, ω), (C4)

using:

θ (ω) =

√∑
n cneiω�tn

−ω2
, (C5)

where it is assumed that �t is small enough such that the quantity

in the square root is positive.1

Now try as ansatz the following relation between the solution v

of the FD system and u of the actual wave equation:

v(x, t) =
1

2π

∫ ∞

−∞
û(x, ωθ )eiωt dω, (C7)

with Fourier transform:

1Choosing coefficients c−1 = c1 = 1/�t2 and c0 = −2/�t2, and

c∀|j| > 1 = 0 for the second-order accurate FD operator:

θ2nd(ω) =
√

2 − 2 cos(ω�t)

ω2�t2
=

sin( 1
2
ω�t)

1
2
ω�t

. (C6)

v̂(x, ω) = û(x, ωθ ). (C8)

Continuing eq. (C4):
∫ ∞

−∞
Av(x, t)e−iωt dt = (−ω2θ 2 − L)̂v(x, ω), (C9)

=
(
−ω2θ 2 − L

)
û(x, ωθ ), (C10)

= f̂ (x, ωθ ). (C11)

The last step is due to the definition that eq. (C10) is a solution to

the wave equation (C1). Thus, if f and L are regular enough such

that the Fourier transform u is well defined, we can use definitions:

v(x, t) =
1

2π

∫ ∞

−∞
û(x, ωθ )eiωt dω, (C12)

and

g(x, t) =
1

2π

∫ ∞

−∞
f̂ (x, ωθ )eiωt dω, (C13)

that satisfy the FD system for all t:

Av(x, t) = g(x, t). (C14)

The solution in the FD system can thus be written as phase-shifted

solutions to the true wave equation, independent of the spatial loca-

tion x or the exact form of operator L. Numerically solving the FD

system may cause aliasing, in which case this continuous relation

does not hold for the discrete situation.
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