
Eliminating trapping sets in low-density parity-
check codes by using Tanner graph covers

Item Type Article

Authors Ivkovic, Milos; Chilappagari, Shashi Kiran; Vasic, Bane

Citation M. Ivkovic, S. K. Chilappagari and B. Vasic, "Eliminating trapping
sets in low-density parity-check codes by using Tanner graph
covers," in IEEE Transactions on Information Theory, vol. 54, no.
8, pp. 3763-3768, Aug. 2008, doi: 10.1109/TIT.2008.926319.

DOI 10.1109/tit.2008.926319

Publisher IEEE

Journal IEEE Transactions on Information Theory

Rights Copyright © 2008 IEEE.

Download date 23/08/2022 07:31:27

Item License http://rightsstatements.org/vocab/InC/1.0/

Version Final accepted manuscript

Link to Item http://hdl.handle.net/10150/641961

http://dx.doi.org/10.1109/tit.2008.926319
http://rightsstatements.org/vocab/InC/1.0/
http://hdl.handle.net/10150/641961

Eliminating Trapping Sets in Low-Density Parity-Check

Codes by Using Tanner Graph Covers

Milos̆ Ivković, Member, IEEE,

Shashi Kiran Chilappagari, Student Member, IEEE,

and Bane Vasić, Senior Member, IEEE

Abstract—We discuss error floor asympotics and present a method for
improving the performance of low-density parity-check (LDPC) codes in
the high SNR (error floor) region. The method is based on Tanner graph

covers that do not have trapping sets from the original code. The advan-
tages of the method are that it is universal, as it can be applied to any

LDPC code/channel/decoding algorithm and it improves performance at
the expense of increasing the code length, without losing the code regu-

larity, without changing the decoding algorithm, and, under certain condi-
tions, without lowering the code rate. The proposed method can be modified

to construct convolutional LDPC codes also. The method is illustrated by
modifying Tanner, MacKay and Margulis codes to improve performance on
the binary symmetric channel (BSC) under the Gallager B decoding algo-

rithm. Decoding results on AWGN channel are also presented to illustrate
that optimizing codes for one channel/decoding algorithm can lead to per-

formance improvement on other channels.

Index Terms—Convolutional low-density parity-codes (LDPC) codes,

error floor, Gallager B, low-density parity codes (LDPC) codes, min-sum
decoding algorithm, Tanner code, trapping sets.

I. INTRODUCTION

The error-floor problem is arguably the most important problem

in the theory of low-density parity-check (LDPC) codes and iterative

decoding algorithms. Roughly, error floor is an abrupt change in the

frame error rate (FER) performance of an iterative decoder in the high

signal-to-noise ratio (SNR) region (see [9] for more details and [1],

[2], [3] for general theory of LDPC codes).

The error floor problem for iterative decoding on the binary erasure

channel (BEC) is now well understood, see [7], [8] and the references

therein.

In the case of the additive white Gaussian noise (AWGN) channel,

MacKay and Postol in [4] pointed out a weakness in the construction

of the Margulis code [22] which led to high error floors. Richardson

[9] presented a method to estimate error floors of LDPC codes and pre-

sented results on the AWGN channel. He pointed out that the decoder

performance is governed by a small number of likely error events re-

lated to certain topological structures in the Tanner graph of the code,

called trapping sets (or stopping sets on BEC [7]).1 The approach from

[9] was further refined by Stepanov et al. in [10]. Zhang et al. [11]

presented similar results based on hardware decoder implementation.

Manuscript received August 21, 2007; revised April 25, 2008. This work was
supported by grants from INSIC-EHDR and NSF-CCR (Grant 0634969). The
material in this correspondence was presented at the 2007 IEEE International
Symposium on Information Theory, Nice, France, June 2007.

M. Ivković is with the Department of Mathematics, University of Arizona
Tucson, AZ 85721 USA, (e-mail: milos@math.arizona.edu).

S. K. Chilappagari and B. Vasić are with the Department of Electrical and
Computer Engineering, University of Arizona, Tucson, AZ 85721 USA (e-mail:
shashic@ece.arizona.edu; vasic@ece.arizona.edu).

Communicated by H.-A. Loeliger, Associate Editor for Coding Techniques.
Color versions of Figures 4–7 are available online at http://ieeexplore.ieee.

org.

1The necessary definitions will be given in the next section.

Vontobel and Koetter [12] established a theoretical framework for finite

length analysis of message passing iterative decoding based on graph

covers. This approach was used by Smarandache et al. in [13] to ana-

lyze the performance of LDPC codes from projective geometries [13]

and for LDPC convolutional codes [14].

An early account on the most likely error events on the binary

symmetric channel (BSC) for codes which Tanner graphs have cycles

is given by Forney et al. in [16]. Some results on LDPC codes over

the BSC appear in [13], as well. A significant part of the research

on error floor analysis has also focused on methods for lowering the

error floor. The two distinct approaches taken to tackle this problem

are (1) modifying the decoding algorithm and (2) constructing codes

avoiding certain topological structures. Numerous modifications of

the sum-product decoding algorithm were proposed, see, for example,

[18] and [19], among others.

Among the methods from the second group, there have been novel

constructions of codes with high Tanner graph girth [21], [6], as it was

observed that codes with low girth tend to have high error floors. While

it is true that known trapping sets have short cycles [10], [17], the ex-

ample of projective geometry codes, that have short cycles, but perform

well under (hard decision) iterative decoding, suggests that maximizing

the girth is not the optimal procedure. As the understanding of the error

floor phenomena and its connection with trapping sets grows, avoiding

the trapping sets directly (rather than short cycles) seems to be a more

efficient way (in terms of code rate and decoding complexity), to sup-

press error floors.

Code modification for improving the performance on the binary era-

sure channel (BEC) was studied by Wang in [20]. To the best of our

knowledge, it is the first paper on code modification with maximizing

the size of stopping (or trapping) sets as the objective. Edge swapping

within the code was suggested as a way to break the stopping sets. The

method that we propose is similar. Roughly speaking, it consists of

taking two (or more) copies of the same code and swapping edges be-

tween the code copies in such a way that the most dominant trapping

sets are broken. It is also similar to the code constructions that appear

in Smarandache et al. [14], Thorpe [24], Divsalar and Jones [25] and

Kelley, Sridhara, and Rosenthal [26].

The advantages of the method are a) it is universal as it can be ap-

plied to any code/channel model/decoding algorithm and b) it improves

performance at the expense of increasing the code length only, without

losing the code regularity, without changing the decoding algorithm,

and, under certain conditions, without lowering the code rate. If the

length of the code is fixed to n, the method can be applied by taking

t copies of a (good) code C of length n=t and eliminating the most

dominant trapping sets of C . The method can be slightly modified to

construct convolutional LDPC codes as well. The details are given in

Section III.

We apply our method and construct codes based on Margulis [22],

Tanner [21], and MacKay [23] codes and present results on the BSC

when decoded using the Gallager B algorithm [1]. It is worth noting that

the error floor on the AWGN channel depends not only on the structure

of the code but also on implementation nuances of the decoding algo-

rithm, such as numerical precision of messages [9]. Since the Gallager

B algorithm operates by passing binary messages along the edges of a

graph, any concern about the numerical precision of messages does not

arise.

The rest of the paper is organized as follows. In Section II we intro-

duce the notion of trapping sets and their relation to the performance

Fig. 1. Trapping sets: (a) (5; 3) and (b) (4; 4).

of the code. We explain the proposed method in Section III. We present

numerical results in Section IV and conclude in Section V.

II. BASIC CONCEPTS

The Tanner graph of an LDPC code, G, is a bipartite graph with two

sets of nodes: variable (bit) nodes and check (constraint) nodes. The

nodes connected to a certain node are referred to as its neighbors. The

degree of a node is the number of its neighbors. The girth g is the length

of the shortest cycle in G. In this paper, � represents a variable node,

represents an even degree check node and represents an odd degree

check node.

The notion of trapping sets was first introduced in [4], but here we

follow the formalism from [19].

Definition 1: For a given m � n matrix U = (Ui;j) with 1 �
i � m; 1 � j � n; the projection of a set of h columns indexed by

j1; j2; . . . ; jh is an m � h matrix consisting of the elements ui;j ; 1 �
i � m; j = j1; j2; . . . ; jh.

Definition 2: Let H be a parity-check matrix of an LDPC code. An

(a; b) trapping set is a set of a columns of H with a projection that

contains b > 0 odd weight rows.

The definition of the trapping set above is purely topological, that is,

a trapping set can be seen as a subgraph of the Tanner graph. In other

words, an (a; b) trapping set T is a subgraph with a variable nodes and

b odd degree checks. The most probable noise realizations that lead to

decoding failure are related to trapping sets ([9], [10]). A measure of

noise realization probability is referred to as pseudo-weight. Following

the terminology in [10], an instanton can be defined as the most likely

noise realization that leads to decoding failure.

The instantons on the BSC consist of the received bit configurations

with minimal number of erroneous bits that lead to decoding failure.

Following [17], the notion specific to BSC, analogous to pseudoweight,

can be defined as follows.

Definition 3: The minimal number of variable nodes that have to be

initially in error for the decoder to end up in the trapping set will be

referred to as the critical number k for that trapping set.

Remark: To “end up” in a trapping set means that, after a finite

number of iterations, the decoder will be in error, on at least one vari-

able node from , at every iteration. Note that the variable nodes that

are initially in error do not have to be within the trapping set.

We illustrate the above concepts with an example.

Example 1: The (5; 3) trapping set in Fig. 1(a). appears (among

other codes) in the Tanner (155;64) code [17] (see also the examples

of irreducible closed walks in the [5, Ch. 6.1]). This trapping set has

critical number k = 3 under the Gallager B decoding algorithm (for

the definition of the algorithm see [2]), meaning that, if three variable

nodes, on the diagonal from bottom left to top right, are initially in

error, the decoder will fail to correct the errors.

Fig. 1(b) illustrates a (4; 4) trapping set. This trapping set, although

smaller, has critical number k = 4; (all the variable nodes have to be in

error initially for the decoder to fail). So, if a code has both (5; 3) and

(4; 4) trapping sets, the FER performance is dominated by the (5; 3)
trapping set.

At the end of this example, we note that the (5; 3) trapping set above

is an example of an oscillatory trapping set, i.e., if three variable nodes

on the diagonal are initially in error, after the first iteration those three

nodes will be decoded correctly, but the remaining two will be in error.

In the decoding attempt after the second iteration those two will be

correct, but the initial three will be in error again, and so on.

Remark: Note that on the BEC the critical number is just the size of

the stopping set, see [20].

We now clarify what “the most dominant trapping sets” means and

how these effect code performance.

Let � be the transition probability of the BSC and ck be the number

of configurations of received bits for which k channel errors lead to a

codeword (frame) error. The frame error rate (FER) is given by

FER(�) =

n

k=i

ck�
k(1� �)(n�k)

where i is the minimal number of channel errors that can lead to a

decoding error (size of instantons) and n is the length of the code.

On a semilog scale the FER is given by the expression

log(FER(�))

= log

n

k=i

ck�
k(1� �)n�k (1)

= log(ci) + i log(�) + log((1� �)n�i) (2)

+ log 1 +
ci+1

ci
�(1� �)�1 + . . .

+
cn

ci
�
n�i(1� �)i�n (3)

In the limit � ! 0 we note that

lim
�!0

log((1� �)n�i) = 0

and

lim
�!0

log 1 +
ci+1

ci
�(1� �)�1 . . .

+
cn

ci
�
n�i(1� �)i�n = 0

So, the behavior of the FER curve for small � is dominated by

log(FER(�)) � log(ci) + i log(�)

The log(FER) vs log(�) graph is close to a straight line with slope

equal to i -the minimal critical number or cardinality of the instantons.

Therefore, if two codes C1 and C2 have instanton sizes i1 and i2;

such that i1 < i2; then the code C2 will perform better than C1 for

small enough �, independent of the number of instantons, just because

log(�) ! �1 as � ! 0. Note also that the critical number of the

most dominant trapping sets cannot be greater than half the minimum

distance. If it is the case, the performance of the decoder is dominated

by the minimum weight codewords.

III. THE METHOD FOR ELIMINATING TRAPPING SETS

In this section we present a method to construct an LDPC code C(2)

of length 2n from a given codeC of lengthn and discuss a modification

of the method that gives a convolutional LDPC code based on C .

Fig. 2. Trapping set elimination.

Let H and H(2) represent the parity-check matrices of C and C(2),

respectively. H(2) is initialized to

H
(2) =

H 0

0 H

. Stated simply, H(2) is formed by taking two copies of H say C1 and

C2. It can be seen that if H has dimensions m � n, then H(2) has

dimensions 2m � 2n. Every edge e in the Tanner graph G of C is

associated with a nonzero entry Ht;k . The operation of changing the

value of H
(2)
t;k and H

(2)
m+t;n+k to “0”, and H

(2)
m+t;kandH

(2)
m;n+k to “1”

is termed as swapping the edge e. Fig. 2 illustrates edge swapping in

two copies of a (5; 3) trapping set. We assume that the most dominant

trapping sets for C are known. The method can be described in the

following steps.

Algorithm:

1) Take two copies C1 and C2 of the same code. Since the

codes are identical they have the same trapping sets. Initialize

SwappedEdges = �;FrozenEdges = �;

2) Order the trapping sets by their critical numbers.

3) Choose a trapping set in the Tanner graph of C1; with

minimal critical number. Let E denote the set of all edges

in . If (E \SwappedEdges 6= �) goto 5). Else goto 4).

4) Swap an arbitrarily chosen edge e 2 E n FrozenEdges
(if it exists). Set SwappedEdges = SwappedEdges[e.

5) “Freeze” the edges E from so that they

cannot be swapped in the following steps. Set

FrozenEdges = FrozenEdges [E .

6) Repeat steps 2) to 4) until it is possible to remove the trapping

sets of the desired size.

Step 5) is needed because swapping additional edges from the

(former) trapping sets might introduce trapping sets with a same

critical number again. Fig. 3 illustrates such a swapping which corre-

sponds to just interchanging the check nodes.

The Tanner graph of the newly made code is a special double cover

of the original code’s Tanner graph, interested readers are referred to

[12].

Remark: There are several approaches which may improve the effi-

ciency of the algorithm. First, instead of swapping the edges at random

at step 3), edges could be swapped based on the number of trapping

sets they participate in, or by using some other schedule that would (po-

tentially) lead to the highest number of trapping sets eliminated. The

structure of the code can also be exploited. For example, the Margulis

(2640; 1320) code [22], has 1320(4;4) minimal trapping sets with the

Fig. 3. Reintroducing trapping set by swapping two edges.

property that each trapping set has one edge that does not participate

in any other minimal trapping set. So, instead of swapping edges at

random, the edges appearing in only one trapping set can be swapped,

and such a procedure is guaranteed to eliminate all the minimal trap-

ping sets. Also, there is a possibility not to freeze all the edges from the

(former) trapping sets, but only those that would, if swapped, introduce

the trapping sets with the same critical number.

Note, however, that any edge swapping schedule can be seen as a

particular realization of the random edge swapping. For all the codes

that we considered, all trapping sets with minimal critical number were

eliminated by the algorithm with random edge swapping.

The following theorem shows how this method affects the code rate.

Theorem 1: If the code C , with parity-check matrix H , and rate r

(and length n) is used in the algorithm above, the resulting code C(2)

will have rate r(2) (and length 2n), such that r(2) � r.

Proof: Each edge swapping operation in the algorithm can be

seen as matrix modification. At the end of the algorithm, code C(2)

is determined by

H
(2) =

H 0 B

B H 0

where H 0 and B are matrices such that H 0 + B = H , and H 0

t;k (or

Bt;k) can be equal to “1” only if Ht;k = 1.

If the second block row is added to the first in H(2), and then the the

first block column is added to the second, we end up with

H 0 B

B H 0
!

H H

B H 0
!

H 0

B H
: (4)

The last matrix in (4) has rank which is greater than or equal to twice

the rank of H . Therefore, the code C(2) has rate r(2) � r where r is

the rate of C .

Note, that r(2) = r if B = CH+HD, for some matrices C andD,

so that CH corresponds to linear combinations of rows of H and HD

corresponds to linear combinations of columns of H . We also have a

following corollary.

Corollary 1: If the matrix H has full rank, then r(2) = r.

Proof: This follows from the fact that if H has full rank, then the

last matrix in (4) has full rank also.

At the end of this section, we briefly discuss the minimal distance of

the modified code.

Theorem 2: If the code C has minimal distance dmin, the modified

code C(2), will have the minimal distance d
(2)
min, such that, 2dmin �

d
(2)
min � dmin.

Proof: We first prove that d
(2)
min � dmin. Suppose that the min-

imal weight codeword of C(2) is c(2), where c(2) is a column vector

consisting of two vectors c1 and c2 of length n. Then H(2)c(2) = 0 is

equivalent to

H 0 B

B H 0

c1

c2
=

H 0c1 +Bc2

Bc1 +H 0c2
= 0 (5)

Note that c1+c2 = c is a column vector of length n, with Hamming

weight wh(c) � wh(c
(2)), where wh(c

(2)) is the Hamming weight of

the c(2). Now

Hc = (H 0 +B)(c1 + c2)

= H
0

c1 +Bc1 +H
0

c2 +Bc2 = 0 (6)

because the last expression in (6) is equal to the sum of entries of the

last column vector in (5). So, c is a codeword of C .

If c 6= 0, from wh(c) � wh(c
(2)) it follows that d

(2)
min � dmin. If

c = 0 then c1 = c2, and from (5) follows that Hc1 = 0, so c1 is a

codeword of C and again d
(2)
min � dmin.

The proof that 2dmin � d
(2)
min is similar. If we assume that c1 is a

minimal weight codeword of C , we have

H 0 B

B H 0

c1

c1
= 0 (7)

so 2dmin � d
(2)
min.

We finish this proof by mentioning that it is not difficult to construct

examples where 2dmin = d
(2)
min or d

(2)
min = dmin, so the statement of

the theorem is “sharp”.

We described the algorithm in its basic form. H(2) can be initial-

ized by interleaving the copies C1 and C2 in an arbitrary order, but we

choose concatenation to keep the notation simple. The method, as well

as all the proofs, will hold for any interleaving. It is also possible to

consider more than two copies of the code to further eliminate trapping

sets with higher critical number.

The splitting of parity-check matrix H into H 0 and B can be seen

as a way to construct convolutional LDPC codes, that is, as a way to

unwrap the original LDPC code C . For details on unwrapping see [15]

and the references therein. The (infinite) parity-check matrix can be can

be constructed as

Hconv =

H 0

B H 0

B H 0

B
. . .
. . .

: (8)

Note that by construction the resulting convolutional code has pseu-

docodewords with higher pseudoweights than original LDPC code. In

this light, Theorem 2 can be seen as a generalization of [14, Lemma

2.4]. We refer readers interested in convolutional LDPC codes to that

paper.

IV. NUMERICAL RESULTS

In this section, we illustrate the proposed method by modifying the

Margulis [22], Tanner [21] and MacKay [23] codes to eliminate trap-

ping sets under the Gallager B decoding algorithm. We use the trapping

sets reported in [17].

Example 2 (Margulis (2640; 1320) Code): The parity check of this

matrix has full rank, so the modified code is an (5280; 2640) code, and

has the same rate as the original code, i.e., r(2) = r = 0:5.

Fig. 4. Margulis code performance.

Fig. 5. Tanner code performance for a longer range of �.

Fig. 6. MacKay’s codes performance.

This code has 1320 (4; 4) trapping sets with critical number 4 as the

most dominant ones. The modified (5280;2640) code has no (4; 4)
trapping sets and the performance is governed by (5; 5) trapping sets

(ten cycles), that have critical number k = 5, Fig. 4.

Fig. 7. FER performance under min-sum decoding: (a) log (FER) versus SNR
in dB and (b) log(FER) versus SNR as (not in dB).

Example 3 (Tanner (155, 64) Code): This code has (5,3) trapping

sets (Fig. 1(a)) with critical number i = 3 as the most dominant ones.

There are 155 such trapping sets [17], [21]. In this case we used a

version of the method in which it is possible to swap edges from the

(former) trapping sets, if no trapping set of the same or smaller critical

number is introduced. The result was a (310; 126) code for which the

minimal trapping sets are type (4; 4) (eight cycles) with critical number

k = 4 (see Fig. 1(b)). This was confirmed by numerical simulations in

Fig. 5. The FER curve changes the slope, for higher �, where FER con-

tribution from the expression (3) is not negligible. Note that there was a

small rate penalty to this procedure. The original Tanner code has rate

0:4129, whereas the modified code has rate 0:4065.

Example 4: (MacKay’s (1008, 504) codes) This is an example of

how the method can be used to produce better codes of a fixed length.

We have taken a 504 length MacKay code and constructed a 1008 (2 �

504) length code. The new code performs better than MacKay codes

of length 1008.

Both original 504 and 1008 length codes have two types of trapping

sets with critical number k = 3, (5; 3), and (3; 3) (six cycles). We ran

the algorithm so that all (3; 3) trapping sets are eliminated from the

newly constructed, but none of the (5; 3) trapping sets. The results are

shown in Fig. 6. It can be seen that, although the FER performance is

improved, the slope of the FER curve is approximately the same.2

Example 5: (AWGN channel) This example illustrates two points.

First is that optimizing code for one decoding algorithm can lead to

performance improvement for other decoding algorithms. The second

point is that the use of an appropriate axis scaling can greatly help in

error floor analysis and code performance prediction.

We present FER results over AWGN channel and min-sum algorithm

after 500 iterations for three codes, the original Tanner (155;64) code,

our modified Tanner (310;126) from the Example 3 and a random

(310;127) code with column weight 3 and row weight 5.

In the low SNR region, where all kinds of error events are likely, the

length (and rate) of a code govern the performance. In this region codes

of length 310 have similar performance. For high SNRs, however, code

optimization in terms of trapping sets becomes important and random

code performance becomes much worse than performance of the mod-

ified Tanner (310, 126) code. Notice a pronounced error floor for the

random code.

What is even more illustrative is Fig. 7(b) where we plot log(FER)
versus SNR (not in dB) on the x-axis. This is because for high SNRs

on the AWGN channel, similarly to (3), FER / exp(�!in � SNR=2),
where din is pseudoweight of the most likely error event. So on the

graph with SNR on the x-axis which is not in decibels, log(FER) curve

will approach (from above) a straight line with slope equal to �!in=2
as SNR!1. See [5] and [12] for further details. Using these obser-

vations and numerical results obtained by simulations we can estimate

that our modified code has the slope approximately equal to 20, better

than the original Tanner (155;64) code with the slope of � 14.3 Fur-

ther more, considering that the slope for the random code is � 12,

we can claim that, for SNR values higher than those on the plots, the

Tanner code will perform better than the random code.

V. CONCLUSION

The proposed method allows the construction of codes with good

FER performance, but low row/column weight (as opposed to projec-

tive geometry codes) and therefore relatively low decoding complexity.

Although numerical results for the Gallager B decoder are presented,

we reiterate that the method can be used for code optimization based on

the trapping sets of an arbitrary decoder. The algorithm can also be used

to determine the pseudoweight spectrum of a code as follows. Once the

most likely trapping sets (those with the smallest pseudoweight) are de-

termined and eliminated by the method, the numerically obtained de-

coding performance of a modified code, i.e., the slope of the FER curve

with appropriate axis, gives an estimate of the pseudoweight of the next

most likely trapping sets—just as it was done in the Example 5 with the

Tanner code and the modified Tanner code.

ACKNOWLEDGMENT

The authors would like to acknowledge valuable discussions with

Robert Indik, Misha Stepanov, and Clifton Williamson.

2It is possible that a more sophisticated algorithm would also eliminate the
(5; 3) trapping sets. However, our goal with this example was to show the perfor-
mance when some, but not all, of the trapping sets with minimal critical number
are eliminated.

3The estimate for the Tanner code is in accordance with the pseudoweight of
the single most likely error event of � 12:45 reported in [10].

REFERENCES

[1] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA:
MIT Press, 1963.

[2] T. J. Richardson and R. Urbanke, “The capacity of low-density
parity-check codes under message-passing algorithm,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[3] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity ap-
proaching irregular low-density parity-check codes,” IEEE Trans. Inf.
Theory, vol. 47, pp. 619–637, 2001.

[4] D. MacKay and M. Postol, “Weaknesses of margulis and ramanujan-
margulis low-density parity check codes,” Electron. Notes Theoret.
Comput. Sci., vol. 74, 2003.

[5] N. Wiberg, “Codes and Decoding on General Graphs,” Ph.D. disserta-
tion, Linköping University, Linköping, Sweden, 1996.

[6] J. K. Moura, J. Lu, and H. Zhang, “Structured LDPC codes with large
girth,” IEEE Signal Proc. Mag., vol. 21, no. 1, pp. 42–55, Jan. 2004.

[7] C. Di et al., “Finite length analysis of low-density parity-check codes
on the binary erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6,
pp. 1570–1579, Jun. 2002.

[8] C. Wang, S. R. Kulkarni, and H. V. Poor, “Upper bounding the per-
formance of arbitrary finite ldpc codes on binary erasure channels,” in
Proc. Int. Symp. Inf. Theory, Seattle, WA, USA, Jul. 9–14, 2006.

[9] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annu.
Allerton Conf. Commun., Contr. Comput., 2003.

[10] M. Stepanov and M. Chertkov, “Instanton analysis of low-density
parity-check codes in the error-floor regime,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Seattle, WA, Jul. 9–14, 2006.

[11] Z. Zhang, L. Dolecek, B. Nikolić, V. Anantharam, and M. Wain-
wright, “Investigation of Error Floors of Structured Low- Density
Parity-Check Codes by Hardware Emulation,” presented at the Proc.
IEEE GLOBECOM, San Francisco, CA, 2006.

[12] P. O. Vontobel and R. Koetter, Graph-Cover Decoding and Fi-
nite-Length Analysis of Message-Passing Iterative Decoding of Ldpc
Codes [Online]. Available: http://www.arxiv.org/

[13] R. Smarandache and P. O. Vontobel, Pseudo-Codeword Analysis of
Tanner Graphs from Projective and Euclidean Planes [Online]. Avail-
able: http://arxiv.org/

[14] R. Smarandache, A. E. Pusane, P. O. Vontobel, D. J. Costello, and
Jr., Pseudo-Codeword Performance Analysis for LDPC Convolutional
Codes [Online]. Available: http://arxiv.org/

[15] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello Jr.,
“On deriving good LDPC convolutional codes from OC LDPC Block
Codes,” in Proc. IEEE Int. Symp. Inf. Theory, Nice, France, Jun. 24–29,
2007, pp. 1221–1225.

[16] G. D. Forney, Jr., R. Koetter, F. R. Kschischang, and A. Reznik, “On
the effective weights of pseudocodewords for codes defined on graphs
with cycles,” in Codes, Systems, and Graphical Models, B. Marcus and
J. Rosenthal, Eds. New York: Springer Verlag, 2001, pp. 101–112.

[17] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error Floors
of LDPC Codes on the Binary Symmetric Channel,” presented at the
Proc. Int. Conf. Commun., ICC 2006, Istanbul, Turkey, Jun. 2006.

[18] N. Varnica and M. Fossorier, “Improvements in belief-propagation de-
coding based on averaging information from decoder and correction of
clusters of nodes,” IEEE Communications Letters, vol. 10, no. 12, pp.
846–848, Dec. 2006.

[19] S. Laendner, T. Hehn, O. Milenković, and J. Huber, “When does one
redundant parity-check equation matter?,” presented at the Proc. IEEE
GLOBECOM, San Francisco, CA, 2006.

[20] C. Wang, “Code annealing and the suppressing effect of the cyclically
lifted LDPC code ensemble,” presented at the 2006 IEEE Information
Theory Workshop, Chengdu, China, Oct. 22–26, 2006, unpublished.

[21] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of Group-Structured
LDPC codes,” Proc. ISCTA, 2001.

[22] J. Rosenthal and P. O. Vontobel, “Constructions of LDPC codes using
ramanujan graphs and ideas from margulis,” in Proc. 38th Allerton
Conf. Commun., Contr. Comput., 2000.

[23] D. J. C. MacKay, Encyclopedia of Sparse Graph Codes [Online]. Avail-
able: http://www.interference.phy.cam.ac.uk/mackay/codes/data.html

[24] J. Thorpe, Low Density Parity Check (LDPC) Codes Constructed from
Protographs JPL INP Progress, Pasadena, CA, Rep. 42–154, Aug. 15,
2003.

[25] D. Divsalar and C. Jones, “Protgraph LDPC Codes with Node Degrees
at Least 3,” presented at the Proc. IEEE GLOBECOM, San Francisco,
CA, 2006.

[26] C. Kelley, D. Sridhara, and J. Rosenthal, Tree-Based Construction of
LDPC Codes Having Good Pseudocodeword Weights [Online]. Avail-
able: http://arxiv.org/

